奥数专题之递推

合集下载

小学奥数计数问题之递推法例题讲解【三篇】

小学奥数计数问题之递推法例题讲解【三篇】

小学奥数计数问题之递推法例题讲解【三篇】分析与解答:这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。

但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。

【第三篇】例题:2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。

问:这时一共报了多少次?最后留下的这个人原来的号码是多少?分析与解答:难的不会想简单的,数大的不会想数小的。

我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。

这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。

第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2×2的倍数。

第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是:8、16,都是8的倍数,也就是2×2×2的倍数。

第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。

由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。

2000名同学,报几次数后才能只留下一个同学呢?第一次:2000÷2=1000 第二次:1000÷2=500第三次:500÷2=250 第四次:250÷2=125第五次:125÷2=62 ……1 第六次:62÷2=31第七次:31÷2=15 ......1 第八次:15÷2=7 (1)第九次:7÷2=3 ......1 第十次:3÷2=1 (1)所以共需报10次数。

奥数讲义计数专题:归纳与递推

奥数讲义计数专题:归纳与递推

华杯赛计数专题: 归纳与递推基础知识:1.递推的基本思想: 从简单情况出发寻找规律, 逐步找到复杂问题的解法。

2.基本类型: 上楼梯问题、直线分平面问题、传球法、圆周连线问题。

3.递推分析的常用思路: 直接累加、增量分析、从复杂化归简单。

例题:例1.一个楼梯共有10级台阶, 规定每步可以迈一级台阶或二级台阶.走完这10级台阶, 一共可以有多少种不同的走法?【答案】89种【解答】设n级台阶有an种走法, 则an=an-1+an-21级有1种走法;2级有(1+1和2)2种走法;3级有(1+1+1、2+1和1+2)3种走法;4级有3+2=5种走法;5级有3+5=8种走法;6级有5+8=13种走法;7级有8+13=21种走法;8级有13+21=34种走法;9级有21+34=55种走法;10级有34+55=89种走法例2.小悦买了10块巧克力, 她每天最少吃一块, 最多吃3块, 直到吃完, 共有多少种吃法?【答案】274种【解答】通过枚举法和递推法: 设n块糖有an种走法, 则an=an-1+an-2+ an-31块糖有1种吃法;2块糖有2种吃法; 3块糖有4种吃法; 4块糖有1+2+4=7种吃法; 5块糖有2+4+7=13种吃法; 6块糖有4+7+13=24种吃法; 7块糖有7+13+24=44种吃法; 8块糖有13+24+44=81种吃法;9块糖有24+44+81=149种吃法;10块糖有44+81+149=274种吃法。

例3.用 1×2的小方格覆盖 2×7的长方形, 共有多少种不同的覆盖方法?【答案】21种【解答】2×1的方格有1种盖法;2×2的方格有2种盖法;2×3的方格有2+1=3种盖法;2×4的方格有3+2=5种盖法;2×5的方格有3+5=8种盖法;2×6的方格有5+8=13种盖法;2×7的方格有8+13=21种盖法。

小学奥数计数之递推法(完整版)

小学奥数计数之递推法(完整版)

小学奥数计数之递推法7-6-4.计数之递推法教学目标前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.例题精讲对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法.【例 1】每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?【考点】计数之递推法【难度】3星【题型】解答【解析】第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加.依次类推可以列出下表:经过月数:---1---2---3---4---5---6---7---8---9---10---11---12兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.【答案】144【例 2】树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝?【考点】计数之递推法【难度】3星【题型】解答【解析】一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以十年后树上有89条树枝.【答案】89【例 3】一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?【考点】计数之递推法【难度】4星【题型】解答【解析】 登 1级 2级 3级 4级 ...... 10级1种方法 2种 3种 5种 ...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.【答案】89【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 登 1级 2级 3级 4级 5级 ...... 10级1种方法 1种 2种 3种 4种...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.【答案】28【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法.【考点】计数之递推法 【难度】4星 【题型】解答【解析】 如果用12⨯的长方形盖2n ⨯的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个12⨯的,也可能横放2个12⨯的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,覆盖210⨯的长方形一共有89种.【答案】89【例 5】 用13⨯的小长方形覆盖38⨯的方格网,共有多少种不同的盖法?【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果用13⨯的长方形盖3n ⨯的长方形,设种数为n a ,则11a =,21a = ,32a = ,对于4n ≥,左边可能竖放1个13⨯的,也可能横放3个13⨯的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这条递推公式列表:31⨯ 32⨯ 33⨯ 34⨯ 35⨯ 36⨯ 37⨯ 38⨯1 1234 6 9 13所以用13⨯的小长方形形覆盖38⨯的方格网,共有13种不同的盖法.【答案】13【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种数等于取到前三根火柴所有情况之和,以此类推,参照上题列表如下: 1根 2根 3根 4根 5根 6根 7根 8根 9根 10根 11根 12根1 2 4 7 13 24 44 81 149 274 504 927取完这堆火柴一共有927种方法.【答案】927【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种数等于取到前三个苹果所有情况之和,以此类推,参照上题列表如下:1个 2个 3个 4个 5个 6个 7个 8个1 2 4 7 13 24 44 81取完这堆苹果一共有81种方法.【答案】81【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种.则21a =,31a =,41a =.由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.即当有10枚棋子时,共有7种不同的拿法.(法2)分类讨论.由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次.若为0次,则相当于2枚拿了5次,此时有1种拿法;若为2次,则2枚也拿了2次,共拿了4次,所以此时有246C =种拿法.根据加法原理,共有167+=种不同的拿法.【答案】7【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.【答案】89【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B房间有多少种方法?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 斐波那契数列第八项.21种.【答案】21【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有296种不同的回家方法.【答案】296【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个?【考点】计数之递推法 【难度】4星 【题型】解答【解析】 可以先尝试一下,倒推得出下面的图:BA AB 135794682123581321345589186427531BA其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,是一奇一偶,以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个.另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多.而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.【答案】34【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数)【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.【答案】25【巩固】有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要2410131112514302831643215167683421求每次取之后留下的棋子数不是3或4的倍数,有 种不同的方法取完这堆棋子.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:【答案】54【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法?【考点】计数之递推法 【难度】5星 【题型】解答【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有11333333n n --⨯⨯⨯=()个…(种)传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有11133333n n n n a a ---+=⨯⨯⨯=(个…).由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =. 利用递推关系可以得到:2303a =-=,33336a =⨯-=,4333621a =⨯⨯-=,533332160a =⨯⨯⨯-=.这说明经过5次传球后,球仍回到甲手中的传球方法有60种.本题也可以列表求解.由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.【答案】60【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共有多少种传球方式?【考点】计数之递推法 【难度】5星 【题型】解答【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.【答案】52【例 13】 设A 、E 为正八边形ABCDEFGH 的相对顶点,顶点A 处有一只青蛙,除顶点E外青蛙可以从正八边形的任一顶点跳到其相邻两个顶点中任意一个,落到顶点E 时青蛙就停止跳动,则青蛙从顶点A 出发恰好跳10次后落到E 的方法总数为 种.【考点】计数之递推法 【难度】5星 【题型】填空【关键词】清华附中【解析】 可以使用递推法.回到A 跳到B 或H 跳到C 或G 跳到D 或F 停在E1步 12步 2 13步 3 14步 6 4 25步 10 46步 20 14 87步 34 148步 68 48 289步 116 48其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.所以,青蛙第10步跳到E 有48296⨯=种方法.【答案】96【巩固】在正五边形ABCDE 上,一只青蛙从A 点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D 点上就停止跳动.青蛙在6次之内(含6次)跳到D 点有 种不同跳法.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 采用递推的方法.列表如下:跳到A 跳到B 跳到C 停在D 跳到E1步 1 12步 2 1 13步 3 1 24步 5 3 25步 8 3 56步 13 8 5其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D 点上就停止跳动.所以,每一步跳到A 的跳法数等于上一步跳到B 和E 的跳法数之和,每一步跳到B 的跳法数等于上一步跳到A 和C 的跳法数之和,每一步跳到C 的跳法数等于上一步跳到B 的跳法数,每一步跳到E 的跳法数等于上一步跳到A 的跳法数,AB C DE每一步跳到D 的跳法数等于上一步跳到C 或跳到E 的跳法数.观察可知,上面的递推结果与前面的枚举也相吻合,所以青蛙在6次之内(含6次)跳到D 点共有1123512++++=种不同的跳法.【答案】12【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【关键词】迎春杯,中年级组,决赛【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”的方法有两种情况:⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙.⑴1,2号箱的钥匙都不在1,2号箱中.对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248⨯=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216⨯=(种)放法.不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216⨯⨯=(种).所以,第⑴种情况有“好”的方法16696⨯=(种).对于⑴,从3~6号箱的钥匙中选2把放入1,2号箱,有4312⨯=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224⨯=种放法;如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212⨯=种放法; 同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑴种情况有“好”的放法()1242222144⨯++++=(种).所以“好”的方法共有96144240+=(种).(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-.所以,6542554543225!240a a a a ==⨯==⨯⨯⨯=⨯=,即好的方法总数为240种.【答案】240【巩固】有10个木箱,编号为1,2,3,……,10,每个箱子有一把钥匙,10把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把10把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-.所以,109829989876543229!=725760a a a a ==⨯==⨯⨯⨯⨯⨯⨯⨯=⨯,即好的方法总数为725760种.【答案】725760。

小升初奥数计数问题之递推方法的解题技巧

小升初奥数计数问题之递推方法的解题技巧

【导语】数学给予⼈们的不仅是知识,更重要的是能⼒,这种能⼒包括观察实验、收集信息、归纳类⽐、直觉判断、逻辑推理、建⽴模型和精确计算。

这些能⼒和培养,将使⼈终⾝受益。

以下是⽆忧考整理的相关资料,希望对您有所帮助。

【篇⼀】 递推⽅法的概述 在不少计数问题中,要很快求出结果是⽐较困难的,有时可先从简单情况⼊⼿,然后从某⼀种特殊情况逐渐推出与以后⽐较复杂情况之间的关系,找出规律逐步解决问题,这样的⽅法叫递推⽅法。

例1、线段AB上共有10个点(包括两个端点),那么这条线段上⼀共有多少条不同的线段? 分析与解答: 从简单情况研究起: AB上共有2个点,有线段:1条 AB上共有3个点,有线段:1+2=3(条) AB上共有4个点,有线段:1+2+3=6(条) AB上共有5个点,有线段:1+2+3+4=10(条) …… AB上共有10个点,有线段:1+2+3+4+…+9=45(条) ⼀般地,AB上共有n个点,有线段: 1+2+3+4+…+(n-1)=n×(n-1)÷2 即:线段数=点数×(点数-1)÷2 例2、2000个学⽣排成⼀⾏,依次从左到右编上1~2000号,然后从左到右按⼀、⼆报数,报⼀的离开队伍,剩下的⼈继续按⼀、⼆报数,报⼀的离开队伍,……按这个规律此下去,直⾄当队伍只剩下⼀⼈为⽌。

问:这时⼀共报了多少次?最后留下的这个⼈原来的号码是多少? 分析与解答: 难的不会想简单的,数⼤的不会想数⼩的。

我们先从这2000名同学中选出20⼈代替2000⼈进⾏分析,试着找出规律,然后再⽤这个规律来解题。

这20⼈第⼀次报数后共留下10⼈,因为20÷2=10,这10⼈开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。

第⼆次报数后共留下5⼈,因为10÷2=5,这5⼈开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2×2的倍数。

小学四年级奥数竞赛班作业第25讲加乘原理与归纳递推

小学四年级奥数竞赛班作业第25讲加乘原理与归纳递推

加乘原理与归纳递推是数学中常用的方法和思想,可以帮助我们解决一些复杂的问题。

在这节课上,我们将学习加乘原理和归纳递推,并且通过一些例题来巩固所学的知识。

一、加乘原理加乘原理是数学中常用的计数原理,它是解决排列组合问题的重要方法。

1.加法原理加法原理是指当一个事件可以用若干个不同时出现的事件分解时,事件的总数等于各个事件发生次数的和。

例如,有一个班级,有男生20人,女生30人,那么该班级的总人数就是20+30=50人。

2.乘法原理乘法原理是指当一个事件可以分为若干个顺序进行的步骤时,事件的总数等于各个步骤可行数的乘积。

例如,班级要进行班长选举,有2个男生和3个女生竞选。

首先选男生,有2种可能,然后选女生,有3种可能。

所以,最终的选举结果有2*3=6种可能性。

二、归纳递推归纳递推也是数学中常用的解题思路,通过寻找规律和递推关系,可以解决一些复杂的问题。

归纳递推分为从小到大归纳和从大到小递推两种方法。

1.从小到大归纳从小到大归纳是指通过一些小规模的例子,总结出一般的规律。

例如,假设我们要求1到10的数字的和。

我们可以先计算出1到5的和为15,然后再计算出6到10的和为30,最后将两个结果相加得到1到10的和为45、我们通过这个过程可以发现,1到n的和等于1到(n-1)的和再加上n,这就是归纳递推的思路。

2.从大到小递推从大到小递推是指通过已知的一些结果,推导出未知的结果。

例如,我们要求1到10的数字的和,我们已经知道1到9的和为45,现在我们要求1到10的和,可以将1到9的和加上10得到1到10的和。

这里我们通过已知结果来求未知结果,也是一种归纳递推的方法。

三、例题解析现在我们通过一些例题来巩固所学的加乘原理和归纳递推的知识。

1.有3个红球和4个黄球,将它们排成一排,一共有多少种不同的排法?根据乘法原理,我们可以得到不同排法的总数为3*4=12种。

2.一只提有1个背包,要装5本书,其中有2本百科全书和3本小说。

奥数计数问题之递推法例题讲解【三篇】

奥数计数问题之递推法例题讲解【三篇】

奥数计数问题之递推法例题讲解【三篇】
分析与解答:
直接画出10个圆不是好办法,先考虑一些简单情况。

一个圆最多将平面分为2部分;
二个圆最多将平面分为4部分;
三个圆最多将平面分为8部分;
当第二个圆在第一个圆的基础上加上去时,第二个圆与第一个圆
有2个交点,这两个交点将新加的圆弧分为2段,其中每一段圆弧都
将所在平面的一分为二,所以所分平面部分的数在原有的2部分的基
础上增添了2部分。

所以,二个圆最多将平面分为2+2=4部分。

同样道理,三个圆最多分平面的部分数是二个圆分平面为4部分
的基础上增加4部分。

所以,三个圆最多将平面分为2+2+4=8部分。

由此不难推出:画第10个圆时,与前9个圆最多有9×2=18个
交点,第10个圆的圆弧被分成18段,也就是增加了18个部分。

所以,10个圆最多将平面分成的部分数为:
2+2+4+6+…+18
=2+2×(1+2+3+ (9)
=2+2×9×(9+1)÷2
=92
类似的分析,我们能够得到,n个圆最多将平面分成的部分数为:
2+2+4+6+…+2(n-1)
=2+2×[1+2+3+…+(n-1)]
=2+n(n-1)
=n2-n+2
【第二篇】
例题:有8块相同的巧克力糖,从今天开始每天至少吃一块,最多吃两块,吃完为止,共有多少种不同的吃法?
分析与解答:
【第三篇】
例题:4个人实行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法?
分析与解答:。

小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.【答案】144【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以十年后树上有89条树枝.【答案】89【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答例题精讲教学目标7-6-4.计数之递推法【解析】 登 1级 2级 3级 4级 ...... 10级1种方法 2种 3种 5种 ...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.【答案】89【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 登 1级 2级 3级 4级 5级 ...... 10级1种方法 1种 2种 3种 4种...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.【答案】28【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法. 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 如果用12⨯的长方形盖2n ⨯的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个12⨯的,也可能横放2个12⨯的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,覆盖210⨯的长方形一共有89种.【例 5】 用13⨯的小长方形覆盖38⨯的方格网,共有多少种不同的盖法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果用13⨯的长方形盖3n ⨯的长方形,设种数为n a ,则11a =,21a =,32a =,对于4n ≥,左边可能竖放1个13⨯的,也可能横放3个13⨯的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这【答案】13【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种【答案】927【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种【答案】81【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种. 则21a =,31a =,41a =.由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.即当有10枚棋子时,共有7种不同的拿法. (法2)分类讨论.由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次. 若为0次,则相当于2枚拿了5次,此时有1种拿法;若为2次,则2枚也拿了2次,共拿了4次,所以此时有246C =种拿法. 根据加法原理,共有167+=种不同的拿法.【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答BA AB 1357946821235813213455891【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.【答案】89【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B 房间有多少种方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 斐波那契数列第八项.21种.【答案】21【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有296种不同的回家方法.【答案】296【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:2410131112514302831643215167683421其中经1次操作变为1的1个,即2, 经2次操作变为1的1个,即4, 经3次操作变为1的2个,是一奇一偶,以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个. 另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多. 而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.【答案】34【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数) 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.【答案】25【考点】计数之递推法 【难度】5星 【题型】填空【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:【答案】54【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有11333333n n --⨯⨯⨯=()个…(种)传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有11133333n n n n a a ---+=⨯⨯⨯=(个…).由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =.利用递推关系可以得到:2303a =-=,33336a =⨯-=,4333621a =⨯⨯-=,533332160a =⨯⨯⨯-=.这说明经过5次传球后,球仍回到甲手中的传球方法有60种. 本题也可以列表求解.由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.【答案】60【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共有多少种传球方式? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.【答案】52点A出发恰好跳10次后落到E的方法总数为种.【考点】计数之递推法【难度】5星【题型】填空【关键词】清华附中【解析】可以使用递推法.回到A跳到B或H跳到C或G跳到D或F停在E 1步 12步 2 13步 3 14步 6 4 25步10 46步20 14 87步34 148步68 48 289步116 48其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.所以,青蛙第10步跳到E有48296⨯=种方法.【答案】96【巩固】在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.青蛙在6次之内(含6次)跳到D点有种不同跳法.【考点】计数之递推法【难度】5星【题型】填空ABEC D【解析】采用递推的方法.列表如下:跳到A跳到B跳到C停在D跳到E1步 1 12步 2 1 13步 3 1 24步 5 3 25步8 3 56步13 8 5其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.所以,每一步跳到A的跳法数等于上一步跳到B和E的跳法数之和,每一步跳到B的跳法数等于上一步跳到A和C的跳法数之和,每一步跳到C的跳法数等于上一步跳到B的跳法数,每一步跳到E的跳法数等于上一步跳到A的跳法数,每一步跳到D的跳法数等于上一步跳到C或跳到E的跳法数.【答案】12【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种. 【考点】计数之递推法 【难度】5星 【题型】填空 【关键词】迎春杯,中年级组,决赛【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”的方法有两种情况:⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙. ⑵1,2号箱的钥匙都不在1,2号箱中.对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248⨯=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216⨯=(种)放法.不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216⨯⨯=(种). 所以,第⑴种情况有“好”的方法16696⨯=(种).对于⑵,从3~6号箱的钥匙中选2把放入1,2号箱,有4312⨯=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224⨯=种放法;如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212⨯=种放法;同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑵种情况有“好”的放法()1242222144⨯++++=(种). 所以“好”的方法共有96144240+=(种).(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,6542554543225!240a a a a ==⨯==⨯⨯⨯=⨯=,即好的方法总数为240种.【答案】240开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,109829989876543229!=725760a a a a ==⨯==⨯⨯⨯⨯⨯⨯⨯=⨯,即好的方法总数为725760种.【答案】725760。

五年级奥数之递推与列表

五年级奥数之递推与列表

递推与列表例1:在下面各列数中的括号中填上适当的数。

1 2 3 4 6(1)2, 3 , 4 , 5 , ( ), 7 ;2 53 3(2) 3 , 1, 6 , 4 , ( ) , 2 ;(3)1, 2, 4 , 8, ( ), 32;(4) 1 , 10 , 19 , 28 , ( ), 46;(5)1, 3, 7 , 13 , ( ) , 31;(6)1, 3, 8 , 15 , ( ), 35;(7) 1 , 3, 4, 7 , ( ) , 18。

例2:数列1,3,2,—1, -2 , 1,…,的第n项a n及其后面两项a n+1, a n+2之间满足关系式a n+2 = a n+1-a n。

求这个数列的前2000项之和。

例3:求20092009的个位数字。

例4:现有100个数按递推排列,其中第一个数是0,第二个数是2,并且从第二个数起每个数的三倍都等于其前后两个数之和,问第100个数被6除所得余数是几?例5:(1)平面上5条直线最多能把一个圆的内部分成几部分? (2)平面上100条直线最多能把一个圆分成多少部分?例6:平面上100个不同的圆最多把平面分成多少部分。

例7:王大爷卖西瓜,第一次卖了全部的一半又半个;第二次卖了余下的一半又半个;第三次卖了第二次余下的一半又半个;第四次卖了第三次余下的一半又半个。

最扣还剩下一个西瓜,问王大爷原来一共有多少个西瓜?例8:如果牛=X3+y3+z3,则称三位数牛为芙蓉花数,试求出大于400而小于500的所有芙蓉花数。

(1)你根据下列各个数之间的关系,在括号里填上恰当的数 (1) 1, 5, 9, 13, 17,()(2)0. 625, 1. 25, 2. 5, 5,( )2 3 4 5 ()(3)10,16,22,28,…,(4)198, 297, 396, 495,( ),( )。

2.从1到1001的所有自然数按图排列,用一个正方形框子框出九个数,要使这九个数的和等于(1) 1994, (2) 2529, (3) 1998。

六年级奥数-递推的方法

六年级奥数-递推的方法

递推的方法有时,我们会遇上一些具有规律性的数学问题,这就需要我们在解题时根据已知条件尽快地去发现规律,并利用这一规律去解决问题。

例如:按规律填数:1,4,9,16,25,(),49,64。

分析:要在括号内填上适当的数,就要正确判断出题目所呈现出的规律。

若你仔细地观察这一数列,就会发现这些数之间的规律:(1)先考虑相邻两个数之间的差,依次是3,5,7,9,…,15;可以看到相邻两数的差从3开始呈现递增2的规律,所以括号里的数应是25+11=36,再看36+13=49得到验证。

(2)如果我们换一个角度去考虑,那么我们还可以发现,这数列的第一项是1的平方,第二项是2的平方,第三项是3的平方……从这些事实中,发现规律是第n项是n的平方。

那么所求的第六项是6²=36。

我们把相邻数之间的关系称为递归关系,有了递归关系可以利用前面的数求出后面的未知数。

像这种解题方法称为递推法。

例1 999…999×999…999的乘积中有多少个数字是奇数?10个10个分析我们可以从最简单的9×9的乘积中有几个奇数着手寻找规律。

解 9×9=81,有1个奇数;99×99=99×(100-1)=9900-99=9801,有2个奇数;999×999=999×(1000-1)=999000-999=998001,有3个奇数;……从而可知,999…999×999…999的乘积中共有10个数字是奇数。

10个10个例2 如图所示:线段AB上共有10个点(包括两个端点),那么这条线段上一共有多少条不同的线段?1234 5 678分析先从AB之间只有一个点开始,再逐步增加AB之间的点数,找出点和线段之间的规律。

我们可以采用列表的方法清楚地表示出点和线段数之间的规律。

解AB之间只有1个点:线段有1+2=3(条);AB之间只有2个点:线段有1+2+3=6(条);AB之间只有3个点:线段有1+2+3+4=10(条);AB之间只有4个点:线段有1+2+3+4+5=15(条);……不难发现,当AB之间有8个点时,线段有1+2+3+4+5+6+7+8+9=45(条)。

小学奥数之递推法

小学奥数之递推法

小学奥数之递推法内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)五年级下册奥数知识点:递推方法计数方法与技巧(递推法概念)计数方法与技巧(递推法例题)例1:的乘积中有多少个数字是奇数?分析与解答:如果我们通过计算找到答案比较麻烦,因此我们先从最简单的情况入手。

9×9=81,有1个奇数;99×99=99×(100-1)=9900-99=9801,有2个奇数;999×999=999×(1000-1)=99900-999=998001,有3个奇数;……从而可知,999…999×999…999的乘积中共有10个奇数。

例题2:分析与解答:这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。

但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。

例题3: 2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。

问:这时一共报了多少次?最后留下的这个人原来的号码是多少?分析与解答:难的不会想简单的,数大的不会想数小的。

我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。

这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。

第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是: 4、8、12、16、20,都是4的倍数,也就是2×2的倍数。

第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是: 8、16,都是8的倍数,也就是2×2×2的倍数。

奥林匹克数学题型递推与组合

奥林匹克数学题型递推与组合

奥林匹克数学题型递推与组合奥林匹克数学竞赛一直以来都是考察学生数学思维和解题能力的高难度赛事。

在其中,递推与组合是两个重要的题型。

递推是一种通过递推关系式求解数列的方法,而组合则涉及到从给定的元素中选取特定数量的元素进行排列组合。

本文将详细介绍奥林匹克数学竞赛中的递推与组合题型,并探讨它们的应用和解题策略。

一、递推题型递推题型在奥林匹克数学竞赛中占有重要地位。

递推关系式是一种基于前一项或前几项计算出下一项的数学关系,通过这种递推关系式,我们可以求解数列中的任意项。

递推题型考察学生对递推关系式的理解和运用能力。

下面以一个例题来说明递推题型的解题思路。

例题:已知数列{an}满足a1=1,a2=2,an=2an-1-an-2+1(n≥3)。

求a100的值。

解题思路:根据题目所给的递推关系式an=2an-1-an-2+1,我们可以从前两项a1=1和a2=2开始依次计算后面的项。

具体计算过程如下:a3 = 2a2 - a1 + 1 = 2*2 - 1 + 1 = 4 - 1 + 1 = 4a4 = 2a3 - a2 + 1 = 2*4 - 2 + 1 = 8 - 2 + 1 = 7a5 = 2a4 - a3 + 1 = 2*7 - 4 + 1 = 14 - 4 + 1 = 11...按照这种方法,我们可以递推得到数列的后续项。

在这个例题中,我们要求的是a100的值,因此可以通过递推关系式依次计算得到。

二、组合题型组合题型在奥林匹克数学竞赛中也是常见的一种题型。

组合是数学中的一种计数方法,用于求解从给定集合中选择特定数量元素的不同方式的问题。

解决组合问题需要了解排列组合的基本原理和公式,同时需要具备一定的抽象思维和运算技巧。

下面以一个例题来说明组合题型的解题思路。

例题:在一个有7个红球和3个蓝球的盒子里,从中随机取4个球。

求取到的球中至少有一个红球的概率。

解题思路:对于这个题目,我们需要求解取到的球中至少有一个红球的概率。

小学四年级奥数竞赛班《加乘原理与归纳递推》

小学四年级奥数竞赛班《加乘原理与归纳递推》

加乘原理与归纳递推是一种数学思维学习方法,它可以帮助学生更有
效地掌握知识和解决问题。

加乘原理是指,如果将两个数A和B相加,同时将这两个数分别乘以
一个数C,那么我们得到的结果是:(A+B)C=AC+BC。

这种思维原理可以用
来解决一些计算方面的问题,如几何图形的分析、几何问题的求解等等。

归纳递推是指,从一个具有特定特征的基本元素出发,通过研究它的
特征并将其包含在其他元素当中,这样就可以一步步地求得一系列新元素
的特征及它们之间的关系。

此外,归纳递推还可以更详细地分析其中一元素,比如一个几何图形,从而理解它的形状与特征。

在学习数学时,学生应该结合加乘原理和归纳递推来学习,不仅可以
更好地理解课程内容,还可以更好地记住。

在解决实际数学问题时,也可
以考虑使用加乘原理和归纳递推等数学思维方法,从而更容易地解决问题。

尤其是学习奥数时,更需要学生学习加乘原理与归纳递推的思维方法,可以使孩子们记忆数学知识和掌握解题的思维模式更加系统化,让孩子们
更有效的解决问题,从而取得更好的学习成绩。

因此,在小学四年级的奥数竞赛班中。

五年级奥数:等差数列的递推关系

五年级奥数:等差数列的递推关系

五年级奥数:等差数列的递推关系五年级奥数: 等差数列的递推关系
介绍
本文档将介绍五年级奥数中关于等差数列的递推关系的基本概
念和方法。

等差数列是一种常见的数学序列,其中每个数值之间的
差值都相等。

等差数列的定义
等差数列是指一个数列中每个相邻项之间的差值都相等的数列。

这个差值被称为公差,通常用字母"d"来表示。

递推关系
等差数列中的递推关系可以用以下公式表示:
`a_{n} = a_{n-1} + d`
其中,`a_{n}`表示数列中的第n项,`a_{n-1}`表示数列中的第
n-1项,`d`表示公差。

找出递推关系的方法
找出等差数列的递推关系可以通过观察数列中的数字之间的差值来进行。

例如,我们可以计算相邻两项的差值,如果差值相等,则可以判断该数列是等差数列,并且找到了递推关系。

举例
以下是一个示例等差数列和它的递推关系:
数列: 2, 5, 8, 11, 14, ...
我们计算相邻两项的差值:
5 - 2 = 3
8 - 5 = 3
11 - 8 = 3
14 - 11 = 3
...
通过观察,我们可以发现每个差值都为3,因此这个数列是等差数列,递推关系为:
`a_{n} = a_{n-1} + 3`
总结
本文档介绍了五年级奥数中关于等差数列的递推关系的基本概念和方法。

了解和掌握等差数列的递推关系对于解决数学问题和应用数学很有帮助。

希望本文对您有所启发和帮助!。

奥数解谜数列与递推关系

奥数解谜数列与递推关系

奥数解谜数列与递推关系数列与递推关系是奥数中的重要概念之一,它们常常作为解谜的利器。

在奥数竞赛中,解谜数列与递推关系是必须要掌握的内容之一。

本文将介绍奥数解谜数列与递推关系的基本概念和解题方法。

一、数列的定义和性质数列是一组按照一定顺序排列的数的集合。

数列中的每个数称为这个数列的项,项的顺序由下标来确定。

例如,数列{1, 3, 5, 7, 9}中的第一个项为1,第二个项为3,以此类推。

数列中的项之间存在一定的规律,这种规律被称为数列的递推关系。

递推关系可以用于求解数列中的任意一项。

下面以一个具体的例子来说明。

例:求数列{1, 3, 5, 7, 9}的递推关系。

解:观察数列中的相邻两项,可以发现两项之间的差都是2。

因此,可以得到递推关系为an = an-1 + 2,其中an表示数列中的第n项,an-1表示数列中的第n-1项。

二、常见的数列类型奥数中常见的数列类型包括等差数列、等比数列和斐波那契数列。

这些数列都有各自的递推关系和特殊性质。

1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。

等差数列的递推关系为an = a1 + (n-1)d,其中a1表示数列中的第一项,d 表示公差。

2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。

等比数列的递推关系为an = a1 * q^(n-1),其中a1表示数列中的第一项,q表示公比。

3. 斐波那契数列:斐波那契数列是指数列中每一项都等于前两项之和的数列。

斐波那契数列的递推关系为an = an-1 + an-2,其中a1 = 1,a2 = 1。

三、解谜数列的解题方法在奥数解谜中,常常会出现一些带有空白的数列,需要填入适当的数,使得该数列满足某种特定的规律。

此时,我们需要通过观察数列的特点,找到递推关系,然后利用递推关系求解空白处应填入的数。

1. 观察数列的特点:首先,我们需要观察数列中的规律。

可以从数列中的前几项入手,寻找相邻项之间的关系,例如差值或比值是否固定等。

小学四年级奥数竞赛班讲义第25讲加乘原理与归纳递推

小学四年级奥数竞赛班讲义第25讲加乘原理与归纳递推

加乘原理与归纳递推是奥数竞赛中非常重要的概念。

今天我们来讲解一下这两个概念。

首先是加乘原理。

加乘原理是指:假设有两个事件A和B,事件A有m种可能发生的方式,事件B有n种可能发生的方式,那么两个事件A和B同时发生的方式有m*n种。

这个概念可以用来解决一些计数问题,特别是当两个事件独立发生时。

例如,一件衣服有5种颜色选择,一条裤子有3种颜色选择,一双鞋子有2种颜色选择。

那么一套包括衣服、裤子和鞋子的搭配有5*3*2=30种可能。

接下来是归纳递推。

归纳递推是一种通过已知情况推导出未知情况的方法。

通常需要找到递推公式,然后利用已知情况通过递推公式计算得到未知情况。

例如,我们要计算斐波那契数列中的第n项。

斐波那契数列的前两项是1,第三项开始的每一项都是前两项之和。

根据这个规律,我们可以得到递推公式:F(n)=F(n-1)+F(n-2)。

根据已知情况F(1)=1和F(2)=1,我们可以通过递推公式计算得到未知情况的值。

通过加乘原理和归纳递推,我们可以解决一些奥数竞赛中的难题。

下面我们来看一个例子。

例题:小明有3个红色球、4个蓝色球和5个绿色球。

他想从这些球中挑选3个,问他一共有多少种挑法?解法:根据加乘原理,我们可以得到红色球的选择方式有C(3,1)种,蓝色球的选择方式有C(4,1)种,绿色球的选择方式有C(5,1)种。

根据乘法原理,一共有C(3,1)*C(4,1)*C(5,1)=3*4*5=60种挑法。

上面的题目可以通过加乘原理解决。

但是有些问题可能需要通过归纳递推来解决。

下面是一个需要用到归纳递推的例子。

例题:一只蜗牛在一个50级的楼梯上爬行。

蜗牛每次只能往上爬1级或者2级,问蜗牛爬到第50级楼梯的方法数是多少?解法:我们可以用F(n)表示蜗牛爬到第n级楼梯的方法数。

根据题目要求,蜗牛在第50级楼梯时,只能从第49级楼梯或者第48级楼梯爬上来。

所以,蜗牛爬到第50级楼梯的方法数等于蜗牛爬到第49级楼梯的方法数加上蜗牛爬到第48级楼梯的方法数。

奥林匹克及自主招生辅导材料第二集(强烈推荐)第四讲:递推方法

奥林匹克及自主招生辅导材料第二集(强烈推荐)第四讲:递推方法
第四讲 递推方法
递推方法是人们从开始认识数量关系时就很自然地产生的一种推理思想.例如自然数中 最小的数是 1,比 1 大 1 的数是 2,接下来比 2 大 1 的数是 3,…由此得到了自然数数列:1, 2,3,4,5,….在这里实际上就有了一个递推公式,假设第 n 个数为 an,则 an+1=an+1; 即 由自然数中第 n 个数加上 1,就是第 n+1 个数.由此可得 an+2=an+1+1,这样就可以得到自然 数数列中任何一个数. 一般来说, 如果一个与自然数有关的数列中的任一项 an 可以由它前面 的 k(≤n-1)项经过运算或其他方法表示出来,我们就称相邻项之间有递归关系,并称这 个数列为递归数列.如果这种推算方法能用公式表示出来,就称这种公式为递推公式或递推 关系式.通过寻求递归关系来解决问题的方法就称为递推方法.这里所说的递推方法是指对于 某些与自然数有关的问题,我们有时可以用递推法解决,所谓用递推法解题,就是根据题目 的特点,构造出递推关系解题的一种方法,解决问题的关键在于构造递推关系.递推关系一 般可以用归纳、猜想等途径获得.利用递推法解题的一般步骤为:(1)确定初始值;(2)建立递 推关系;(3)利用递推关系求通项. 例 1.把一个圆分成 n(n 2) 个扇形,依次设为 s1 , s2 , , sn ,每个扇形都可用红、黄、蓝 3 种不同的颜色之一涂色,要求相邻的扇形颜色互不相同,问共有多少种涂色方法? 解:设不同的涂色方法有 an (n 2) 种.当 n 2 时,对 s1 有 3 种涂色方法,继而对 s2 有两 种涂色方法,得 a2 6 . 下面确定 an 的递推关系,如图所示,若先涂 s1 有 3 种涂法;继 而涂 s2 , s3 , , sn 1 均有 2 种涂法.最后到 sn ,如果只要求 sn 与 sn 1 的颜 色不同,而不顾及 sn 与 s1 的颜色是否相同,仍有 2 种涂法,这样就 共有 3 2n 1 种涂法.但是这 3 2n 1 种涂法分成了两类: 一类是 sn 与 s1 的 颜色不同,其方法数是 an ;另一类是 sn 与 s1 的颜色相同,这种涂法 不符合题意, 但把 sn 与 s1 合成一个扇形, 得出这类涂法的总数为 an 1.

高中数学奥林匹克竞赛中的递推技巧

高中数学奥林匹克竞赛中的递推技巧

数学奥林匹克竞赛中的递推技巧如果前一件事与后一件事存在确定的关系,那么,就可以从某一(几)个初始条件出发逐步递推,得到任一时刻的结果,用递推的方法解题,与数学归纳法(但不用预知结论),无穷递降法相联系,关键是找出前号命题与后号命题之间的递推关系。

用递推的方法计数时要抓好三个环节:(1)设某一过程为数列()f n ,求出初始值(1)f 等,取值的个数由第二步递推的需要决定;(2)找出()f n 与(1)f n -,(2)f n -等之间的递推关系,即建立函数方程; (3)解函数方程。

例1.整数1,2,…,n 的排列满足:每个数大于它之前的所有的数或者小于它之前的所有的数。

试问有多少个这样的排列?解:通过建立递推关系来计算。

设所求的个数为n a ,则11a =(1) 对1n >,如果n 排在第i 位,则它之后的n i -个数完全确定,只能是,1,n i n i ---…,2,1。

而它之前的1i -个数,1,2,n i n i -+-+…,1n -,有1i a -种排法,令1,2,i =…,n 得递推关系。

1211211111(1)2n n n n n n n n a a a a a a a a a a -------=++++=++++=+=…… (2) 由(1),(2)得12n n a -=例2.设n 是正整数,n A 表示用2×1矩形覆盖2n ⨯的方法数;n B 表示由1和2组成的各项和为n 的数列的个数;且024*********12321, 2,21m m m m m n m m m m m C C C C n m C C C C C n m +++++++⎧++++=⎪=⎨++++=+⎪⎩……,证明n n n A B C ==证明:由,n n A B 的定义,容易得到 1112,1,2n n n A A A A A +-=+== 1112,1,2n n n B B B B B +-=+==又因为121,2C C ==,且当2n m =时,0242221352113112212122112m m m n n m m m m m m m m m m m C C C C C C C C C C C C C ---++-++-+++=++++++++++=+…… 5212132211m m m m m n C C C C -++++++++=…类似地可证在21n m =+时也有11n n n C C C -++=,从而{}{},n n A B 和{}n C 有相同的递推关系和相同的初始条件,所以n n n A B C ==。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数专题之递推奥数专题之递推递推法专题递推法是组合数学中的一个重要解题方法,许多问题通过递推法来解决就显得精巧简捷.鉴于这一方法在学习中的应用越来越广泛,掌握和运用这种方法,就显得更加重要.递推方法问题主要有两类:一是问题中有明显的递推关系,重点在于递推关系的应用;二是问题中没有明显的递推关系,需要对已有条件进行变形或改变问题的有关形式而建立递推关系,将问题转化为第一类问题。

本文重点探索第二类问题。

通过建立、研究递推关系Sk+1=f(Sk),使问题得以解决的方法称为递推方法。

例1 平面上有n条直线,它们中任意两条都不平行,且任意三条都不交于一点。

这n条直线可以把平面分割成多少个部分?请看一个引起普遍关注的关于世界末日的问题。

例 2 有这样一段关于“世界末日”的传说。

在印度北部的一个佛教的圣庙里,桌上的黄铜板上,放着三根宝石针,每根长约0.5米。

据说印度教的主神梵天在创造世界时,在其中的一根针上,自上而下由小到大放了六十四片金片。

每天二十四小时内,都有僧侣值班,按照以下的规律,不停地把这些金片在三根宝石针上移来移去:每次只准移动一片,且不论在那根针上,较小的金片只能放在较大的金片上。

当所有六十四片金片都从梵天创造世界时所放的那根针上移到另一根针上时,世界的末日就要到来。

这虽是一个传说,但却引起人们的重视,大家都想知道僧侣移动完毕这六十四片金片需要多少时间。

也就是说,人类在这个世界上还可以生存多少时间。

例3 有10级台阶,小王从下向上走,若每次只能跨一级或两级,他走上去共有多少种不同的走法?追问:10级的情况可以一一列出,台阶数比较多的情况,怎么办?提示:此即为斐波那契数列{ a n}求通项的问题。

例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则4张贺年卡不同的分配方式共有( )(A)6种(B)9种(C)11种(D)23种这里,我们引进一个概念:设a1,a2,a3,…,an是1,2,3,…,n的一个排列,如果aii,(i=1,2,…,n),则称这种排列为一个错位排列(也称为更列)。

更列问题也可以形象地理解为:将1,2,3,…,n看成已经排好对的n个人,重新站队时,各人都不站在原来的位置上。

例5 A、B二人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷;若掷出的点数不是3的倍数时就由对方接着掷,第一次由A开始掷,求第5次仍由A掷的概率。

例 6 将一个四棱锥的每个顶点染上一种颜色,并使每一条棱的两端异色。

如果只有5种颜色可供使用,那么不同的染色方法总数有多少种?例7 设实数a,b,x,y 满足方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+421673443322by ax by ax by ax by ax ,求55by ax +的值。

例8 设a为下列自然数N的个数:N的各位数字n之和为n,且每位数字只能是1,3或4. 求证是一个完全平方数。

a2n例9 过平面上两点A、B分别有m、n条直线,问这m+n条直线最多可以把平面分成多少部分?(m和n均为正整数)递推数列求通项问题一、 引例——斐波那契数列假定一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔在两个月以后也开始生一对一雌一雄的小兔子,隔月一次。

年初时兔房里有一对小兔(一雌一雄),问一年以后,兔房里有多少对兔子?解:设第n 个月初时兔房里有兔子nf 对。

易知2,1,1321===f f f (1)第2+n 个月初时兔房里的兔子可分为两部分:一部分是第1+n 个月初时已经在兔房里的兔子,共有1+n f 对,另一部分是第2+n 个月初时新出生的小兔,共有nf 对,于是 n n n f f f +=++12 (2)这就是为广大中小学生所熟悉的斐波那契数列,它是递推数列的一个典型代表。

二、递推数列(一).递推数列的定义斐波那契数列是递推数列的典型代表,其中(2)式称为递推式,也称递推关系,(1)式是初始条件,这二者是递推数列的必要构成条件。

一般地,我们把满足),...,,(11-+++=k n n n k n f f f F f ……………………….. (6) 和初始值的数列}{n f 称为k 阶递推数列。

当递推关系的形式为)(...2211n F f c f c f c f n k k n k n k n ++++=-+-++…………………………(7)时,数列}{nf 称为k 阶常系数线性递推数列,其中k c c c ,...,,21为常数,且0≠k c 。

若函数0)(≡n F ,则递推关系(7)所确定的数列}{n f 称为k 阶常系数齐次线性递推数列;否则,称递推关系(7)所确定的数列}{n f 为k 阶常系数非齐次线性递推数列。

因此,斐波那契数列是一个2阶常系数齐次线性递推数列。

递推数列是数列中的一个重要类型,数学竞赛中的数列问题多与递推数列尤其是其通项有关,且问题多以递推式、不等式等形式出现,本文主要探讨递推数列通项的求法。

(二)递推数列求通项的常用方法常见的求递推数列通项的方法有:(1)迭代法:对所给的递推式进行适当的变形,以便能连续使用下标较小的项代替某些下标较大的项,最后在一般项与初始项之间建立某种练习,从而求通项。

(2)化归法:把不熟悉的问题转化为熟悉的问题解决是数学中处理问题的常用策略,最常见的是转化为等差或等比数列来解决问题。

(3)累加法:形如)(1n f a an n +=+的递推式,其通项求法多采用累加法,具体操作见例题3。

(4)累乘法:形如n n a n f a )(1=+的递推式,其通项求法多采用累乘法,具体操作见例题4。

(5)代换法:包括代数代换、对数代换、三角代换等。

代换的优点在于可以使用一些原本并不明显的性质和运算。

比如三角代换n n a θsin =,代换后就可以使用三角函数的有关变换和性质。

(6)数学归纳法:在递推公式比较复杂,一般情形较难处理时,可以通过一般问题特殊化的思想,先通过简单情况的研究提出猜想,再用数学归纳法证明。

(7)不动点法:形如d ca r pa an n n ++=+1(其中0≠c ,bd cr ≠)的递推式,其通项求法可采用不动点法。

不妨称dcx r px x ++=的根为上述数列的不动点, 若该数列有两个不动点λ和μ,则可令μλμλ--⋅=--++n nn n a a A a a 11(其中A 为待定常数),代入12,a a 的值可求得A 值。

这样数列⎭⎬⎫⎩⎨⎧--μλn n a a 是首项为μλ--11aa ,公比为A 的等比数列,于是可求得n a 。

若该数列只有一个不动点λ,则可令A a a n n +-=-+λλ111(其中A 是待定常数),代入12,a a 的值可求得A 值。

这样数列⎭⎬⎫⎩⎨⎧-λn a 1是首项为λ-11a ,公差为A 的等差数列,于是可求得na 。

(8)特征根方法引例中求斐波那契数列通项公式的方法称为特征根法。

这是一种解常系数齐次线性微分方程时常用的方法,在求解线性递推数列通项时也经常使用。

其中方程k k k k c x c x c x +++=--...2211 (8)称为数列(7)的特征方程,对应的根称为数列}{n f 的特征根。

对k 阶常系数齐次线性递推数列(7),设其特征根为t λλλ,...,,21,对应的重数为k t d d d t ≤≤1,,...,,21,则数列}{n f 的通项为,)(...)()(2211n t t n n n n A n A n A f λλλ+++=121...)(-+++=i i d id i i i n B n B B n A 其中 这里ijB 都是常数,它们由初始值可以确定。

特征根方法使用较多的是求二阶线性递推数列的通项问题。

若递推数列}{nf 的特征方程有两个不等实根(称为特征根)21,x x ,则递推数列}{nf 的通项nn n x c x c f 2211+=,其中21,c c 由数列的初始值ba a a ==21,唯一确定⎪⎪⎭⎫ ⎝⎛⎩⎨⎧=+=+b x c x c a x c x c 2222112211。

若特征方程有两个相等实根xx x==21,则递推数列}{nf 的通项nn x nc c f )(21+=,其中21,c c 由数列的初始值ba a a==21,唯一确定⎪⎪⎭⎫⎝⎛⎩⎨⎧=+=+b x c c a x c c 22121)2()(。

三、例题精讲 例1 已知数列{}na 中,31=a ,421+=+n n a a,求此数列的通项na 。

例2 已知3,1211n n a a a ==+,求na .例 3 在数列}{na 中,,11=an n a a =+1)1(1412≥-+n n ,求通项公式na .例4设正数数列ΛΛ,,,,10n a a a 满足212----n n n n a a a a )2(21≥=-n a n ,且110==a a,求}{na 的通项公式。

例5 数列Λ,,1a a 与Λ,,1b b 定义如下:ΛΛ,2,1,0,11,1,2,1,0,1122,22210210=-+===--==++n b b b b n a a a nnn n n证明:对每一个Λ,2,1,0=n ,有nn n n b a 2222++<<π例6 数列}{na 满足递推式Λ,2,1,11=+=∑=n n na Cnk k k n,试求}{n a 的通项公式。

例7 在数列{}na 中,=1a 1,4231-+-=+n n n a a a,求通项na例8 数列}{nx 满足0=x且18321++=+n n n x x x,求通项公式。

解析几何专题讲座一 知识补充(部分)1直线参数方程的标准式及其应用⎩⎨⎧+=+=ααsin cos 00t y y t x x ,(t 为参数)注意:t 的几何意义2圆锥曲线的焦半径公式及其应用 3 圆锥曲线的统一定义及其应用平面内,到定点的距离与它到定直线的距离之比为一个常数e 的点的轨迹。

这里e ∈(0,1)时轨迹是椭圆;e=1时轨迹是抛物线;e ∈(1,+∞)时轨迹是双曲线。

4 圆锥曲线的极坐标方程θρcos 1e ep -=二 几个问题问题1:已知Q 为抛物线pxy22=)0(>p 上的动点,M (m , 0)为其对称轴上的点,试讨论|QM|的最小值,并指出何时取得该最小值。

变式:椭圆E :22a x +22b y =1 (>>b a )上的点Q 到其长轴上的点N (m ,o )的最小距离。

问题2 AB 是过抛物线pxy22=(p>0)的焦点F的动弦,该抛物线在A,B 处的切线交于M ,求动点M 的轨迹。

相关文档
最新文档