图形的相似知识点总复习有解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似知识点总复习有解析
一、选择题
1.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,2CD =,1BD =,则AD 的长是( )
A .1.
B .2
C .2
D .4
【答案】D
【解析】
【分析】 由在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,根据同角的余角相等,可得∠ACD=∠B ,又由∠CDB=∠ACB=90°,可证得△ACD ∽△CBD ,然后利用相似三角形的对应边成比例,即可求得答案.
【详解】
∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B ,
∴△ACD ∽△CBD ,
∴=AD CD CD BD
, ∵CD=2,BD=1, ∴
2=21AD , ∴AD=4.
故选D.
【点睛】
此题考查相似三角形的判定与性质,解题关键在于证得△ACD ∽△CBD.
2.如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD=∠BDC=90°,E 为BC 的中点,AE 与BD 相交于点F ,若BC=4,∠CBD=30°,则DF 的长为( )
A.2
3
5
B.
2
3
3
C.
3
3
4
D.
4
3
5
【答案】D
【解析】
【分析】
先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.
【详解】
如图,
在Rt△BDC中,BC=4,∠DBC=30°,
∴3
连接DE,
∵∠BDC=90°,点D是BC中点,
∴DE=BE=CE=1
2
BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴DF DE BF AB
=,
在Rt△ABD中,∠ABD=30°,3,∴AB=3,
∴
2
3 DF
BF
=,
∴
2
5 DF
BD
=,
∴DF=2243
3
55
BD=⨯=
故选D.
【点睛】
此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定
义,判断出DE ∥是解本题的关键.
3.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5
CAB ∠=,5DF =,则AB 的长为( )
A .10
B .12
C .16
D .20
【答案】D
【解析】
【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.
【详解】
解:连接BD ,如图,
AB Q 为直径,
90ADB ACB ∴∠=∠=︒,
AD CD =Q ,
DAC DCA ∴∠=∠,
而DCA ABD ∠=∠,
DAC ABD ∴∠=∠,
DE AB ∵⊥,
90ABD BDE ∴∠+∠=︒,
而90ADE BDE ∠+∠=︒,
ABD ADE ∴∠=∠,
ADE DAC ∴∠=∠,
5FD FA ∴==,
在Rt AEF ∆中,3sin 5
EF CAB AF ∠=
=Q , 3EF ∴=,
22534AE ∴=-=,538DE =+=,
ADE DBE ∠=∠Q ,AED BED ∠=∠,
ADE DBE ∴∆∆∽,
::DE BE AE DE ∴=,即8:4:8BE =,
16BE ∴=,
41620AB ∴=+=.
故选:D .
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.
4.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )
A .3:4
B .9:16
C .9:1
D .3:1
【答案】B
【解析】
【分析】 可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD 为平行四边形,
∴DC ∥AB ,
∴△DFE ∽△BFA ,
∵DE :EC=3:1,
∴DE :DC=3:4,
∴DE :AB=3:4,
∴S △DFE :S △BFA =9:16.
故选B .
5.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )