概率统计1.1-1.3(48学时)(浙大盛骤)
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学
完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析
完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0
∪
A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。
浙江大学概率论与数理统计第4版复习笔记详解
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
概率论与数理统计浙江大学盛骤完整版
正态分布在数理统计学中占有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。
A U B AB {甲、乙至少有一人不来}
22
§3 频率与概率
(一)频率
定义:记
fn ( A)
nA ; n
其中 nA—A发生的次数(频数);n—总试验次 数。称fn (A)为A在这n次试验中发生的频率。
例:
➢ 中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
一次,则在这n次试验中“冲击亚洲”这事件发生的频1率n为;
4
随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。
法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科
对于引入概念的内涵和相互间的联系和差异 要仔细推敲 .
概率论与数理统计(浙大_第四版简明本--盛骤) 第一章
解:
S={1,2,…,8} A={1,2,3}
P
A
3 8
22
例2:从上例的袋中不放回的摸两球,
记A={恰是一红一黄},求P(A).
解:
P( A)
C31C51
/ C82
15 28
53.6%
例3:有N件产品,其中D件是次品,从中不放 回的取n件,
记Ak={恰有k件次品},求P(Ak).
解:P(
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
第八章
假设检验
• 8.1 假设检验 • 8.2 正态总体均值的假设检验 • 8.3 正态总体方差的假设检验 • 8.4 置信区间与假设检验之间的关系 • 8.5 样本容量的选取 • 8.6 分布拟合检验 • 8.7 秩和检验
自然界与社会生活中的两类现象
不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
第九章 方差分析及回归分析
• 9.1 单因素试验的方差分析 • 9.2 双因素试验的方差分析 • 9.3 一元线性回归 • 9.4 多元线性回归
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
概率论与数理统计教学日历
教学日历
2016—2017学年度第一学期
课程概率论与数理统计
理学院电子信息工程技术专业2017级专科1、2班
任课教师职称副教授
辅导教师职称
周数16周学时3
讲课48课时实习课时
实验0课时复习考试课时
其他课时总时数课时
采用教材《概率论与数理统计》,盛骤,谢式千等
考核方法考试
制定时间:2016年8月27日
第十七周
第十七周
第十八周
本 日 历 完 成
情 况
(7)
承 担 的 教 学
工 作 量 总 计
(ቤተ መጻሕፍቲ ባይዱ)
从 事 的 科 研 、
编 写 教 材 、实
验 室 建 设 工 作
(9)
其他(进修、外出
兼课、讲学、病修
等情况)
(10)
教研室检查
鉴定意见
(11)
系(院)检查
鉴 定 意 见
(12)
备注
附注:1、本日历一式两份,一份存系(院)办公室,一份由讲授者保存。
6.2 直方图和箱线图
6.3 抽样分布
重点:总体,统计量,卡方分布、t分布和F分布,正态分布的常用抽样定理
难点:卡方分布、t分布和F分布
第十二周
第七章 参数估计
7.1 点估计
重点:点估计的概念,矩估计法和最大似然估计法
难点:最大似然估计法
第十三周
7.2 基于截尾样本的最大似然估计
7.3 估计量的评选标准
重点:两个随机变量和的分布,
M=max(X,Y)及N=min(X,Y)的分布,数学期望定义和计算公式
难点:两个连续型随机变量和的分布,M=max(X,Y)及N=min(X,Y)的分布
浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档
# 频率 反映了事件A发生的频繁程度。
15
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
i1
i1
i1
i1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
A B {甲、乙至少有一人来}
都不来}
A BAB{甲、乙至少有一人不来}
14
§3 频率与概率
例:
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
S={0,1,2,…}; 记录某地一昼夜最高温度x,最低温度y
S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
10
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
记 A={至少有10人候车}={10,11,12,…} S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含
概率论与数理统计浙江大学盛骤完整版
一种受到某些著名学者支持的观点认为,英国学者葛朗特 在1662年发表的著作《关于死亡公报的自然和政治观察》, 标志着这门学科的诞生。
数理统计学的另一个重要源头来自天文和测地学中的误差 分析问题。人们希望通过多次量测获取更多的数据,以便 得到对量测对象的精度更高的估计值。量测误差有随机性, 适合于用概率论即统计的方法处理,远至伽利略就做过这 方面的工作,他对测量误差的性态作了一般性的描述,法 国大数学家拉普拉斯曾对这个问题进行了长时间的研究, 现今概率论中著名的“拉普拉斯分布”,即是他在这研究 中的一个产物。这方面最著名且影响深远的研究成果有二: 一是法国数学家兼天文家勒让德19世纪初(1805) 与德 国大学者高斯发明的“最小二乘法”,另外一个重要成果 是高斯1809年在研究行星绕日运动时提出用正态分布刻画 测量误差的分布。正态分布也常称为高斯分布。
i 1
S AB
S AB
✓ 当AB=Φ时,称事件A与B不相容的,或互斥的。
S
AB
21
✓ A B AB { x| xA 且 xB }
S AB
✓
A的逆事件记为A,
A
U
A
S
,
A A
若
A A
U B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
n
n
9
20世纪以前数理统计学发展的一个重要成果, 是19世纪后期由英国遗传学家兼统计学家高尔顿 发起,并经现代统计学的奠基人之一K·皮尔逊和 其他一些英国学者所发展的统计相关与回归理论。 所谓统计相关,是指一种非决定性的关系如人的 身高X与体重Y,存在一种大致的关系,表现在X 大(小)时,Y也倾向于大(小),但非决定性的: 由X并不能决定Y。现实生活中和各种科技领域中, 这种例子很多,如受教育年限与收入的关系,经 济发展水平与人口增长速度的关系等,都是属于 这种性质,统计相关的理论把这种关系的程度加 以量化,而统计回归则是把有统计相关的变量, 如上文的身高X和体重Y的关系的形式作近似的估 计,称为回归方程,现实世界中的现象往往涉及 众多变量,它们之间有错综复杂的关系,且许多 属于非决定性质,相关回归理论的发明,提供了 一种通过实际观察去对这种关系进行定量研究的 工具,有着重大的认识和实用意义。
浙江大学概率论与数理统计第4版复习笔记详解
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
概率统计总复习浙江大学盛骤
0,
x 1
F(x) (5x 7) /16, 1 x 1
1,
x 1
F(x)
1
1 0
1
x
(2) p P(X 0) P(X 0) P(X 0)
F(0) [F(0) F(0 0)] F(0 0) 7 /16 .
[附] k 的另一求法
事件 A D与 B C 也相互独立. (√ )
若事件 A1, A2, …, An 相互独立, 将它 们任意分成 k 组, 同一事件不能同时
属于两个不同的组, 则对每组事件进
行求和、积、差、逆 等运算所得到
的 k 个事件也相互独立.
(3) 若事件 A 与 B独立, B 与 C独立, 则事件 A与 C 也相互独立. ( )
y1 1 y ) dx
02 2
y.
(3)
若X
~
E(1)
,
则Y
eX
~
fY
(y)
1 y2
0
, ,
y 1, y 1.
(√
)
例8 设随机变量 X 的绝对值不大于 1 ;
P(X 1) 1/ 8 , P(X 1) 1/ 4 ;
在事件 (1 X 1) 出现的条件下,X 在 (1, 1)内任一子区间上取值的条件概率
1 2000 / m 50 0.05 2.5
2000 / m 50 0.95 2000 / m 50 1.645
2.5
2.5
m 36.96 所以至多装37袋水泥.
要彻底的随机!
解 设装m 袋水泥, X i 表示第i 袋水泥重量.
概率论与数理统计复习题答案 第四版 盛骤
概率论与数理统计复习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念P25 第三题:3.(1)设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- (2)已知P (A )=1/2,P (B )=1/3,P (C )=1/5,P (AB )=1/10,P (AC )=1/15,P (BC )=1/20,P (ABC )=1/30,求C B A C B A C B A C B A B A B A ⋃⋃⋃⋃,,,,,的概率。
(3)已知P (A )=1/2,(i )若A ,B 互不相容,求)(B A P ,(ii )若P (AB )=1/8,求)(B A P 。
例五:某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记又有以下的数据:设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志. (1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少。
试求这些概率。
解:设A 表示“取到的是一只次品”,B i (i= 1,2,3)表示“所取到的产品是由第i 家工厂提供的”.易知,B 1,B 2,B 3:是样本空间S 的一个划分,且有P(B1)=0.15,P(B2)=0.80,P(B3)= 0.05, P(A|B 1)=0.02,P(A|B 2)= 0.01,P(A|B 3)=0.03.(1) 由全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+ P(A|B3)P(B3)=0.0125. (2)由贝叶斯公式.12.0)|(,64.0)|(24.00125.015.002.0)()()|()|(32111===⨯==A B P A B P A P B P B A P A B P .以上结果表明,这只次品来自第2家工厂的可能性最大.P26第六题6.病树的主人 外出.委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15.有0.9的把握确定邻居会记得浇水. (1)求主人回来树还活着的概率.(2)若主人回来树已死去,求邻居忘记浇水的概率.例2一个元件(或系统)能正常工作的概率称为元件(或系统)的可靠性,如图1-8.设有4个独立工作的元件1,2,3,4按先串联再并联的方式连接(称为串并联系统).设第i个元件的可靠性为P i(i=1,2,3,4),试求系统的可靠性。
概率论与数理统计和应用课后标准答案答案最新版(浙江大学_盛骤版)
概率论与数理统计和应⽤课后标准答案答案最新版(浙江⼤学_盛骤版)第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果出现两次,记录投掷的次数。
(2)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果接连出现两次,记录投掷的次数。
(3)连续投掷⼀枚硬币直⾄正⾯出现,观察正反⾯出现的情况。
(4)抛⼀枚硬币,若出现H 则再抛⼀次;若出现T ,则再抛⼀颗骰⼦,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ??。
解:625.0)()()()(=-+=?AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取⼀个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字⾄多出现⼀次的全体三位数中,任取⼀个三位数。
(1)求该数是奇数的概率;(2)求该数⼤于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现⼀次的全体三位数的个数有100455=??个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
第八章
参数估计
假设检验
第一章 概率论的基本概念
概率论序言 第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
序言
1.确定性现象 2.统计规律性 3.随机现象
在自然界和人的实践活动中经常遇到各种 各样的现象,这些现象大体可分为两类:一 类是确定的,例如“在一个标准大气压下, 纯水加热到100摄氏度时必然沸腾。”“向上 抛一块石头必然下落。”,“同性电荷相斥, 异性电荷相吸。”等等,这种在一定条件下 有确定结果的现象称为必然现象(确定性现 象);
2. 和事件 : 事件 A、B 至少有一个发生所构成 的
事件叫做事件 A 与事件 B 的和 .记作 A B .
A
B
类似地 , 称事件 A1、A2、 、An 中至少有一个发
、An 的和事件 . 生的事件为事件 A1、A2、 n 记之为 A1 A2 An , 简记为 Ai . i 1 中至少有一个发生的事 件为 称事件 A1、A2、
例如:S2 中事件 A={HHH,HHT,HTH,HTT} 表示 “第一次出现的是正面” S6 中事件 B1={t|t1000} 表示 “灯泡是次品” 事件 B2={t|t 1000}
表示 “灯泡是合格品”
事件 B3={t|t1500}
表示“灯泡是一级品”
• 例:对于试验E2:将一枚硬币抛掷三次, 观察正面H、反面T出现的情况. (1)事件A1:“第一次出现的是正面H”,则 A1={HHH,HHT,HTH,HTT} (2)事件A2:“三次出现同一面”,则 A2={HHH,TTT} (3)事件A3:“出现二次正面”,则 A2={HHT,HTH,THH}
Ai . 件 A1、A2、 的积事件 . 记之为 A1 A2 , 简记为 i 1
、同时发生所构成的事件为事 称事件 A1、A2、
i 1
n
•例:抛一粒骰子,事件A=“出现点数不超过3”, B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} . 所以,A∩B={2} •例:电视机的寿命T是一个随机变量. A=“T超过10000小时”={T| T>10000}, B=“T超过20000小时” ={T| T>20000}. 所以,A∩B={T| T>20000 }=B
由以上两个例子可见,样本空间的元素是由试验的 目的所确定的. 如果试验是测试某灯泡的寿命: 则样本点是一非负数,由于不能确知寿命的上界, 所以可以认为任一非负实数都是一个可能结果,故
样本空间 S : {t | t ≥0}
S1 : { H , T } S2 : { HHH, HHT, HTH, THH, HTT, THT, TTH, TTT } S3 : { 0, 1, 2, 3 } S4 : { 1, 2, 3, 4, 5, 6 } S5 : {0,1,2,3……} S6 : { t | t 0 } S7 : { ( x , y ) | T 0 x y T1 } x--最低温度,y--最
3. 积事件 : 事件 A、B 同时发生所构成的事件 叫做事件 A 与事件 B 的积事件 .记作 A B 或 AB .
S
A
AB , 称事件A1、A2、 、An 的积事件 . 记之为 的事件为事件 A1、A2、
A1 A2 An , 简记为 Ai .
6. 对立事件 : 若事件 A 与事件 B 在一次试验
中必有且只有其中之一 发生,即 A、 B 满足条件
A B S 且 AB
则称事件 A 与事件 B 为互逆事件 , 或称事件 A、B
互为对立事件 .事件 A 的对立事件记为 A .
A
S
A
•例:抛一粒骰子,事件A=“出现点数不超过3”. 则A={1,2,3},而S={1,2,3,4,5,6,}. 所以, Ā ={4,5,6} •例:电视机的寿命T是一个随机变量. A=“T超过10000小时”={T| T>10000}, S={T| T≥0}. 所以, Ā ={T| 0≤T≤10000 }
4 德 摩根律 对偶律 : A B A B , AB A B ,
i 1
Ai Ai , Ai Ai
i 1
另一类现象是随机的,例如:在相同的条 件下,向上抛一枚质地均匀的硬币,其结果 可能是正面朝上,也可能是反面朝上,不论 如何控制抛掷条件,在每次抛掷之前无法肯 定抛掷的结果是什么,这个试验多于一种可 能结果,但是在试验之前不能肯定试验会出 现哪一个结果。即在一定条件下进行试验或 观察会出现不同的结果(也就是说,多于一 种可能的试验结果),而且在每次试验之前 都无法预言会出现哪一个结果(不能肯定试验 会出现哪一个结果),这种现象称为随机现 象。
小结 随机试验的定义
第二节 样本空间、随机事件
样本空间
随机事件
事件间的关系与事件的运算
小结
一、 样本空间(Space)
定义 将随机试验 E 的所有可能结果组成的集合 称为 E 的样本空间, 记为 S 。样本空间的
元素,即 E 的每个结果,称为样本点。
例如,试验是将一枚硬币抛掷两次,观察正面H、 反面T出现的情况:
E1:抛一枚硬币,观察正面H(Heads)、反面T (Tails)出现的情况。
E2 :将一枚硬币抛掷三次,观察正面、反面出现 的情况。
E3:将一枚硬币抛掷三次,观察出现正面的次数。 E4:抛一颗骰子,观察出现的点数。
E5:记录寻呼台一分钟内接到的呼唤次数。 E6:在一批灯泡中任意抽取一只,测试它的寿 命。
对立事件与互斥事件的关系 :
对立一定互斥, 但互斥不一定对立.
两事件A、B互斥: AB 即A与B不可能同时发生. 两事件A、B互逆或互为对立事件: 除要求A、B互斥( AB )外,还要求
A B S
事件的运算规律
1 交换律 : A B B A , AB BA ; 2 结合律 : A B C A B C , AB C A BC ; 3 分配律 : A B C AC BC , AB C A C B C ;
三、事件间的关系与事件的运算
设试验 E 的样本空间为 S , A、B、C、A1、A2
试验 E 的事件 .
1.包含关系 : 如果事件 A 发生必然导致事件 B
发生 , 则称事件 B 包含事件 A (或称事件A 是事件 B 的子事件 ) , 记作 A B 或 B A .
对于任何事件 A , 都有 S A .
高温度,设这一地区的温度不会小于T 0 ,也不会 大于T1
注:样本空间的元素是由试验的目的所决定的。
二、随 机 事 件
定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件; •基本事件 : 有一个样本点组成的单点集; •必然事件 : 样本空间 S 本身; •不可能事件 : 空集,即不包含任何样本点。 我们称一个随机事件发生当且仅当它所包 含的一个样本点在试验中出现.
则样本空间
S={(H,H), (H,T), (T,H), (T,T)}
第 1次 (H,H): (H,T): (T,H): (T,T):
H H T
第 2次
H T H T
T
在每次试验中必有 一个样本点出现且仅有 一个样本点出现 .
若试验是将一枚硬币抛掷两次,观察正面出现的 次数: 则样本空间
S : {0,1,2}
4. 差事件 : 称事件 A 发生而事件 B 不发生所构
成的事件为事件 A 与事件 B 的差事件 , 记作 A B .
A B AB A AB
A
B S
5.互斥事件 : 若事件 A 、B 不能同时发生,即
AB , 则称 事件 A 与事件 B 为 互斥事件或互不
相容事件 .基本事件是两两互不相容的 .
概率论与数理统计
浙江大学 盛骤等编
前
言
概率统计是研究随机现象规律性的科学,随着现代科学 技术的发展,“概率论”在自然科学、社会科学和工农业生 产中得到了越来越广泛的应用.在现实世界中,随机现象是 广泛存在的,而“概率统计”正是一门从数量这一侧面研究 随机现象规律性的数学科.它结构严谨,应用广泛,发展迅速. 是近代数学的重要组成部分之一,在国民经济、工农业生产、 物理学、生物学、医学、工程技术(如自动控制、地震预报、 气象预报、产品质量控制等)、军事技术、现代经济理论、 管理科学等众多领域中有着广泛的应用,并且在不断地向其 他学科渗透。它是一门有着自己独特的概念与方法的数学分 支。
• 例 : 对于试验 E6: 在一批灯泡中任意抽取 一只,测试它的寿命.
• 事件B:“寿命小于1000小时”,则 B={t|0≤t<1000} • 例:对于试验E7:记录某地一昼夜的最高 温度和最低温度. • 事件C:“最高温度与最低温度相差10 度”,则 C={(x,y)|y-x=10, T0≤x≤y≤T1}
事件 A1、 的和事件 .记之为 A1 A2 , A2、 简记为 Ai .
i 1
•例:抛一粒骰子,事件A=“出现点数不超过3”, B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} . 所以,A∪B={1,2,3,4,6} •例:电视机的寿命T是一个随机变量. A=“T超过10000小时”={T| T>10000}, B=“T超过20000小时” ={T| T>20000}. 所以,A∪B={T| T>10000 }=A
• 每次试验前不能预言出现什么结果 • 每次试验后出现的结果不止一个 • 在相同的条件下进行大量观察或试 验时,出现的结果有一定的规律性 —— 称之为统计规律性 概率论与数理统计就是研究和揭示随机现象统计 规律性的一门数学学科。