2020年江苏省南京市实验学校中考模拟数学试题一
南京市2020版数学中考一模试卷(I)卷
南京市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·合肥期中) 下列各数:,,,-0.34,,,0.101001(每两个1之间的0增加一个)中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)下面四个几何体中,其左视图为圆的是()A .B .C .D .3. (2分)如图,直线l1∥l2 ,∠1=50°,∠2=23°20′,则∠3的度数为()A . 26°40′B . 27°20′C . 27°40′D . 73°20′4. (2分) (2015八下·农安期中) 如果分式的值为0,那么x为()A . ﹣2B . 0C . 1D . 25. (2分)下列运算正确的是()A . a6÷a2=a3B . a6+a2=a8C . (a2)3=a6D . 2a×3a=6a6. (2分) (2017·天等模拟) 某市今年参加中考的学生人数大约为2.08×104人,对于这个用科学记数表示的近似数,下列说法中正确的是()A . 精确到百分位B . 精确到十分位C . 精确到个位D . 精确到百位7. (2分)(2019·凤翔模拟) 如图,⨀O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC的长为()A . 2B . 2C . 4D . 68. (2分)不等式组的整数解的个数是()A . 3B . 5C . 7D . 无数个9. (2分)下列各选项的两个图形(实线部分),不属于位似图形的是()A .B .C .D .10. (2分)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A . mB . mC . mD . m二、填空题 (共4题;共4分)11. (1分) (2019八下·端州月考) 计算的结果是________.12. (1分) (2018八上·重庆期末) 如图,在四边形ABCD中,,,将AD、BC 分别平移到EF和EG的位置若,,,则AB的长是________cm.13. (1分)(2019·通辽) 如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是________℃.14. (1分) (2018九上·杭州期中) 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是为________.三、解答题 (共10题;共64分)15. (5分)计算:(1)(x+3)2+x(x﹣6)(2)(x+1﹣)÷ .16. (5分) (2017九上·肇源期末) 解方程:.17. (2分) (2019八上·港南期中) 已知为的内角平分线,,,,请画出图形,(必须保留作图痕迹).18. (2分)每年5月的第二个星期日是“母亲节”,为了解同学们今年母亲节是怎样陪妈妈过的,随机对校园里的同学进行了调查,调查结果有以下几种:“给妈妈买礼物”,“帮妈妈做家务”,“陪妈妈看电影”,“今年忘了”,分别记为“A”,“B”,“C”,“D”.根据调查统计结果绘制了如下两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)这次共调查了________名同学,扇形统计图中表示“C”的扇形的圆心角的度数为________度,请补全折线统计图;(2)现在要从选择“B”的同学和选择“D”的同学中分别选一位同学来谈谈各自对“母亲节”的感想,请用画树状图或列表法求选中的两人刚好是一位女同学和一位男同学的概率.19. (10分) (2017八上·乐清期中) 育英学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.20. (2分)如图,在△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:AG平分∠BAC;(2)若∠E=40°,求∠AGB的度数.21. (2分)(2018·南京) 如图,为了测量建筑物的高度,在处树立标杆,标杆的高是 .在上选取观测点、,从测得标杆和建筑物的顶部、的仰角分别为、,从测得、的仰角分别为、 .求建筑物的高度(精确到) .(参考数据:,, .)22. (10分)(2018·兰州) 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.(1)求一次函数和反比例函数的表达式;(2)请直接写出时,x的取值范围;(3)过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.23. (15分)(2018·宜宾) 在平面直角坐标系中,已知抛物线的顶点坐标为,且经过点 .如图,直线与抛物线交于点两点,直线为 .(1)求抛物线的解析式;(2)在上是否存在一点,使取得最小值?若存在,求出点的坐标;若不存在,请说明理由.(3)已知为平面内一定点,为抛物线上一动点,且点到直线的距离与点到点的距离总是相等,求定点的坐标.24. (11分)(2016·嘉兴) 我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共10题;共64分)15-1、15-2、16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。
2019-2020南京市数学中考一模试卷含答案
2019-2020南京市数学中考一模试卷含答案一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )A .B .C .D .2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米7.2-的相反数是( ) A .2-B .2C .12D .12-8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩9.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=10.已知命题A :“若a 2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)11.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,1512.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=kx的图象上,则k的值为________.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.24.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.2.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.D解析:D试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.6.A解析:A 【解析】 【分析】作BM ⊥ED 交ED 的延长线于M ,CN ⊥DM 于N .首先解直角三角形Rt △CDN ,求出CN ,DN ,再根据tan24°=AMEM,构建方程即可解决问题.作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.9.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:12x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 10.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 11.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .12.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】 解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】 本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.2【解析】由D 是AC 的中点且S△ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =217.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF ⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF ⊥CE 于点F 在△DCF 中∵CD =4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =, ∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.无22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
2020年江苏省南京市中考数学模拟检测试卷附解析
2020年江苏省南京市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.∠A 是锐角,tanA>33,则∠A ( ) A .小于30° B .大于30° C .小于60° D .大于60°2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°4.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32πB .43πC .4D .322π+5.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( )A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x = 8.2421-可以被在60 和 70 之间的两个数整除,这两个数是( )A .61,63B .63,65C . 65,67D . 67,699.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )A .120B .310C . 12 D .320 10.下列英文字母中是轴对称图形的是( )A .SB .HC .PD .Q二、填空题11.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .12.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .13.已知223x x --与7x +的值相等,则x 的值是 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 17.(12a 3-8a 2+25a )÷4a= . 18.3227xy z -的次数是 ,系数是 . 19.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题20.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,(1) 求证:△CPB≌△AEB;(2) 求证:PB⊥BE;(3) 若PA∶PB=1∶2,∠APB=135°,求PA∶AE的值.22.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.23.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.24.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y-<++;(2)323 228x x-≥-25.阅读下列解题过程:已知:a、b、c为△ABC一的三边,且满足222244a cbc a b-=-,试判定△ABC的形状.解:∵222244a cbc a b-=-(A)∴2222222()()()c a b a b a b-=+-,(B)∴222c a b=+, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号:.(2)错误的原因为:.(3)本题正确的结论是:.26.如图,已知∠ABC = 50°,∠ACB = 80°,∠ABC、∠ACB 的平分线交于点O.过点O 作BC 的平行线,分别交 AB、AC 于点D、E.求∠BOC的度数.27.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:F E D C B A 因此(7x+2+6x 2)÷(2x+1)=3x+2,阅读上述材料后,试判断x 3-x 2-5x-3能否被x+1•整除,说明理由.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .29. 已知一个角的补角比这个角小 30°,求这个角的度数.30.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.C8.B9.D10.B二、填空题11. 1612. 24y x=,24 13.5 或-214.415.4016.0x =17.85232+-a a 18. 4,87- 19.亿两;3,3;千,三;2,6,5三、解答题20.如图,阴影部分即为小明的活动区域.21.解(1) 正方形ABCD ,∴AB=BC , ∠ABE =∠CBP ,BE =BP ,∴△CPB ≌△AEB(2) ∠ABC =∠CBP+∠ABP =90°,∠PBE =∠EBA+∠ABP而∠ABE =∠CBP ,∴∠ABC =∠PBE=90°,∴PB ⊥BE .(3)连结PE , △CPB ≌△AEB ∴PB=EB PB ⊥BE ,∴△EPB 为等腰直角三角形,∴∠BPE =∠BEP=45°,∠APB =135°,∴∠APE =90°,PA ∶PB =1∶2,设PA=x ,则PB=2x ,PE=x 22,∴由勾股定理得AE=22)22(x x +=3x ,∴PA ∶AE=x ∶3x =1∶3. 22.(1) 60 (2)12x =,24x =-23.15°24.(1)y>-15;(2)x ≤412图略 25.(1)C ;(2)220a b -=可能成立;(3)△ABC 为等腰三角形或直角三角形26.115°27.能,商式为322--x x .28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.105°30.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC。
2020中考数学模拟试卷1+参考答案+评分标准
2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
2020年江苏省南京市建邺区中考数学一模试卷含答案解析
2020年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣12.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a103.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.124.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为.10.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是.14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是.15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=°.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC 的边AC、BC相切,则等边△ABC的边长为cm.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.18.解不等式组并写出不等式组的整数解.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.2020年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣1【考点】算术平方根;绝对值;有理数的加法;负整数指数幂.【分析】先化简各项,再根据负数的定义,即可解答.【解答】解:A、﹣1+2=1,故错误;B、|﹣1|=1,故错误;C、=2,故错误;D、﹣2﹣1=﹣,正确;故选:D.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【考点】分式的乘除法.【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5•=a3,故选:B.3.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.12【考点】估算无理数的大小.【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.4.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选A.5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠3,再根据对顶角相等解答.【解答】解:如图,∵a∥b,∠1=115°,∴∠3=180°﹣∠1=180°﹣115°=65°,∴∠3=∠2=65°.故选C.6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个【考点】二次函数的性质;一次函数与二元一次方程(组).【分析】由题意知函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,即可判断.【解答】解:根据题意,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,解方程组得:,所以函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点只有一个交点(1,6),故选:B.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式,进而将已知代入求出答案.【解答】解:∵a2﹣b2=(a+b)(a﹣b),∴把a﹣b=3,a+b=﹣2代入得:原式=3×(﹣2)=﹣6.故答案为:﹣6.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为 4.88×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4880000=4.88×106,故答案为:4.88×10610.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为3πcm2.【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×1÷2=3π.故答案为:3π.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是﹣3.【考点】根与系数的关系.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,根据根与系数的关系可得:x1•1=﹣3,解得x1=﹣3.故答案为:﹣3.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故答案为:丁14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是(2,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,直线y=k1x经过原点与双曲线y=相交于两点,又由于双曲线y=与直线y=k1x均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,3),则另一个交点的坐标为(2,﹣3).故答案为:(2,﹣3).15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=54°.【考点】正多边形和圆.【分析】找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.【解答】解:如图,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=×360°=108°,∴∠A4A1A7=×108°=54°.故答案为:54.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.【考点】切线的性质;等边三角形的性质;平移的性质.【分析】如图,设圆O与BC的切点为M,连接OM,根据切线的性质可以得到∠OMC=90°,而根据已知条件可以得到∠DCB=30°,设AB为2xcm,根据等边三角形得到CD=xcm,而CE=2cm,又将量角器沿DC方向平移1cm,由此得到半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,然后在Rt△OCM中利用三角函数可以列出关于x的方程,解方程即可求解.【解答】解:如图,设图②中圆O与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=30°,设AB为2xcm,∵△ABC是等边三角形,∴CD=xcm,而CE=4cm,又将量角器沿DC方向平移1cm,∴半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,∴sin∠DCB==,∴=,∴x=,∴等边△ABC的边长为=2x=2(cm),故答案为:.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简后把a、b的值代入进行计算即可.【解答】解:原式=()•=﹣.当a=+1,b=﹣1时,原式=﹣=﹣=﹣.18.解不等式组并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得x≥﹣1.解不等式2x﹣3<0,得x<.所以不等式组的解集是﹣1≤x<.故不等式组的整数解为﹣1、0、1.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【考点】菱形的判定;全等三角形的判定与性质.(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE 【分析】即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【考点】解直角三角形的应用.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.【考点】列表法与树状图法.【分析】(1)由甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲、乙两名同学观看同一节目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,∴甲同学观看《最强大脑》的概率是:.故答案为:;(2)分别用A,B,C表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:甲乙 A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)∵一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.∴P (甲、乙两名同学观看同一节目)==.答:甲、乙两名同学观看同一节目的概率为:.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有100人,其中“不了解”的学生有20人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为72°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据非常了解的有26人,所占的比例是26%,据此即可求得抽取的总人数,然后利用总人数减去其它组的人数即可求得“不了解”的学生数;(2)利用360°乘以对应的百分比即可求得;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)调查抽取的总人数是26÷26%=100(人),不了解的人数是100﹣26﹣34﹣20=20(人).故答案是:100,20;(2)基本了解的区域的圆心角是360°×=72°,故答案是:72;(3)该区6000名初中生对“人民币加入SDR”了解的有:6 000×80%=4 800(人).答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?【考点】一元二次方程的应用.【分析】设这种台灯的售价为x元,根据一台的利润×总的台数=总的利润和这种台灯的售价每上涨1元,其销售量将减少10只,列出方程,再求解即可.【解答】解:设这种台灯的售价为x元,根据题意得:[600﹣10(x﹣40)](x﹣30)=10000,解得x1=50,x2=80,答:当这种台灯的售价定为50或80元时,每个月的利润恰为10000元.24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发2或5h时,两车相距200km.【考点】一次函数的应用.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D 坐标为(4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离A地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E 坐标(6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D (4,300 ),E ( 6.4,0)代入y=kx+b得:,解得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:y=﹣125x+600,①当轿车休息前与货车相距200km时,有:﹣125x+600﹣75x=200,解得:x=2;②当轿车休息后与货车相距200km时,有:75x﹣(﹣125x+800)=200,解得:x=5;故答案为:2或5.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.【考点】二次函数图象与几何变换.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1D的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【考点】切线的判定.【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,进而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【解答】(1)证明:连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°﹣∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)解:延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH==3.∴FH=FO+OH=5+3=8.=(FG+ED)•FH=×(4+8)×8=48.S四边形FGDH27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.【考点】三角形综合题.【分析】(1)根据“巧妙点”的定义利用:点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可;(2)先证明△ADB≌△ABC,△ACE≌△ABC,得到相等的角,再证明∠BMD=∠ABD,得到DB=DM.最后证明△DAM∽△DEA,得到=,即DA2=DM•DE,由DM=DB,所以DA2=DB•DE.(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P能为△ABC的巧妙点,分别画出图形即可解答.【解答】解:(1)如图①;(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,在△ADB和△ABC中∴△ADB≌△ABC,同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE=∠AED=36°=∠BAD,∴∠BDM=∠BDA﹣∠MDA=36°,∠BMD=∠ADM+∠DAM=72°=∠ABD,∴DB=DM.∵∠DBM=∠ABD,∠AED=∠BAD,∴△DAM∽△DEA,∴=,∴DA2=DM•DE,∵DM=DB,∴DA2=DB•DE.(3)第一种如图①或图②(只需画一个即可),∠BAC=60°.第二种如图③,∠BAC=36°;第三种如图④,∠BAC=108°;第四种如图⑤,∠BAC=120°.以上共四种:60°、36°、108°、120°.2020年7月21日。
2020年江苏省南京市联合体中考数学一模试卷含解析
2020年江苏省南京市联合体中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)4的算术平方根()A.2B.﹣2C.D.±2.(2分)2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是()A.4054×104B.4.054×104C.4.054×107D.4054×107 3.(2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a64.(2分)已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是()A.B.2C.4D.165.(2分)下列整数中,与7﹣最接近的是()A.1B.2C.3D.46.(2分)已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是.8.(2分)计算﹣3的结果是.9.(2分)分解因式a(a﹣1)﹣a+1的结果是.10.(2分)已知1是关于x的方程x2+mx﹣3=0的一个根,则另一个根为,m =.11.(2分)若一组数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x 可以为.(列举一个满足条件的值)12.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O半径为4,且∠C=2∠A,则的长为.13.(2分)如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=°.14.(2分)反比例函数y=的图象过点(﹣2,a)、(2,b),若a﹣b=﹣6,则ab=.15.(2分)如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.16.(2分)如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0).作点B关于OA的对称点B′,则点B′的坐标是(,).三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(2﹣).18.(6分)解不等式组,并把解集在数轴上表示出来.19.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的.(1)在这段时间内他们抽查的车有辆;(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是;A.30.5~40.5 B.40.5~50.5 C.50.5~60.5 D.60.5~70.5(3)补全频数分布直方图;(4)如果全天超速(车速大于60千米/时)的车有200辆,则当天的车流量约为多少辆?20.(8分)甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率.21.(7分)现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?22.(8分)一辆货车从A地出发以每小时80km的速度匀速驶往B地,一段时间后,一辆轿车从B地出发沿同一条路匀速驶往A地.货车行驶3小时后,在距B地160km处与轿车相遇.图中线段表示货车离B地的距离y1与货车行驶的时间x的关系.(1)AB两地之间的距离为km;(2)求y1与x之间的函数关系式;(3)若两车同时到达各自目的地,在同一坐标系中画出轿车离B地的距离y2与货车行驶时间x的函数图象,用文字说明该图象与x轴交点所表示的实际意义.23.(8分)(1)如图①,在四边形ABCD中,∠A=∠C=90°,AB=CD,求证:四边形ABCD是矩形;(2)如图②,若四边形ABCD满足∠A=∠C>90°,AB=CD,求证:四边形ABCD 是平行四边形.24.(8分)如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C 正西方向.轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向,这时,E处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)25.(9分)如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.26.(10分)已知二次函数y=x2﹣2mx+m2+m﹣1(m是常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上.(2)若该函数图象与函数y=x+b的图象有两个交点,则b的取值范围为()A.b>0;B.b>﹣1;C.b>﹣;D.b>﹣2.(3)该函数图象与坐标轴交点的个数随m的值变化而变化,直接写出交点个数及对应的m取值范围.27.(10分)【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线的交点为等垂弦的分割点.如图①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足为E,则AB、CD 是等垂弦,E为等垂弦AB、CD的分割点.【数学理解】(1)如图②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分别交⊙O于点C、D,连接CD.求证:AB、CD是⊙O的等垂弦.(2)在⊙O中,⊙O的半径为5,E为等垂弦AB、CD的分割点,=.求AB的长度;【问题解决】(3)AB、CD是⊙O的两条弦,CD=AB,且CD⊥AB,垂足为F.①在图③中,利用直尺和圆规作弦CD(保留作图痕迹,不写作法);②若⊙O的半径为r,AB=mr(m为常数),垂足F与⊙O的位置关系随m的值变化而变化,直接写出点F与⊙O的位置关系及对应的m的取值范围.2020年江苏省南京市联合体中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)4的算术平方根()A.2B.﹣2C.D.±【分析】依据算术平方根的性质求解即可.【解答】解:4的算术平方根2.故选:A.【点评】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.2.(2分)2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是()A.4054×104B.4.054×104C.4.054×107D.4054×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:40540000=4.054×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可.【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选:D.【点评】本题主要考查了积的乘方的性质,熟记运算性质是解题的关键.4.(2分)已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是()A.B.2C.4D.16【分析】根据相似三角形面积的比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,△ABC与△DEF面积之比为1:4,∴△ABC与△DEF相似比为1:2,即=,∵BC=1,∴EF=2,故选:B.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.5.(2分)下列整数中,与7﹣最接近的是()A.1B.2C.3D.4【分析】由于9<13<16,可判断与4最接近,从而可判断与7﹣最接近的整数为3.【解答】解:∵9<15<16,∴3<<4,∵3.82=14.44,3.92=15.21,∴3.8<<3.9,∴﹣3.9<﹣<﹣3.8,∴7﹣3.9<7﹣<7﹣3.8,∴3.1<7﹣<3.2,∴与7﹣最接近的是3.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.【分析】根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定函数y=﹣2kx ﹣b的图象所在的象限.【解答】解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0.∴函数y=﹣2k﹣b的图象经过第一、二、三象限.∵因为|k|<|﹣2k|,所以一次函数y=kx+b的图象比y=﹣2kx﹣b的图象的倾斜度小,综上所述,符合条件的图象是C选项.故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是x≥1.【分析】根据二次根式有意义的条件可得x﹣1≥0,再解即可.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.8.(2分)计算﹣3的结果是2.【分析】先把各二次根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.9.(2分)分解因式a(a﹣1)﹣a+1的结果是(a﹣1)2.【分析】直接提取公因式(a﹣1),进而分解因式得出答案.【解答】解:a(a﹣1)﹣a+1=a(a﹣1)﹣(a﹣1)=(a﹣1)(a﹣1)=(a﹣1)2.故答案为:(a﹣1)2.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(2分)已知1是关于x的方程x2+mx﹣3=0的一个根,则另一个根为﹣3,m=2.【分析】设方程的另一根为t,利用根与系数的关系得到1+t=﹣m,1×t=﹣3,然后先求出t的值,再计算m的值.【解答】解:设方程的另一根为t,根据题意得1+t=﹣m,1×t=﹣3,解得t=﹣3,m=2.故答案为﹣3,2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.11.(2分)若一组数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x 可以为2(答案不唯一).(列举一个满足条件的值)【分析】观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x的值计算出前一组数据的方差求解.【解答】解:数据5,6,7,8,9中,每2个数相差1,一组数据2,3,4,5,x前4个数据也是相差1,若x=1或x=6时,两组数据方差相等,而数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x=2(答案不唯一),故答案为:2(答案不唯一).【点评】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O半径为4,且∠C=2∠A,则的长为π.【分析】连接OB、OD,根据圆内接四边形的性质求出∠A的度数,根据圆周角定理求出∠BOD的度数,利用弧长公式计算即可.【解答】解:连接OB、OD,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=2∠A,∴3∠A=180°,∴∠A=60°,由圆周角定理得,∠BOD=2∠A=120°,∴的长:=π,故答案为.【点评】本题考查的是圆内接四边形的性质、圆周角定理以及弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.(2分)如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=147°.【分析】根据多边形的内角和公式可得∠1+∠B+∠C+∠CDE′+∠E′+∠F′=(6﹣2)×180°=720°,再根据正六边形每个内角为120°以及旋转的性质解答.【解答】解:根据题意得∠CDE=∠B=∠C=∠E′=∠F′==120°,∵∠1+∠B+∠C+∠CDE′+∠E′+∠F′=(6﹣2)×180°=720°,∴∠CDE′=120°﹣∠EDE′=93°,∴∠1=720°﹣120×4﹣93°=147°.故答案为:147.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.14.(2分)反比例函数y=的图象过点(﹣2,a)、(2,b),若a﹣b=﹣6,则ab=﹣9.【分析】根据已知条件得到﹣2a=2b,求得a+b=0,由于a﹣b=﹣6,解方程组得到a =﹣3,b=3,即可得到结论.【解答】解:∵反比例函数y=的图象过点(﹣2,a)、(2,b),∴﹣2a=2b,∴a+b=0,∵a﹣b=﹣6,∴a=﹣3,b=3,∴ab=﹣9,故答案为:﹣9.【点评】本题考查了反比例函数图象上点的坐标特征,解二元一次方程组,正确的理解题意是解题的关键.15.(2分)如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.【分析】根据勾股定理得到AC==3,过D作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据全等三角形的性质得到BE=BC=4,根据勾股定理即可得到结论.【解答】解:在Rt△ACB中,∠C=90°,BC=4,AB=5,∴AC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=4,∴AE=1,∵AD2=DE2+AE2,∴AD2=(3﹣AD)2+12,∴AD=,故答案为:.【点评】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.16.(2分)如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0).作点B关于OA的对称点B′,则点B′的坐标是(,).【分析】设OA交BB′于J.求出直线BB′,直线OA的解析式,构建方程组求出解答J的坐标,再利用中点坐标公式解决问题即可.【解答】解:设OA交BB′于J.∵A(2,1),∴直线OA是解析式为y=x,∵B(2,0),BB′⊥OA,∴可以设直线BB′是解析式为y=﹣2x+b,把(2,0)代入y=﹣2x+b中,得到b=4,∴直线BB′的解析式为y=﹣2x+4,由,解得,∴J(,),∵JB=JB′,设B′(m,n),∴=,=,∴m=,n=,∴B′(,).故答案为,.【点评】本题考查直线与图形变化﹣对称,一次函数的性质等知识,解题的关键是学会构建一次函数解决问题,属于中考常考题型.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(2﹣).【分析】先算括号内的减法,把除法变成乘法,最后算乘法即可.【解答】解:原式=•=•=.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.18.(6分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.【解答】解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:【点评】此题考查的是解一元一次方程组的方法,解一元一次方程组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.同时考查了在数轴上表示不等式的解集.19.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的.(1)在这段时间内他们抽查的车有40辆;(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是B;A.30.5~40.5 B.40.5~50.5 C.50.5~60.5 D.60.5~70.5(3)补全频数分布直方图;(4)如果全天超速(车速大于60千米/时)的车有200辆,则当天的车流量约为多少辆?【分析】(1)用车速在41千米/时到50千米/时的车辆数除以即可得到;(2)根据中位数的定义直接求解即可;(3)用总数减去其他小组的频数即可得到50.5~60.5小组的频数即可补全统计图;(4)用200除以车速车速大于60千米/时的车辆所占的百分比即可求得车流量.【解答】解:(1)观察统计图知:车速在41千米/时到50千米/时的车辆数为12,占总数的,则在这段时间内他们抽查的车有:12÷=40(辆);故答案为:40;(2)∵共40辆车,处于中间位置的是第20、21辆车的速度的平均数,∴被抽查车辆的车速的中位数所在速度段(单位:千米/时)是40.5~50.5;故答案为:B;(3)50.5~60.5 的车辆数是:40﹣3﹣8﹣12﹣5﹣3=9(辆),补全统计图如下:(4)200÷=1000(辆),答:当天的车流量约为1000辆.【点评】本题考查了频数分布直方图、用样本估计总体、频数分布折线图及中位线的知识,解题的关键是仔细的审题并从直方图中整理出进一步解题的有关信息.20.(8分)甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有6种等可能的结果数,再找出甲在其中的结果数,然后根据概率公式求解.【解答】解:(1)随机抽取1名,则恰是甲的概率是;(2)画树状图为:共有6种等可能的结果数,其中甲在其中的结果数为4,所以甲在其中的概率==.故答案为,.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21.(7分)现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?【分析】设大型挖掘机x台,则小型挖掘机(120﹣x)台.根据20小时共挖掘土方704000立方米列出方程,求解即可.【解答】解:设大型挖掘机x台,则小型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:大型挖掘机70台,小型挖掘机50台.【点评】本题考查了一元一次方程的应用.解决问题的关键是读懂题意,依题意列出等式进行求解.22.(8分)一辆货车从A地出发以每小时80km的速度匀速驶往B地,一段时间后,一辆轿车从B地出发沿同一条路匀速驶往A地.货车行驶3小时后,在距B地160km处与轿车相遇.图中线段表示货车离B地的距离y1与货车行驶的时间x的关系.(1)AB两地之间的距离为400km;(2)求y1与x之间的函数关系式;(3)若两车同时到达各自目的地,在同一坐标系中画出轿车离B地的距离y2与货车行驶时间x的函数图象,用文字说明该图象与x轴交点所表示的实际意义.【分析】(1)根据“路程=速度×时间”,得出货车行驶3小时的路程,再加上相遇地点到B的的距离即可;(2)根据(1)的结论即可得出y1与x之间的函数关系式;(3)作出一次函数的图象并根据图象得到交点坐标所表示的意义是货车从A地出发1小时后轿车从B地出发.【解答】解:(1)80×3+160=400(km),即AB两地之间的距离为400km.故答案为:400;(2)由题意得y1=400﹣80x=﹣80x+400;(3)如图,线段y2即为所求的图象;货车行驶的时间为400÷80=5h,则可求出y2的函数表达式:y2=120x﹣200,该图象与x轴交点坐标为(,0).它表示的实际意义:货车从A地出发小时后,轿车从B地出发.【点评】本题考查了一次函数的应用,解题的关键是根据函数图象经过的点的坐标求的一次函数的解析式,题目中还渗透了数形结合的数学思想.23.(8分)(1)如图①,在四边形ABCD中,∠A=∠C=90°,AB=CD,求证:四边形ABCD是矩形;(2)如图②,若四边形ABCD满足∠A=∠C>90°,AB=CD,求证:四边形ABCD 是平行四边形.【分析】(1)如图①,连接BD,根据全等三角形的性质得到AD=CB,得到四边形ABCD 是平行四边形,根据矩形的判定定理即可得到结论;(2)如图②,分别过点B、D作BE⊥AD于点E,DF⊥BC于点F,根据全等三角形的性质得到BE=DF,AE=CF,得到ED=BF,根据平行四边形的判定定理即可得到结论.【解答】(1)证明:如图①,连接BD,∵∠A=∠C=90°,∵AB=CD,BD=DB,∴Rt△ABD≌Rt△CDB(HL),∴AD=CB,∴四边形ABCD是平行四边形,∵∠A=90°,∴四边形ABCD是矩形;(2)解:如图②,分别过点B、D作BE⊥AD于点E,DF⊥BC于点F,∵∠BAD=∠BCD,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,AB=CD,∴△ABE≌△CDF(AAS),∴BE=DF,AE=CF,由(1)可得四边形EBFD是矩形,∴ED=BF,∴AD=BC,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.【点评】本题考查了矩形的判定和性质,平行四边形的判定,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.24.(8分)如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C 正西方向.轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向,这时,E处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)【分析】证△PDE是等腰直角三角形,得出PD=PE,设PD=PE=x海里,则P A=40+x (海里),PB=20+x(海里),在Rt△ABP中,由三角函数定义求出PE=40海里,P A=80海里,再在Rt△ACP中,由三角函数定义求出PC=0.7P A=56海里,即可得答案.【解答】解:由题意得:∠BAP=37°,∠CAP=35°,AD=40海里,BE=20海里,∠PDE=45°,∠DPE=90°,∴△PDE是等腰直角三角形,∴PD=PE,设PD=PE=x海里,则P A=40+x(海里),PB=20+x(海里),在Rt△ABP中,tan∠BAP==tan37°≈0.75,即=,解得:x=40,∴PE=40海里,P A=80海里,在Rt△ACP中,tan∠CAP==tan35°≈0.70,∴PC=0.7P A=56海里,∴EC=PE+PC=40+56=96(海里);答:E处距离港口C有96海里远.【点评】本题考查了解直角三角形的应用﹣方向角问题、等腰直角三角形的判定以及三角函数等腰;熟练掌握三角函数定义是解题的关键.25.(9分)如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为或9﹣3或3时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.【分析】(1)由圆内接四边形的性质得∠FGE+∠ADE=180°,证出∠AGF=∠ADE,再由公共角∠GAF=∠DAE,即可得出结论;(2)由相似三角形的性质得当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,由圆周角定理得出DE是⊙O的直径,则∠DFE=90°,证四边形ABEF是矩形,得AF =BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,②当DE=AD=9时,③当AE=AD=9时,由等腰三角形的性质和勾股定理分别得出答案;(3)过O作OH⊥AB于点H,反向延长OH交CD于点I,证四边形AHID为矩形,得HI=AD=9,∠OID=90°,证出OI是△DCE的中位线,得DI=CD=3,OI=EC,求出OH=HI﹣OI=5,由勾股定理求出⊙O的半径OD=5,得OH是⊙O的半径,由切线的判定即可得出结论.【解答】(1)证明:∵四边形FGED是⊙O的内接四边形,∴∠FGE+∠ADE=180°,∵∠AGF+∠FGE=180°,∴∠AGF=∠ADE,又∠GAF=∠DAE,∴△AFG∽△AED;(2)解:由(1)得:△AFG∽△AED,∴当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,如图①所示:∵四边形ABCD是矩形,AB=6,BC=9,∴CD=AB=6,AD=BC=9,∠BAD=∠ABC=∠BCD=∠ADC=90°,∵⊙O是△ECD的外接圆,∠ECD=90°,∴DE是⊙O的直径,∴∠DFE=90°,∴∠AFE=180°﹣∠DFE=180°﹣90°=90°,∴∠BAF=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∴AF=BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,∵∠DFE=90°,∴AF=DF=AD=×9=,∴BE=AF=;②当DE=AD=9时,在Rt△DCE中,由勾股定理得:CE===3,∴BE=BC﹣CE=9﹣3;③当AE=AD=9时,在Rt△ABE中,由勾股定理得:BE===3;综上所述,当BE的长为或9﹣3或3时,△AFG为等腰三角形,故答案为:或9﹣3或3;(3)证明:过O作OH⊥AB于点H,反向延长OH交CD于点I,如图②所示:则∠AHI=90°,∵四边形ABCD是矩形,∴CD=AB=6,∠BCD=∠BAD=∠ADC=90°,∴∠AHI=∠BAD=∠ADC=90°,∴四边形AHID为矩形,∴HI=AD=9,∠OID=90°,∴∠ECD=∠OID,∴OI∥CE,∵∠BCD=90°,∴DE为直径,∴OD=OE,∴OI是△DCE的中位线,∴DI=CD=3,OI=EC,∵BE=1,BC=9,∴EC=8,∴OI=×8=4,∴OH=HI﹣OI=9﹣4=5,在Rt△DEC中,由勾股定理得:DE===10,∴⊙O的半径OD=5∴OH是⊙O的半径,又OH⊥AB,∴AB与⊙O相切.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆内接四边形的性质、相似三角形的判定与性质、等腰三角形的性质、矩形的判定与性质、三角形中位线定理、勾股定理等知识;本题综合性强,熟练掌握圆周角定理、切线的判定定理以及相似三角形的判定与性质是解题的关键.26.(10分)已知二次函数y=x2﹣2mx+m2+m﹣1(m是常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上.(2)若该函数图象与函数y=x+b的图象有两个交点,则b的取值范围为()A.b>0;B.b>﹣1;C.b>﹣;D.b>﹣2.(3)该函数图象与坐标轴交点的个数随m的值变化而变化,直接写出交点个数及对应的m取值范围.【分析】(1)利用配方法得到抛物线的顶点坐标为(m,m﹣1),然后根据一次函数图象上点的坐标进行证明;(2)根据题意关于x的方程x2﹣2mx+m2+m﹣1=x+b有两个不相等的实数解,则△=(2m+1)2﹣4(m2+m﹣1﹣b)>0,然后解不等式即可;(3)先计算判别式△=﹣4m+4,当△>0,即﹣4m+4>0,抛物线与x轴有2个交点,而抛物线与y轴的交点过原点时m=,分抛物线与坐标轴有3个交点和2个交点讨论;当△=0,即﹣4m+4=0,抛物线与坐标有2个交点;当△<0,即﹣4m+4<0,抛物线与坐标轴有1个交点,然后分别解方程或不等式得到对应的m的值或范围.【解答】(1)证明:y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴抛物线的顶点坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上;(2)x2﹣2mx+m2+m﹣1=x+b,整理得x2﹣(2m+1)x+m2+m﹣1﹣b=0,根据题意得△=(2m+1)2﹣4(m2+m﹣1﹣b)>0,解得b>﹣,故选C;(3)y=x2﹣2mx+m2+m﹣1△=4m2﹣4(m2+m﹣1)=﹣4m+4,当△>0,即﹣4m+4>0,抛物线与坐标轴有3个交点,此时m的范围为m<1且m≠;当m=抛物线与坐标轴有2个交点;当△=0,即﹣4m+4=0,抛物线与坐标有2个交点,此时m=1;当△<0,即﹣4m+4<0,抛物线与坐标轴有1个交点,此时m的范围为m>1.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.27.(10分)【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线的交点为等垂弦的分割点.如图①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足为E,则AB、CD 是等垂弦,E为等垂弦AB、CD的分割点.【数学理解】(1)如图②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分别交⊙O于点C、D,连接CD.求证:AB、CD是⊙O的等垂弦.(2)在⊙O中,⊙O的半径为5,E为等垂弦AB、CD的分割点,=.求AB的长度;【问题解决】(3)AB、CD是⊙O的两条弦,CD=AB,且CD⊥AB,垂足为F.①在图③中,利用直尺和圆规作弦CD(保留作图痕迹,不写作法);②若⊙O的半径为r,AB=mr(m为常数),垂足F与⊙O的位置关系随m的值变化而变化,直接写出点F与⊙O的位置关系及对应的m的取值范围.【分析】(1)连接BC,由圆心角相等可得AB=CD,由圆周角定理可得∠ABC=∠AOC =45°,∠BCD=∠BOD=45°,可证AB⊥CD,可得结论;(2)分两种情况讨论,过点O作OH⊥AB,作OG⊥CD,可证矩形OHEG为正方形,利用勾股定理可求解;(3)①如图所示;②先求出点F在⊙O上时,m的值,即可求解.【解答】证明:(1)如图②,连接BC,∵OC⊥OA、OD⊥OB,∴∠AOC=∠BOD=90°,∴∠AOB=∠COD,∴AB=CD,∵∠ABC=∠AOC=45°,∠BCD=∠BOD=45°,∴∠AEC=∠ABC+∠BCD=90°,即AB⊥CD,∵AB=CD,AB⊥CD,∴AB、CD是⊙O的等垂弦;(2)如图,若点E在⊙O内,过点O作OH⊥AB,垂足为H,作OG⊥CD,垂足为G,∵AB、CD是⊙O的等垂弦,∴AB=CD,AB⊥CD,∴四边形OHEG是矩形,∵OH⊥AB,OG⊥CD,∴AH=AB,DG=CD,∴AH=DG,又∵OA=OD,∴△AHO≌△DGO(HL),∴OH=OG,∴矩形OHEG为正方形,∴OH=HE.∵=,且AH=BH,∴AH=2BE=2OH,在Rt△AOH中,AO2=AH2+OH2.即(2OH)2+OH2=AO2=25,解得OH=,∴AB=4HE=4;。
2020年江苏省南京市中考数学试卷 (解析版)
2020年江苏省南京市中考数学试卷一、选择题(共6小题).1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .52.(2分)3的平方根是( )A .9B .3C .3-D .3±3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s .10.(23312+的结果是 .11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 .12.(2分)方程112x x x x -=-+的解是 . 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 2cm .15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠= .16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a aa a a +-+÷++. 18.(7分)解方程:2230x x --=.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.20.(8分)已知反比例函数ky x=的图象经过点(2,1)--. (1)求k 的值.(2)完成下面的解答.解不等式组21,1xkx->⎧⎪⎨>⋅⎪⎩①②解:解不等式①,得.根据函数kyx=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1893x<50293178x<1003178263x<344263348x<115348433x<16433518x<17518603x<28603688x<1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26︒方向航行至D处,在B、C处分别测得45ABD∠=︒、37C∠=︒.求轮船航行的距离AD.(参考数据:sin260.44︒≈,cos260.90︒≈,tan260.49︒≈,sin370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF EF =.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BCC D A C B C==''''''时,判断ABC∆与△A B C'''是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A B'与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC CB AC C B'+<'+.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .5解:3(2)325--=+=. 故选:D .2.(2分)3的平方根是( )A .9B C .D .解:2(3)3±=,3∴的平方根.故选:D .3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a解:322322624()a a a a a a ⨯-÷=÷==, 故选:B .4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务解:A .2019年末,农村贫困人口比上年末减少166********-=(万人),此选项错误; B .2012年末至2019年末,农村贫困人口累计减少超过98995519348-=(万人),此选项正确;C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确; 故选:A .5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根解:关于x 的方程2(1)(2)(x x p p -+=为常数),2220x x p ∴+--=,∴△22184940p p =++=+>,∴方程有两个不相等的实数根,两个的积为22p --, ∴一个正根,一个负根,故选:C .6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)解:设O 与x 、y 轴相切的切点分别是F 、E 点,连接PE 、PF 、PD ,延长EP 与CD 交于点G ,则PE y ⊥轴,PF x ⊥轴, 90EOF ∠=︒, ∴四边形PEOF 是矩形,PE PF =,//PE OF , ∴四边形PEOF 为正方形,5OE OF PE OF ∴====,(0,8)A , 8OA ∴=, 853AE ∴=-=,四边形OACB 为矩形,8BC OA ∴==,//BC OA ,//AC OB , //EG AC ∴,∴四边形AEGC 为平行四边形,四边形OEGB 为平行四边形,3CG AE ∴==,EG OB =, PE AO ⊥,//AO CB , PG CD ∴⊥, 26CD CG ∴==,862DB BC CD ∴=-=-=, 5PD =,3DG CG ==, 4PG ∴=,549OB EG ∴==+=,(9,2)D ∴.故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: 1-(答案不唯一) . 解:这个数的绝对值小于3, ∴这个数的绝对值等于0、1或2, ∴这个负数可能是2-、1-.故答案为:1-(答案不唯一). 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 1x ≠ . 解:若式子111x --在实数范围内有意义, 则10x -≠, 解得:1x ≠. 故答案为:1x ≠.9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .解:98202010210ns s s --=⨯=⨯,故答案为:8210-⨯.10.(2解:原式13===. 故答案为:13. 11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 1 . 解:3123x y x y +=-⎧⎨+=⎩①②, ①2⨯-②得:55y =-,解得:1y =-,①-②3⨯得:510x -=-,解得:2x =,则211x y +=-=, 故答案为1.12.(2分)方程112x x x x -=-+的解是 x = 解:方程112x x x x -=-+, 去分母得:22221x x x x +=-+, 解得:14x =, 经检验14x =是分式方程的解. 故答案为:14x =. 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 故答案为122y x =+. 14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 23 2cm . 解:连接BF ,BE ,过点A 作AT BF ⊥于TABCDEF 是正六边形,//CB EF ∴,AB AF =,120BAF ∠=︒,PEF BEF S S ∆∆∴=,AT BE ⊥,AB AF =,BT FT ∴=,60BAT FAT ∠=∠=︒,sin 603BT FT AB ∴==︒=,223BF BT ∴==,120AFE ∠=︒,30AFB ABF ∠=∠=︒,90BFE ∴∠=︒, 112232322PEF BEF S S EF BF ∆∆∴===⨯⨯=, 故答案为23.15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠=78︒ .解:过O 作射线BP ,线段AB 、BC 的垂直平分线11、2l 相交于点O ,AO OB OC ∴==,90BDO BEO ∠=∠=︒,180DOE ABC ∴∠+∠=︒,1180DOE ∠+∠=︒,139ABC ∴∠=∠=︒,OA OB OC ==,A ABO ∴∠=∠,OBC C ∠=∠,AOP A ABO ∠=∠+∠,COP C OBC ∠=∠+∠,23978AOC AOP COP A ABC C ∴∠=∠+∠=∠+∠+∠=⨯︒=︒,故答案为:78︒.16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 ①②④ .解:①二次函数2()1(y x m m m =--++为常数)与函数2y x =-的二次项系数相同, ∴该函数的图象与函数2y x =-的图象形状相同,故结论①正确; ②在函数22()1y x m m =--++中,令0x =,则2211y m m =-++=,∴该函数的图象一定经过点(0,1),故结论②正确;③22()1y x m m =--++,∴抛物线开口向下,对称轴为直线x m =,当x m >时,y 随x 的增大而减小,故结论③错误; ④抛物线开口向下,当x m =时,函数y 有最大值21m +,∴该函数的图象的顶点在函数21y x =+的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a a a a a +-+÷++. 解:原式211(2)()111a a a a a a -+=+÷+++ 211(2)a a a a a +=++ 2a a =+. 18.(7分)解方程:2230x x --=.解:原方程可以变形为(3)(1)0x x -+=30x -=,10x +=13x ∴=,21x =-.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.【解答】证明:在ABE ∆与ACD ∆中A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆.AD AE ∴=.BD CE ∴=.20.(8分)已知反比例函数k y x =的图象经过点(2,1)--. (1)求k 的值. (2)完成下面的解答.解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得 1x < .根据函数k y x=的图象,得不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .解:(1)反比例函数k y x=的图象经过点(2,1)--, (2)(1)2k ∴=-⨯-=;(2)解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得1x <.根据函数k y x=的图象,得不等式②的解集02x <<. 把不等式①和②的解集在数轴上表示为:∴不等式组的解集为01x <<,故答案为:1x <,02x <<,01x <<.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h 进行调查,整理样本数据得到下面的频数分布表. 组别用电量分组 频数 1893x < 50 293178x < 100 3178263x < 34 4263348x < 11 5348433x < 1 6433518x < 1 7518603x < 2 8 603688x <1 根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW h 的大约有多少户.解:(1)有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50100100007500200+⨯=(户), 答:估计该地1万户居民六月份的用电量低于178kW h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是13. 解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,(,)29A B P ∴=; (2)共有9种可能出现的结果,其中选择景点相同的有3种, ()3193P ∴==景点相同. 故答案为:13. 23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A 处出发,沿北偏东26︒方向航行至D 处,在B 、C 处分别测得45ABD ∠=︒、37C ∠=︒.求轮船航行的距离AD .(参考数据:sin 260.44︒≈,cos 260.90︒≈,tan 260.49︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)解:如图,过点D 作DH AC ⊥于点H ,在Rt DCH ∆中,37C ∠=︒,tan 37DH CH ∴=︒, 在Rt DBH ∆中,45DBH ∠=︒,tan 45DH BH ∴=︒, BC CH BH =-,∴6tan 37tan 45DH DH -=︒︒, 解得18DH ≈,在Rt DAH ∆中,26ADH ∠=︒,20cos 26DH AD ∴=≈︒. 答:轮船航行的距离AD 约为20km .24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F .求证:(1)四边形DBCF 是平行四边形;(2)AF EF =.【解答】证明:(1)AC BC =,BAC B ∴∠=∠,//DF BC , ADF B ∴∠=∠,BAC CFD ∠=∠,ADF CFD ∴∠=∠,//BD CF ∴,//DF BC ,∴四边形DBCF 是平行四边形;(2)连接AE ,ADF B ∠=∠,ADF AEF ∠=∠,AEF B ∴∠=∠, 四边形AECF 是O 的内接四边形,180ECF EAF ∴∠+∠=︒,//BD CF ,180ECF B ∴∠+∠=︒,EAF B ∴∠=∠,AEF EAF ∴∠=∠,AE EF ∴=.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 解:(1)11802250y x =-+,22101002000y x x =--+,∴当0x =时,12250y =,22000y =,∴小丽出发时,小明离A 地的距离为22502000250()m -=,故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则222(1802250)(101002000)108025010(4)90s x x x x x x =-+---+=-+=-+, ∴当4x =时,s 取得最小值,此时90s =,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC AB C D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BC C D A C B C ==''''''时,判断ABC ∆与△A B C '''是否相似,并说明理由. 【解答】(1)证明:AD A D AB A B ''='', ∴AD AB A D A B ='''', CD AC ABC D A C A B =='''''', ∴CD AC AD C D A C A D =='''''', ADC ∴∆∽△A D C '',A A ∴∠=∠',AC ABA C AB ='''', ABC ∴∆∽△A B C '''.故答案为:CD AC AD C D A C A D =='''''',A A ∠=∠'. (2)如图,过点D ,D '分别作//DE BC ,//D E B C '''',DE 交AC 于E ,D E ''交A C ''于E './/DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AE AB BC AC==, 同理,A D D E A E AB BC A C ''''''=='''''', AD A DAB A B ''='', ∴DE D E BC B C ''='', ∴DE BC D E B C ='''', 同理,AE A E AC A C ''='', ∴AC AE A C A E AC A C -''-''='',即EC E C AC A C ''='', ∴EC AC E C A C ='''', CD AC BCC D A C B C =='''''', ∴CD DE EC C D D E E C =='''''', DCE ∴∆∽△D C E ''',CED C E D ∴∠=∠''',//DE BC ,90CED ACB ∴∠+∠=︒,同理,180C E D A C B ∠'''+∠'''=︒,ACB A B C ∴∠=∠''',AC CBA C CB ='''', ABC ∴∆∽△A B C '''.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线段A B '与直线l 的交点C 的位置即为所求,即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线1上另外任取一点C ',连接AC '、BC ',证明AC CB AC C B '+<'+.请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A C '',点A ,点A '关于l 对称,点C 在l 上,CA CA '∴=,AC BC A C BC A B ''∴+=+=,同理可得AC C B A C BC '''''+=+,A B A C C B ''''<+,AC BC AC C B ''∴+<+;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD DE EB++,(其中CD,BE都与圆相切)。
江苏省南京市2019-2020学年中考数学一模考试卷含解析
江苏省南京市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .2.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 3.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( ) A .命题(1)与命题(2)都是真命题 B .命题(1)与命题(2)都是假命题 C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题4.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个5.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°6.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+ B .()2213y x =-+ C .()2313y x =-++D .()2313y x =--+7.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒8.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠ B .0m >C .0m ≥且1m ≠D .0m ≥9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒10.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =( )A .2:3B .4:9C .2:5D .4:2511.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣712.实数6 的相反数是 ( ) A .-6B .6C .16D .6-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).14.若|a|=20160,则a=___________.15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.16.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.17.若分式15x-有意义,则实数x的取值范围是_______.18.11201842-⎛⎫+- ⎪⎝⎭=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?20.(6分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.21.(6分)计算:025(3)tan 45π︒+--.化简:2(2)(1)x x x ---.22.(8分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.23.(8分)如图1,点P 是平面直角坐标系中第二象限内的一点,过点P 作PA ⊥y 轴于点A ,点P 绕点A 顺时针旋转60°得到点P',我们称点P'是点P 的“旋转对应点”.(1)若点P (﹣4,2),则点P 的“旋转对应点”P'的坐标为 ;若点P 的“旋转对应点”P'的坐标为(﹣5,16)则点P 的坐标为 ;若点P (a ,b ),则点P 的“旋转对应点”P'的坐标为 ; (2)如图2,点Q 是线段AP'上的一点(不与A 、P'重合),点Q 的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P 与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x 轴的交点坐标.24.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.25.(10分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.26.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.27.(12分)如图,已知抛物线y =x 2﹣4与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y =x+m 经过点A ,与y 轴交于点D .求线段AD 的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD ,求新抛物线对应的函数表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.2.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠D F,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.3.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax 2+bx ,x=0时,y=0,经过原点,不能得出结论. (1)∵P (a ,b )在y=上, ∴a 和b 同号,所以对称轴在y 轴左侧, ∴存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题. (2)∵函数y=的所有“派生函数”为y=ax 2+bx , ∴x=0时,y=0, ∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 考点:(1)命题与定理;(2)新定义型 4.B 【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=; ∴上述各式中计算结果为负数的有2个. 故选B. 5.A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°, ∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC , ∴∠BAE=25°, ∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°, ∴∠EAD+∠ACD=5°+70°=75°, 故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用. 6.D 【解析】 【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可. 【详解】解:根据图象,设函数解析式为()2y a x h k =-+ 由图象可知,顶点为(1,3) ∴()213y a x =-+,将点(0,0)代入得()20013a =-+ 解得3a =- ∴()2313y x =--+ 故答案为:D . 【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式. 7.B 【解析】 【分析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C . 【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C , ∴AC =A′C ,∴△ACA′是等腰直角三角形, ∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°, ∴∠B =∠A′B′C =65°. 故选B . 【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 8.A 【解析】 【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围. 【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.9.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.10.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.11.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3, 故选B .12.A【解析】【分析】根据相反数的定义即可判断.【详解】 6 的相反数是6故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.214a . 【解析】【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D ⊥AB'于D ,根据30°角所对的直角边等于斜边的一半得出C'D 12=AC'12=a ,然后根据S △AB'C'12=AB'•C'D 即可求解. 【详解】∵等边△ABC 的边长为a ,∴AB=AC=a ,∠BAC=60°.∵将△ABC 的边AB 绕着点A 顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a ,∠B'AB=α. ∵边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a ,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D ⊥AB'于D ,则∠D=90°,∠DAC'=30°,∴C'D 12=AC'12=a ,∴S △AB'C'12=AB'•C'D 12=a•12a 14=a 1. 故答案为:14a 1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积. 14.±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1. 15.1【解析】【分析】先根据同旁内角互补两直线平行知AB ∥CD ,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB ∥CD ,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系. 16.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(2102+,32-210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:(2102+,32-)或(2102-,32-). 17.【解析】 由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x .解:∵分式15x -有意义, ∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.18.1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法20.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.21.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算. (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值. 22.(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或5+17或5-17(舍去-2和5+17)故点P 的坐标为:(4,6)或(5-17,317-5).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a );(2)见解析;(3)直线PP'与x 轴的交点坐标(﹣3,0)【解析】【分析】(1)①当P (-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,AH=3P'H=23,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH-AH=16-53,即可得出结论;③当P (a ,b )时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP '=3x+3,即可得出结论.【详解】解:(1)如图1,①当P (﹣4,2)时,∵PA ⊥y 轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt △P'AH 中,P'H=12P'A=2, ∴AH=3P'H=23,∴OH=OA+AH=2+23,∴P'(﹣2,2+23),②当P'(﹣5,16)时,在Rt △P'AH 中,∠P'AH=30°,P'H=5, ∴P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH ﹣AH=16﹣53, ∴P (﹣10,16﹣53),③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣32a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB ⊥y 轴,PA ⊥y 轴,∴QB ∥PA ,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A ,∴PP'∥QQ';(3)设y PP '=kx+b',由题意知,3,∵直线经过点(3,6),∴b'=3,∴y PP'=3x+3,令y=0,∴x=3∴直线PP'与x30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.24.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D 不可能在EF 上,即∠FDB 不可能为直角;③假设∠BFD 为直角且FB=FD ,则∠FBD=∠FDB=45°,如图2,作FH ⊥BD 于点H ,则FH=PA ,即4﹣t=6﹣t ,方程无解,∴假设不成立,即△BDF 不可能是等腰直角三角形.25. (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】【分析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩, 答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180, ∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.26.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标.27.(1) ;(1) y =x 1﹣4x+1或y =x 1+6x+1.【解析】【分析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x 1﹣4=0得,x 1=﹣1,x 1=1,∵点A 位于点B 的左侧,∴A (﹣1,0),∵直线y =x+m 经过点A ,∴﹣1+m =0,解得,m =1,∴点D 的坐标为(0,1),∴AD ;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,y =x 1+bx+1=(x+2b )1+1﹣24b , 则点C′的坐标为(﹣2b ,1﹣24b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),∴直线CC′的解析式为:y =x ﹣4,∴1﹣24b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.【点睛】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.。
江苏省南京市2020年中考数学一模卷
江苏省南京市联合体2020届中考数学一模试卷一、单选题1.(3分)﹣的相反数是()A.﹣ B.4 C.﹣4 D.【解答】解:﹣的相反数是.故选:D.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(3分)下列运算中,正确的是()A.(﹣3a3)2=9a6B.a•a4=a4C.a6÷a3=a2D.3a+2a2=5a3【解答】解:A、(﹣3a3)2=9a6,故此选项正确;B、a•a4=a5,故此选项错误;C、a6÷a3=a3,故此选项错误;D、3a+2a2,无法计算,故此选项错误.故选:A.4.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【解答】解:A、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;B、“367人中有2人同月同日生”为必然事件,正确;C、可能性是1%的事件在一次试验中一定不会犮生,发生的概率小,也有可能发生,故此选项错误;D、数据3,5,4,1,﹣2的中位数是3,故此选项错误.故选:B.5.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.6.(3分)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70° B.35° C.45° D.60°【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB (垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.7.(3分)已知点 A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.8.(3分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2 B.x≤3 C.x≤﹣2 D.x≥3【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.二、填空题7.9的平方根是________.【答案】±3【考点】平方根【解析】【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【分析】直接利用平方根的定义计算即可.8.若式子在实数范围内有意义,则x的取值范围是________.【答案】x≥-3【考点】二次根式有意义的条件【解析】【解答】∵式子在实数范围内有意义,∴,解得:.故答案为:.【分析】根据二次根式的被开方数不能为负数,即可得出不等式,求解即可。
2020年中考第一次模拟考试《数学卷》附答案解析
中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 20192.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯B. 84.410⨯C. 94.410⨯D. 104.410⨯4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B.83C. 83-D.435.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 坐标为( )A. ()2,3-B. ()2,3--C. (2,3)-D. (3,2)--6.下列运算正确的是( ) A. 347a a a +=B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5B. 中位数是5C. 平均数是6D. 方差是3.68.如图,已知AB 是⊙O 的直径,BC 是弦,∠ABC=30°,过圆心O 作OD⊥BC,垂足为E ,交弧BC 于点D ,连接DC ,则∠DCB 的度数为()A. 30°B. 45°C. 50°D. 60°9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( ) A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+310.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 1211.如图,二次函数2y ax bx c=++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④12.如图,AB 为半圆O 直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1二、填空题13.分解因式:3249x xy -= __________.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 15.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.16.用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长20m ,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m 2.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A 处看图书馆楼顶B 处和楼底C 处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落边AB 上,连接BB ',则BB C ''∠=__________.三、解答题19.(1)计算201()(20)|32|2sin 602π︒----+(2)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足2220x x --= 20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整; (2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率. 21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F . (1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF4S EDF =△,求ED 的长;P.试(2)如图,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF CA判断四边形AEMF的形状,并证明你的结论.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.答案与解析一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 2019【答案】B 【解析】 【分析】直接利用倒数的定义进而得出答案. 【详解】∵2019-×(12019-)=1, ∴2019-的倒数12019-. 故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.【答案】C 【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形. 故选C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯ B. 84.410⨯C. 94.410⨯D. 104.410⨯【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:将4400000000用科学记数法表示为:4.4×109. 故选:C .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B. 83C. 83-D.43【答案】D 【解析】【详解】解:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-, ∴1122x x x x -+=24(2)33---=.故选D .考点:根与系数的关系.5.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( ) A. ()2,3- B. ()2,3--C. (2,3)-D. (3,2)--【答案】B 【解析】 【分析】根据中心对称的性质解决问题即可. 【详解】由题意A ,B 关于O 中心对称, ∵A (2,3), ∴B (-2,-3), 故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.下列运算正确的是( ) A. 347a a a += B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=【答案】D 【解析】 【分析】根据同底数幂的乘法,可判断A ,根据积的乘方,可判断B ,根据同底数幂的除法,可判断C ,根据单项式乘单项式,可判断D .【详解】A 、不是同底数幂的乘法指数不能相减,故A 错误; B 、积的乘方等于乘方的积,故B 错误;C 、同底数幂的除法底数不变指数相减,故C 错误;D 、单项式乘单项式系数乘系数同底数的幂相乘,故D 正确; 故选:D .【点睛】此题考查同底数幂的除法,熟记法则并根据法则计算是解题关键.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5 B. 中位数是5C. 平均数是6D. 方差是3.6【答案】D 【解析】 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确; B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确; C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.8.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC,垂足为E,交弧BC于点D,连接DC,则∠DCB的度数为( )A. 30°B. 45°C. 50°D. 60°【答案】A【解析】【分析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.【详解】解:如图,∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=12∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.【点睛】本题主要考查了圆周角定理,圆心角、弧、弦的关系.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+3 【答案】A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度, 所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.10.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 12【答案】C【解析】 试题解析:∵四边形ABCD 是平行四边形, ∴AD BC P .又BF 、CE 分别是ABC ∠和DCB ∠的角平分线.∴ABF FBC ∠=∠,DCE ECB ∠=∠.又AD BC ∥,∴AFB FBC ABF ∠=∠=∠,ABF V 是等腰三角形,即6AF AB ==.同理可证CED V 是等腰三角形.∴6DE DC AB ===.又∵2EF =,∴4AE FD ==.∴42410AD AE EF FD =++=++=.∴10BC =.11.如图,二次函数2y ax bx c =++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,a <0;∵抛物线的对称轴为直线x=-2b a=1>0, ∴b >0;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,故①正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故②正确;∵抛物线的对称轴是x=1,与x 轴的一个交点是(3,0),∴抛物线与x 轴的另个交点是(-1,0),∴当x=1时,y 最大,即a+b+c≥ax 2+bx+c ,故③正确;∵B (x 2+1,y 1)、C (x 2+2,y 2)在对称轴右侧,x 2+1<x 2+2,∴y 1>y 2,故④错误;【点睛】此题考查抛物线与x 轴的交点,熟知二次函数的图象与系数的关系、x 轴上点的坐标特点等知识是解题的关键.12.如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1【答案】B【解析】解:作OD ⊥BC 交BC 与点D ,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =260360R π=26R π.S 扇形BOC =221203603R R ππ=.在三角形OCD 中,∠OCD =30°,∴OD =2R,CD =32R ,BC 3R ,∴S △OBC =234R ,S 弓形=22334R R π-=(23312R π-,(2224333126R R R ππ->>∴S 2<S 1<S 3.故选B .二、填空题13.分解因式:3249x xy -= __________.【答案】x(2x+3y)(2x-3y)【解析】【分析】原式提取x,再利用平方差公式分解即可.【详解】解:原式=x(4x2-9y2)=x(2x+3y)(2x-3y),故答案为:x(2x+3y)(2x-3y)【点睛】此题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____【答案】8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.15.已知a、b满足(a﹣1)2=0,则a+b=_____.【答案】﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键. 16.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.【答案】112.5 【解析】【分析】设矩形的长为xm,则宽为302x-m,根据矩形的面积公式得出函数解析式,继而将其配方成顶点式,由x的取值范围结合函数性质可得最值.【详解】设矩形的长为xm,则宽为302x-m,菜园的面积S=x•302x-=-12x2+15x=-12(x-15)2+2252,(0<x≤20).∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=2252m2,故答案为2252.【点睛】本题主要考查二次函数的实际应用,根据题意列出函数解析式是解题的根本,由自变量x的取值范围结合二次函数的性质求函数解析式是解题的关键.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B 处和楼底C处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.【答案】143)【解析】【分析】如图,延长CB交AM于点E,设AE=x.通过解Rt△ABE、Rt△ACE分别求得BE、CE的长度,然后结合图形中相关线段的和差关系列出关于x的方程,通过解方程求得x的值;【详解】如图,延长CB交AM于点E,设AE=x.由题意知,在Rt △ABE 中,∠EAB=45°,∴BE=AE=x .在Rt △ACE 中,∠EAC=60°,∴CE=3x , ∵CE-BE=28,∴3x-x=28,解得x=31-=14(3+1)(米),∴两楼间的距离约为14(3+1)米;故答案为:14(3+1).【点睛】此题考查解直角三角形的应用-仰角俯角问题.解题关键在于作辅助线.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落在边AB 上,连接BB ',则BB C ''∠=__________.【答案】22°【解析】【分析】根据旋转性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【详解】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°-∠BAB′)=12(180°-44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°-∠ABB′=90°-68°=22°.故答案为:22°.【点睛】此题考查旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键. 三、解答题19.(1)计算201()(20)|2|2sin 602π︒---+ (2)先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足2220x x --=【答案】(1)3-24(2)21x x +,12. 【解析】【分析】(1)先分别根据0指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再根据x 满足x 2-2x-2=0得出x 2的表达式,代入原式进行计算即可.【详解】解:(1)原式=1344(2)原式=()22212)(211()1x x x x x x x x --+-÷++ =()2(2111()21)x x x x x x -+⨯+- =21x x +, ∵x 满足x 2-2x-2=0,∴x 2=2x+2,∴原式=()1=1221x x ++. 【点睛】此题考查分式的化简求值,实数的运算,熟知分式混合运算的法则, 0指数幂、绝对值的性质及特殊角的三角函数值是解题的关键.20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.【答案】(1)x =20,补图见解析;(2)110. 【解析】【分析】(1)根据单位“1”,求出反腐占的百分比,得到x 的值;根据环保人数除以占的百分比得到总人数,求出教育与反腐及其他的人数,补全条形统计图即可;(2)画出树状图列出所有等可能结果,找到一次所选代表恰好是甲和乙的结果数,再利用概率公式求解可得.【详解】(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x =20,总人数为:140÷10%=1400(人) 关注教育问题网民的人数1400×25%=350(人), 关注反腐问题网民的人数1400×20%=280(人), 关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是甲和乙的有2种结果, 所以一次所选代表恰好是甲和乙的概率为212010. 【点睛】本题考查了条形统计图,扇形统计图及列表法与树状图法,解题的关键是读懂题意,从统计图上获得信息数据来解决问题.21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解. (2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x 元/件,则乙种玩具进价(40﹣x )元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,,解得20≤y <24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y 取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x =>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.【答案】(1)1y x =+.()80y x x =>;(2)M 的坐标为(222,22-或()23,232. 【解析】 分析:(1)根据一次函数y=x+b 的图象经过点A (-2,0),可以求得b 的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于0.详解:(1)Q 一次函数的图象经过点()2,0A -,20b ∴-+=,2b ∴=,2y x ∴=+.Q 一次函数与反比例函数()0k y x x =>交于(),4B a . 24a ∴+=,2a ∴=,()2,4B ∴,()80y x x∴=>. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,以A ,O ,M ,N 为顶点的四边形为平行四边形.即:()822m m--=且0m >,解得:22m =或232m =+(负值已舍), M ∴的坐标为()222,22-或()23,232+.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F .(1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.【答案】(1)见解析;(2)2π.【解析】【分析】(1)根据圆周角定理求出AD ⊥BC ,得出AD 平分∠BAC ,即可推出OD ∥AC ,推出OD ⊥EF ,根据切线的判定推出即可.(2)由OD ⊥DF 得∠ODF=90°,利用含30度的直角三角形三边的关系OF=2OD ,即OB+3=2OD ,可解得OD=3,再计算出∠AOD=90°+∠F=120°,然后根据弧长公式求解.【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴劣弧AD的长度=1203180g g=2π.【点睛】此题考查切线性质与判断,弧长公式,解题关键在于掌握圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF 4S EDF =△,求ED 的长;(2)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF CA P .试判断四边形AEMF 的形状,并证明你的结论.【答案】(1)5(2)菱形,见解析;【解析】【分析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF =S △DEF ,则易得S △ABC =5S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到两个三角形面积比和AB ,AE 的关系,再利用勾股定理求出AB 即可得到AE 的长;(2)连结AM 交EF 于点O ,利用平行线的性质证明AE=EM=MF=AF ,即可判断四边形AEMF 为菱形;【详解】解:(1)∵△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =4S △EDF ,∴S △ABC =5S △AEF ,在Rt △ABC 中,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠EAF=∠BAC ,∴Rt△AEF∽Rt△ABC,∴2 AEFABCSAES AB⎛⎫= ⎪⎝⎭VV,即21105AE⎛⎫=⎪⎝⎭,∴AE=25,由折叠知,DE=AE=25(2)连结AM交EF于点O,如图2,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.【点睛】此题考查相似三角形的判定与性质,折叠的性质,菱形的判定,解题关键在于灵活构建相似三角形.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【答案】(1)y=﹣x2+2x+3;(2)存在,G(1,0);(3)2.【解析】【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E′,连接E′F交对称轴于G,此时EG+FG的值最小,先求E′F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式,过N作NH⊥x轴于H,交AB于Q,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6)(1<m<3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【详解】(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小.∵E(0,3),∴E'(2,3),设EF的解析式为y=k′x+b′,把F(0,﹣3),E'(2,3)分别代入,得332bk b''-=+'=⎧⎨⎩,解得33kb=⎧⎨=-''⎩,所以E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0);(3)如图2.设AB的解析式为y=k″x+b″,把A(1,4),B(3,0)分别代入,得403k b k b ''''''''=+⎧⎨=+⎩,解得26k b ''''=-⎧⎨=⎩, 所以AB 的解析式为:y =﹣2x+6,过N 作NH ⊥x 轴于H ,交AB 于Q ,设N(m ,﹣m 2+2m+3),则Q(m ,﹣2m+6),(1<m <3),∴NQ =(﹣m 2+2m+3)﹣(﹣2m+6)=﹣m 2+4m ﹣3,∵AD ∥NH ,∴∠DAB =∠NQM ,∵∠ADB =∠QMN =90°,∴△QMN ∽△ADB , ∴QN AB MN BD =,∴2m 4m 325MN -+-=, ∴MN 55=-(m ﹣2)255+. 55-Q <0, ∴当m =2时,MN 有最大值;过N 作NG ⊥y 轴于G ,∵∠GPN =∠ABD ,∠NGP =∠ADB =90°,∴△NGP ∽△ADB , ∴PG BD 21NG AD 42===,∴PG 12=NG 12=m , ∴OP =OG ﹣PG =﹣m 2+2m+312-m =﹣m 232+m+3, ∴S △PON 12=OP•GN 12=(﹣m 232+m+3)•m , 当m =2时,S △PON 12=⨯2(﹣4+3+3)=2.【点睛】本题考查是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.。
2020年江苏省南京市中考数学模拟试卷附解析
2020年江苏省南京市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定2.二次函数221(0)y kx x k =++<的图象可能是( )3. 地图上1cm 2 面积表示实际面积400m 2,该地图的比例尺是( )A .1 :400B .1:4000C .1:2000D .1:200 4.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-4 5.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A .75°B .60°C .45°D .30°6.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A .4种B .3种C .2种D .1种7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A . 14cmB .4cmC .15cmD .3cm8.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( )A .随机事件B .必然事件C .不可能事件D .以上都不是9.与23a b 是同类项的是( )A .2aB .2abC .23abD .24ba 10. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间 二、填空题11.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 12.已知512a -=,512b +=,则 a 、b 的比例中项为 . 13.如图,已知:⊙O 的半径为5,弦AB = 8,P 是弦AB 上任意一点,则OP 的取值范围是 .14.将一长方形的纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD= 度.15.某中学今年“五一”长假期问要求学生参加一项社会调查活动.为此,小明在他所居住 小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收人情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数 频率 1000~12003 0.060 1200~140012 0.240 1400~160018 0.360 1600~l8000.200 1800~20005 2000~22002 0.040 合计 50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在第 小组内; (3)请你估算该小区600个家庭中收入较低(不足l400元)的家庭个数大约有 个.16.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .17.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .18.用有45°直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 .19.直接写出因式分解的结果:(1)=-222y y x ;(2)=+-3632a a .20.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12.三、解答题21.判断 222,1 2为比例中项的一个比例式.22.求出抛物线225y x x =-++的对称轴和顶点坐标.23.如图,在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是D,E是AB上一点,EF ⊥AC,垂足是F,G是BC上一点,CG=EF.求证:△DFG是等腰直角三角形.24.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.25.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.26.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线长的m倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a,b,s,m 的分式表示)27.读句画图,并回答问题.(1)画三角形ABC,取AB的中点M;(2)过点M画直线MN∥BC,交AC于点N;(3)过点M画直线MP∥AC,交BC于点P;(4)测量AN与NC,BP与PC是否相等?(5)测量MN与BC,MP与AC之间的关系?(6)再重新任意画一个三角形,重复以上的画图步骤,观察(5)的关系是否仍然成立?28.当 x= -2 时,代数式 x(2-m)+4 的值等于18,求当 x=3 时这个代数式的值.29. 在一次环保知识测试中,三年级一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频数分布直方图,如图1、图2.已知,图1从左到右每个小组的频率分别为:0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1∶2∶4∶7∶6∶3∶2,请结合条件和频数分布直方图回答下列问题:(1)三年级一班参加测试的人数为多少? (2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?30.如图,△OAB 中,OA=OB ,以O 为圆心的圆交BC 于点C 、D ,求证:AC=BD. D C B A O【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.B6.B7.A8.B9.D10.B二、填空题11.1512.1±13.≤OP14.53≤9015.(1)略;(2)三;(3)18016.417.-818.22°19.(1))1xa(3-y;(2)2)1)(+x1(2-20.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD三、解答题21.∵2×=.22.顶点坐标(1,6),对称轴为直线x=1.23.证△AFD≌△CGD,FD=GD,∠ADF=∠CDG,得∠FDG=90°24.20%25.甲使用了众数,乙使用了平均数,丙使用了中位数26.b am倍27.(1)(2)(3)略 (4)AN=NC,BP=PC;(5)MN=12BC,MP=12AC;(6)仍然成立.28.-1729.⑴50;⑵44%;⑶96%.30.证:如图过O作OE⊥AB于E,∵OA=OB,OE⊥AB于E,∴AE=BE.又∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∴AE-CE=BE-DE,即AC=BD.。
【2020年】江苏省南京市中考数学模拟试题(含答案)
2020年江苏省南京市中考数学模拟试题含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-2的倒数是( )A .-12B .12 C .±2 D .22.函数y =x -2中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.s in45°的值是( )A .12B .22C .32D .1 4.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为( )A .30°B .45°C .60°D .90°8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( ) A .中位数 B .众数 C .方差 D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有( )A .D .B .C .A .1条B .2条C .3条D .4条二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元. 13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB 沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-2)2+(-0.1)0; (2)(x ―2)2―(x +3)(x ―1).20.(本题满分8分)计算:ABC EPM N(第17题)(第16题) ABECDO(1)解不等式:5+x ≥3(x -1); (2)解方程组:⎩⎪⎨⎪⎧x =3-y , ……①2x +y =5.……②21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC ,求证:AD =BE .22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:成绩段 频数 频率 0≤x <20 5 0.120≤x <40 10a40≤x <60 b 0.1460≤x <80 mc 80≤x <10012n根据以上图表信息,解答下列问题:AC BDE30秒跳绳次数的频数、频率分布表30秒跳绳次数的频数分布直方图5 10 155 10161220 40 60 80 100 频数(人)跳绳次数(1)表中的a = ,m = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,AB如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米. (1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7. (1)求点A 的坐标及点C 的坐标(用含a 的代数式表示);(2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.(图2)(图1) ABCDE FGH27.(本题满分10分)如图,一次函数y =-12x +m (m >0)的图像与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且AD =2BD ,将△ACD 绕点D旋转180°后得到△A 1C 1D .(1)若点C 1恰好落在y 轴上,试求n m的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.O AB CD C 1 A 1 xy28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得:AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC 的中点,AB =6,AC =4,BC =8,则AD =_______;② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值.ABCD (图1)ABCD E (图2)OA E CBFAB CDO xy(图4)参考答案与评分标准一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 9.B 10.C 二、填空题: 11.x (y -1)12.9.16×1011 13.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题:19.解:(1)原式=3-4+1 ……(3分)(2)原式=x 2-4x +4-(x 2+2x -3) …(2分)=0. ………(4分) =x 2-4x +4-x 2-2x +3…(3分)=-6x +7.……(4分)20.解:(1)5+x ≥3x -3 …(2分) (2)把①代入②,得y =1; …(2分)∴2x ≤8 …(3分) 把y =1代入①,得x =2. …(3分)∴x ≤4.…(4分) ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.…(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分) ∴AD =BE .………(8分) 22.(1)a =0.2,m =16;……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分) ∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分)(3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分)作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分.25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分)26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)ABMNC 第2局 第3局甲乙甲乙甲 乙∴a =33, a =-33(舍去).…………………(7分) ∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F , 易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧.① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1, ∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28.解:(1)∴AB 2+AC 2=2AE 2+(x +y )2+(x -y )2=2AE 2+2x 2+2y 2=2AE 2+2BD 2+2DE 2=2AD 2+2BD 2.………………(3分) (2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。
江苏省南京市2020年中考数学一模试卷(I)卷
江苏省南京市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)二次函数的图像的顶点坐标是()A . (2,3)B . (﹣2,3)C . (﹣2,﹣3)D . (2,﹣3)2. (2分)二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+ 化简结果为()A . aB . 1C . ﹣aD . 03. (2分) (2016九上·龙湾期中) 抛物线y=x2+6x+8与y轴交点坐标()A . (0,8)B . (0,-8)C . (0,6)D . (-2,0)(-4,0)4. (2分) (2020九上·镇平期末) 如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH 的面积为S,则能反映S与x之间的函数关系的图象大致为()A .B .C .D .5. (2分) (2019九上·呼兰期中) 如图,的直角顶点D在y轴上,边上的点在抛物线上,将绕点O逆时针旋转,得到,点A恰好在抛物线上,则点A的坐标为().A .B .C .D .6. (2分)一张折叠型方桌子如图甲,其主视图如乙,已知AO=BO=50cm,CO=DO=30cm,现将桌子放平,要使桌面a距离地面m为40cm高,则两条桌腿需要叉开的角度∠AOB为()A . 150°B . 约105°C . 120°D . 90°7. (2分)已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是()A . r>6B . r≥6C . 0<r<6D . 0<r≤68. (2分) (2018九上·三门期中) 如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A . 24B . 20C . 18D . 15二、填空题 (共8题;共8分)9. (1分)写出一个开口向上,顶点是坐标原点的二次函数的解析式:________.10. (1分)在直角坐标系xoy中,O是坐标原点,抛物线与x轴交与A,B两点(点A在点B的左侧),与y轴相交与点C,如果点M在y轴右侧的抛物线上,S△AMO=S△COB ,那么点M的坐标是________ 。
2020年江苏省南京市中考数学综合模拟试卷附解析
2020年江苏省南京市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个2.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( )A .m 2213πB .m 2427πC .m 2213πD .m 2427π3. 关于2y x=,下列判断正确的是( ) A .y 随x 的增大而增大B .y 随x 的增大而减小C .在每一个象限内,y 随x 的增大而增大D .在每一个象限内,y 随x 的增大而减小4.下列多边形中,不能铺满地面的是 ( )A .五边形B .三角形C .四边形D .正六边形 5.若方程20ax bx c ++=(0a ≠)中,a ,b ,c 满足0a b c ++=,0a b c -+=,则方程的根是( )A .1,0B . -1,0C .1, -1D . 无法确定 6.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( )A .7 cmB .8 cmC .9 cmD .10 cm7.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 8.有下列长度的三条线段:①3、3、1;②2、2、4;③4、5、6;④4、4、3. 其中能构成等腰三角形的有( )A . ①④B . ①②④C . ②④D . ①② 9.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( ) A .0个B .l 个C . 2个D .3个 10.如图△ABC 中,AB 的中垂线交AC 于D ,AB =10,AC =8,△DBC 的周长是a ,则BC等于 ( )A . a -6B .a -8C .a -10D .10-a 二、填空题11.四边形ABCD 中,∠A=70°,欲使此四边形为平行四边形,那么∠B= ,∠C= .12.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.13.为了解全国初中生的睡眠状况,比较适合的调查方式是 (填“普查”或“抽样调查”).14.A 是坐标平面上的一点,若点A 与x 轴的距离是2,与y 轴的距离是l ,则点A 的坐标为 .15.直棱柱的上底面的面积为80cm 2,则下底面面积是 cm 2.16.一个正方体的每个面分别标有数字l ,2,3,4,5,6.根据下图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是 .解答题17.估算方程2233x -=的解是 .18.计算:1009998976543+21-+-++-+--= .三、解答题19.小明为了测量某一高楼 MN的高,在离 N点 200 m 的 A处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M,若 AC=l5m,小明的眼睛离地面的高度为1.6m,请你帮助小明计算一下楼房的高度(精确到0.1 m).20.AB 是半圆0的直径,C、D是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?(2)求阴影部分的面积.21.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.22.某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成了如下的两幅不完整的统计图(如图①,图②).(1)在这次研究中,一共调查了名学生.(2)“其他”在扇形图中所占的圆心角是度.(3)补全频数分布折线图.23.判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.24.求下列问题中两个变量的函数解析式,并写出自变量的取值范围,判断其是否为一次函数:现要利用64 m长的旧围栏建一个长方形的花圃.设花圃一边长x(m),分别写出下列变量和x的函数解析式:(1)花圃另一边长y(m);(2)花圃的面积S(m2).25.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?26.填空.已知:AB∥CD,(1)如图①,∠B+∠=∠BEC.理由如下:解:过点E 作EF ∥AB ,则∠l=∠B( ).∵EF ∥AB ,AB ∥CD( ),∴EF ∥CD( ),∴∠2=∠C( ).∵∠BEC=∠l+∠2,∴∠BEC=∠B+∠C( ).(2)图②中,∠B ,∠E ,∠G ,∠F ,∠C 的数量关系是 ; (3)图③中,∠B ,∠E ,∠F ,∠G ,∠H ,∠M ,∠C 的数量关系是 .27.如图所示,已知线段a ,c ,求作Rt △ABC ,使BC=a ,AB=c .28.(1)用如下图所示的两种正方形纸片甲、乙各 1 张,长方形纸片丙 2 张拼成一个大长方形(画出图示),并运用面积之间的关系,将一个多项式分解因式,并写出这个因式分解的过程.(2)请运用上面的方法将多项式2244a ab b ++分解因式,则需要正方形纸片甲 张,正方形纸片乙 张,长方形纸片丙 张拼成一个大的正方形. 画出图形并写出这个因式分解的过程.(3)假若要将多项式2254a ab b ++分解因式,你将利用什么样的图形的面积关系将它分解因式?29.观代营养学家用身体质量指数判断人体健康状况,这个指数等于人体质量(kg)与人体身高(m)平方的商,一个健康人的身体质量指数在20~25之间,身体质量指数高于30,属于不健康的胖.(1)设一个人的质量为W(kg),身高为h(m),求他的身体质量指数;(2)张老师的身高是1.75 m,他的质量是60kg,求他的身体质量指数,并判断张老师是否健康.30.(精确到0.001 ).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.A5.C6.D7.B8.A9.D10.B二、填空题110°,70°12.2213.抽样调查14.(1,2)或(-1,2)或(1,-2)或(-1,-2)15.8016.617.如1x =-18.50三、解答题19.∴BC ⊥CA ,MN ⊥AN ,∴∠C=∠N ,∵∠BAC=∠MAN..∴△BCA ∽△MNA. ∴BC AC MN AN =,即1.615200MN =, 1.620015213()MN m =⨯÷≈⋅. 20.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB.(2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,22,64ADC OCD R S s R π∆==扇形,∴222(6464R S R R ππ=+=+阴影 21.解:在Rt △AEF 和Rt △DEC 中,∵EF ⊥CE ,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD .又∠FAE=∠EDC=90°,EF=EC ,∴Rt △AEF ≌Rt △DCE .∴AE=CD . AD=AE+4.∵矩形ABCD 的周长为32 cm ,∴2(AE+AE+4)=32.解得,AE=6 (cm ).(1)100;(2)36;(3)略23.假命题,证明略24.(1)y=x+32(0<x<32)是一次函数;(2)232=-+(O<x<32)不是一次函数S x x25.(1)y=15x+55;(2)145元,l2个月26.(1)略 (2)∠B+∠G+∠C=∠E+∠F (3)∠B+∠F+∠H+∠C=∠E+∠G+∠M27.提示:两种情况28.(1)如图 1. 222++=+2()a ab b a b(2)1,4,4(如图 2);22244(2)++=+a ab b a b(3)需要 1张正方形纸片甲,4张正方形纸片乙,5张长方形纸片丙拼成一个大的长方形(如图 3)29.(1)身体质量指数为2h ω (2)张老师的身体质量指数为26019.6(1.75)≈,张老师偏瘦,但基本健康. 30.12,12)10.178-=≈。
2020年江苏省南京市中考数学一模试卷及解析
2020年江苏省南京市中考一模试卷数学试卷一、选择题(本大题共6小题,共12分)1.如果a是无理数,那么下列各数中,一定是有理数的是()D. a0A. −aB. a2C. 1a2.下列各式计算结果不等于211的是()A. 210+210B. 212−210C. 27×24D. 215÷243.下列命题中,是真命题的是()A. 平行四边形的四边相等B. 平行四边形的对角互补C. 平行四边形是轴对称图形D. 平行四边形的对角线互相平分4.下列的立体图形中,有4个面的是()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱5.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 36.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD折叠,点B落在点处,连接,,若是等腰三角形,则符合条件的点D的个数是()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共10小题,共20分)7.根据刘慈欣同名小说改编的电影《流浪地球》将中国独特的思想和价值观念融入对人类未来的畅想与探讨,该电影取得了巨大的成功,国内票房总收入为4 655 000 000元,用科学记数法表示4 655 000 000是______.8.计算√3×√6−√2的结果是______.9.分解因式:−x3+2x2−x=______.10.甲、乙两个班级各20名男生测试“引体向上”,成绩如图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S甲2和S乙2,则S甲2______S乙2.(填“>”,“<”或“=”)11.如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是______.12.对于反比例函数y=4,以下四个结论:①函数的图象在第一、三象限;②函数的x图象经过点(−2,−2);③y随x的增大而减小;④当x>−2时,y<−2.其中所有正确结论的序号是______.13.等边三角形外接圆的面积是4π,则该等边三角形的面积是______.14.如图,AB是⊙O的直径,点C、D在半圆AB上,且AC⏜=CD⏜=DB⏜,连接AC、AD,则∠CAD的度数是______°.15.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是______.16.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1、N1、P1分别在AC、BC、AB上,且四边形M1CN1P1是正方形,点M2、N2、P2分别在P1N1、BN1、BP1上,且四边形M2N1N2P2是正方形,…,点M n、N n、P n分别在P n−1N n−1、BN n−1、BP n−1上,且四边形M n N n−1N n P n是正方形,则BN2019的长度是______.三、计算题(本大题共2小题,共14分)17.计算(−1)3+|−6|×2−1−√273.18.化简:x−3x−2÷(x+2−5x−2)四、解答题(本大题共9小题,共74分)19.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD//BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是______(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.20.在一只不透明的袋子中装有1个红色小球,2个黄色小球和若干个黑色小球,这些小球除颜色以外都一样.已知从袋中任意摸出1个红色小球的概率是14.(1)袋中黑色小球的数量是______个;(2)若从袋中随机摸出1个小球,记录好颜色后放回袋中并搅匀,再从袋中任意摸出1个小球,求两次摸出的都是黄色小球的概率是多少?21.我市某校招聘数学教师,本次招聘进行专业技能笔试和课堂教学展示两个项目的考核,这两项考核的满分均为100分,学校将这两个项目的得分按一定的比例计算出4考生序号1234专业技能笔试90708675课堂教学展示70908086分分别占总成绩的百分比;(2)若学校录取总成绩最高的考生,通过计算说明4名考生中哪一名考生会被录取?22.如图,某数学兴趣小组准备测量长江某处的宽度AB,他们在AB延长线上选择了一座与B距离为200m的大楼,在大楼楼顶的观测点C处分别观测点A和点B,利用测角仪测得俯角(从高处观测低处的目标时,视线与水平线所成的锐角)分别为8°和46°.求该处长江的宽度AB.(参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)23.点A(−1,0)是函数y=x2−2x+m2−4m的图象与x轴的一个公共点.(1)求该函数的图象与x轴的另一个公共点的坐标以及m的值;(2)将该函数图象沿y轴向上平移______个单位后,该函数的图象与x轴只有一个公共点.24.两个运输小队分别从两个仓库以相同的工作效率调运一批物资,两队同时开始工作.第二小队工作5天后,由于技术问题检修设备5天,为赶上进度,再次开工后他们将工作效率提高到原先的2倍,结果和第一小队同时完成任务.在两队调运物资的过程中,两个仓库物资的剩余量yt与第一小队工作时间x天的函数图象如图所示.(1)①求线段AC所表示的y与x之间的函数表达式;②求点F的坐标,并解释点F的实际意义.(2)如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是______天.25.已知线段AB与点O,利用直尺和圆规按下列要求作△ABC(不写作法,保留作图痕迹).(1)在图①中,点O是△ABC的内心;(2)在图②中,点O是△ABC的重心.26.某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为______元,购进的数量为______件.(都用含x的代数式表示,不需化简)(2)求x的值.27.如图,在矩形ABCD中,AB=5,BC=12,E为BC的中点.⊙O与边BC相切于点E,并交边AD于点M、N,AM=3.(1)求⊙O的半径;(2)将矩形ABCD绕点E顺时针旋转,旋转角为α(0°<α≤90°).在旋转的过程中,⊙O和矩形ABCD的边是否能够相切?若能,直接写出相切时,旋转角α的正弦值;若不能,请说明理由.答案和解析1.【答案】D【解析】解:A、如果a是无理数,那么−a一定是无理数,故这个选项错误;B、如果a是无理数,那么a2可能是无理数,也可能是有理数,故这个选项错误;C、如果a是无理数,那么1a一定是无理数,故这个选项错误;D、如果a是无理数,那么a0一定是有理数,因为a0=1,故这个选项正确.故选:D.根据有理数和无理数的定义解答.本题考查了有理数和无理数的定义,解题的关键是熟练掌握有理数和无理数的定义.2.【答案】B【解析】解:210+210=2×210=211,故选项A不合题意;212与210不是同类项,所以不能合并,故选项B符合题意;27×24=27+4=211,故选项C不合题意;215÷24=215−4=211,故选项D不合题意.故选:B.分别根据合并同类项的法则、同底数幂的乘法法则,同底数幂的除法法则逐一判断即可.本题主要考查了同底数幂的乘除法,熟练掌握运算法则是解答本题的关键.3.【答案】D【解析】解:A、平行四边形的四条边不一定相等,故错误,是假命题;B、平行四边形的对角相等,故错误,是假命题;C、平行四边形是中心对称图形但不是轴对称图形,故错误,是假命题,D、平行四边形的对角线互相平分,故错误,是真命题,故选:D.利用平行四边形的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是能够了解平行四边形的性质,难度不大.4.【答案】A【解析】解:A、三棱锥有一个底面,三个侧面组成,共4个面.B、三棱柱有二个底面,三个侧面组成,共5个面.C、四棱锥有一个底面,四个侧面组成,共5个面.D、四棱柱有二个底面,四个侧面组成,共6个面.故有4个面的是三棱锥.故选:A.根据棱柱和棱锥的组成情况,分别求得各立体图形的面数,再进行判断.本题考查了棱柱和棱锥的组成情况.要明确棱柱有两个底面,棱锥有一个底面.5.【答案】B【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,△AOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由△AOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;本题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解题的关键;6.【答案】C【解析】解:如图1,当BB′=B′C时,是等腰三角形,如图2,当BC=BB′时,是等腰三角形,故若是等腰三角形,则符合条件的点D的个数是2,故选:C.根据折叠的性质和等腰三角形的性质即可得到结论.本题考查了翻折变换(折叠问题),正确的作出图形是解题的关键.7.【答案】4.655×109【解析】解:用科学记数法表示4 655 000 000是4.655×109.故答案为:4.655×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】2√2【解析】解:√3×√6−√2=3√2−√2=2√2.故答案为:2√2.首先利用二次根式乘法运算法则计算,进而合并同类项得出即可.此题主要考查了二次根式的混合运算,正确掌握二次根式的运算法则是解题关键.9.【答案】−x(x−1)2【解析】解:−x3+2x2−x,=−x(x2−2x+1)…(提取公因式)=−x(x−1)2.…(完全平方公式)先提取公因式−x ,再利用完全平方公式进行二次分解.完全平方公式:(a −b)2=a 2−2ab +b 2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.在提取负号时,要注意各项符号的变化. 10.【答案】<【解析】解:由扇形图知,甲班男生“引体向上”个数分布情况为:5个的5人,6个5人,7个5人,8个5人,乙班男生“引体向上”个数分布情况为:5个的6人,6个4人,7个4人,8个6人, ∴甲班男生“引体向上”个数分布较为均匀、稳定,∴S 甲2<S 乙2,故答案为:<.由扇形图得出个数的具体分布情况,再判断出“引体向上”个数分布较为稳定的班级即可得.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 11.【答案】0<x <1【解析】解:由题意知{2x >x2x <x +1,解得0<x <1,故答案为:0<x <1.根据题意列出不等式组,解之可得.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 12.【答案】①②【解析】解:①∵k =4>0,∴它的图象在第一、三象限,故正确; ②把点(−2,−2)代入反比例函数y =4x ,成立,故正确;③当x >0时,y 随x 的增大而减小,故错误. ④当x >−2时,y <−2或y >0,所以错误; 故答案为:①②.根据反比例函数的性质,k =4>0,函数位于一、三象限,在每一象限y 随x 的增大而减小.本题考查了反比例函数y =kx (k ≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.13.【答案】3√3【解析】解:如图,⊙O 为等边△ABC 的外心,连接OB ,OC ,作OH ⊥BC ,则BH =CH , ∵π⋅OB 2=4π, ∴OB =2,∵∠BOC=2∠A=120°,∴∠OBC=30°,在Rt△BOH中,OH=12OB=1,BH=√3OH=√3,∴BC=2BH=2√3,∴△ABC的面积=3S△OBC=3×12×1×2√3=3√3.故答案为3√3.如图,⊙O为等边△ABC的外心,连接OB,OC,作OH⊥BC,利用垂径定理得到BH=CH,利用圆的面积公式得到OB=2,再计算出∠OBC=30°,则根据含30度的直角三角形三边的关系得到OH=1,BH=√3,所以BC=2BH=2√3,然后计算△OBC的面积得到△ABC的面积.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.14.【答案】30【解析】解:连接OC,OD,∵AB是⊙O的直径,点C、D在半圆AB上,且AC⏜=CD⏜=DB⏜,∴∠AOC=∠COD=∠DOB=60°,∴∠DAB=30°,∠CAO=60°,∴∠CAD=30°,故答案为:30.连接OC,OD,利用圆周角定理和三角形的内角和解答即可.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.【答案】25【解析】解:连接CE,∵四边形ABCD是矩形,∴AE//BC,AD=BC,∵E是AD的中点,∴AE=12AD=12BC,即AEBC=12,∴△AEF∽△CBF,则EFBF =AFCF=AEBC=12,设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF =52S△ABF,即△ABF的面积和四边形CDEF的面积的比值是25,故答案为:25.依据AE//BC即可得到△AEF∽△CAB;设△AEF的面积为s,则△ABF的面积为2s,△CEF 的面积为2s,△CDE的面积为3s,四边形CDEF的面积为5s,进而得出结论S四边形CDEF=52S△ABF.本题主要考查了相似三角形的判定和性质,矩形的性质等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16.【答案】2202132019【解析】解:∵N1P1//AC,∴△B1N1P1∽△BCA,∴BN1BC =N1P1AC,设N1P1=x,则4−x4=x2,解得:x=43,∴BN1=BC−CN1=4−43=83,同理,∵N2P2//AC,∴△P1N1B∽△P2N2B,设P2N2=y,∴y43=83−y83,解得:y=89,∴BN2=83−89=169=2432.同理,BN3=3227=2533,∴BN2019的长度是2202132019.故答案为:220213.根据相似三角形的性质求出BN1,BN2,BN3的值,找出规律即可求出BN2019的长度.此题属规律性题目,考查了相似三角形的性质及正方形的性质,解答此题的关键是求出BN1,BN2,BN3的值,找出规律,根据此规律求解.17.【答案】解:原式=−1+6×12−3=−1+3−3=−1.【解析】直接利用绝对值的性质以及负指数幂的性质、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:x−3x−2÷(x+2−5x−2)=x−3x−2÷(x2−4x−2−5x−2)=x−3x−2⋅x−2(x−3)(x+3)=1x+3.故答案为1x+3.【解析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.19.【答案】④【解析】解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD//BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;(1)根据题目中的条件即可得到结论;(2)根据垂直和角平分线的定义得到∠BAO=∠DAO,∠AOB=∠AOD=90°,根据全等三角形的性质得到AB=AD,推出AB=BC,根据菱形的判定定理即可得到结论;本题考查了菱形的判定,全等三角形的判定和性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.20.【答案】1【解析】解:(1)设袋中黑色小球的数量是x个,根据题意得:11+2+x =14,解得:x=1,经检验x=1是方程的解,答:袋中黑色小球的数量是1个;故答案为:1;(2)根据题意画树状图如下:共有16种等情况数,其中两次摸出的都是黄色小球的有4种,则两次摸出的都是黄色小球的概率是416=14.(1)设袋中黑色小球的数量是x个,根据概率公式列出算式,求出x的值即可得出答案;(2)先画出树状图得出所有等情况数和两次摸出的都是黄色小球的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设专业技能笔试得分占总成绩的百分比是a.根据题意,得90a+70(1−a)=78.解这个方程,得a=40%.1−40%=60%.所以专业技能笔试得分和课堂教学展示得分占总成绩的百分比分别是40%,60%.(2)2号考生总成绩为70×0.4+90×0.6=82(分).3号考生总成绩为86×0.4+80×0.6=82.4(分).4号考生总成绩为75×0.4+86×0.6=81.6(分).因为82.4>82>81.6>78,所以3号考生会被录取.【解析】(1)可设专业技能笔试得分占总成绩的百分比是a,根据1号考生的总成绩为78分列出方程求解即可;(2)根据加权平均数公式分别求出4个考生总成绩,再比较大小即可求解.本题主要考查加权平均数的计算.解题的关键是熟记加权平均数的计算公式.22.【答案】解:如图,连接AC,BC.根据题意,得∠CAD=8°,∠CBD=46°.在Rt△CBD中,∵tan∠CBD=CDBD,∴CD=BD⋅tan∠CBD=200×1.04=208(m).在Rt△CAD中,∵tan∠CAD=CDAD,∴AD=CDtan∠CAD =2080.16=1300(m).∴AB=AD−BD=1300−200=1100(m).答:该处长江的宽度是1100 m.【解析】如图,连接AC,BC.通过解Rt△CBD和Rt△CAD分别求得BD、AD的长度,然后利用线段间的和差关系解答.本题考查解直角三角形的应用−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.【答案】(1)见解析;(2)4【解析】解:(1)在函数y =x 2−2x +m 2−4m 中,∵a =1,b =−2,∴该二次函数图象的对称轴是过点(1,0)且平行于y 轴的直线.∵点A(−1,0)是函数y =x 2−2x +m 2−4m 的图象与x 轴的一个公共点,根据二次函数图象的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0),将x =−1,y =0代入函数y =x 2−2x +m 2−4m 中,得0=3+m 2−4m . 解这个方程,得m 1=1,m 2=3,故抛物线的表达式为:y =x 2−2x −3;(2)抛物线顶点坐标为:(1,−4),故函数图象沿y 轴向上平移4单位后,该函数的图象与x 轴只有一个公共点.(1)将点A 坐标代入函数表达式即可求解;(2)求出抛物线顶点坐标(1,−4),即可求解.本题考查的是二次函数与x 轴交点问题,将点A 代入函数表达式,求出m 值是本题的关键.24.【答案】9【解析】解:(1)①设AC 的函数表达式为y =kx +b ,将(12,0),(0,360)代入y =kx +b ,得{12k +b =0b =360,解得{k =−30,b =360.即线段AC 所表示的y 与x 之间的函数表达式为y =−30x +360;②第一小队的工作效率为360÷12=30(t/天),第二小队再次开工后的工作效率为30×2=60(t/天),调运物资为60×2=120(t), 即点E 的坐标为(10,120),所以点F 的纵坐标为120.将y =120代入y =−30x +360,可得x =8,即点F 的坐标为(8,120).点F 的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t ;(2)120÷30=4(天),5+4=9(天).故答案为9.(1)①设AC 的函数表达式为y =kx +b ,将(12,0),(0,360)代入y =kx +b ,利用待定系数法即可求出线段AC 所表示的y 与x 之间的函数表达式;②根据工作效率=工作总量÷工作时间,可得第一小队的工作效率为360÷12=30(t/天),进而得出第二小队再次开工后的工作效率为30×2=60(t/天),那么调运物资为60×2=120(t),得出点E 的坐标为(10,120),所以点F 的纵坐标为120.将y =120代入y =−30x +360,求出x ,得到点F 的坐标,点F 的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t ;(2)先求出第二小队按原来的工作效率正常工作时调运物资120t 需要的时间,再加上检修设备前调运物资的工作时间即可.此题考查了一次函数的应用,涉及到利用待定系数法求一次函数的解析式,工作效率、工作总量与工作时间关系的应用,理解题意从图象中获取有用信息是解题的关键.25.【答案】解:(1)如图①,△ABC即为所求.(2)如图②,△ABC即为所求.【解析】(1)内心是角平分线的交点,根据AO和BO分别是∠CAB和∠CBA的平分线,作图即可;(2)重心是中线的交点,先作AB的垂直平分线,确定AB的中点,根据重心到中点的距离是到顶点距离的1,确定中线CO,作图即可.2本题是作图题,考查了三角形内心和重心的定义,角平分线和线段垂直平分线的基本作图,三角形重心的性质,掌握基本作图是关键.26.【答案】100(1+x)200(1+2.5x)【解析】解:(1)依题意得:第二批衬衫进价为100(1+x)元,购进的数量为200(1+2.5x)件.故答案是:100(1+x),200(1+2.5x);(2)根据题意,得200×(150−100)+[150−100(1+x)][200(1+2.5x)−50]+50[120−100(1+ x)]=17500.化简,得50x2−5x−1=0.解这个方程,得x1=15,x2=−110(不合题意,舍去).所以x的值是20%.(1)根据“购进二批衬衫数量的增长率是进价增长率的2.5倍”解答;(2)根据销售收入−成本=利润,即可得出关于x的一元一次方程,解方程即可.考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.【答案】解:(1)如图①,连接EO并延长,交AD于点F,连接OM.∵⊙O与BC相切于点E,∴OE⊥BC,在矩形ABCD中,∵AD//BC,AD=BC=12,∠A=∠B=∠C=∠D=90°.∴四边形ABEF和四边形DCEF是矩形.∴AF=BE,DF=CE,EF=AB=5.∵BE=CE,∴AF=DF,∵OE⊥BC,AD//BC,∴OF⊥AD.∴MF=NF,∵AF=6,AM=3,∴FM=3,设⊙O的半径为r,则OM=OE= r,OF=5−r.在Rt△OFM中,根据勾股定理,得32+(5−r)2=r2,解这个方程,得r=3.4,即⊙O的半径为3.4;(2)如图②,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,则四边形QOPB′是矩形,∴OQ=PB′,∵OE⊥BC,∴∠OPE=∠OEB=90°,∴∠POE+∠OEP=∠OEP+BEP=90°,,,由(1)得,∴PE=6−3.4=2.6,即;如图③,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,同理,∵∠A′=∠B′=∠QPB′=90°,∴四边形A′B′PQ是矩形,,由(1)得OQ=OE=3.4,OP=5−3.4=1.6,∴OE2−OP2=PE2,∴PE=3,即.【解析】(1)如图①,连接EO并延长,交AD于点F,连接OM.根据切线的性质得到OE⊥BC,根据矩形的性质得到AD//BC,AD=BC=12,∠A=∠B=∠C=∠D=90°.推出四边形ABEF和四边形DCEF是矩形.得到AF=BE,DF=CE,EF=AB=5.求得FM= 3,设⊙O的半径为r,则OM=OE=r,OF=5−r.根据勾股定理即可得到结论;(2)如图②,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,得到四边形QOPB′是矩形,根据矩形的性质得到OQ=PB′,根据余角的性质得到,根据三角函数的定义得到;如图③,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,同理,根据矩形的性质得到,由(1)得OQ=OE=3.4,OP=5−3.4=1.6,根据勾股定理得到PE=3,根据三角函数的定义即可得到.本题考查了切线的判定和性质,旋转的性质,矩形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省南京市实验学校中考模拟数学试题一
1.如图,数轴上的A 、B 、C 、D ( )
A .点A
B .点B
C .点C
D .点D 2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( ) A .61.310⨯ B .413010⨯ C .51310⨯ D .51.310⨯ 3.如图是由5个相同的小正方体组成的立体图形,它的俯视图是( )
A .
B .
C .
D . 4.如图所示,将含有30°角的三角板(∠A=30°
)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )
A .28°
B .22°
C .32°
D .38° 5.某校九年级模拟考试中,2班的五名学生的数学成绩如下:85,95,110,100,110.下列说法不正确的是( )
A .众数是110
B .中位数是110
C .平均数是100
D .中位数是100
6.抛物线y =(x ﹣1)2+3关于x 轴对称的抛物线的解析式是( ) A .y =﹣(x ﹣1)2+3 B .y =(x +1)2+3
C .y =(x ﹣1)2﹣3
D .y =﹣(x ﹣1)2﹣3 7.分解因式:x 4﹣16=______.
821()
3-=______.
9.实数2277-_____________________;
10.已知x=2+是关于x 的方程240x x m -+=的一个根,则m =____________. 11.如图,在△ABC 中,AC=10,BC=6,AB 的垂直平分线交AB 于点D ,交AC 于点E ,则△BCE 的周长是_____.
12.某商店今年6月初销售纯净水的数量如下表所示:
观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.
13.如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于12
AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于_____.
14.关于x 的一元二次方程kx 2+3x ﹣1=0有实数根,则k 的取值范围是_____. 15.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE=DC=1,AE=2EM ,则BM 的长为__.。