2011届高考数学基础知识总结复习教案5

合集下载

2011届高三数学一轮复习教案---数列

2011届高三数学一轮复习教案---数列

数列1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和的公式,并能解决简单的实际问题.项和公式,并能解决简单的实际问题.数列基础知识定义项,通项数列表示法数列分类等差数列等比数列定义通项公式前n 项和公式性质特殊数列其他特殊数列求和数列纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列与函数、三角、解析几何、组合数的综合应用问题是命题热点.从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的“知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用.第1课时 数列的概念1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项.2.数列的通项公式一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{a n }中,前n 项和S n 与通项a n 的关系为:=n a ⎪⎩⎪⎨⎧≥==21n n a n4.求数列的通项公式的其它方法⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法.⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式.⑴ -312⨯,534⨯,-758⨯,9716⨯…;⑵ 1,2,6,13,23,36,…;⑶ 1,1,2,2,3,3,解: ⑴ a n =(-1)n)12)(12(12+--n n n ⑵ a n =)673(212+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得)673(21)43)(1(211)]53(10741[12+-=--+=-++++++=n n n n n a n ⑶ 将1,1,2,2,3,3,…变形为,213,202,211+++,,206,215,204 +++∴4)1(1222)1(111++-++=-++=n n n n n a 变式训练1.某数列{a n }的前四项为0,2,0,2,则以下各式:① a n =22[1+(-1)n ] ② a n =n )(11-+③ a n =⎩⎨⎧)(0)(2为奇数为偶数n n 其中可作为{a n }的通项公式的是 ( )A .① B .①② C .②③ D .①②③解:D例2. 已知数列{a n }的前n 项和S n ,求通项.⑴ S n =3n -2⑵ S n =n 2+3n +1解 ⑴ a n =S n -S n -1 (n≥2) a 1=S 1解得:a n =⎩⎨⎧=≥⋅-)1(1)2(321n n n ⑵ a n =⎩⎨⎧≥+=)2(22)1(5n n n 变式训练2:已知数列{a n }的前n 项的和S n 满足关系式lg(S n -1)=n ,(n ∈N *),则数列{a n }的通项公式为 .解:,110101)1lg(+=⇒=-⇒=-n n n n n S S n S 当n =1时,a 1=S 1=11;当n≥2时,a n =S n -S n -1=10n -10n -1=9·10 n -1.故a n =⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n 例3. 根据下面数列{a n }的首项和递推关系,探求其通项公式.⑴ a 1=1,a n =2a n -1+1 (n≥2)⑵ a 1=1,a n =113--+n n a (n≥2)⑶ a 1=1,a n =11--n a nn (n≥2)解:⑴ a n =2a n -1+1⇒(a n +1)=2(a n -1+1)(n≥2),a 1+1=2.故:a 1+1=2n ,∴a n =2n -1.⑵a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=3n -1+3n -2+…+33+3+1=)13(21-n .(3)∵n n a a n n 11-=-∴a n =⋅--⋅-=⋅⋅⋅⋅⋅-----12111232211n n n n a a a a a a a a a n n n n n n nn n 112123=⋅⋅⋅-- 变式训练3.已知数列{a n }中,a 1=1,a n +1=22+n na a (n ∈N *),求该数列的通项公式.解:方法一:由a n +1=22+n n a a得21111=-+n n a a ,∴{n a 1}是以111=a 为首项,21为公差的等差数列.∴na 1=1+(n -1)·21,即a n =12+n 方法二:求出前5项,归纳猜想出a n =12+n ,然后用数学归纳证明.例4. 已知函数)(x f =2x -2-x ,数列{a n }满足)(log 2n a f =-2n ,求数列{a n }通项公式.解:na f n a n a n 222)(log 2log 2log 2-=-=-n a a nn 21-=-得nn a n -+=12变式训练4.知数列{a n }的首项a 1=5.前n 项和为S n 且S n +1=2S n +n +5(n ∈N *).(1) 证明数列{a n +1}是等比数列;(2) 令f (x)=a 1x +a 2x 2+…+a n x n ,求函数f (x)在点x =1处导数f 1 (1).解:(1) 由已知S n +1=2S n +n +5,∴ n≥2时,S n =2S n -1+n +4,两式相减,得:S n +1-S n =2(S n -S n -1)+1,即a n +1=2a n +1从而a n +1+1=2(a n +1)当n =1时,S 2=2S 1+1+5,∴ a 1+a 2=2a 1+6,又a 1=5,∴ a 2=11∴111+++n n a a =2,即{a n +1}是以a 1+1=6为首项,2为公比的等比数列.(2) 由(1)知a n =3×2n -1 ∵ )(x f =a 1x +a 2x 2+…+a n x n∴ )('x f =a 1+2a 2x +…+na n x n -1从而)1('f =a 1+2a 2+…+na n =(3×2-1)+2(3×22-1)+…+n(3×2n -1)=3(2+2×22+…+n×2n )-(1+2+…+n)=3[n×2n +1-(2+…+2n )]-2)1(+n n =3(n -1)·2n +1-2)1(+n n +61.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.2.由S n 求a n 时,用公式a n =S n -S n -1要注意n≥2这个条件,a 1应由a 1=S 1来确定,最后看二者能否统一.3.由递推公式求通项公式的常见形式有:a n +1-a n =f(n),nn a a 1+=f(n),a n +1=pa n +q ,分别用累加法、累乘法、迭代法(或换元法).第2课时 等差数列1.等差数列的定义: - =d (d 为常数).2.等差数列的通项公式:⑴ a n =a 1+ ×d ⑵ a n =a m + ×d3.等差数列的前n 项和公式:S n = = .4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = .5.数列{a n }是等差数列的两个充要条件是:⑴ 数列{a n }的通项公式可写成a n =pn +q(p, q ∈R)⑵ 数列{a n }的前n 项和公式可写成S n =an 2+bn (a, b ∈R)6.等差数列{a n }的两个重要性质:⑴ m, n, p, q ∈N *,若m +n =p +q ,则 .⑵ 数列{a n }的前n 项和为S n ,S 2n -S n ,S 3n -S 2n 成 数列.例1. 在等差数列{a n }中,(1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8.解:(1)方法一:⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a ∴a 60=a 1+59d =130. 方法二:3815451545=--=--=a a m n a a d m n ,由a n =a m +(n -m)d ⇒a 60=a 45+(60-45)d =90+15×38=130. (2)不妨设S n =An 2+Bn ,∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A ∴S n =2n 2-17n∴S 28=2×282-17×28=1092 (3)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5而d =31616=--aa ∴a 8=a 6+2 d =16S 8=442)(881=+a a变式训练1.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 解:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10=49)2(72)(75104-=+=+d a a a 例2. 已知数列{a n }满足a 1=2a ,a n =2a -12-n a a (n≥2).其中a 是不为0的常数,令b n =aa n -1.⑴ 求证:数列{b n }是等差数列. ⑵ 求数列{a n }的通项公式. 解:∵ ⑴ a n =2a -12-n a a (n≥2) ∴ b n =)(111112a a a a a a a aa n n n n -=-=---- (n≥2)∴ b n -b n -1=aa a a a a a n n n 11)(111=------ (n≥2)∴ 数列{b n }是公差为a1的等差数列. ⑵ ∵ b 1=aa -11=a 1 故由⑴得:b n =a 1+(n -1)×a 1=a n 即:aa n -1=a n 得:a n =a(1+n 1)变式训练2.已知公比为3的等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=,且11=a ,(1)判断{}n a 是何种数列,并给出证明; (2)若11+=n n n a a C ,求数列{}n C 的前n 项和解:1)1111333,13n n n na a a n n n a nb a a b ++-++===∴-=,即 {}n a 为等差数列。

2011年高考数学第二轮专题复习 函数教学案

2011年高考数学第二轮专题复习 函数教学案

2011年高考第二轮专题复习(教学案):函数考纲指要:函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。

考点扫描:1.函数概念,构成函数的三要素:定义域、对应关系和值域。

2. 函数性质:(1)奇偶性;(2单调性;(3)最值;(4)周期性。

3.基本初等函数:正比例函数、反比例函数、一元一次函数、一元二次函数、指数函数、对数函数、幂函数等。

4.函数图象:图象变换规则,如:平移变换、对称变换、翻折变换、伸缩变换等;结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

5.函数应用:以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉及经济、环保、能源、健康等社会现象。

考题先知:例1. 定义域为R 的函数⎩⎨⎧=≠-=)2(0)2(||2|lg |)(x x x x f ,若0<b ,则关于x 的方程0)()(2=+x bf x f ,的不同实根共有( )个。

A. 4 B.5 C.7 D.8解析: 方程0)()(2=+x bf x f 可化为0)(=x f 或b x f -=)(。

而)(x f y =的图象大致如图1所示,由图可知,直线0=y 与)(x f y =的图象有3个交点,直线)0(<-=b b y 与)(x f y =的图象有4个交点,即方程0)(=x f 有3个实根,方程b x f -=)(有4个实根,从而原方程共有7个实根,故答案选C 。

[来源:]例2.函数}3,2,1{}3,2,1{:→f 满足)())((x f x f f =,则这样的函数个数共有( )yx1 2 3 O(A ) 1个 (B )4个 (C )8个 (D) 10个分析:这是一个从集合A 到集合A 的函数,由于集合A 中的元素仅有三个,情况比较简单,通过列举便可解决此题。

2011届高三数学复习计划

2011届高三数学复习计划

湘阴六中2011届高三数学第一轮复习计划高三理科数学备课组(钟岳林老师)一. 背景分析新学期的到来也是新一届高三的开始,也是新一轮复习的启始。

这一届高三是我省实行《新课程标准》命题的第二年,也是我们师生适应新高考模式关键的一年。

高考怎么考我们已清楚,我们的任务应是:指导学生在有限的时间内有效的学习、复习,为高考、更为他们以后的发展服务近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

2011年是湖南省自主命题的第八年,数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。

在前七年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:1 试题题型平稳突出对主干知识的考查重视对新增内容的考查2 充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性3 重视对数学思想方法的考查4 深化能力立意,考查考生的学习潜能5 重视基础,以教材为本6 重视应用题设计,考查考生数学应用意识二. 学情分析本届高三理科班的学生普遍基础差,其中只有几个同学数学成绩稍微好一点(如邹勇、黄应得、黎坤、黄雄、钟耿等),他们大多不爱好学习,没有良好的学习习惯,对数学的认知能力太差,这给我们的教学带来了一定的难度,但是面对现实我们不得不在特殊的环境下采取特殊的方法,尽一切可能提高他们的成绩,为明年高考取得伟大的胜利而努力奋斗。

三. 教学指导原则1.高度重视基础知识,基本技能和基本方法的复习。

2011年高考数学冲刺复习资料(共分五大专题)

2011年高考数学冲刺复习资料(共分五大专题)

2011年高考数学冲刺复习资料(共分五大专题)专题一:三角与向量的交汇题型分析及解题策略【命题趋向】三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试题位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点.根据2011年考纲预计在高考中解答题仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建立三角函数关系式,再利用三角函数知识求解;(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一起. 【考试要求】1.理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式. 3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A ,ω,φ的物理意义.5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件. 7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 【考点透视】向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(ωx+ϕ)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题. 6.考查利用正弦定理、余弦定理解三角形问题. 【典例分析】题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为( ) A .π12,-3B .π3,3C .π3,-3D .-π12,3【分析】 根据向量的坐标确定平行公式为⎩⎪⎨⎪⎧x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎪⎨⎪⎧ x '=x -π6,即⎩⎪⎨⎪⎧ x =x '+π6,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34,又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B2=2sin 2B +cos (π-π3-B)-3B2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B=32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值; (Ⅱ)求cos(α2+π3)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0. 由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.3π14(Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35.(Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π,由cos(α-β)=-35,得sin(α-β)=45,又sin β=-513,∴cos β=1213,∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365.点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx , 由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1.(Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1,π点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A2),a=23,且→m·→n =12.(Ⅰ)若△ABC 的面积S =3,求b +c 的值. (Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12,又A ∈(0,π),∴A =2π3.又由S △ABC =12bcsinA =3,所以bc =4,由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4.(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3,∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4].[点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.【专题训练】 一、选择题1.已知→a =(cos40︒,sin40︒),→b =(cos20︒,sin20︒),则→a ·→b = ( )A .1B .32C .12D .222.将函数y =2sin2x -π2的图象按向量(π2,π2)平移后得到图象对应的解析式是( )A .2cos2xB .-2cos2xC .2sin2xD .-2sin2x3.已知△ABC 中,=,=,若·<0,则△ABC 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .任意三角形 4.设→a =(32,sin α),→b =(cos α,13),且→a ∥→b ,则锐角α为( )A .30︒B .45︒C .60︒D .75︒5.已知→a =(sin θ,1+cosθ),→b =(1,1-cosθ),其中θ∈(π,3π2),则一定有 ( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b |6.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ=( )A .52B .32C .-52D .-327.由向量把函数y =sin(x +5π6)的图象按向量→a =(m ,0)(m >0)平移所得的图象关于y 轴对称,则m 的最小值为( ) A .π6B .π3C .2π3D .5π68.设0≤θ≤2π时,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量长度的最大值是( )A . 2B . 3C .3 2D .2 3 9.若向量→a =(cos α,sin α),→b =(cos β,sin β),则→a 与→b 一定满足( )A .→a 与→b 的夹角等于α-βB .→a ⊥→bC .→a ∥→bD .(→a +→b )⊥(→a -→b )10.已知向量→a =(cos25︒,sin25︒),→b =(sin20︒,cos20︒),若t 是实数,且→u =→a +t →b ,则|→u |的最小值为( ) A . 2B .1C .22D .1211.O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:→OP=→OA +λ(→AB +→AC),λ∈(0,+∞),则直线AP 一定通过△ABC 的( ) A .外心 B .内心C .重心D .垂心12.对于非零向量→a 我们可以用它与直角坐标轴的夹角α,β(0≤α≤π,0≤β≤π)来表示它的方向,称α,β为非零向量→a 的方向角,称cos α,cos β为向量→a 的方向余弦,则cos 2α+cos 2β=( ) A .1 B .32C .12D .0二、填空题13.已知向量→m =(sin θ,2cos θ),→n =(3,-12).若→m ∥→n ,则sin2θ的值为____________.14.已知在△OAB(O 为原点)中,→OA =(2cos α,2sin α),→OB =(5cos β,5sin β),若→OA·→OB =-5,则S △AOB的值为_____________. 15.将函数f (x )=tan(2x +π3)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =____________.16.已知向量=(1,1)向量与向量夹角为3π4,且·=-1.则向量=__________.三、解答题17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若→AB·→AC =→BA·→BC =k(k ∈R). (Ⅰ)判断△ABC 的形状; (Ⅱ)若c =2,求k 的值.18.已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数f(x)=cos2x +4cosAsinx(x∈R)的值域.19.在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量→m =(1,2sinA),→n =(sinA ,1+cosA),满足→m ∥→n ,b +c=3a.(Ⅰ)求A 的大小;(Ⅱ)求sin(B +π6)的值.20.已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (3cosα,3sinα).(Ⅰ)若α∈(-π,0),且|→AC|=|→BC|,求角α的大小; (Ⅱ)若→AC ⊥→BC ,求2sin 2α+sin2α1+tanα的值.21.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m ⊥→n .(Ⅰ)求角A 的大小;(Ⅱ)当y =2sin 2B +sin(2B +π6)取最大值时,求角B 的大小.22.已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx),(Ⅰ)求证:向量→a 与向量→b 不可能平行;(Ⅱ)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.【专题训练】参考答案 一、选择题1.B 解析:由数量积的坐标表示知→a ·→b =cos40︒sin20︒+sin40︒cos20︒=sin60︒=32. 2.D 【解析】y =2sin2x -π2→y =2sin2(x +π2)-π2+π2,即y =-2sin2x.3.A 【解析】因为cos ∠BAC ==<0,∴∠BAC 为钝角.4.B 【解析】由平行的充要条件得32×13-sin αcos α=0,sin2α=1,2α=90︒,α=45︒.5.B 【解析】→a ·→b =sin θ+|sin θ|,∵θ∈(π,3π2),∴|sin θ|=-sin θ,∴→a ·→b =0,∴→a ⊥→b . 6.A 【解析】c →=a →+λb →=(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ=52. 7.B 【解析】考虑把函数y =sin(x +5π6)的图象变换为y =cosx 的图象,而y =sin(x +5π6)=cos(x +π3),即把y =cos(x +π3)的图象变换为y =cosx 的图象,只须向右平行π3个单位,所以m =π3,故选B.8.C 【解析】||=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cosθ≤3 2.9.D 【解析】→a +→b =(cos α+cos β,sin α+sin β),→a -→b =(cos α+cos β,sin α-sin β),∴(→a +→b )·(→a -→b )=cos 2α-cos 2β+sin 2α-sin 2β=0,∴(→a +→b )⊥(→a -→b ).10.C 【解析】|→u |2=|→a |2+t 2|→b |2+2t →a ·→b =1+t 2+2t(sin20︒cos25︒+cos20︒sin25︒)=t 2+2t +1=(t +22)2+12,|→u |2min =12,∴|→u |min =22.11.C 【解析】设BC 的中点为D ,则→AB+→AC =2→AD ,又由→OP =→OA +λ(→AB +→AC),→AP =2λ→AD ,所以→AP 与→AD 共线,即有直线AP 与直线AD 重合,即直线AP 一定通过△ABC 的重心.12.A 【解析】设→a =(x,y),x 轴、y 轴、z 轴方向的单位向量分别为→i =(1,0),→j =(0,1),由向量知识得cos α=→i ·→a |→i |·|→a |=x x 2+y 2,cos β=→j ·→a |→j |·|→a |=yx 2+y 2,则cos 2α+cos 2β=1.二、填空题13.-8349 【解析】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=-8349. 14.532 【解析】→OA·→OB =-5⇒10cos αco βs +10sin αsin β=-5⇒10cos(α-β)=-5⇒cos(α-β)=-12,∴sin ∠AOB =32,又|→OA|=2,|→OB|=5,∴S △AOB=12×2×5×32=532. 15.(π6,-1) 【解析】要经过平移得到奇函数g(x),应将函数f(x)=tan(2x +π3)+1的图象向下平移1个单位,再向右平移-kπ+π(k ∈Z)个单位.即应按照向量→a =(-kπ+π,-1) (k ∈Z)进行平移.要使|a|最小,16.(-1,0)或(0,-1) 【解析】设=(x ,y),由·=-1,有x +y =-1 ①,由与夹角为3π4,有·=||·||cos 3π4,∴||=1,则x 2+y 2=1 ②,由①②解得⎩⎨⎧ x=﹣1y=0或⎩⎨⎧ x =0y =-1∴即=(-1,0)或=(0,-1) .三、解答题17.【解】(Ⅰ)∵→AB·→AC =bccosA ,→BA·→BC =cacosB , 又→AB·→AC =→BA·→BC ,∴bccosA =cacosB , ∴由正弦定理,得sinBcosA =sinAcosB ,即sinAcosB -sinBcosA =0,∴sin(A -B)=0 ∵-π<A -B <π,∴A -B =0,即A =B ,∴△ABC 为等腰三角形.(Ⅱ)由(Ⅰ)知b a =,∴→AB·→AC =bccosA =bc·b 2+c 2-a 22bc =c 22, ∵c =2,∴k =1.18.【解】(Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=12, 由A 为锐角得A -π6=π6,A =π3.(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+32,因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f (x )有最大值32.当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32].19.【解】(Ⅰ)由→m ∥→n ,得2sin 2A -1-cosA =0,即2cos 2A +cosA -1=0,∴cosA =12或cosA =-1.∵A 是△ABC 内角,cosA =-1舍去,∴A =π3.(Ⅱ)∵b +c =3a ,由正弦定理,sinB +sinC =3sinA =32,∵B +C =2π3,sinB +sin(2π3-B)=32,∴32cosB +32sinB =32,即sin(B +π6)=32. 20.【解】(Ⅰ)由已知得:(3cosα-4)2+9sin 2α=9cos 2α+(3sinα-4) 2,则sinα=co sα,因为α∈(-π,0),∴α=-3π4.(Ⅱ)由(3cosα-4)·3cosα+3sinα·(3sinα-4)=0,得sinα+cosα=34,平方,得sin2α=-716.而2sin 2α+sin2α1+tanα=2sin 2αcosα+2sinαcos 2αsinα+cosα=2sinαcosα=sin2α=-716.21.【解】(Ⅰ)由→m ⊥→n ,得→m·→n =0,从而(2b -c)cosA -acosC =0,由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0,∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π3.(Ⅱ)y =2sin 2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π6=1+32sin2B -12 cos2B =1+sin(2B -π6).由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π6,∴当2B -π6=π2,即B =π3时,y 取最大值2.22.【解】(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,∴2cos 2x +sinxcosx +sin 2x =0,2·1+cos2x 2+12sin2x +1-cos2x2=0,即sin2x +cos2x =-3,∴2(sin2x +π4)=-3,与|2(sin2x +π4)|≤2矛盾,故向量→a 与向量→b 不可能平行.(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx =cos 2x -sin 2x +2sinxcosx =cos2x +sin2x =2(22cos2x +22sin2x)=2(sin2x +π4), ∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π8时,f(x)有最大值2;当2x +π4=-π4,即x =-π4时,f(x)有最小值-1.。

2011年高考数学第二轮专题复习 平面向量教学案

2011年高考数学第二轮专题复习 平面向量教学案

2011年高考第二轮专题复习(教学案):平面向量考纲指要:重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。

考点扫描:1.向量的概念:①向量;②零向量;③单位向量;④平行向量(共线向量);⑤相等向量。

2.向量的运算:(1)向量加法;(2)向量的减法;(3)实数与向量的积。

3.基本定理:(1)两个向量共线定理;(2)平面向量的基本定理。

4.平面向量的坐标表示。

5.向量的数量积:(1)两个非零向量的夹角;(2)数量积的概念;(3)数量积的几何意义;(4)向量数量积的性质;(5)两个向量的数量积的坐标运算;(6)垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 。

6.向量的应用:(1)向量在几何中的应用;(2)向量在物理中的应用。

考题先知:例1. 已知二次函数f (x )=x 2-2x +6,设向量a =(sin x ,2),b =(2sin x ,21),[来源:] c =(cos2x ,1),d =(1,2).当x ∈[0,π]时,不等式f (a ·b )>f (c ·d )的解集为___________.[来源:学科网]解:a ·b =2sin 2x +1≥1, c ·d =cos 2x +1≥1 ,f (x )图象关于x =1对称,∴f (x )在(1,+∞)内单调递增.由f (a ·b )>f (c ·d )⇒a ·b >c ·d ,即2sin 2x +1>2cos 2x +1,又∵x ∈[0,π] ,∴x ∈(434ππ,).故不等式的解集为(434ππ,).例2.求函数y =.分析:由于向量沟通了代数与几何的内在联系,因此本题利用向量的有关知识求函数的值域。

[来源:]解:因为y =,所以构造向量21(,)22p x =+,21(,22q x =-,则y p q =-,而(1,0)p q -=, 所以1y p q p q =-<-=,得11y -<<,另一方面:≥得0y ≥, 所以原函数的值域是[0,1).点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如等。

2011年高考数学知识点总结

2011年高考数学知识点总结

高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x a x =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x a x xaM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

11年高考数学总复习教学(推理、)

11年高考数学总复习教学(推理、)

华侨城中学2011年高考数学总复习教学案复习内容:推理与证明、复数【知识与方法】1、 已知p 是q 的充分不必要条件,则q ⌝是p ⌝的 ( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件2、设a 、b 、c 都是正数,则1a b+,1b c+,1c a+三个数 ( )A 、都大于2B 、至少有一个大于2C 、至少有一个不大于2D 、至少有一个不小于2 3、观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= ( ) (A )()f x (B)()f x - (C) ()g x (D)()g x -4、函数()y f x =的定义域为D ,若对于任意的1212,()x x D x x ∈≠,有1212()()()22x x f x f x f ++<,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为 ( )(A)2log y x = (B ) y =(C )2y x = (D )3y x =5、观察下列等式:332123,+=33321236,++=33332123410+++=,……,根据上述规律,第五个等式为 ____________. 6、设112,,(2)(3)23nn n n N x x ≥∈+-+2012nn a a x a x a x =+++⋅⋅⋅+,将(0)k a k n ≤≤的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅其中n T =__________________ .7、对于任意实数a,b 定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c ,有a*(b+c)=(a*b)+(a*c); ②对于任意实数a,b,c ,有a*(b*c)=(a*b)*c;③对于任意实数a,有a*0=a,则以上结论正确的是 .(写出你认为正确的结论的所有序号) 8、对于等差数列{}n a 有如下命题:“若{}n a 是等差数列,01=a ,t s 、是互不相等的正整数,则有011=---s t a t a s )()(”。

2011届高考数学总复习的对策与思考

2011届高考数学总复习的对策与思考

验进 行 归 纳和 总 结 ,看 看 得 到哪 些感 悟 与 启 发 。 同时教 是 否 定一 切 ,它是 指 在科 学 理 论 的指 导 下 ,面对 新 的 问 师 还可 以进一 步 引 导学 生 探索 该 问题 更 深 刻 的发 生 、发 题 敢 于提 出新 的观 点 与新 的方法 ,它 是对 一 切 落后 的 、 展 变化 ,如适 当改变 问题 的 背景 ,将 条 件 与 结论 倒 置 ,
学计 划落 实 的情 况及 下 一 周教 学 工作 的要 点 ,做到 “ 五 课 ,精 选 习题 外 ,关 键 是要 提 高课 堂 效率 ,在 课堂 上做 统 一 ” “五 细 ” “ 加 强 ” , 即 : 统 一 思 想 ,统 一 认 到三 到位 。 五
识 ,统一 进 度 ,统 一方 案 ,统 一 行动 ;考 纲 、 教材 要钻 研 得 细 ,复 习计 划 要制 订得 细 ,复 习 内容 要 研 究得 细 ,
2 t 年2 0 1 月上 第 4 ( 期 总第 2 6 ) 2期


6一
/ 教学研究 /
仿 阶段 必 须 依赖 学 生 自己 的感 悟 、摸 索 、探 究 、反 思 和 将 起 到事 半功 倍 的作用 。一 些做 法 :1 )不在 乎 多讲一 套 ) 总结 。 这 样 就 要 求 教 师 在 精 选 习题 时 一 定 要 选 针 对 性 题 或 少讲 一套 题 ,应根 据实 际情 况 ,做到 快慢 有致 ;2 强 、思维 力 度适 当、有 一 定挑 战性 和 一 定钻 研价 值 的 问 在 学 生 中 组建 一 个数 学 问题讲 解 组 ,教 师可 以指定 部 分 题 。教 师 在 导时 ,既要 按 常 规方 式 讲清 怎样 审题 、常 规 问题 由讲解 组 来讲 解 ;3 )遇 到较好 的题 材 ,教师 要 引导 思路 、方 法 和技 巧 、 关键 步 骤及 常 见 的主 要 错误 等 ,同 学 生 多 反 思 ,努 力扩 大 解题 成 果 ,总 结 解题 经 验 ,逐渐

2011年高考数学第二轮专题复习 导数教学案

2011年高考数学第二轮专题复习 导数教学案

2011年高考第二轮专题复习(教学案):导数考纲指要:导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。

考点扫描:导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;[来源:]② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

考题先知:例1.设函数B A Cx Bx Ax x f ++++=6)(23,其中实数A 、B 、C 满足: ①9841218+≤+≤+-B C A B ; ②A B A 63≤-<。

(1)求证:49)1(,41)1(''≤-≥f f ; (2)设π≤≤x 0,求证:0)sin 2(≥x f 。

证明:(1)由9841218+≤+≤+-B C A B 得:,4123≥++C B A 4923≤+-C B A ,又C Bx Ax x f ++=23)(2',所以4123)1('≥++=C B A f ,4923)1('≤+-=-C B A f [来源:学.科.网Z.X.X.K](2)当π≤≤x 0时,0)sin 2(≥x f 等价于当20≤≤u 时,0)(≥u f ,所以只须证明当20≤≤x 时,0)(≥x f ,由②知:,0>A 且(]2,13∈-AB,所以C Bx Ax x f ++=23)(2'为开口向上的抛物线,其对称轴方程(]2,13∈-=ABx ,又由A B A 63≤-<得: 0)6)(3(≤++B A B A ,即AB A B 91822+≥-,所以,当20≤≤x 时,有B AC AABA AC AB AC A B f x f 363918312412)3()(22''++=++≥-=-≥[来源:学+科+网]B BC B A B A C B A +-+++≥++++=)21(23323=)]1()1([4121)1('''--⨯+f f f=049814189)1(81)1(89''=⨯-⨯≥--f f ,所以)(x f 为[0,2]上的增函数。

2011届高考数学数列的综合运用第二轮专题复习教案

2011届高考数学数列的综合运用第二轮专题复习教案

2011届高考数学数列的综合运用第二轮专题复习教案
第50课时数列的综合运用
一、填空题
1、已知实数满足,则的取值范围是
2、已知(,)是直线与圆的交点,则的取值范围为.
3、对于在区间上有意义的两个函数和,如果对任意,均有,那么我们称和在上是接近的.若与在闭区间上是接近的,则的取值范围是__
4、一只半径为R的球放在桌面上,桌面上一点A的正上方相距(+1)R处有一点光源O,OA与球相切,则球在桌面上的投影――椭圆的离心率为
5、方程(为常数,)的所有根的和为___
6、已知A、B、C是平面上不共线的三点,O是的重心,动点P满足,则点P一定为的()
A.AB边中线的中点B.AB边中线的三等分点(非重心)
C.重心D.AB边的中点
7、设有限集合,则叫做集合A的和,记作若集合,集合P的含有3个元素的全体子集分别为,则=..
二、解答题
8、数列满足:.(1)分别求的值;
(2)设,证明数列是等比数列,并求其通项公式;
(3)在(2)条件下,求数列前100项中所有偶数项的S。

9、设数列的前项和为,已知(为常数,且),,设.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若不等式对任意及恒成立,求实数的取值范围.
10、已知为二次函数,不等式的解集为,且对任意,恒有. 数列满足,.
(1)求函数的解析式;
(2)设,求数列的通项公式;
(3)若(2)中数列的前项和为,求数列的前项和.。

2011年高考数学第二轮专题复习 解析几何教学案

2011年高考数学第二轮专题复习 解析几何教学案

2011年高考第二轮专题复习(教学案):解析几何第1课时 直线与圆考纲指要:直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,以及直线间的平行和垂直的条件、与距离有关的问题。

圆的方程,从轨迹角度讲,尤其是参数问题,在对参数的讨论中确定圆的方程。

能借助数形结合的思想处理直线与圆的位置关系,特别是弦长问题。

考点扫描:1.直线方程:(1)倾斜角;(2) 斜率;(3)直线方程的五种形式。

2.圆的方程:(1)圆的标准方程;(2)圆的一般方程。

3.两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

4. 根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

考题先知:例1.某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α (90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ) 问学生距离镜框下缘多远看画的效果最佳?分析 欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值解 建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O 为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值由三角函数的定义知 A 、B 两点坐标分别为(a cos α,a sin α)、 (b cos α,b sin α),于是直线AC 、BC 的斜率分别为k AC =tan XCA =x a a -ααcos sin ,.cos sin tan xb b XCB k BC -==αα于是tan ACB =AC BC AC BC k k k k ⋅+-1ααααcos )(sin )(cos )(sin )(2⋅+-+⋅-=++-⋅-=b a x xabb a x x b a ab x b a 由于∠ACB 为锐角,且x >0,则tan ACB ≤ααcos )(2sin )(b a ab b a +-⋅-,当且仅当xab=x ,即x =ab 时,等号成立, 此时∠ACB 取最大值,对应的点为C (ab ,0),因此,学生距离镜框下缘ab cm 处时,视角最大,即看画效果最佳点评:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值 如果坐标系选择不当,或选择求sin ACB 的最大值 都将使问题变得复杂起来例2.设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线分析: 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a 由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0 所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2[来源:学科网] 所以244a pa a p =⇒= 故x =my +4p ,用m =-y x代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p ,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k 则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点点评:本题主要考查“参数法”求曲线的轨迹方程 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论复习智略:例3抛物线有光学性质 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y 2=2px (p >0) 一光源在点M (441,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l 2x -4y -17=0上的点N ,再折射后又射回点M (如下图所示)(1)设P 、Q 两点坐标分别为(x 1,y 1)、(x 2,y 2),证明 y 1·y 2=-p 2; (2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由分析:本题考查学生对韦达定理、点关于直线对称、直线关于直线对称、直线的点斜式方程、两点式方程等知识的掌握程度 [来源:学,科,网Z,X,X,K]解: (1)证明 由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p,0),[来源:学.科.网] 设直线PQ 的方程为y =k (x -2p) ①由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2当直线PQ 的斜率角为90°时,将x =2p代入抛物线方程,得y =±p ,同样得到y 1·y 2=-p 2(2)解 因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,由题设P 点的纵坐标y 1=4,且由(1)知 y 1·y 2=-p 2,则4·(-1)=-p 2, 得p =2,故所求抛物线方程为y 2=4x(3)解 将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4) 将y =-1代入直线l 的方程为2x -4y -17=0,得x =213,故N 点坐标为(213,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0, 设M 点关于直线NP 的对称点M 1(x 1,y 1)⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则 又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称 。

2011年高考数学第二轮专题复习 复数教学案

2011年高考数学第二轮专题复习 复数教学案

2011年高考第二轮专题复习(教学案):复数考纲指要:了解引进复数的必要性,理解复数的有关概念;掌握复数的代数表示及向量表示.掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.考点扫描:1.数的概念的发展;复数的有关概念.2.复数的向量表示.3.复数的加法与减法,乘法与除法.考题先知:例1 。

设1990=n ,求)333331(2119901990198899463422n n n n n nC C C C C -++-+- 的值。

分析:将所求式子变形为1990199019881988664422333331(21n n n n n n C C C C C A -++-+-=,显然它是 nni )31(21+-的展开式的部分之和,即复数的实部。

不妨取展开式的其余的项的和为A 的对偶式i C C C C C B n n n n n n )33333(21198919891987198755331-++-+-= 。

则i i B A n n n 2321)31(216633+-====+-=+⨯ωωωω,所以21=A . 例2.复平面内点A 对应的复数是1,过点A 作虚轴的平行线l ,设l 上的点对应的复数为z ,求z1所对应的点的轨迹. 分析:本题考查复平面上点的轨迹方程.因为在复平面内点A 的坐标为(1,0),l 过点A 且平行于虚轴,所以直线l 上的点对应的复数z 的实部为1,可设为z =1+b i(b ∈R ),然后再求z1所对应的点的集合.解:如下图.因为点A 对应的复数为1,直线l 过点A 且平行于虚轴,所以可设直线l 上的点对应的复数为z =1+b i(b ∈R ).因此i b z +=111i 1111i 1222b b b b +-+=+-=.[来源:] 设z1=x +y i(x 、y ∈R ),于是 x +y i=22111bbb +-+i. 根据复数相等的条件,有⎪⎪⎩⎪⎪⎨⎧+-=+=.1,1122b b y b x消去b ,有x 2+y 2=2222)1()1(1b b b +-++=22222)1()1(1b b b +++=222211)1(1b b b +=++=x .所以x 2+y 2=x (x ≠0), 即(x -21)2+y 2=41(x ≠0). 所以z 1所对应的点的集合是以(21,0)为圆心,21为半径的圆,但不包括原点O (0,0). 评注:一般说来,求哪个动点的轨迹方程就设哪个动点的坐标为(x ,y ).所谓动点的轨迹方程就是动点坐标(x ,y )所满足的等量关系.常见求曲线方程的方法有:轨迹法、待定系数法、代入法、参数法等.若把参数方程中的参数消去,就可把参数方程转化成普通方程.无论用什么方法求得曲线的方程,都要注意检验以方程的解为坐标的点是否都在曲线上.对此,常从以下两个方面入手:一是看对方程的化简是否采用了非同解变形的手法;二是看是否符合题目的实际意义.其中,用参数法求得的曲线方程中的x 、y 的范围可由参数函数的值域来确定. [来源:]复习智略:例3.对任意复数),(R y x yi x z ∈+=,定义)sin (cos 3)(y i y z g x+=。

2011届高三数学一轮复习教案:第五章第2课 等差、等比数列

2011届高三数学一轮复习教案:第五章第2课 等差、等比数列

第2课 等差、等比数列【考点导读】1. 掌握等差、等比数列的通项公式、前n 项和公式,能运用公式解决一些简单的问题; 2. 理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系; 3. 注意函数与方程思想方法的运用。

【基础练习】1.在等差数列{a n }中,已知a 5=10,a 12=31,首项a 1= -2 ,公差d = 3 。

2.一个等比数列的第3项与第4项分别是12与18,则它的第1项是163,第2项是 8 。

3..某种细菌在培养过程中,每20分钟分裂一次(一个分裂为二个),经过3小时,这种细菌由1个可以繁殖成 512 个。

4.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=105。

5.公差不为0的等差数列{a n }中,a 2,a 3,a 6依次成等比数列,则公比等于 3 。

【范例导析】 例1.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有 13 项。

(2)设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 2 。

(3)设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = 。

解:(1)答案:13法1:设这个数列有n 项∵⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-='⋅+=-dn n n a S d nd a S S S d a S n n n 2)1(6332233113313∴⎪⎪⎩⎪⎪⎨⎧=-+=-+=+3902)1(146)2(3334)(3111d n n n a n d a d a ∴n =13法2:设这个数列有n 项∵1231234,146n n n a a a a a a --++=++=∴121321()()()3()34146180n n n n a a a a a a a a --+++++=+=+= ∴160n a a += 又1()3902n n a a += ∴n =13 (2)答案:2 因为前三项和为12,∴a 1+a 2+a 3=12,∴a 2=33S =4 又a 1·a 2·a 3=48, ∵a 2=4,∴a 1·a 3=12,a 1+a 3=8,把a 1,a 3作为方程的两根且a 1<a 3, ∴x 2-8x +12=0,x 1=6,x 2=2,∴a 1=2,a 3=6,∴选B. (3)答案为310。

2011届高三数学一轮复习基础知识归纳

2011届高三数学一轮复习基础知识归纳
个;
非空真子集有2–2个.
4.?是任何集合的子集,是任何非空集合的真子集.
第二部分 函数与导数
1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ; nnnn
a?ba2?b2
⑥利用均值不等式 ab?; ⑦利用数形结合或几何意义(斜率、距?22
2011届高三数学一轮复习:基础知识归纳
第一部分 集合
1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还.....
是因变量的取值?还是曲线上的点??
2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩....
图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决
(2)复合函数单调性的判定:
①首先将原函数y?f[g(x)]分解为基本函数:内函数u?g(x)与外函数y?f(u) ②分别研究内、外函数在各自定义域内的单调性 x
3.(1) 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.
(2)德摩根公式: CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
(3)
A?B?A?A?B?B?A?B?CUB?CUA?A?CUB??
?CUA?B?R
注意:讨论的时候不要遗忘了A??的情况.
(4)集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2–1
离、
绝对值的意义等);⑧利用函数有界性(a、sinx、cosx等);⑨平方法;⑩ 导数法
3.复合函数的有关问题:

2011高考数学基础知识汇总_

2011高考数学基础知识汇总_

<<返回目录
<<返回目录
要点13 空间向量与立体几何
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点14 导数及其应用
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点7 三角恒等变换
<<返回目录
<<返回目录
要点8
解三角形
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点9
数列
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点10
不等式
<<返回目录
<<返回目录
<<返回目录

2011年高考数学第二轮复习 数列教学案

2011年高考数学第二轮复习 数列教学案

2011年高考第二轮专题复习(教学案):数列考纲指要:数列综合及实际问题在高考中占有重要的地位,通常以数列为工具,综合运用函数、方程、不等式等知识,通过运用逆推思想、函数与方程、归纳与猜想、等价转化、分类讨论等各种数学思想方法,这些题目都考察考生灵活运用数学知识分析问题和解决问题的能力,考点扫描:1.等差数列定义、通项公式、前n 项和公式。

2.等比数列定义、通项公式、前n 项和公式。

3.数列求通项的常用方法如: ①作新数列法;②累差叠加法;③归纳、猜想法;而 对于递归数列,则常用①归纳、猜想、数学归纳法证明;②迭代法;③代换法。

包括代数代换,对数代数,三角代数。

4.数列求和常用方法如:①公式法;②裂项求和;③错项相消法;④并项求和。

考题先知: 例1. 已知()()211,01bx f x x a a ax +⎛⎫=≠-> ⎪⎝⎭+,()()161log 2,21f f =-= ①求函数()f x 的表达式;②定义数列))(1())2(1))(1(1(n f f f a n ---= ,求数列{}n a 的通项;③求证:对任意的*n N ∈有41)21()21()21(22221<-++-+-n a a a解:①由()()()()21621141log 21112021112b fa ab b fa +⎧=⎪=+⎧=⎧⎪⎪⇒⇒⎨⎨⎨-=-=⎩⎪⎪⎩=⎪-⎩,所以 ()()211f x x =+②()()2222111111112341111111111111223311221n a n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭+⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪⎪⎪⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+=+ ③不等式22221231111122224n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭等价于()2222111112341n ++++<+ 因为 ()()2222111111112341223341111111111122311n n n n n n ++++<++++⨯⨯⨯++=-+-++-=-<++例2.如图,已知一类椭圆:)3,2,1,10(,1:222 =<<=+n b b y x C n nn ,若椭圆C n上有一点P n 到右准线n l 的距离n d 是n n F P 与n n G P 的等差中项,其中F n 、G n 分别是椭圆的左、右焦点。

2011高考数学总复习 10.2 排列夯实基础 大纲人教版

2011高考数学总复习 10.2 排列夯实基础 大纲人教版

10.2 排列巩固·夯实基础一、自主梳理1.排列的定义:从n 个不同元素中,任取m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义:从n 个不同元素中取出m(m ≤n)个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.3.排列数公式:A m n =n(n-1)(n-2)…(n-m+1)=)!(!m n n . 说明:(1)n!=n(n-1)(n-2)…3·2·1,叫做n 的阶乘;(2)规定0!=1;(3)当m=n 时的排列叫做全排列,全排列数A n n =n!.二、点击双基1.(南京第一次质量检测)5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为( )A.18B.24C.36D.48解析:甲、乙两人和中间一人捆绑算一个元素,共三个元素排列,不要忘记甲、乙两人之间的排列,C 13A 22A 33=36,应选C.答案:C2.(宣城高三调研试卷)有6名男同学和4名女同学,自左至右站成一排,其中女同学不相邻而且最右端必须是女同学的排法有( )A.A 66A 44种B.C 14A 36A 66种C.C 14C 36A 66种D.A 66A 36种解析:先从4个女生中取一人站在最右端有C 14种方法,把六个男生进行全排列,将3个女生插入6个男生的六个空中,有A 66·A 36种,答案选B.答案:B3.(承德实验高中模拟)五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法数是( )A.24B.36C.48D.60解析:间接法:A 55-2A 22A 44+A 22A 33=36.答案:B4.(全国高考卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_________________个.解析:本题注意到不能被5整除实质上是末位数字不是0或5.用间接法,所有4位数有A 15·A 35=300个,末位为0时有A 35=60个,末位为5时有A 14·A 24=4×12=48个,∴有300-60-48=192个.答案:1925.(辽宁高考)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有____________个.(用数字作答)解析:A 33A 24A 22A 22A 22=576.答案:576诱思·实例点拨【例1】公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿除停靠6个站,那么这4位乘客不同的下车方式共有( )A.15种B.24种C.360种D.480种 剖析:把公共汽车沿途要经过的6个停靠站依次编号,记为1号,2号,…,6号,那么4位乘客的下车方式即为从这6个号码中选出4个号码与4位乘客对应.至此,该问题已经很明确,即从6个号码中选出4个,且按照一定的次序排成一列,共有几种方法.也就是从6个不同的元素中取出4个元素的排列数.解:将公共汽车沿途经过的6个停靠站依次编号,记为1,2,3,4,5,6,则4位乘客不同的下车方式总数即为从这6个号码中选出4个的排列数A 46=6×5×4×3=360.讲评:要掌握几种不同情况下的典型的排列问题,遇到其他问题要善于联系与转化.【例2】7个人排成一排,按下列要求有多少种排法?(1)其中甲不站排头,乙不站排尾;(2)其中甲、乙、丙3人必须相邻;(3)其中甲、乙、丙3人两两不相邻;(4)其中甲、乙中间有且只有1人;(5)其中甲、乙、丙按从左到右的顺序排列.剖析:对于第(1)小题,甲不站排头,那么甲站哪个位置呢?从正面考虑,进行分类;又甲不站排头,乙不站排尾,我们可先考虑它的反面:甲站排头,或乙站排尾,采用“间接法”,从两个不同的角度分析.解:(1)(直接法)如果甲排尾,其余6人有A 66种排法,如果甲站中间的5个位置的一个,而乙不站排尾,则有A 15A 15A 55种排法,故共有排法A 66+A 15A 15A 55=3 720(种).(间接法)7个人排成一排有A 77种,其中甲在排头有A 66种,乙在排尾有A 66种,甲排在头且乙排在尾共有A 55种,故共有排法A 77-A 66-A 66+A 55=3 720种.(2)(捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素作全排列有A 55种,然后甲、乙、丙内部再作全排列有A 33种,故有不同的排法A 55·A 33=720种.(3)(插入法)先排甲、乙、丙外的4人有A 44种,这四人之间及两端留出五个空位,然后把甲、乙、丙插入到五个空位中去有A 35种,故共有A 44A 35=1 440种排法.(4)甲、乙两人有A 22种排法,现从剩下的五人中选一个插入甲、乙中间,有A 15种,然后再将这三人看作一个元素,和其他四个元素作全排列,有A 55种,故所求有A 22A 15A 55=1 200种.(5)七个人的全排列为A 77种,其中若只看甲、乙、丙不同顺序的排法有A 33种,但只有一种顺序符合要求,故符合要求的不同排法有3377A A =840种. 讲评:对于有限制条件的排列问题,按元素的性质分类,按事件发生的连续过程分步,是处理问题的基本思想.链接·提示如何处理附有限制条件的排列问题?(1)对附有限制条件的排列,思考问题的原则是优先考虑受限制的元素或受限制的位置.(2)对下列附有限制条件的排列,要掌握基本的思考方法:元素在某一位置或元素不在某一位置;元素相邻——捆绑法,即把相邻元素看成一个元素;元素不相邻——插空法;比某一数大或比某一数小的问题主要考虑首位或前几位.(3)对附有限制条件的排列要掌握正向思考问题的方法——直接法;同时要掌握一些问题的逆向思考问题的方向——间接法.【例3】一条长椅上有七个坐位,四人坐,要求三个空位中,有两个空位相邻,另一个空位与这两个相邻空位不相邻,共有几种坐法?剖析:把两个相邻空位看成一个整体,另一个空位与这个整体不相邻,则是用四个人把两个元素隔开的典型问题.基于这种考虑,就可先让四人坐在四个位置上,再让后两个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)选择被四个人造成的五个“空隙”中的两个.解:共有坐法A44·A25=480种.讲评:对不相邻问题采用插空法最有效.。

河北省2011年高考数学一轮复习精品导学案:5.2数列综合应用

河北省2011年高考数学一轮复习精品导学案:5.2数列综合应用

2011年高三数学一轮复习精品导学案:第五章数列5.2数列综合应用【高考目标定位】一、数列求和1、考纲点击(1)熟练掌握等差数列、等比数列的前n项和公式;(2)掌握非等差数列、等比数列求和的几种常见方法.2、热点提示(1)以考查等差数列、等比数列的求和公式为主,同时考查转化的思想;(2)对非等差数列、等比数列的求和,主要考查学生的观察能力、分析问题与解决问题的能力以及计算能力;(3)数列求和常与函数、方程、不等式等诸多知识联系在一起,以它复杂多变、综合性强、解法灵活等特征而成为高考的中档题或压轴题。

二、数列的综合应用1、考纲点击能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题;2、热点提示(1)以递推关系为背景,考查数列的通项公式与前n项公式;(2)等差数列、等比数列交汇,考查数列的基本计算;(3)数列与函数、不等式、解析几何交汇,考查数列综合应用;(4)以考查数列知识为主,同时考查“等价转化”、“变量代换”思想.【考纲知识梳理】 一、数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和; (2)一些常见的数列的前n 项和:错误!(1)12342n n n ++++++=; 错误!2222(1)(21)1236n n n n ++++++=;○,32462(1)n n n ++++=+;错误!213521n n ++++-=;错误!2233332(1)(1)123[]24n n n n n ++++++==.2、倒序相加法如果一个数列{}na ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提.5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第十章-排列组合二项定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.§10. 排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..的排列...重复..元素从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例如:n件物品放入m个抽屉中,不限放法,共m种)有多少种不同放法?(解:n二、排列.1. ⑪对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序......排成一列,叫做从n个不同元素中取出m个元素的一个排列.⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑬两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有m n m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式 n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A .注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?m m n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)m m n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有kknnn n k n kn AC C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图 所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

先C 后A 策略,排列k k r k r n r r A C C --;组合r k r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定某r 个元素都不包含在内。

先C 后A 策略,排列k k k r n A C -;组合k r n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r 个元素中的s 个元素。

先C 后A 策略,排列kk sk r n sr A C C --;组合sk r n s r C C --. II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以k kA . 例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种.若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为m mr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅ ④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1m n C A=21m m -n C …k m )m ...m (m -n 1-k 21C +++例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C 若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑪二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n rn n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑫二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑬二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大;II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大. ③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或.......最小的项....时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑭如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n rn C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为rr q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!.2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分nn n n na C a C a C +++ 3322很小,可以忽略不计。

相关文档
最新文档