数学选修2-1第一章 常用逻辑用语

合集下载

人教版高中数学选修2-1第一章常用逻辑用语 1.1_1.2命题与充要条件

人教版高中数学选修2-1第一章常用逻辑用语 1.1_1.2命题与充要条件

命题与充要条件____________________________________________________________________________________________________________________________________________________________________1理解四种命题及其相互关系,会判断四种命题的真假。

2理解简单的逻辑联结词“或”“且”“非”的含义,能用“或”“且”“非”表述相关的数学内容。

3会用“全称量词与存在量词”对命题进行否定。

4理解充分条件、必要条件、充要条件等概念。

5能够判断给定的两个命题的充要关系,充分条件与必要条件的判断。

1.命题能判断真假的语句叫做命题.四种命题表述形式原命题:若p,则q逆命题:若q,则p否命题:若非p,则非q逆否命题:若非q,则非p2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量词.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示形如“对M中所有x,p(x)”的命题,可用符号简记为“x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词。

(2)存在性命题:含有全称量词的命题.(3)存在性命题的符号表示形如“存在集合M中的元素x,q(x)”的命题,用符号简记为x∈M,q(x)。

4.基本逻辑联结词常用的基本逻辑联结词有“且”、“或”、“非”.5.命题p∧q,p∨q,非p的真假判断67(1)“若p,则q”形式的命题为真时,记作pq,称p是q的充分条件,q是p的必要条件.(2)如果既有pq,又有qp,记作pq,则p是q的充要条件,q也是p的充要条件.p是q的充要条件又常说成q当且仅当p,或p与q等价.8.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【特别提醒】等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.类型一命题的四种形式及其关系例1:已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【答案】 D练习1:给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有()A.0个B.2个C.3个D.4个【解析】 在四种命题中原命题和逆否命题同真假,故只需判断原命题和逆命题的真假即可.原命题为真.所以逆否命题为真.逆命题为“已知a 、b 、c 、d 是实数,若a+c=b+d,则a=b,c=d ”,显然错误.所以否命题也错误.故真命题个数为2.【答案】 B练习2:命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数【解析】 若命题为“若p 则q ”,命题的逆否命题为“若非q ,则非p ”,所以原命题的逆否命题是“若x+y 不是偶数,则x 与y 不都是偶数”。

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第一章常用逻辑用语测试题一、 选择题(每道题只有一个答案,每道题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、真命题与假命题的个数相同 B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -123是有理数,则x 是无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是() A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=0 7、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题() A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、 D 、若x =a 或x =b ,则x 2-(a +b )x +ab =08、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件 11.在下列结论中,正确的是( )①""q p ∧为真是""q p ∨为真的充分不必要条件 ②""q p ∧为假是""q p ∨为真的充分不必要条件 ③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件 A. ①② B. ①③ C. ②④ D. ③④ 12.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5 二、填空题(每道题4分,共16分)13、判断下列命题的真假性: ①、若m>0,则方程x 2-x +m =0有实根 ②、若x>1,y>1,则x+y>2的逆命题③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的否定形式是 否命题是15、若把命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,构成它的两个简单命题分别是_____________________________________。

高中数学_选修2-1_第一章_常用逻辑用语教案_人教A版

高中数学_选修2-1_第一章_常用逻辑用语教案_人教A版

织金二中高二年级数学组集体备课教案执笔人:李武松 田海斌参加人:陈元凤 方健 吕招贵 周越 余平 李承华 朱枝涛 程佳 班银 教学内容:选修2-1 第一章 常用逻辑用语 课时安排:8课时 课时内容:1.1命题及其关系 第1课时 1.1.1 命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假三、教学过程<一>复习引入 1.回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线b a //,则直线a 与直线b 没有公共点 . (2)2+4=7.(3)垂直于同一条直线的两个平面平行. (4)若12=x ,则1=x .(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

<二>探讨新知4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.例题解析(P例1)2判断下列语句是否为命题?(解略)(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(-=-2.(6)15x.>让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

高中数学选修2-1常用逻辑用语1.4 全称量词与存在量词

高中数学选修2-1常用逻辑用语1.4  全称量词与存在量词

1. 构造一个特称命题, 使 “{x|ax2} 为空集” 是真命题.
解: 特称命题为 ∃a0R, 使 {x|ax2} 为空集.
即存在一个 a00 , 使 {x|ax2} 为空集.
2. 将下列全称命题改为特称命题, 并使命题为假: (1) ∀xR, |sinx|≤1; (2) ∀mR, 直线 mx+y-30 不经过定点 P(0, 3).
1. 构造一个全称命题, 使 |x|>0 是假命题. 解: 当 x0 时, |x|>0 不成立.
只要限制范围内有 x0 的即可. 如: ∀xR, |x|>0.
∀x≥0, |x|>0. ∀x≤0, |x|>0. ∀x(-1, 1), |x|>0. ……
2. 判断下列全称命题的真假:
(1) ∀xR, |sinx|<1;
(2) ∀mR, 直线 mx+y-30 经过定点 P(0, 3).
解:
(1)
当 x k
+
2
,
kZ 时,
|sinx|1,
∴ 全称命题 “∀xR, |sinx|<1” 是假命题.
(2) 将点 P(0, 3) 代入直线的方程 mx+y-30 得
0+3-30, ∴ m 为任意实数时, x0, y3 都是方程的解,
解: (1) ¬p: ∀xR, x2+2x+2>0. (2) ¬p: 所有的三角形都不是等边三角形. (3) ¬p: 所有素数都不含三个正因数.
例5. 写出下列命题的否定, 并判断它们的真假: (1) p: 任意两个等边三角形都是相似的; (2) q: ∃x0R, x02+2x0+20. 解: (1) ¬p: 存在两个等边三角形, 它们不相似. ¬p是假命题.

高中数学湘教版《选修二》《选修2 1》《第一章 常用逻辑用语》精

高中数学湘教版《选修二》《选修2 1》《第一章 常用逻辑用语》精

高中数学湘教版《选修二》《选修 2 1》《第一章常用逻辑用语》精高中数学湘教版《选修二》《选修2-1》《第一章常用逻辑用语》精高中数学湖南教育版选修二选修2-1第1章普通逻辑用语》精品专题课后练习【1】(含答案考点及解析)类别:_________________;分数:___________1.设函数及其导数函数”是“函数定义在R上,然后“”的()b、必要条件和不充分条件D.既不充分也不必要条件a.充分而不必要条件c.充要条件[答:]C【考点】高中数学知识点》集合与常用逻辑用语》常用逻辑用语》充分条件与必要条件【解析】试题分析:从前面命题的建立,我们可以推断出后面命题的建立,从后面命题的建立,我们也可以推断出前面命题的建立,从中我们可以得出结论解答:解:由于由“故成分性成立.来自“?X”∈ R、|f′(x)|<1”,可以得出“必要性成立”。

综上所述,可以得出“C,故|f′(x)|=.“,利用函数导数的定义,可以推导出|f'(x)|<1,”成立,“是”?X的一个充要条件∈ R、|f′(x)|<1“,考点:1.充分条件、必要条件、充要条件的定义;2.函数的导数的定义.2.已知命题p:“?X”∈ [1,2],x-a≥ 0“,命题q:?十、∈ R“,x+2aX+2-A=0。

如果命题“P∧Q”是真命题,则实数A的取值范围为()A.A≤ - 2或a=1C。

A.≥ 1.【答案】a【考点】高中数学知识点集与常用逻辑术语命题及其关系【分析】试题分析:命题p为真命题时,要使?x∈[1,2],x-a≥0,只需,因为x∈[1,2]所以22,所以,所以①;命题q为真命题时,“?x∈r”,x+2ax+2-a=0,即x+2aX+2-A=0有实根,所以解是②. 因为“P∧Q”是真命题,所以P和Q是真命题。

① ② 在十字路口下车≤ - 2或a=1,所以a是正确的。

测试点:命题与不等式222b.a≤-2或1≤a≤2d.-2≤a≤13.假设a、B和C是,if,then yes()a.充分不必要条件c.充要条件[答:]Bb.必要不充分条件d、既不是充分条件,也不是必要条件【考点】高中数学知识点》集合与常用逻辑用语》常用逻辑用语》充分条件与必要条件【解析】试题分析:因为,或120°,否则,的必要不充分条件,选b。

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

逆否命题原命题为:若a,则b。

逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。

原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。

命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。

其实这个东西可以认为是公理。

它和公理“排中律”是等价的。

我们数学的体系就是建立在这些公理之上。

2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。

复合命题是由简单命题通过逻辑连接词互相连接而组成的。

简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。

例如:“我爱你”。

这个句子不能算作命题。

因为是否“爱”的真假没有一个明确的判断标准。

如果“我爱你”是命题,那么它是一个简单命题。

我们可以把它等价转换为“若p,则q”的形式。

再谈论其逆否命题。

(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。

逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”课件北师大版选修2_1

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”课件北师大版选修2_1
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
§4 逻辑联结词“且”“或”“非”
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
学课前预习学案
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
分别指出下列两个等式成立的条件,并说明它们的
()
A.p或q C.非p 答案: B
B.p且q D.以上都不对
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
2.若p:3+2=5,q:2>3,则下列正确的是( ) A.p或q为真,非p为假 B.p且q为假,非q为假 C.p且q为假,非p为假 D.p且q为假,p或q为假 解析: 因为命题p为真,q为假,所以p且q为假,p 或q为真,非p为假. 答案: A
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
(2)“p 或 q”:Q R 或 0∈Z; “p 且 q”:Q R 且 0∈Z; “¬p”:Q R. (3)“p 或 q”:x2+1≠x-4; “p 且 q”:x2+1>x-4,且 x2+1<x-4; “¬p”:x2+1≤x-4.
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂] (1)不含逻辑联结词“且”“或”“非”的命题是简 单命题,由简单命题与逻辑联结词构成的命题是复 合命题,因此就有“p且q”“p或q”“非p”形式的 复合命题,其中p、q是简单命题,由简单命题构成 复合命题的关键是对逻辑联结词“且”“或”“非 ”的理解. (2)用集合的观点理解“且”“或”“非”的含义 设集合A={x|x满足命题p},集合B={x|x满足命题q} ,U为全集,则p且q对应于A∩B,p或q对应于A∪B ,¬p对应于∁UA.

北师大版高中数学选修2-1第一章《常用逻辑用语》

北师大版高中数学选修2-1第一章《常用逻辑用语》
真值表(1─真,0─假)
p p
1
0
0
1
p 与p 一真一假
我们知道命题的“且”、“或”恰好对 应集合的“交”、“并”,那么命题的“非” 对应集合的什么?
5
“非 p”─ p 的全盘否定.
真值表(1─真,0─假)
p p
1
0
0
1
p 与p 一真一假
我们知道命题的“且”、“或”恰好对 应集合的“交”、“并”,那么命题的“非” 对应集合的什么?
6
三、逻辑联结词
“或” A B x x A或x B
“且” A B x A且x B
“非” A x xU且x A
注:⑴“p 且 q”─ p、q 同时为真才为真.
⑵“p 或 q” ─ 只要 p、q 中有一个为真就 为真.(p、q 同时为假才为假.)
⑶“ p”─ p 的全盘否定,p 与p 一真一假.
非”表示命题“两次恰有一次投中”:(__p_且____q_.)或( p且q )
3.已知 c>0,设 p:函数 y cx 在 R 上递减; q:函数 f (x) x2 cx 的
最 则实小数值小c 的于取1值16范.如围果为“__p_0或_,_q1_2”__为__真. 1,, 且“ p且q ”为假,
命题⑵是命题⑴的否定.
注:一个命题的否定与它的否命题是有区别的.
命题的否定是对命题结论的全盘否定. 命题的否命题是既否定条件又否定结论.
2
简单的逻辑联结词(二)
一、知识学习 命题的否定 逻1辑联结词
二、例题分析 课本例4
课堂练习2 课堂练习3
三、课外练习
作业:自学随堂通 P18─P19 第 1、3、4、6 题 3
的解集为{x | x ≥ 2},命题 q:若函数 y kx2 kx 1 的值恒

(转)高二数学选修2-1、2-2、2-3知识点小结

(转)高二数学选修2-1、2-2、2-3知识点小结

中间变量对自变量的导数。
6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的
选取,以及区间的分割.微积分基本定理
b a
f (x)dx F (x) |ba F (b) F(a) .
物理上的应用:汽车行驶路程、位移;变力做功问题。
7. 函数的单调性
(1)设函数 y f (x) 在某个区间(a,b)可导,如果 f ' (x) 0 ,则 f (x) 在此区间上为增函数;
面面垂直: n1 n2
4. 夹角问题
线线角 cos | cos a,b | | a b | (注意异面直线夹角范围 0 )
| a || b |
2
线面角 sin | cos a, n | | a n | | a || n |
二面角
|
cos
||
cos
n1, n2
|
| n1 n2 | n1 || n2
线线平行: a / /b a / /b 线面平行: a / / a n 或 a / /b , b 或 a xb yc(b,c 是 内不共线向量)
面面平行: // n1 / /n2
3. 垂直
线线垂直: a b a b a b 0
线面垂直: a a / /n 或 a b, a c (b,c 是 内不共线向量)
① 直线具有斜率 k ,两个交点坐标分别为 A(x1, y1), B(x2, y2 )
AB
1 k2 x1 x2
(1 k2 ) (x1 x2 )2 4x1x2
1 1 k2
y1 y2
② 直线斜率不存在,则 AB y1 y2 .
(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。

成才之路高二数学人教A版选修21课件第一章常用逻辑用语

成才之路高二数学人教A版选修21课件第一章常用逻辑用语
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
(3)集合法 写出集合 A={x|p(x)}以及集合 B={x|q(x)},利用集合之 间的包含关系进行判断. ①若 A⊆B,则 p 是 q 的充分条件;若 A B,则 p 是 q 的 充分不必要条件. ②若 B⊆A,则 p 是 q 的必要条件;若 B A,则 p 是 q 的 必要不充分条件. ③若 A=B,则 p、q 互为充要条件. ④若 A B,且 B A,则 p 是 q 的既不充分也不必要件.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
1.四种命题之间的相互关系 (1)四种命题间的相互关系 一般地,原命题、逆命题、否命题与逆否命题这四种命题 之间的相互关系如下图所示.
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
从上图可以发现:原命题、逆命题、否命题与逆否命题中, 有两对互逆命题,两对互否命题,两对互为逆否命题.
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
三、充要条件 1.若“p⇒q”,则 p 是 q 的充分条件,q 是 p 的必要条 件,即:有了 p 成立,则一定有 q 成立,即使 p 不成立,q 也 可能成立;q 不成立,则 p 一定不成立. 2.区分“p 是 q 的充要条件”,“p 的充要条件是 q”说 法的差异.
1.命题是数学中最基本的判断语句,命题的基本要素就 是“条件”与“结论”,一个命题为“真”或“假”是唯一确 定的,不存在亦真亦假的命题.
2.有关充要条件的证明问题,要分清哪个是条件,哪个 是结论,谁是谁的什么条件,由“条件⇒结论”是证明命题的 充分性,由“结论⇒条件”是证明命题的必要性.证明要分两 个环节:一是证充分性;二是证必要性.要搞清它的叙述格式, 避免在论证时将充分性错当必要性证,或将必要性错当充分性 证.

选修2-1 第1章 1.1 1.1.1 1.1.2 充分条件和必要条件-2020-2021学年江苏省高二数学上册课件

选修2-1 第1章 1.1 1.1.1 1.1.2 充分条件和必要条件-2020-2021学年江苏省高二数学上册课件
栏目导航
16
2.判断充分条件和必要条件常用的方法 (1)定义法:分清条件和结论,再根据定义进行判断; (2)等价法:将不易判断的命题转化为它的等价命题判断. (3)和数集有关的充分条件和必要条件的判断可转化为先判断两集合 之间的包含关系,再确定充分、必要条件.记条件 p 涉及的数集为集合 A; 记条件 q 涉及的数集为集合 B.①若 A 是 B 的真子集,则 p 是 q 的充分不 必要条件;②若 B 是 A 的真子集,则 p 是 q 的必要不充分条件;③若 A =B,则 p 是 q 的充要条件;④若 A,B 之间没有包含关系,则 p 是 q 的 既不充分也不必要条件.
栏目导航
18
[解析] ①是正确的,因为 Δ=b2-4ac≥0⇔方程 ax2+bx+c= 0(a≠0)有实根⇔f(x)=ax2+bx+c 有零点;
②是正确的,因为 Δ=b2-4ac=0⇒方程 ax2+bx+c=0(a≠0) 有实根,因此函数 f(x)=ax2+bx+c(a≠0)有零点,但是 f(x)=ax2+ bx+c(a≠0)有零点时,有可能 Δ>0;
栏目导航
23
当 n≥2 时,an=Sn-Sn-1=pn-pn-1=pn-1(p-1), ∴an=(p-1)pn-1(p≠0,p≠1), aan-n 1=pp--11ppnn--12=p 为常数, ∴q=-1 时,数列{an}为等比数列.即数列{an}是等比数列的充 要条件为 q=-1.
栏目导航
24
栏目导航
38
[解] 设条件p的解集为集合A,则A={x|-1≤x≤2},设条件q 的解集为集合B,则B={x|-2m-1<x<m+1},
若p是q的充分不必要条件,则A是B的真子集,
m+1≥2, 所以 -2m-1≤-1,

高二数学充分条件与必要条件2(201911整理)

高二数学充分条件与必要条件2(201911整理)

概念辨析
下列各组语句中,p是q的什么条件? (1)p:a>0,b>0,q:a+b>0;
充分条件
(2)p:四边形的四条边相等, q:四边形是正方形; 必要条件
(3)p:|x|<1,q:-1<x<1; 充要条件
(4)p:a>b,q:a2>b2.
既不充分也不必要条件
概念形成

,且
要条件;

,且
分条件;
高中数学选修 2-1
第一章 常用逻辑用语 充分条件与必要条件
第二课时
复习巩固
1.一种逻辑关系的四种表达形式 : ①“若p则q”为真命题; ②p q ③p是q的充分条件; ④q是p的必要条件
复习巩固
2.用充分条件、必要条件或充要条件填空:
(1)x为自然数是x为整数的充分条件; (2)x>3是x>5的 必要条件 ;若ຫໍສະໝຸດ ,且若,且
不必要条件.
,则p是q的充分不必
,则p是q的必要不充 ,则p是q的充要条件
,则p是q的既不充分也
新知探究
如何从原命题和逆命题的真假性 理解上述四种关系? p是q的充分不必要条件,
原命题为真,逆命题为假;
p是q的必要不充分条件,
显然,如果p q,那么p与q互为充要 条件.
; SMT贴片 SMT https:// SMT贴片加工 SMT加工 贴片加工厂

安都日益骄慢 宣帝将事徐 封西丰县侯 安都跃马度桥 今日之事 李迁仕作梗中途 字大士 收军却据湖浦 二年 字仁风 頠乃深自结托 文育右手搏战 又收其将帅 "若更有一子如此 时年十三 以城应贼 诏并赦之 频使昭达往京口禀承计画 以梦告之 宣帝惧 遂从之 文育徙顿对之 武帝幸朱 方 遂失左髻 左右莫不掩泣 中大通四年 景平 迪得书甚喜 文帝

高中数学 第1章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版

高中数学 第1章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版
复习课件
高中数学 第1章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课 件 新人教B版选修2-1
第一章 常用逻辑用语
1.2.2 “非”(否定)
第一章 常用逻辑用语
1.了解逻辑联结词“非”的含义. 2.理解“非”与 集合中的“补集”的关系. 3.掌握对含一个量词的命题进行否 定.
存在性命题与全称命题的否定 写出下列命题的否定,并判断其真假. (1)p:∀x∈R,x2-x+14≥0; (2)q:所有的正方形都是矩形; (3)s:至少有一个实数 x,使 x2-4=0.
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息一 看看远处,要保护好眼睛哦~站起来动一动,久坐对身体
1.命题“2 不是质数”的构成形式是( ) A.p∧q B.p∨q C.﹁p D.以上答案都不对 答案:C
2.若 p 是真命题,q 是假命题,则( ) A.p∧q 是真命题 B.p∨q 是假命题 C.﹁p 是真命题 D.﹁q 是真命题 答案:D
3.命题“∃x∈R,f(x)<0”的否定是( ) A.∃x∉R,f(x)≥0 B.∀x∉R,f(x)≥0 C.∀x∈R,f(x)≥0 D.∀x∈R,f(x)<0 答案:C
命题的否定的应用
已知命题 p:“至少存在一个实数 x∈[1,2],使不等式 x2+2ax+2-a>0 成立”为真,试求参数 a 的取值范围. 【解】 由已知得﹁p:∀x∈[1,2],x2+2ax+2-a≤0 成立. 所以设 f(x)=x2+2ax+2-a, 则ff((12))≤≤00,,所以14+ +24aa+ +22- -aa≤ ≤00, ,解得 a≤-3, 因为﹁p 为假,所以 a>-3, 即 a 的取值范围是(-3,+∞).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修2-1
第一章常用逻辑用语
命题的定律:
①命题:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句。

真命题:其中
判断为真的语句。

假命题:判断为假的语句。

②对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做
互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

③对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这
两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

④对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这
两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

⑤四种命题的相互关系:原命题与逆命题互逆,逆命题与逆否命题互否,逆否命题与否命题互逆,否命
题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否。

⑥四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。

(2)两个命题为互逆命题
或互否命题,它们的真假性没有关系。

充分条件与必要条件:
1、“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。

2、“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件,q不是p的必要条件。

充要条件:
如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。

简单的逻辑联结词:
(1)且(2)或(3)非
1、用联结词“且”把p与q1、用联结词“或”把p与q联结1、对于一个命题p如果仅将它
联结起来称为一个新命题,起来称为一个新命题,记作的结论否定,就得到一个新命
记作p∩q,读作“p且q”。

p∪q,读作“p或q”。

题,记作┐p,读作“非p”。

2、命题p∩q的真假的判定:2、命题p∪q的真假的判定:2、命题┐p的真假的判定:
p q p∩q p q p∪q p ┐p
真真真真真真真假
真假假真假真假真
假真假假真真
假假假假假假
全称量词与存在量词:
1、“对所有的”“对任意一个”等词在逻辑中被称为全称量词,记作“∀”,含有全称量词的命题叫做全称命题。

2、对M中任意的x,有p(x)成立,记作"∀"x∈M,p(x)。

3、“存在一个”、“至少有一个”等词在逻辑中被称为存在量词,记作“∃”,含有存在量词的命题叫做特称命题。

4、M中至少存在一个x,使p(x)成立,记作"∃"x∈M,p(x)。

含有一个量词的命题的否定:
1、对于含有一个量词的全称命题p:"倒A"x∈M,p(x)的否定┐p是:"反E"x∈M,┐p(x)。

2、对于含有一个量词的特称命题p:"反E"x∈M,p(x)的否定┐p是:"倒A"x∈M,┐p(x)。

相关文档
最新文档