角平分线尺规作图

合集下载

角平分线的性质(含尺规作图动画)

角平分线的性质(含尺规作图动画)
我们可以利用角平分仪原理来用尺规作图嘛? D
A M E P
C B
O
F
N
动手画一画
A C
3
E
1
2
4
用尺规作图法,画出角平分线
在角平分线上取一点E,分别作角两 边的垂线,垂足为C,D
有什么发现吗?
O
D
B
证明
在△COE与△DOE中
∠1=∠2 ∠3=∠4
△COE ≌△DOE(AAS)
OE=OE
∴CE=DE
角平分线的性质
主讲人:王雨婷 数本1605
回顾
全等三角形的判定
AAS
角角边
ASA
角边角
SAS
边角边
SSS
边边边
HL
直角三角形中 直角边,斜边分别相等
角平分仪 D
A B
AB=AD C BC=DC
说明原理
在△ABC与三角形ADC中
AB=AD
BC=DC
△ABC≌△ADC(SSS)
AC=AC
尺规作图
角平分线的性质一
角平分线上的一点,到角两边的距离相等
思考
角内部的一点,到角两边的距离相等,那么 这个点在角平分线上吗
A C
E
O
连接OE 在Rt△COE与△COE≌RT△DOE(HL)
OE=OE
∴∠COE=∠DOE,即OE是角平分线,即点 E在角平分线上
角平分线的性质二
在角的内部到角两边的距离相等的点在 角的平分线上
实际应用练习
完成课后习题1~3

尺规作图角平分线原理证明

尺规作图角平分线原理证明

尺规作图角平分线原理证明要证明尺规作图角平分线原理,我们可以考虑证明两个定理:1)尺规可以作出角的平分线,2)尺规不能作出非整数倍的角。

首先,我们来证明尺规可以作出角的平分线。

给定一个角,我们需要找到它的平分线。

我们可以利用角的一些性质来进行尺规作图。

设给定一个角AOB,我们需要作出它的平分线。

1.用尺子,在OA上任意取一点C,将OC延长到D,使得OC=OD,连接DB。

2.以O为圆心,OC为半径,画一个圆,与OB交于E。

3.连接OE。

我们来证明OE是角AOB的平分线:首先,我们可以证明△OAC≅△OAD,这是因为OC=OD,AC=AD,以及角AOC=角AOD=90度。

因此,OA=OA,OC=OD,角OAC=角OAD。

接下来,我们来证明△OBE≅△ODE,这是因为OB=OD,OE=OD,以及角OBE=角ODE。

因此,OB=OD,OE=OD,角OEB=角OED。

由于角OEB与角OED是△OBE内的相对角,而且△OBE≅△ODE,所以它们是相等的角。

因此,OE是角AOB的平分线。

证毕。

接下来,我们来证明尺规不能作出非整数倍的角。

设给定一个角AOB,我们需要证明尺规不能作出它的非整数倍角。

假设我们可以使用尺规作出角AOB的非整数倍角。

由于尺规只能作出长度为1的线段,所以我们只能作出整数长度的线段。

设尺规作出的非整数倍角为角COD。

由于COD是AOB的非整数倍角,所以COD不等于AOB。

我们可以通过多次作角分的操作来逼近COD。

例如,我们可以作出COE、EOF、FPG……,以此类推。

由于尺规只能作出整数长度的线段,所以每次作角分的操作都是有限的。

假设我们作了n次角分操作,最后得到的角为角CODn。

如果最后的角CODn等于角AOB,那么我们就成功地作出了非整数倍角。

然而,由于尺规只能作出有限次角分操作,所以最后得到的角CODn不可能等于角AOB。

因此,尺规不能作出角AOB的非整数倍角。

证毕。

综上所述,我们证明了尺规可以作出角的平分线,并且尺规不能作出非整数倍的角。

几何画板中怎样用尺规作图法构造角平分线

几何画板中怎样用尺规作图法构造角平分线

几何画板中怎样用尺规作图法构造角平分线
利用几何画板可以很快速地作出角的平分线,但在研究角平分线的相关性质时会需要利用尺规作图,以便能更好地理解。

下面就介绍尺规作图法怎样构造几何画板角平分线。

(几何画板官网)
操作步骤如下:
1.利用线段工具构造一个角,顶点为O。

利用圆工具以O点为圆心,任意长为半径画圆。

利用线段工具和圆工具构造角与圆
2.圆O与角的两条边产交点分别为A、B。

选中点A、B,选择“构造”——“以圆心和圆周上的点绘圆”构造出圆A,同样的方法构造圆B。

两圆的交点为P。

利用圆工具分别以A、B为圆心AB为半径画圆
3.选中点O、点P,选择“构造”——“线段”,线段OP就是角的平分线。

选中多余的圆与点,按下“Ctrl+H”,尺规作图完成。

选中点O、点P构造线段即为角平分线
以上内容向大家介绍了尺规作图法构造几何画板角平分线的方法,操作非常简单,可以看到作图过程中利用了几何画板圆工具,利用圆工具可以辅助构造很多图形,比如等分线段。

尺规作图角平分线

尺规作图角平分线
尺规作图角平分线
目 录
• 引言 • 尺规作图基础知识 • 角平分线的尺规作图方法 • 角平分线在实际问题中的应用 • 角平分线与其他几何概念的联系 • 总结与展望
01 引言
目的和背景
尺规作图角平分线的目的
通过尺规作图的方式,将一个角平分为两个相等的角,以便在几何图形中构造特定的角度或解决与角度相关的问 题。
THANKS FOR WATCHING
感谢您的观看
对角平分线尺规作图的总结
尺规作图角平分线的基本原理
利用尺规作图的基本操作,通过构造等腰三角形或利用圆的性质,将给定角平分为两个相 等的小角。
尺规作图角平分线的步骤
首先,在角的两边上分别截取相等的线段;然后,分别以这两个点为圆心,以大于截取线 段长度为半径画弧,两弧交于一点;最后,连接角的顶点和交点,所得射线即为角的平分 线。
内部画弧,两弧交于一点。
连接角的顶点和这个交点,所得 的射线就是这个角的平分线。
方法二:利用三角板和直尺作图
利用三角板上的45°角或30°角, 通过角的和或差的方式,画出 所需角。
通过移动三角板,使得三角板 的一边与角的一边重合,另一 边落在角的内部。
沿着三角板的另一边画射线, 这条射线就是角的平分线。
角平分线的性质
角平分线将原角平分为两个相等的角。
角平分线上的点到角两边的距离相等。
角平分线是角的对称轴,即角的两边 关于角平分线对称。
在三角形中,角的平分线与对边相交,将对边 分为两段,这两段与角的两边对应成比例。
02 尺规作图基础知识
尺规作图的基本工具
直尺
用于画直线段、连接两点或延长 线段。
圆规
角平分线的定义
角平分线是从一个角的顶点出发,将该角平分为两个相等的 小角的射线。

19.3第二课时 尺规作图(2)角平分线、垂线和中垂线

19.3第二课时 尺规作图(2)角平分线、垂线和中垂线

(第 1 题 2、如图,画 △ABC 边 BC 上的高 .)
(第 2 题)
什么垂直平分线?
(过线段的中点,垂直这条线段的 直线) 线段垂直平分线有哪些特征? (线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
已知线段AB,画出它的垂直平分线.

1、平分已知角
已知: ∠AOB
求作:射线OC,使∠AOC=∠BOC
B
O
A
B
E
C
O
D
A
1、在OA和OB上,分别截取OD、OE,使OD=OE。 2、分别以D、E为圆心,大于DE的长为半径作 弧,在∠AOB内,两弧交于点C。 3、作射线OC。 OC就是所求的射线。

1、任意画一个钝角,并作出它的平分线。
B A
灌 溉总 渠
4、如图,已知线段a,h, 求作:△ABC,使AB=AC,且BC=a,高为h
h
aபைடு நூலகம்
教学反思

本节课你掌握了哪些知识? 还有哪些疑惑?
《课课练》P53-P54 第二课时尺规作图
全做
最基本最常用的尺规作图通常称一些复杂的尺规作图都是由基本作图组成的
第19章 全等三角形
19.3 尺规作图
基本作图
在几何里,把限定用直尺和圆规来画
图,称为尺规作图.最基本,最常用的 尺规作图,通常称基本作图.
其中,直尺是没有刻度的; 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图. 下面介绍几种基本作图:
2、试把一个钝角四等分。 3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)

角平分线的三种做法

角平分线的三种做法

一个直角,可以做出一条线段的中点,可以做一条线段的垂直平分线,可以做一个角的平分线,不能三等分一条线段,不能三等分一个角,2、请将下面工具的作用填在空上(填写序号,可以重复填写)一个不带刻度的直尺可以干哪些事情?___________________________量角器呢?_______________________________________圆规呢?__________________________________一个带有刻度的直尺呢?_________________________一个带有刻度的三角板呢?_______________________________答案在这里面选(①测量角度,②连接两个点做一条线段或者直线或者射线,③测量一条线段的长度,④做一条线段与已知线段相等,⑤画一个圆或者圆弧,⑥做一个直角,⑦做一条确定长度的线段,⑧做一个确定角度的角)3、如何做一个角的平分线?●如果只给你一个不带刻度的直尺,怎么画出角平分线?●如果只给一个量角器,怎么画出角的平分线?●如果只给带刻度的三角板一个,如何画出角的平分线?●如果给你一个圆规和一个不带刻度的直尺,如何画处角的平分线?(提示:利用SSS的原理,折叠法,测量法,利用HL原理)在上面的角平分线的四种做法,请思考哪种用的是尺规作图?“用尺规作图的方法,做出一个角的平分线”是一个课标要求达到的目标。

1、什么是尺规作图?尺规作图,即用没有刻度的直尺和圆规作图,它可以完成做一条线段与已知线段相等,可以做一个角与已知角相等,可以做一个圆与已知圆全等,可以做一个三角形与已知三角形全等,可以做一个直角,可以做出一条线段的中点,可以做一条线段的垂直平分线,可以做一个角的平分线,不能三等分一条线段,不能三等分一个角,2、请将下面工具的作用填在空上(填写序号,可以重复填写)一个不带刻度的直尺可以干哪些事情?___________________________量角器呢?_______________________________________圆规呢?__________________________________一个带有刻度的直尺呢?_________________________一个带有刻度的三角板呢?_______________________________答案在这里面选(①测量角度,②连接两个点做一条线段或者直线或者射线,③测量一条线段的长度,④做一条线段与已知线段相等,⑤画一个圆或者圆弧,⑥做一个直角,⑦做一条确定长度的线段,⑧做一个确定角度的角)3、如何做一个角的平分线?●如果只给你一个不带刻度的直尺,怎么画出角平分线?●如果只给一个量角器,怎么画出角的平分线?●如果只给带刻度的三角板一个,如何画出角的平分线?●如果给你一个圆规和一个不带刻度的直尺,如何画处角的平分线?(提示:利用SSS的原理,折叠法,测量法,利用HL原理)在上面的角平分线的四种做法,请思考哪种用的是尺规作图?一个直角,可以做出一条线段的中点,可以做一条线段的垂直平分线,可以做一个角的平分线,不能三等分一条线段,不能三等分一个角,2、请将下面工具的作用填在空上(填写序号,可以重复填写)一个不带刻度的直尺可以干哪些事情?___________________________量角器呢?_______________________________________圆规呢?__________________________________一个带有刻度的直尺呢?_________________________一个带有刻度的三角板呢?_______________________________答案在这里面选(①测量角度,②连接两个点做一条线段或者直线或者射线,③测量一条线段的长度,④做一条线段与已知线段相等,⑤画一个圆或者圆弧,⑥做一个直角,⑦做一条确定长度的线段,⑧做一个确定角度的角)3、如何做一个角的平分线?●如果只给你一个不带刻度的直尺,怎么画出角平分线?●如果只给一个量角器,怎么画出角的平分线?●如果只给带刻度的三角板一个,如何画出角的平分线?●如果给你一个圆规和一个不带刻度的直尺,如何画处角的平分线?(提示:利用SSS的原理,折叠法,测量法,利用HL原理)在上面的角平分线的四种做法,请思考哪种用的是尺规作图?“用尺规作图的方法,做出一个角的平分线”是一个课标要求达到的目标。

《角平分线》PPT课件2

《角平分线》PPT课件2

∠PDO= ∠PEO3)验证猜想:
OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS)
∴PD=PE(全等三角形的对应边相等
活动 5
角平分线上 的点到角两 边的距离相
等。
A E
4.实践与应用
P
O
FB
判断正误,并说明理由:
图1
A
(1)如图1,P在射线OC上,PE⊥OA,
A
E
F
B
D
C
十.小结与评价
这节课我们学到了什么? 共同归纳本节课所学主要知识:
(1)用尺规作角的平分线. (2)角平分线的性质定理: 角平分线上的点到这个角的两边距离相等. (3)角平分线的判定定理:
到角的两边距离相等的点在角的平分线上.
生活中有很多数学问题:小明家 居住在一栋居民楼的一楼,刚好位 于一条自来水管和天然气管道所成 角的平分线上的P点,要从P点建两 条管道,分别与自来水管道和天然 气管道相连. 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么 关系,画来看看.
五.角平分线的判定定理
判定定理 :在角的内部,到角的两边距离相等的点, 在这个角的平分线上.
用符号语言表示为: A
∵ PD ⊥OA ,PE ⊥OB, PD=PE, D
∴ 点P在∠AOB的平分线上 . O
C
1
P
2
EB
六.试一试
已知:如图,△ABC中,AB=AC,AD是
∠BAC的平分线,DE⊥AB,DF⊥AC,垂
活 探动究角5平分线的性质
已知:如图,OC平分∠AOB,点P在OC上,
PD⊥OA于点D,PE⊥OB于点E
A 求证: PD=PE
D
证明:∵OC平分∠ AOB (已知)

作角平分线的方法

作角平分线的方法

作角平分线的方法
作角平分线是一个基本的几何作图问题,有许多不同的方法可以完成。

以下是其中两种常见的方法:
方法一:使用量角器和直尺
1. 在角的两边上分别取一点 A 和 B,使得 A 和 B 到角的顶点 O 的距离相等。

2. 将量角器的中心对准顶点 O,并将 0 刻度线与 OA 或 OB 重合。

3. 找到量角器上与角的度数相等的刻度线,标记为点 C。

4. 连接 OC,即为角的平分线。

方法二:使用直尺和圆规
1. 在角的两边上分别取一点 A 和 B,使得 A 和 B 到角的顶点 O 的距离相等。

2. 以顶点 O 为圆心,以任意长度为半径画弧,分别交 OA 和 OB 于点 D 和 E。

3. 分别以 D 和 E 为圆心,以大于 DE/2 的长度为半径画弧,两弧交于点 F。

4. 连接 OF,即为角的平分线。

这两种方法都是基于角的平分性质,即角的平分线将角分成两个相等的角。

无论使用哪种方法,关键是要准确地测量和绘制,以确保得到正确的角平分线。

角平分线尺规作图方法

角平分线尺规作图方法

角平分线尺规作图方法
1.以点。

为中心,以任意长度为半径绘制弧,将两个弧的交叉角AoB的两侧设为点M、N o
2分别以点M、N为中心,以大于1/2MN的长度为半径绘制」弧,两个弧与点P交叉。

3、放射线0P。

需要线0P。

证书:连接PM、pN
在aPOM以及APON中
V0M=0N,PM=pN,p0=p0
Λ∆POM^∆PON(SSS)
POM=PON,即,放射线OP是角AOB角平分线
当然,角平分线的做法有很多种。

接着,进一步提供尺规作图用于参考的方法。

方法2:1。

两个OA、OB分另IJ剪切OM、OC、ON、OD、OM=ON> OC=OD;
2、将CN与DM连接,并与P交叉。

3、放射线0P。

需要线0P。

角平分线尺规作图方法
钝角三角形平分线的画法与普通的三角形画法相同,无论从哪个角的顶点开始,先用量角器半圆仪测量角的度数,然后从该角的顶点开始画线,将该线和角的两个边形成的角变为原来的一半您可以将这条线延伸到对边。

用同样的方法再画两个角平分线用三个三角形角平分线画的
角平分线尺规作图方法
1可以使用圆规画角平分线,具体的步骤是,以三角形顶点A为圆心,以任意的长度为半径制作圆弧,解析与三角形顶点的两个边分别相交1点M,No
2分别以交点M、N为中心,以相同长度为半径形成圆弧,使2个圆弧交叉于一点O o
连接3、A、。

两个点时,可以得到③角平分线。

尺规作图角平分线

尺规作图角平分线

一、尺规作图1. 作一个角等于已知角的方法已知:∠AOB ,求作:∠A ′O ′B ′=∠AOB.作法:1.以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;2.画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;3.以点C ′为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D ′;4.过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB.2. 先任意画出一个△ABC.再画一个△A ′B ′C ′,使A ′B ′=AB , B ′C ′=BC ,C ′A ′ =CA.作法:画一个△A ′B ′C ′ ,使A ′B ′=AB, A ′C ′=AC ,B ′C ′=BC :(1)画B ′C ′=BC ;(2)分别以点B ′,C ′为圆心,线段AB ,AC 长为半径画弧,两弧相交于点A ′;(3)连接线段A ′B ′,A ′C ′.二、角的平分线导入:小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建成两条管道,分别与暖气管道和天然气管道相连.问题1:怎样修建管道最短?问题2: 新修建的两条管道的长有什么关系,画来看一看.角的平分线的画法O A B C D O′ A′B′ C′ D′图12.3-1是一个平分角的仪器,其中AB= AD ,BC=DC.将点A 放在角的顶点,AB 和AD 着角的两边放下,沿AC 画一条射线AE ,AE 就 是这个角的平分线,你能说明它的道理吗?作已知角的平分线的方法.已知:∠AOB.求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N.(2)分别以点M ,N 为圆心,大于 MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C.(3)画射线OC.射线OC 即为所求(如图).理论根据:作角平分线的理论根据是三角形全等的判定方法:“SSS ”.拓展:根据角平分线的作法还可以作已知角的四等分线.注意: “大于 MN 的长为半径画弧”是因为若以小或等于 MN 的长为半径画弧时,画出的两弧不能相交.如图所示,已知∠AOB ,求作:∠AOM = ∠AOB.角的平分线的性质 如图12.3-3,任意作一个角∠AOB ,作出 ∠AOB 的平分线OC.在OC 上任取一点P ,点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量 PD ,PE 并作比较,你得到什么结论?在OC 上再取 几个点试一试.12121214通过以上测量,你发现了角的平分线的什么性质?1.性质:角的平分线上的点到角的两边的距离相等.要点精析:(1)点一定要在角平分线上;(2)点到角两边的距离是指点到角两边垂线段的长度;(3)角平分线的性质可用来证明两条线段相等.2.书写格式:如图,∵OP平分∠AOB,PD⊥ OA于点D,PE⊥OB于点E, ∴PD=PE.例1、如图, ∠AOC=∠BOC,点 P 在OC 上,PD⊥OA, PE⊥QB,垂足分别为D,E.求证PD=PE.证明:∵PD⊥OA, PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO ≌△PEO(AAS).∴PD=PE.例1】如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,F在AC上,BE=FC,求证:BD=DF.导引:要证BD=DF,可考虑证两线段所在的△BDE和△FDC全等,两个三角形中已有一角和一边相等,只要再证DE=CD即可,这可由AD平分∠CAB及垂直条件证得.1、如图,在直线MN上求作一点P,使点P到射线OA和OB 的距离相等.2、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6 cm,则△DBE的周长是( )A.6 cm B.7 cm C.8 cm D.9 cm3、如图,已知在△ABC中,CD是AB边上的高线, BE平分∠ABC,交CD于点E,BC=50,DE=14,则△BCE的面积等于________.总结:角的平分线图形结构中的“两种数量关系”:如图,OC平分∠AOB,PD⊥OA于D,PE ⊥OB于E,DE交OC于点F.(1)角的相等关系:①∠AOC=∠BOC=∠PDF=∠PEF;②∠ODP=∠OEP=∠DFO=∠EFO=∠DFP=∠EFP =90°;③∠DPO=∠EPO=∠ODF=∠OEF.(2)线段的相等关系:OD=OE,DP=EP,DF=EF.三、角平分线的判定角平分线的性质为:角的平分线上的点到角的两边距离相等.交换上述已知和结论,你能得到什么结论,这个新结论正确吗?判定方法:角的内部到角的两边的距离相等的点在角的平分线上.书写格式:如图,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的平分线上(或∠AOC=∠BOC)【例1】如图,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D.求证:AD平分∠BAC.导引:要证AD平分∠BAC,已知条件中有两个垂直,即有点到角的两边的距离,再证这两个距离相等即可证明结论,证这两条垂线段相等,可通过证明△BDE和△CDF全等来完成.证明角平分线的“两种方法”(1)定义法:应用角平分线的定义.(2)定理法:应用“到角两边距离相等的点在角的平分线上”来判定 . 判定角平分线时,需要满足两个条件:“垂直”和“相等”.1、在正方形网格中,∠AOB的位置如图所示,到∠AOB 两边距离相等的点应是( ) A.点M B.点N C.点P D.点Q2、如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB= S△PCD,则满足此条件的点P( )A.有且只有1个B.有且只有2个C.组成∠E的平分线D.组成∠E的平分线所在的直线(E点除外)三角形的角平分线如图,△ABC的角平分线BM, CN相交于点P.求证:点P到三边AB,BC, CA的距离相等.三角形得角平分线的交点到三边的距离相等,这个交点叫作三角形的内心.1 到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.以上均不对2 如图,△ABC的三边AB,BC,CA的长分别为40,50,60,其三条角平分线交于点O,则 S △ABO∶S△BCO∶S△CAO=________________.3 如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于点P.求证:点P到三边AB,BC,CA所在直线的距离相等.角的平分线的性质与判定定理的关系:(1)都与距离有关,即垂直的条件都应具备.(2)点在角的平分线上 点到这个角两边的距离相等.(3)性质反映只要是角的平分线上的点,到角两边的距离就一定相等;判定定理反映只要是到角两边距离相等的点,都应在角的平分线上.性质判定定理。

尺规作图(二)角平分线

尺规作图(二)角平分线

课题:基本作图(二)-----角平分线及其性质教学重点:角平分线的尺规作图、性质定理及它们的应用。

教学难点:理解角平分线尺规作图的依据,以及角平分线性质定理的应用;教学目标:1.知识与技能:掌握角平分线的尺规作图方法及角平分线的性质定理,并用它们解决相关问题;2.过程与方法:学生经历动手实践、合作交流、演绎推理的过程,学会理性思考,从而提高解决简单问题的能力。

3.情感与态度:经过对角的平分线的性质的探索与形成的过程,发展应用数学知识的意识与能力,养成良好的学习态度和严谨的科学态度。

教学过程:实际问题引入:若要在S区建一个瞭望塔,安排人员进行环境监测,要求瞭望塔到三条公路的距离都相等,请问瞭望塔应建于何处?预设一:学生想到作高线,找交点。

预设二:学生想到作中线,找交点。

预设三:学生想到作角平分线,找交点。

(在此情况下,学生分组进行画图实验,之后比较,猜想哪种做法是有可能正确的,之后引出作角平分线的方法,既然作角平分线的方法有可能,那就研究标准的作角平分线的的方法,研究猜想是否正确。

)【活动一】作角平分线。

(一)提出问题:你能自己想办法做出一个角的角平分线吗?(学生自己考虑解决问题的方法)预设一:学生估计角度的大小,直接画出近似的角平分线;预设二:学生用折纸的方法完成;预设三:学生用量角器度量功能完成;预设四:学生用直尺量出AO=BO,联结AB ,确定AB中点C ,之后作射线预设五:学生用直尺量出AO=BO,分别过A,B 作OA,OB 的垂线,两条垂线相交于点C ,之后作射线OC;预设六:学生思考到尺规作图的方法,但是不能准确叙述或者是完成;预设七:学生可以用尺规作图的方法完成。

如果学生出现预设中的一、二、三、四、五情形的时候,老师适时提出:预设一不准确,预设二相对准确些,但是不便于操作,预设三、四、五,这时可以提问:如果我们没有刻度尺,没有半圆仪这些带刻度的工具,我们能不能考虑其他方法解决这个问题呢?如何做呢?如果学生考虑到了预设六、七中的尺规作图,鼓励学生继续思考,如果学生不能完成,老师可以带领学生完成,如果有的学生能够完成,可以教师带领学生写好已知、求作,由学生演示做法。

角平分线作图

角平分线作图

角平分线作图角平分线作图是在初中数学中常见的一种题型,它是指将一个角平分成两个相等的角的过程,也就是将角所在的直线分为相等的两段。

实际上,角平分线作图是一种利用尺规作图原理解决问题的方法,它的实现需要借助一些基本工具和构造方式。

下面我们就来详细介绍一下角平分线作图的具体方法。

一、基本工具准备在进行角平分线作图之前,我们需要准备好以下基本工具:1、圆规:用来画圆和测量距离的工具。

2、尺子:用来画直线和测量长度的工具。

3、铅笔:用来绘制图形或做笔记的工具。

二、角平分线作图步骤1、已知一角OAB,要求作出它的平分线。

2、首先用铅笔和尺子画出OA和OB两条直线。

3、以O点为圆心,任取一个半径作圆弧,使这个圆弧与OA和OB两条直线交于A1和B1两点。

4、以A1和B1两点为圆心,取相等的半径,画2个圆弧,它们交于C点。

5、连接OC,OC就是角OAB的平分线。

6、检验:通过对角OAB和角OBC进行测量,可以验证OC 是这两个角的平分线。

三、方法总结以上就是角平分线作图的具体步骤,通过这样的方法可以对角进行平分,将一个角划分为两个相等的角,从而解决与角有关的一些问题。

除此之外,角平分线作图还可以借助一些其他的方法来进行,比如说三角形内部角平分线作图、四边形对角线作图等,不同的角平分线作图方法都有相应的基本步骤,需要根据不同的题目进行选择和使用。

总之,角平分线作图是初中数学中非常基础的一个知识点,它虽然看似简单,但是却是解决一些题目和问题的重要工具。

因此,我们需要仔细学习并熟练掌握这个知识点,才能够在日后的学习和工作中取得良好的成绩和效果。

作已知角的平分线课件

作已知角的平分线课件

尺规作图(八年级)
学习内容:作已知角的平分线
苏科版 八年级数学上册
教学目标
1.进一步掌握并熟练尺规作图的方法及一般步骤; 2.介绍另一种基本作图,明确尺规作图的意义; 3.熟练掌握基本作图语言. 【教学重点】画一个角的角平分线. 【教学难点】理解作图的理论依据以及利用基本作图画一
些其他图形.
新知导入
B
O
A
新知讲解
作法:
(1)在射线OA、OB上分别截取OD、OE,
使OD=OE; (2)分别以点D,E为圆心、大于线
段DE长的一半为半径画弧,在 ∠AOB内两弧交于点C;
否则得不到 点C或交点C
不明显. O
B EC
DA
(3)作射线OC. 则射线OC就是所求作的∠AOB的平分线.
新知讲解
如何证明 ∠AOC=∠BOC?
用圆规和直尺能不 能作出正七边形、正九 边形、正十一边形、正 十三边形、正十七边形 呢?
两千年来,这一直是个未解之谜. 数学家 欧几里得
新知导入
出乎人意料之外的 是,这个难题竞被年仅 19岁的高斯解决了. 他 用直尺和圆规作出了正 十七边形.
高斯
新知讲解
如图,已知∠AOB. 求作:∠AOB的平分线.
B
E
C
O
DA
如图,连结EC、DC.
∵OD=OE,DC=EC,OC=OCΒιβλιοθήκη ∴△OCD≌△OCE(SSS)
∴∠AOC=∠BOC .
O
B
E
C
DA
自学检测:
尺规作角的平分线
画法:
A
1.以O为圆心,适当长为半径
作弧,交OA于点M,交OB于点N.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


O O
自学检测:

如下图:用尺规过点C画直线L的垂 线。怎么画呢?
L
C
自学检测:

若点C在L外呢?互相交流一下,看这 个问题能不转化为“画线段垂直平分线” 的问题呢?
C
L
基础练习:

画出图中三角形三个内角的角平分线。 (不写画法,保留作图痕迹)

基础练习:

如图:已知∠A,试画∠B=0.5∠A (不写画法,保留作图痕迹)
角的平分线(1)
本节课学习目标
• 1.掌握尺规作图法作出角的平分线. • 2.利用上述方法完成:经过一点作已知直 线的垂线。
自学内容: 课本125页~126页
自学检测:
尺规作角的平分线
画法:
1.以O为圆心,适当 长为半径作弧,交OA于点 M,交OB于点N. 2.分别以M,N为 圆心.大于 1/2 MN的长 为半径作弧.两弧在∠A OB的内部交于C. 3.作射线OC.
A
基础练习:
• 如图:过点P画∠O两边的垂线。
P O
基础练习:

如图:画△ABC边BC上的高。
A
B C
本节课学习了什么内容?
A





射线OC即为所求.
自学检测:
为什么角平分线呢? 已知:OM=ON,MC=NC。 求证:OC平分∠AOB。 A M C
证明:连接CM,CN
在△OMC和△ONC中, OM=ON, MC=NC, OC=OC, ∴ △OMC≌ △ONC(SSS) B ∴∠MOC=∠NOC 即:OC平分∠AOB
相关文档
最新文档