行程问题之接送问题综合练习题

合集下载

接送问题的行程问题

接送问题的行程问题

接送问题的行程问题行程问题之接送问题例题讲解奥数接送问题例题1:如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米奥数接送问题例题2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。

由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。

这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。

奥数接送问题例题3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9 又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米.奥数接送问题例题4:有两个班的小学生要到少年宫参加活动,但只有一辆车接送。

接送问题例题

接送问题例题

接送问题例题
(原创实用版)
目录
1.接送问题的背景和意义
2.接送问题的例题分析
3.接送问题的解决方法和策略
4.接送问题的实际应用和意义
正文
一、接送问题的背景和意义
接送问题是运筹学中的一个经典问题,主要研究的是在一定的时间和空间限制下,如何合理地安排车辆的接送任务,使得资源得到最优的利用。

这个问题在实际生活中非常常见,比如学校接送学生、公司接送员工、医院接送病人等,都有着广泛的应用。

二、接送问题的例题分析
假设某公司有 10 名员工,每天需要从家到公司,公司有 3 辆车可供使用,每辆车最多能坐 4 人。

员工离家的距离不同,分别是 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 公里。

请问,如何安排车辆的接送任务,使得所有员工的总出行距离最小?
三、接送问题的解决方法和策略
对于接送问题,常用的解决方法有穷举法、贪心算法、遗传算法等。

其中,贪心算法是最常用的方法,其基本思想是每次都选择距离最近的员工进行接送。

具体的步骤如下:
1.将所有员工的离家距离进行排序。

2.选择距离最近的员工进行接送。

3.如果车辆的座位数足够,则将该员工接送到公司;否则,再选择距离次近的员工进行接送。

4.重复步骤 3,直到所有员工都被接送到公司。

四、接送问题的实际应用和意义
接送问题的解决对于实际生活有着重要的意义。

通过合理的接送安排,不仅可以节省时间和成本,还可以提高工作效率和生活质量。

3-2-9接送问题_题库学生版

3-2-9接送问题_题库学生版

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 (2008年“陈省身杯”国际青少年数学邀请赛)张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。

模块二、汽车接送问题——接两个人或多人知识精讲教学目标接送问题(一)、车速不变、人速不变【例 2】 (难度级别 ※※※)A 、B 两个连队同时分别从两个营地出发前往一个目的地进行演习,A 连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A 连士兵坐车出发一定时间后下车让卡车回去接B 连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 3】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 4】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 5】 甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例6】(难度级别※※※※)甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例7】(2008年“迎春杯”六年级初赛)A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.(二)车速不变、人速变【例8】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

小学奥数接送问题综合练习题

小学奥数接送问题综合练习题

小学奥数接送问题综合练习题1.三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。

现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。

问,三人花的时间各为多少?2.甲班与乙班学生同时从学校出发去相距170千米的公园,甲乙两班的步行的速度都是每小时4千米。

学校有一辆汽车,它的速度是每小时 48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?3.甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?4. A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次能够乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?5. 俩兄弟要将两车西瓜运到城里去卖,但由人来拉太累,雇拖拉机太贵,所以租了头毛驴,两兄弟计划先由哥哥拉车,弟弟赶毛驴拉另一辆车,然后在中途弟弟让毛驴返回去帮哥哥拉车,自个儿拉着车行走完最后一段路,已知兄弟俩人的拉车速度相同,毛驴拉车或行走的速度为人拉车的速度的3倍,那么弟弟应该在哪儿将毛驴赶回去?6. 两个班去距学校30千米的博物馆参观。

但学校只有一辆接送车,车速每小时45千米,同学们步行每小时5千米。

为了使两班尽快到达,他们于上午8点从学校出发。

小学奥数:接送问题.专项练习及答案解析

小学奥数:接送问题.专项练习及答案解析

⼩学奥数:接送问题.专项练习及答案解析1、准确画出接送问题的过程图——标准:每个量在相同时间所⾛的路程要分清2、理解运动过程,抓住变化规律3、运⽤⾏程中的⽐例关系进⾏解题⼀、校车问题——⾏⾛过程描述队伍多,校车少,校车来回接送,队伍不断步⾏和坐车,最终同时到达⽬的地,即到达⽬的地的最短时间,不要求证明。

⼆、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式⼦1、总时间=⼀个队伍坐车的时间+这个队伍步⾏的时间;2、班车⾛的总路程;3、⼀个队伍步⾏的时间=班车同时出发后回来接它的时间。

模块⼀、汽车接送问题——接⼀个⼈【例 1】某校和某⼯⼚之间有⼀条公路,该校下午2时派车去该⼚接某劳模来做报告,往返需⽤1⼩时.这位劳模在下午1时便离⼚步⾏向学校⾛来,途中遇到接他的汽车,便⽴刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步⾏速度的⼏倍?【考点】⾏程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校⼯⼚P C B A在C 点与劳模相遇,再返回B 点,共⽤时40分钟,由此可知,在从B 到C ⽤了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模⾛了1⼩时20分,也就是80分钟.另⼀⽅⾯,汽车⾛两个AB 需要1⼩时,也就是从B 点⾛到A 点需要30分钟,⽽前⾯说⾛完BC 需要20分钟,所以⾛完AC 要10分钟,也就是说2BC AC =.⾛完AC ,劳模⽤了知识精讲教学⽬标接送问题80分钟;⾛完BC,汽车⽤了20分钟.劳模⽤时是汽车的4倍,⽽汽车⾏驶距离是劳模的2倍,所以汽车的速度是劳模速度的428=倍.【点拨】复杂的⾏程问题总要先分析清楚过程.我们不把本题看作是⼀道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的⽤时推出AC与BC的倍数关系,再得出答案.如何避开运⽤分数和⽐例,⽅法有很多.对于这道题,如果认为学校与⼯⼚间相距为3000⽶,则做出这道题就更容易了:汽车1分钟⾛300030100÷=⽶.AB相距1000⽶,劳模⾛了80分钟,所以劳模的速度是每分钟⾛10008012.5÷=÷=⽶,汽车速度是劳模的10012.58倍.⽽实际上,3000⽶这个附加条件对结果并不起作⽤,只是使解题⼈的思路更加清晰.【答案】8倍【巩固】张⼯程师每天早上8点准时被司机从家接到⼚⾥。

小学奥数 接送问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  接送问题 精选练习例题 含答案解析(附知识点拨及考点)

接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2=.走完AC,劳模用了80分钟;走BC AC完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=倍.而实际上,3000÷=米,汽车速度是劳模的10012.58米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

行程问题之接送问题综合练习题

行程问题之接送问题综合练习题

行程问题之接送问题综合练习题 1.三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。

现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。

问,三人花的时间各为多少? 2.甲班与乙班学生同时从学校出发去相距170千米的公园,甲乙两班的步行的速度都是每小时4千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那幺甲班学生与乙班学生需要步行的距离是多少千米? 3.甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那幺甲班学生与乙班学生需要步行的距离之比是多少千米? 4.A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B 地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米? 5.俩兄弟要将两车西瓜运到城里去卖,但由人来拉太累,雇拖拉机太贵,所以租了头毛驴,两兄弟计划先由哥哥拉车,弟弟赶毛驴拉另一辆车,然后在中途弟弟让毛驴返回去帮哥哥拉车,自个儿拉着车行走完最后一段路,已知兄弟俩人的拉车速度相同,毛驴拉车或行走的速度为人拉车的速度的3倍,那幺弟弟应该在哪儿将毛驴赶回去? 6.两个班去距学校30千米的博物馆参观。

但学校只有一辆接送车,车速每小时45千米,同学们步行每小时5千米。

为了使两班尽快到达,他们于上午8点从学校出发。

小学奥数3-2-9 接送问题.专项练习及答案解析

小学奥数3-2-9 接送问题.专项练习及答案解析

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答 知识精讲教学目标接送问题【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2BC AC=.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=米,汽车速度是劳模的÷=倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思10012.58路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

(完整版)行程问题之接送问题(新的)

(完整版)行程问题之接送问题(新的)

行程问题之接送问题(20130906)(1)甲乙两人同时从A地去20千米远的B地,甲骑车乙步行,甲的速度是乙的9倍,甲到达B地后立即返回,甲乙相遇时,乙行了多少千米?(2)工厂派汽车从工厂去厂长家接厂长上班,某天厂长提前1小时步行去工厂,结果在去工厂的途中,遇到工厂派来的汽车,因此比平时提早10分钟到工厂。

问汽车的速度是厂长步行速度的多少倍?(3)A、B两地相距130千米,已知人的步行速度是每小时5千米,摩托车的速度是每小时50千米,摩托车后座可带一人。

问有三人并配一辆摩托车从A地到B地最少需要多少小时(4)甲、乙两班学生到离学校30千米的飞机场参观。

但只有一辆汽车,一次只能乘坐一个班的学生,为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某次下车后再步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生,如果两班学生步行的速度相同,汽车速度是他们步行速度的7倍,那么汽车在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场?(5)某团体从甲地到乙地,甲、乙两地相距100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已知步行速度为8千米/小时,汽车速度为40千米/小时。

问使团体全部成员同时到达乙地需要多少时间?(6)甲班与乙班学生同时从学校出发去相距170千米的公园,甲乙两班的步行的速度都是每小时4千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?(7)俩兄弟要将两车西瓜运到城里去卖,但由人来拉太累,雇拖拉机太贵,所以租了头毛驴,两兄弟计划先由哥哥拉车,弟弟赶毛驴拉另一辆车,然后在中途弟弟让毛驴返回去帮哥哥拉车,自个儿拉着车行走完最后一段路,已知兄弟俩人的拉车速度相同,毛驴拉车或行走的速度为人拉车的速度的3倍,那么弟弟应该在哪儿将毛驴赶回去?(8)两个班去距学校30千米的博物馆参观。

小学奥数3-2-9 接送问题.专项练习及答案解析

小学奥数3-2-9 接送问题.专项练习及答案解析

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答【解析】 车下午2时从学校出发,如图,学校工厂P B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟. 另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC =.走完AC ,劳模用了BC 知识精讲教学目标接送问题2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=÷=米,汽车速度是劳模的10012.58倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

奥数:3-2-9接送问题-题库

奥数:3-2-9接送问题-题库

教学目标1准确画出接送问题的过程图 一一标准:每个量在相同时间所走的路程要分清 2、 理解运动过程,抓住变化规律 3、 运用行程中的比例关系进行解题校车问题一一行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最 短时间,不要求证明。

二、 常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型: (1 )车速不变-班速不变-班数2个(最常见) (2 )车速不变-班速不变-班数多个 (3 )车速不变-班速变-班数2个 (4)车速变-班速不变-班数2个 三、 标准解法:画图+列3个式子1、 总时间=一个队伍坐车的时间+这个队伍步行的时间;2、 班车走的总路程;3、 一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题一一接一个人【例1】 某校和某工厂之间有一条公路, 该校下午2时派车去该厂接某劳模来做报告,往返需用1小时•这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下 午2时40分到达•问:汽车速度是劳模步行速度的几倍?C在C 点与劳模相遇,再返回 B 点,共用时40分钟,由此可知,在从 B 到C 用了 40"2=20分钟, 也就是2时20分在C 点与劳模相遇.此时劳模走了 1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完 AC 要10分钟,也就是说BC =2 AC .走完AC ,劳模用了 80分钟;走 完BC ,汽车用了 20分钟.劳模用时是汽车的 4倍,而汽车行驶距离是劳模的 2倍,所以汽车的速度是劳模速度的4 2 =8倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都 不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C 到两端A 、B 的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所 有时间的倍【分析】车下午2时从学校出发,如图,工厂A 一学校B数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多•对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走3000 -:-30 =100米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走1000 "80 =12.5米,汽车速度是劳模的100 -:-12.5 =8倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【巩固】(2008年陈省身杯”国际青少年数学邀请赛)张工程师每天早上8点准时被司机从家接到厂里。

接送问题习题附答案31题-小学数学

接送问题习题附答案31题-小学数学

1.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?2.张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

3.李经理的司机每天早上7点30分到达李经理家接他去公司。

有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。

则李经理乘车的速度是步行速度的倍。

(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)4.A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?5.甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?6.甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.7.海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?。

六年级下册数学试题-奥数行程模块接送问题 全国通用(图片版无答案)

六年级下册数学试题-奥数行程模块接送问题 全国通用(图片版无答案)

1、甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,若两地相距150千米,那么各个班的步行距离是多少?2、李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)3、甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?4、甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时60千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是千米.5、甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.于是甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆千米处返回接乙班学生,才能使两班同时到达博物馆?6、甲班与乙班学生同时从学校出发去欢乐谷,两班的步行速度相等都是3千米/小时,学校有一辆汽车,它的速度是每小时36千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达欢乐谷,设两地相距75千米,那么各个班的步行距离是千米.7、A、B两人同时自甲地出发去乙地,A、B步行的速度分别为100米/分、120米/分,两人骑车的速度都是200米/分,A先骑车到途中某地下车把车放下,立即步行前进;B走到车处,立即骑车前进,当超过A一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么A从甲地到乙地的平均速度是米/分.8、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?9、甲、乙二人同时从A地出发沿公路向距离为60千米的B地前进,路上二人或者骑车或者步行.由于仅有一辆自行车,在途中任一时刻至多有一个骑车.骑车的人可以随时将车放在路上继续步行前进,步行的人看到路上有自行车可以骑上车前进,也可以不骑车继续步行.结果甲比乙晚到2小时,若步行速度为5千米/小时,骑车速度为15千米/小时,则甲至少步行千米.10、某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载的时候的速度为60千米/小时,满载的时候速度为40千米/小时,由于某种原因大巴车晚出发了56分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了54分钟到达目的地,学生们的步行速度为千米/小时.11、A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达.现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑.已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?12、天天学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.那么使全体学生都能到达目的地的最短时间是小时.13、甲、乙两班同学到42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为5千米/时,汽车载人速度是45千米/时,空车速度是75千米/时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?14、有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?15、某校下午2点钟去某厂接劳模作报告.往返需1小时,该劳模在下午1点整就步行去学校,在途中遇到接他的车,便坐去学校下午2:30到达,汽车的速度是劳模步行多少倍?16、某校组织150名师生到外地旅游,这些人5时才能出发,为了赶火车,6时55分必须到火车站.他们仅有一辆可乘50人的客车,车速为36千米/时,学校离火车站21千米,显然全部路程都乘车,因需客车多次往返,故时间来不及,只能乘车与步行同时进行,如果步行每小时能走4千米,那么应如何安排,才能使所有人都按时赶到火车站?17、甲班、乙班和丙班同时从学校出发去公园,甲班的步行速度是每小时1千米,乙班的步行速度是每小时3千米,丙班的步行速度是每小时5千米.学校有一辆汽车,速度是每小时15千米,但它只能容纳一个班的学生.为了使三班学生能在最短时间到达公园,设两地相距148千米,那么甲班、乙班和丙班的步行距离之和是千米.18、母亲节那天,小明的爸爸与妈妈一同回家看望爷爷奶奶,爷爷开车下午2点钟去机场接小明一家,往返需要1小时,小明一家在下午1点便下飞机步行向家的方向走去,途中遇到接他们的爷爷,便立刻乘爷爷的专车回家,在下午2点40分到家.爷爷的车速是小明一家步行速度的倍.19、某沙漠通讯班接到紧急命令,让他们火速将一份情报送过沙漠.现在已知沙漠通讯班成员只有靠步行穿过沙漠,每个人步行穿过沙漠的时间均为12天,而每个人最多只能带8天的食物,请问,在假定每个人饭量大小相同,且所能带的食物相同的情况下,沙漠通讯班能否完成任务?如果能,那么最少需要几人才能将情报送过沙漠,怎么送?20、甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米.学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少?。

接送问题 小学数学 测试题

接送问题 小学数学 测试题

一、解答题
1. 有150名同学要到相距90千米的某地参加活动,但只有一辆可乘50人的汽车
接送学生,汽车的时速是70千米,若同学们的步行速度是每小时10千米,请设
计一种乘车和步行的方案,使150名同学全部在最短的时间内同时到达.(上下
车的时间忽略不计)
2. 从地到地有49千米,甲、乙、丙三人从地出发向地前进,甲驾驶摩托车,每次只能带1人,摩托车的速度是每小时44千米,人步行每小时行4千米。

甲先带乙走若干千米后乙下车步行,甲立即调转回头接正在步行的丙,遇丙后立即带上丙驶向地,结果三人正好同时到地,求乙在离地多远处下车步行?
3. 甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙
班步行的速度是每小时3千米.学校有一辆汽车,它的速度是每小时48千米,这
辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少?
4. 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的倍.现甲从地去地,乙、丙从地去地,双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先达到自己的目的地?谁最后到达目的地?。

接送问题 小学数学 课前预习

接送问题 小学数学 课前预习

一、解答题
1. 甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙
班步行的速度是每小时3千米.学校有一辆汽车,它的速度是每小时48千米,这
辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少?
2. 从地到地有49千米,甲、乙、丙三人从地出发向地前进,甲驾驶摩托车,每次只能带1人,摩托车的速度是每小时44千米,人步行每小时行4千米。

甲先带乙走若干千米后乙下车步行,甲立即调转回头接正在步行的丙,遇丙后立即带上丙驶向地,结果三人正好同时到地,求乙在离地多远处下车步行?
3. 有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可
供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?
4. 甲、乙两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可
携带一个人24天的食物和水.⑴如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?⑵如果可以将部分
食物存放于途中以备返回时取用,情况又怎样呢?。

(完整版)小学奥数之接送问题

(完整版)小学奥数之接送问题

接送问题1 如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?2 某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)3 有两个班的小学生要到少年宫参加活动,但只有一辆车接送。

第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。

学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的学生步行了全程的几分之几?(学生上下车时间不计)1 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?2 A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?3 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学课本丢在家里,随即开车去给小明送书。

赶上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校。

小学奥数3-2-9 接送问题.专项练习及答案解析

小学奥数3-2-9 接送问题.专项练习及答案解析

1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答知识精讲教学目标接送问题【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2BC AC=.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=米,汽车速度是劳模的÷=倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思10012.58路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

接送问题例题

接送问题例题

接送问题例题
【原创版】
目录
1.接送问题的背景和现状
2.接送问题的例题分析
3.接送问题的解决策略
正文
一、接送问题的背景和现状
随着城市化进程的加速以及人们生活水平的提高,私家车的普及使得接送问题变得越来越普遍。

接送问题主要体现在学生上下学、职工上下班等日常出行中,由于时间和路线的协调问题,导致资源浪费和效率低下。

二、接送问题的例题分析
例题:假设有 100 个学生,其中 50 个学生住在学校东边,50 个学生住在学校西边。

同时,有 20 个家长可以提供接送服务,其中 10 个家长住在学校东边,10 个家长住在学校西边。

如何合理安排接送任务,使得资源利用率最高?
三、接送问题的解决策略
1.建立信息平台,实现供需对接。

通过互联网技术,让需要接送的家长和可以提供接送服务的家长实现信息共享,提高资源利用率。

2.引入社会资源,扩大服务供给。

鼓励学校、社区等组织提供集中接送服务,或者与附近的企事业单位合作,利用其闲置的资源提供接送服务。

3.加强公共交通建设,提高出行效率。

完善公共交通设施,提高公共交通的覆盖面和服务质量,引导家长和学生选择公共交通出行。

4.倡导绿色出行,鼓励低碳生活。

通过宣传教育,提高人们对低碳出
行的认识,鼓励家长和学生选择步行、自行车等环保出行方式。

5.优化作息时间,错峰出行。

学校和单位可以适当调整作息时间,实现错峰出行,减轻接送压力。

小学奥数应用题专题-接送问题练习含有答案解析

小学奥数应用题专题-接送问题练习含有答案解析

小学奥数应用题专题-接送问题练习含有答案解析1、A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?【答案】3.3小时【解析】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。

对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。

甲多步行1千米要用小时,乙多骑车1千米用小时,甲多用小时。

甲步行1千米比乙少用小时,所以甲比乙多步行的路程是乙步行路程的:.这样设乙丙步行路程为3份,甲步行4份。

如下图安排:这样甲骑车行骑车的,步行. 所以时间为:小时。

2、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【答案】8倍【解析】车下午2时从学校出发,如图,在点与劳模相遇,再返回点,共用时40分钟,由此可知,在从到用了分钟,也就是2时20分在点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个需要1小时,也就是从点走到点需要30分钟,而前面说走完需要20分钟,所以走完要10分钟,也就是说.走完,劳模用了80分钟;走完,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的倍.复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点到两端、的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出与的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走米.相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走米,汽车速度是劳模的倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.3、有一只小猴子在深山中发现了一片野香蕉园,它一共摘了根香蕉,然后要走米才能到家,如果它每次最多只能背根香蕉,并且它每走米就要吃掉一根香蕉,那么,它最多可以把多少根香蕉带回家?【答案】54根【解析】首先,猴子背着100根香蕉直接回家,会怎样?在到家的时候,猴子刚好吃完最后一根香蕉,其他200根香蕉白白浪费了!折返,求最值问题,我们需要设计出一个最优方案..猴子必然要折返3次来拿香蕉.我们为猴子想到一个绝妙的主意:在半路上储存一部分香蕉.猴子的路线:这两个储存点与就是猴子放置香蕉的地方,怎么选呢?最好的情况是:(一)当猴子第①③④次回去时,都能在这里拿到足够到野香蕉园的香蕉.(二)当猴子第②④次到达储存点时,都能将之前路上消耗的香蕉补充好(即身上还有100个)(三)点同上.的距离为,路上消耗个香蕉.的距离为,路上消耗个香蕉.猴子第一次到达点,还有个香蕉,回去又要消耗个,只能留下个香蕉.这个香蕉将为猴子补充②③④次路过时的消耗和需求,每次都是个,则.米,猴子将在留下60个香蕉.那么当猴子②次到达时,身上又有了100个香蕉,到⑤时还有个,从⑤回③需要个,可在留下个,用于⑥时补充从④到⑥的消耗个.则:.至此,猴子到家时所剩的香蕉为:.因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了,所以还没有吃香蕉,应该还剩下54个香蕉.方法二:小猴子背根香蕉最多走米,那么根香蕉需要有分三次背,就应有两个存储点如上图所示,所以还剩下的香蕉为因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了,所以还没有吃香蕉,应该还剩下54个香蕉.4、科学考察队的一辆越野车需要穿越一片全程大于千米的沙漠,但这辆车每次装满汽油最多只能驶千米,队长想出一个方法,在沙漠中设一个储油点,越野车装满油从起点出发,到储油点时从车中取出部分油放进储油点,然后返回出发点,加满油后再开往,到储油点时取出储存的油放在车上,从出发点到达终点.用队长想出的方法,越野车不用其他车帮助就完成了任务,那么,这辆越野车穿越这片沙漠的最大行程是多少千米?【答案】800千米【解析】汽车从起点行驶到点时,首先要消耗掉往返间路程的油,留下的油要保证再次到点时油箱还是满的,所以这辆越野车穿越这片沙漠的最大行程是(千米)5、有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?【答案】520千米【解析】首先得给这5辆吉普车设计一套行驶方案,而这个方案的核心就在于:其中的4辆车只是燃料供给车,它们的作用就是在保证自己能够返回的前提下,为第5辆车提供足够的燃料.如图所示,5辆车一起从A点出发,设第1辆车到B点时留下足够自己返回A点的汽油,剩下的汽油全部转给其余4辆车.注意,B点的最佳选择应该满足刚好使这4辆车全部加满汽油.剩下的4辆车继续前进,到C点时第2辆车留下够自己返回A点的汽油,剩下的汽油全部转给其余3辆车,使它们刚好加满汽油.剩下的3辆车继续前进……到E点时,第4辆车留下返回A点的汽油,剩下的汽油转给第5辆车.此时,第5辆车是加满汽油的,还能向前行驶312千米.以这种方式,第5辆车能走多远呢?我们来算算.5辆车到达B点时,第1辆车要把另外4辆车消耗掉的汽油补上,加上自己往返AB的汽油,所以应把行驶312千米的汽油分成6份,2份自己往返AB,4份给另外4辆车每辆加1份,刚好使这4辆车都加满汽油.因此AB的长为:(千米).接下来,就把5辆车的问题转化为4辆车的问题.4辆车从B点继续前进,到达C点时,4辆车共消耗掉4份汽油,再加上第2辆车从C经B返回A,所以第2辆车仍然要把汽油分成6等份,3份供自己从B到C,再从C返回A,3份给另外3辆车加满汽油,由此知BC长也是52千米.同样的道理,(千米).所以第5辆车最远能行驶:(千米).6、甲、乙两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水.⑴如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?⑵如果可以将部分食物存放于途中以备返回时取用,情况又怎样呢?【答案】⑴320千米⑵360千米【解析】⑴怎么才能让其中一人走得最远呢?只能是另一人在某个地方将自己的部分食物和水(注意必须留足自己返回所需)补给第一个人,让他仍然有24天的食物和水,这样才能走得最远.如图所示,不妨设甲从A点出发,走了x天后到达B点处返回,甲在B点处留足返回时所需x天食物和水后,将其余食物与水全部给乙补足为24天.此时相当于甲的24天的食物和水供甲走2个x天和乙走1个x天,故有(天).所以甲应在第8天从B点处返回A.因为乙在B点已经消耗了8天的食物和水,但同时在B点甲又给乙补充了8天的食物和水,所以此时乙身上仍然携带有24天的食物和水.由于乙也要返回,所以乙最多只能往前走(天)的路程到达C处,就必须返回.所以其中的一人最远只能深入沙漠(千米).(2)如果允许存放部分食物和水于途中,则同上面分析类似,甲走了y天后不仅要补足乙的食物和水,还要存足y天的供乙返回时消耗的食物和水.即甲的24天的食物和水供甲、乙各走2个y天,所以(天).此时的乙不仅补足了24天的食物和水,而且甲还给他预留了返回的食物和水.所以乙就可以带着身上24天的食物和水继续往沙漠深处走12天后再返回,取得甲事先存放的食物和水后,然后再返回出发地.因此,乙共可深入沙漠(千米).7、某沙漠通讯班接到紧急命令,让他们火速将一份情报送过沙漠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题之接送问题综合练习题
1.三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。

现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。

问,三人花的时间各为多少?
2.甲班与乙班学生同时从学校出发去相距170千米的公园,甲乙两班的步行的速度都是每小时4千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那幺甲班学生与乙班学生需要步行的距离是多少千米?
3.甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达公园,那幺甲班学生与乙班学生需要步行的距离之比是多少千米?
4.A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B 地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?。

相关文档
最新文档