2019年高考数学一轮总复习 专题25 三角函数模型及应用检测 理
2019版高考数学(理)一轮复习:函数模型及其应用含解析
课时分层作业十二函数模型及其应用一、选择题(每小题5分,共25分)1.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 ( )A.y=2x-2B.y=(x2-1)C.y=log3xD.y=2x-2【解析】选 B.把表格中的数据代入选择项的解析式中,易得最接近的一个函数是y=(x2-1).2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.3.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是 ( )A.100台B.120台C.150台D.180台【解析】选C.设利润为f(x)(万元),则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000≥0,解得x≥150.则生产者不亏本时的最低产量为150台.4.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )【解析】选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B.5.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c和A的值分别是 ( )A.75,25B.75,16C.60,25D.60,16【解析】选D.由函数解析式可以看出,组装第A件产品所需时间为=15,故组装第4件产品所需时间为=30,解得c=60,将c=60代入=15,得A=16.二、填空题(每小题5分,共15分)6.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,。
高考数学一轮总复习 第25讲 三角函数模型及应用考点集训 理 新人教A版
考点集训(二十五) 第25讲 三角函数模型及应用1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin (π6x +φ)+k.据此函数可知,这段时间水深(单位:m )的最大值为A .5B .6C .8D .102.已知函数f (x )=sin πx 和函数g (x )=cos πx 在区间[0,2]上的图象交于A ,B 两点,则△OAB 的面积是A.328B.22C.528D.3243.如图,圆O 与x 轴的正半轴的交点为A ,点B ,C 在圆O 上,点B 的坐标为(-1,2),点C 位于第一象限,∠AOC =α.若|BC|=5,则sin α2cos α2+3cos 2α2-32=A .-255B .-55C.55 D.2554.如图为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 的各边的长度(单位:km ):AB =5,BC =8,CD =3,DA =5,且A 、B 、C 、D 四点共圆,则AC 的长为________km.5.设常数a 使方程sin x +3cos x =a 在闭区间[0,2π]上恰有三个解x 1,x 2,x 3,则x 1+x 2+x 3=__________.6.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是____________.7.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C.假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?8.已知函数f (x )=Asin ⎝⎛⎭⎪⎫ωx +π4(其中x ∈R ,A >0,ω>0)的最大值为2,最小正周期为8.(1)求函数f (x )的解析式;(2)若函数f (x )图象上的两点P ,Q 的横坐标依次为2,4,O 为坐标原点,求cos ∠POQ 的值.9.已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f (x )在[-π,π]上的单调性;(2)设函数g (x )=ln(mx +1)+1-x1+x,x ≥0,其中m > 0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g (x 1)≥f (x 2)成立,求m 的取值范围.第25讲 三角函数模型及应用【考点集训】1.C 2.A 3.D 4.7 5.7π36.(6-2,6+2)7.【解析】(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin [π-(A +C)]=sin (A +C) =sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m ).所以索道AB 的长为1 040 m .(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时甲行走了(100+50t)m ,乙距离A 处130 t m ,所以由余弦定理得d 2=(100+50t)2+(130t)2-2×130t ×(100+50t)×1213=200(37t 2-70t +50).因为0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min )时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B,得BC =AC sin B ×sin A =1 2606365×513=500(m ).乙从B 出发时,甲已走了50×(2+8+1)=550(m ),还需走710 m 才能到达C.设乙步行的速度为v m /min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m /min )范围内. 8.【解析】(1)∵f(x)的最大值为2,且A>0,∵f(x)的最小正周期为8,∴f(x)=2sin ⎝ ⎛⎭⎪⎫π4x +π4.(2)解法一:∵f(2)=2sin ⎝ ⎛⎭⎪⎫π2+π4=2cos π4=2, f(4)=2sin ⎝ ⎛⎭⎪⎫π+π4=-2sin π4=-2, ∴P(2,2),Q(4,-2).∴|OP|=6,|PQ|=23,|OQ|=3 2.∴cos ∠POQ =|OP|2+|OQ|2-|PQ|22|OP||OQ|=(6)2+(32)2-(23)226×32=33. 解法二:∵f(2)=2sin ⎝ ⎛⎭⎪⎫π2+π4=2cos π4=2, f(4)=2sin ⎝⎛⎭⎪⎫π+π4=-2sin π4=-2, ∴P(2,2),Q(4,-2).∴OP →=(2,2),OQ →=(4,-2).∴cos ∠POQ =cos OP →,OQ →=OP →·OQ →||OP →||OQ→=66×32=33.解法三:∵f(2)=2sin ⎝ ⎛⎭⎪⎫π2+π4=2cos π4=2,f(4)=2sin ⎝ ⎛⎭⎪⎫x +π4=-2sin π4=-2,∴P(2,2),Q(4,-2).作PP 1⊥x 轴,QQ 1⊥x 轴,垂足分别为P 1,Q 1,∴|OP|=6,|OP 1|=2,|PP 1|=2,|OQ|=32,|OQ|2=4,|QQ 1|= 2. 设∠POP 1=α,∠QOQ 1=β,则sin α=33,cos α=63,sin β=13,cos β=223.∴cos ∠POQ =cos (α+β)=cos αcos β-sin αsin β=33. 9.【解析】(1)f′(x)=a sin x +ax cos x -sin x =(a -1)sin x +ax cos x ,f ′⎝ ⎛⎭⎪⎫π4=(a -1)·22+π4·a ·22=2π8,∴f ′(x)=x cos x.∴f ′(x)>0⇒-π<x<-π2,或0<x<π2,∴f ′(x)<0⇒-π2<x<0,或π2<x<π,则f(x)在⎝⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2上单调递增; f(x)在⎝ ⎛⎭⎪⎫-π2,0,⎝ ⎛⎭⎪⎫π2,π上单调递减; (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f(x)单调递增,∴f(x)min =f(0)=1则依题g(x)≥1在x ∈[0,+∞)上恒成立,g′(x)=m ⎝⎛⎭⎪⎫x 2+m -2m (mx +1)(x +1)2,(x ≥0,m>0)①当m ≥2时,m -2m≥0,∴g ′(x)≥0在[0,+∞)上恒成立,即g(x)在[0,+∞)上单调递增,又g(0)=1, 所以g(x)≥1在x ∈[0,+∞)上恒成立, 即m ≥2时成立.②当0<m<2时,当x ∈⎝⎛⎭⎪⎫0,2-m m 时,g ′(x)<0,此时g(x)单调递减,∴g(x)<g(0)=1,故0<m<2时不成立,综上m ≥2.。
2019届高考数学(理)一轮复习讲练测:专题4.4 三角函数 的图象及三角函数模型的简单应用(测)(原卷版)
2019年高考数学讲练测【新课标版理】【测】第四章 三角函数和解三角形第04节 三角函数的图象及三角函数模型的简单应用班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. (2019·武汉市二中)已知函数f(x)=Acos(ωx +φ)的图像如图所示,f(π2)=-23,则f(0)=( )A .-23B .-12C.23D.122. (2019·安徽卷)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)3. 【河南省开封市2019届高三上学期定位考试模拟试题.文8】已知函数()()()cos sin 20f x x x ϕϕπ=-+剟,有一个零点为13π,则ϕ的值是( )A.6πB.3πC.4πD.2π4. (2019·太原模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎪⎫π12,0对称D .关于点⎝⎛⎭⎪⎫5π12,0对称5. (2019·宁夏一模)函数y =⎩⎪⎨⎪⎧kx +1,-3≤x<0,2sin (ωx +φ),0≤x ≤8π3的图像如下图,则( )A .k =13,ω=12,φ=π6B .k =13,ω=12,φ=π3C .k =-13,ω=2,φ=π6D .k =-3,ω=2,φ=π36.【2019河南模拟】已知函数()()2sin f x x ωϕ=+(02πϕ<<)与y 轴的交点为()0,1,且图象上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( ) A .6πB .3πC .2πD .23π 7. 【2019吉林模拟】已知函数()sin(2)(0)2f x x πϕϕ=+<<的一条对称轴为直线12x π=,则要得到函数'()()()12F x f x f x π=-+的图象,只需把函数()f x 的图象( )A .沿x 轴向左平移3π倍B .沿x 轴向右平移3π倍C .沿x 轴向左平移6π倍D .沿x 轴向右平移6π倍8. 【2019河南郑州模拟】已知函数⎩⎨⎧>≤≤=),1(log ),10(sin )(2014x x x x x f π若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是( )A .)2014,1(B .)2015,1(C .)2015,2(D .]2015,2[ 9.【2019辽宁大连师大附中模拟】已知函数)0,4()4sin()(ππP x y x f y 的图象关于点的图象和+==对称,现将)(x f 的图象向左平移4π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,则)(x g y =的表达式为( )A .xy 41sin -= B .1cos 4y x =-C .)44sin(π--=x y D .)44cos(π--=x y10.【2019湖北模拟】已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( ) A .,44a b ππ==-B .,36a b ππ== C .2,36a b ππ== D .52,63a b ππ== 11.【2019全国1高考理第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )x y1Oxy1Oxy1OA B Cxy1OD12.【湖北省重点中学2019届高三上学期第三次月考,文8】已知点(),a b 在圆221x y +=上,则函数()2cos sin cos 12af x a x b x x =+--的最小正周期和最小值分别为( ) A . 32,2π- B . 3,2π- C . 5,2π- D . 52,2π-二、填空题13.【2019江西南昌模拟】 将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .14. 【2019吉林模拟】把函数1()cos cos 22f x x x x =+的图象上各点向右平移(0)φφ>个单位,得到函数()sin 2g x x =的图象,则φ的最小值为 .15. 【山西省忻州市第一中学2019届高三上学期第一次四校联考,文16】已知函数2()2sin cos f x x x x =+-,将()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若函数()y g x =在[,]a b 上至少含有1012个零点,则b a -的最小值为16. 【2019关东模拟】已知函数21()sin sin cos 2f x x x x =+-,下列结论中:①函数()f x 关于8x π=对称;②函数()f x 关于(8π-,0)对称;③函数()f x 在(0,8π)是增函数,④将2y x =的图像向右平移38π可得到()f x 的图像.其中正确的结论序号为 .三、解答题17. (2019·石家庄二中调研)某同学用“五点法”画函数f(x)=Asin(ωx +φ)在某一个周期内的图像时,列表并填入的数据如下表:(1)求x 1,23 (2)将函数f(x)的图像向左平移π个单位,可得到函数g(x)的图像,求函数y =f(x)·g(x)在区间(0,5π3)的最小值.18. (2019·常德模拟)已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围. 19. 【2019西藏模拟】已知函数()4sin cos 4f x x x pw w 骣琪=-?琪桫在4x p =处取得最值,其中()0,2w Î.(1)求函数()f x 的最小正周期;(2)将函数()f x 的图象向左平移36p个单位,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数()y g x =的图象,若a 为锐角,()4=3g a -,求cos a .20. 【2019重庆模拟】(本小题满分12分)已知向量()1cos ,1,(1,3sin )a x b a x ωω=+=+(ω为常数且0ω>),函数b a x f ⋅=)(在R 上的最大值为2.(1)求实数a 的值;(2)把函数()y f x =的图象向右平移6πω个单位,可得函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,求ω取最大值时的单调增区间.。
高考一轮复习专题三角函数(全)详解
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cos α=x r 、tan α=y x分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α.诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根, θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质y =sin x y =cos x y =tan x定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 2.函数y =tan )4(x -π的定义域为( ). A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ). A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域. (2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φω错误!错误!错误!ωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π. (1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角 Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c 的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题————求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
2019高考数学(理)一轮复习全套学案
2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图111)表示的集合是( )图111A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图121(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图211所示,所给图像是函数图像的有( )图211A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。
新高考数学一轮复习考点知识专题讲解与练习 25 三角函数的图象与性质
新高考数学一轮复习考点知识专题讲解与练习考点知识总结25 三角函数的图象与性质高考 概览本考点是高考必考知识点,常考题型为选择题、解答题,分值为5分、12分,中等难度考纲 研读1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性2.理解正弦函数、余弦函数在R 上的性质(如单调性,最大值和最小值,图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z )内的单调性一、基础小题1.函数y =3cos ⎝ ⎛⎭⎪⎫25x -π6的最小正周期是( )A .2π5B .5π2 C .2π D .5π 答案 D解析 由T =2π25=5π,知该函数的最小正周期为5π.故选D.2.已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b ],则b -a 的值是( )A .2B .3C .3+2D .2- 3 答案 B解析 因为函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,所以函数y =2cos x 的值域为[-2,1],所以b -a =1-(-2)=3,故选B.3.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈ZB .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π4≤x <k π+π2,k ∈ZC .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π3≤x <k π+π2,k ∈ZD .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π4≤x ≤k π+π4,k ∈Z答案 B解析 因为直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,所以a =12,故tan x ≥2a 即tan x ≥1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π4≤x <k π+π2,k ∈Z . 4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,π3B .⎣⎢⎡⎦⎥⎤π3,π2C .⎣⎢⎡⎦⎥⎤π2,2π3D .⎣⎢⎡⎦⎥⎤π3,π答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤-π3,a ,所以x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6,因为f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的值域是⎣⎢⎡⎦⎥⎤-12,1,所以由正弦函数的图象和性质可知π2≤a +π6≤7π6,解得a ∈⎣⎢⎡⎦⎥⎤π3,π.故选D.5.函数f (x )=sin 2x +sin x 在[-π,π]的图象大致是( )答案 A解析 显然f (x )是奇函数,图象关于原点对称,排除D ;在区间⎝ ⎛⎭⎪⎫0,π2上,sin 2x >0,sin x >0,即f (x )>0,排除B ,C.故选A.6.下列函数中同时具有以下性质的是( )①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数;④图象的一个对称中心为⎝ ⎛⎭⎪⎫π12,0.A.y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x +π3C .y =sin ⎝ ⎛⎭⎪⎫2x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π3答案 C解析 因为最小正周期是π,所以ω=2,排除A ;当x =π3时,对于B ,y =sin ⎝ ⎛⎭⎪⎫2×π3+π3=0,对于D ,y =sin ⎝ ⎛⎭⎪⎫2×π3-π3=32,又图象关于直线x =π3对称,从而排除B ,D ,经验证y =sin ⎝ ⎛⎭⎪⎫2x -π6同时具有性质①②③④,故选C. 7.(多选)下列关于函数y =tan ⎝ ⎛⎭⎪⎫x +π3的说法,正确的是( )A .在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增B .最小正周期是πC .图象关于⎝ ⎛⎭⎪⎫π4,0成中心对称D .图象关于直线x =π6成轴对称 答案 AB解析 令k π-π2<x +π3<k π+π2,解得k π-5π6<x <k π+π6,k ∈Z ,显然⎝ ⎛⎭⎪⎫-5π6,π6满足上述关系式,故A 正确;易知该函数的最小正周期为π,故B 正确;令x +π3=k π2,k ∈Z ,解得x =k π2-π3,k ∈Z ,任取k 值不能得到x =π4,故C 错误;正切曲线没有对称轴,因此函数y =tan ⎝ ⎛⎭⎪⎫x +π3的图象也没有对称轴,故D 错误.故选AB.8.(多选)已知函数f (x )=sin 4x -cos 4x ,则下列说法正确的是( ) A .f (x )的最小正周期为π B .f (x )的最大值为1 C .f (x )的图象关于y 轴对称D .f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递减答案 ABC解析 ∵f (x )=sin 4x -cos 4x =sin 2x -cos 2x =-cos2x ,∴函数f (x )的最小正周期T =π,最大值为1,A ,B 正确;∵f (-x )=-cos (-2x )=-cos 2x =f (x ),∴f (x )为偶函数,其图象关于y 轴对称,C 正确;∵f 1(x )=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递减,故f (x )=-cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递增,D 错误.故选ABC.9.函数y =sin 2x 的图象可由y =cos 2x 的图象向左平移φ个单位长度得到,则正数φ的最小值为________.答案 π2解析 函数y =sin 2x =1-cos2x 2=1+cos (2x +π)2的图象可由y =cos 2x =1+cos2x2的图象向左平移π2个单位长度得到,故正数φ的最小值为π2.二、高考小题10.(2022·北京高考)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98 D .偶函数,最大值为98 答案 D解析 因为f (-x )=cos (-x )-cos (-2x )=cos x -cos 2x =f (x ),且函数定义域为R ,所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,所以当cos x =14时,f (x )取最大值98.故选D.11.(2022·天津高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π3.给出下列结论:①f (x )的最小正周期为2π; ②f ⎝ ⎛⎭⎪⎫π2是f (x )的最大值; ③把函数y =sin x 的图象上所有点向左平移π3个单位长度,可得到函数y =f (x )的图象.其中所有正确结论的序号是( )A .①B .①③C .②③D .①②③ 答案 B解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫x +π3,所以最小正周期T =2π1=2π,故①正确;f ⎝ ⎛⎭⎪⎫π2=sin⎝ ⎛⎭⎪⎫π2+π3=sin 5π6=12≠1,故②不正确;将函数y =sin x 的图象上所有点向左平移π3个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,故③正确.故选B.12.(2022·全国Ⅱ卷)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .12 答案 A解析 由题意及函数y =sin ωx 的图象与性质可知,12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2.故选A.13.(2022·全国Ⅰ卷)关于函数f (x )=sin |x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( )A.①②④ B .②④ C .①④ D .①③ 答案 C解析 ①中,f (-x )=sin |-x |+|sin (-x )|=sin |x |+|sin x |=f (x ),∴f (x )是偶函数,①正确.②中,当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin x +sin x =2sin x ,函数单调递减,②错误.③中,当x =0时,f (x )=0,当x ∈(0,π]时,f (x )=2sin x ,令f (x )=0,得x =π.又f (x )是偶函数,∴函数f (x )在[-π,π]上有3个零点,③错误.④中,∵sin |x |≤|sin x |,∴f (x )≤2|sin x |≤2,当x =π2+2k π(k ∈Z )或x =-π2+2k π(k ∈Z )时,f (x )能取得最大值2,故④正确.综上,①④正确.故选C.14.(2022·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 根据题意,有f (x )=32cos2x +52,所以函数f (x )的最小正周期为T =2π2=π,且最大值为f (x )max =32+52=4.故选B.15.(2022·全国Ⅲ卷)函数f (x )=tan x1+tan 2x 的最小正周期为( )A .π4B .π2 C .π D .2π 答案 C解析 由已知得f (x )=tan x1+tan 2x=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x cos x =12sin 2x ,所以f (x )的最小正周期T =2π2=π.故选C.16.(2022·全国Ⅲ卷)关于函数f (x )=sin x +1sin x有如下四个命题: ①f (x )的图象关于y 轴对称; ②f (x )的图象关于原点对称; ③f (x )的图象关于直线x =π2对称; ④f (x )的最小值为2.其中所有真命题的序号是________. 答案 ②③解析 函数f (x )的定义域为{x |x ≠k π,k ∈Z },定义域关于原点对称,f (-x )=sin (-x )+1sin (-x )=-sin x -1sin x =-⎝ ⎛⎭⎪⎫sin x +1sin x =-f (x ),所以函数f (x )为奇函数,其图象关于原点对称,命题①错误,命题②正确;对于命题③,因为f ⎝ ⎛⎭⎪⎫π2-x =sin ⎝ ⎛⎭⎪⎫π2-x +1sin ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x ,f ⎝ ⎛⎭⎪⎫π2+x =sin ⎝ ⎛⎭⎪⎫π2+x +1sin ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,则f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x ,所以函数f (x )的图象关于直线x =π2对称,命题③正确;对于命题④,当-π<x <0时,sin x <0,则f (x )=sin x +1sin x <0<2,命题④错误.17.(2022·全国Ⅰ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.答案 -4解析 ∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令t=cos x ,则t ∈[-1,1],g (t )=-2t 2-3t +1.又函数g (t )图象的对称轴t =-34∈[-1,1],且开口向下,∴当t =1,即x =2k π(k ∈Z )时,f (x )有最小值-4.18.(2022·北京高考)函数f (x )=sin 22x 的最小正周期是________. 答案 π2解析由降幂公式得f (x )=sin 22x =1-cos4x 2=-12cos 4x +12,所以最小正周期T =2π4=π2.三、模拟小题19.(2022·浙江温州中学高三月考)函数f (x )=sin 2x +sin 3x 的最小正周期为( ) A .π B .2πC .3π D .6π答案 B解析 y =sin 2x 的最小正周期为π,函数y =sin 3x 的最小正周期为2π3,π与2π3的最小公倍数为2π,所以函数f (x )=sin 2x +sin 3x 的最小正周期为2π.故选B.20.(多选)(2022·湖南长沙第一中学模拟)已知函数f (x )=⎩⎨⎧|sin x |,sin x ≥cos x ,|cos x |,sin x <cos x ,则下列说法正确的是( )A .f (x )的值域是[0,1]B .f (x )是以π为最小正周期的周期函数C .f (x )在区间⎝ ⎛⎭⎪⎫π,3π2上单调递增D .f (x )在[0,2π]上有2个零点 答案 AD 解析 f (x )=⎩⎪⎨⎪⎧|sin x |,π4+2k π≤x ≤5π4+2k π(k ∈Z ),|cos x |,-3π4+2k π<x <π4+2k π(k ∈Z ), 作出函数f (x )的大致图象如图所示:由图可知f (x )的值域是[0,1],故A 正确;因为f (π)=|sin π|=0,f (2π)=|cos 2π|=1,所以f (2π)≠f (π).所以π不是f (x )的最小正周期,故B 错误;由图可知f (x )在区间⎝ ⎛⎭⎪⎫π,5π4上单调递增,在⎝ ⎛⎭⎪⎫5π4,3π2上单调递减,故C 错误;由图可知,在[0,2π]上,f (π)=f ⎝ ⎛⎭⎪⎫3π2=0,所以f (x )在[0,2π]上有2个零点,故D 正确.故选AD.21.(多选)(2022·福建福州高三调研)已知函数f (x )=sin (sin x )+cos (cos x ),下列关于该函数的结论中正确的是( )A .f (x )的一个周期是2πB .f (x )的图象关于直线x =π2对称 C .f (x )的最大值为2 D .f (x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数 答案 ABD解析 f (x +2π)=sin [sin (x +2π)]+cos [cos (x +2π)]=sin (sin x )+cos (cos x )=f (x ),故A 正确;f (π-x )=sin [sin (π-x )]+cos[cos (π-x )]=sin (sin x )+cos (-cos x )=sin (sin x )+cos (cos x )=f (x ),故B 正确;由于sin x ∈[-1,1],cos x ∈[-1,1],所以sin (sin x )<1,cos (cos x )≤1,故f (x )=sin (sin x )+cos (cos x )<2,C 错误;当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x ∈(0,1)且单调递增,故y =sin (sin x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,同理可判断,y =cos (cos x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,故f (x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,D 正确.22.(2022·福建厦门高三模拟)用M I 表示函数y =sin x 在闭区间I 上的最大值,若正数a 满足M [0,a ]≥2M [a ,2a ],则M [0,a ]=________;a 的取值范围为________.答案 1 ⎣⎢⎡⎦⎥⎤5π6,13π12解析 作出函数y =sin x 的图象,如图所示:显然,M [0,a ]的值为1,∵M [0,a ]≥2M [a ,2a ],∴M [a ,2a ]的值为12,作出直线y =12与y =sin x 相交于A ,B ,C 三点,且A ⎝ ⎛⎭⎪⎫π6,12,B ⎝ ⎛⎭⎪⎫5π6,12,C ⎝ ⎛⎭⎪⎫13π6,12,由图象可得⎩⎪⎨⎪⎧5π6≤a ,2a ≤13π6⇒5π6≤a ≤13π12,故a 的取值范围为⎣⎢⎡⎦⎥⎤5π6,13π12.一、高考大题1.(2022·浙江高考)设函数f (x )=sin x +cos x (x ∈R ). (1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x , 所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝ ⎛⎭⎪⎫x +π2=cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin 2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)因为f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝ ⎛⎭⎪⎫x -π4=2sin x , 所以y =f (x )f ⎝ ⎛⎭⎪⎫x -π4=2sin x (sin x +cos x )=2(sin x cos x +sin 2x )=2⎝ ⎛⎭⎪⎫12sin2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π4+22.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以当2x -π4=π2,即当x =3π8时,函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且最大值为1+22.2.(2022·浙江高考)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值; (2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin (x +θ)是偶函数,所以对任意实数x 都有sin (x +θ)=sin (-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或θ=3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝ ⎛⎭⎪⎫x +π4=1-cos ⎝ ⎛⎭⎪⎫2x +π62+1-cos ⎝ ⎛⎭⎪⎫2x +π22=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝ ⎛⎭⎪⎫2x +π3.因此,所求函数的值域是⎣⎢⎡⎦⎥⎤1-32,1+32.二、模拟大题3.(2022·荆州模拟)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.(1)求函数f (x )的最大值及相应的x 的取值的集合; (2)求函数f (x )的图象的对称轴与对称中心.解 (1)当sin ⎝ ⎛⎭⎪⎫2x -π4=1时,2x -π4=2k π+π2,k ∈Z ,即当x =k π+3π8,k ∈Z 时,函数f (x )取得最大值,为2;则使函数f (x )取得最大值的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =3π8+k π,k ∈Z .(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+k π2,k ∈Z . 即函数f (x )的图象的对称轴为直线x =3π8+k π2,k ∈Z . 由2x -π4=k π,k ∈Z ,得x =π8+k π2,k ∈Z , 即函数f (x )的图象的对称中心为⎝ ⎛⎭⎪⎫π8+k π2,0,k ∈Z .4.(2022·安徽亳州高三质量检测)已知函数f (x )=cos x (sin x -3cos x ). (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤π3,2π3上的单调性.解 (1)由题意得f (x )=cos x sin x -3cos 2x=12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝ ⎛⎭⎪⎫2x -π3-32.所以f (x )的最小正周期为T =2π2=π,最大值为1-32.(2)令z =2x -π3,则函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ;单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得 -π12+k π≤x ≤5π12+k π,k ∈Z ;由π2+2k π≤2x -π3≤3π2+2k π,得5π12+k π≤x ≤11π12+k π,k ∈Z . 设A =⎣⎢⎡⎦⎥⎤π3,2π3,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π12+k π≤x ≤11π12+k π,k ∈Z . 易知A ∩B =⎣⎢⎡⎦⎥⎤π3,5π12,A ∩C =⎣⎢⎡⎦⎥⎤5π12,2π3,所以当x ∈⎣⎢⎡⎦⎥⎤π3,2π3时,f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π12上单调递增,在区间⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.5.(2022·信阳高三阶段考试)已知向量m =(3sin ωx -cos ωx ,1),n =⎝ ⎛⎭⎪⎫cos ωx ,12,设函数f (x )=m ·n ,若函数f (x )的图象关于直线x =π3对称且ω∈[0,2].(1)求函数f (x )的单调递减区间;(2)先列表,再用五点法画出f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,7π12上的大致图象.解 (1)f (x )=(3sin ωx -cos ωx ,1)·⎝ ⎛⎭⎪⎫cos ωx ,12=3sin ωx cos ωx -cos 2ωx +12=32sin2ωx -12cos 2ωx =sin ⎝ ⎛⎭⎪⎫2ωx -π6.∵函数f (x )的图象关于直线x =π3对称, ∴2ωπ3-π6=k π+π2,k ∈Z , ∴ω=32k +1,k ∈Z .又ω∈[0,2],∴ω=1,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π+π2≤2x -π6≤3π2+2k π,k ∈Z , 解得k π+π3≤x ≤k π+5π6,k ∈Z .∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6,k ∈Z . (2)列表如下:∴函数f (x )在区间⎣⎢⎡⎦⎥⎤-12,7π12上的大致图象如图所示.。
教育最新2019年人教版高中数学高考三角函数重点题型解析及常见试题、答案Word版
高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos sin(),4t x x x π=++而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。
例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()1262f b π=+= ,所以4b =,a =.(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断.解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目. 题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决. 例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是A.5-B.5C .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin sin 6265ππααααα⎛⎫⎛⎫-+=⇔=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的AB-CD-数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==1tan 2ϕ=, 再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩, 从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证, 由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin αα==B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin θ=,090θ<<)且与点A 相距C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决.解析:(1)如图,AB = AC =,sin BAC θθ∠==由于090θ<<,所以cos 26θ==由余弦定理得BC ==3=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有,11402x y AB ===,2cos )30x AC CAD θ=∠=-=,2sin )20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l的距离7d ==,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅222=10.从而sin 10ABC ∠===在ABQ ∆中,由正弦定理得,sin 40sin(45)AB ABC AQ ABC ∠===-∠. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,sin sin sin(45)157.PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠== 所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π. (1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间.分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-. 点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3s i n ,c o s a αα=,()2sin ,5sin 4cos b ααα=-, 故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于c o sα≠,∴26tan 5tan 40αα+-=,解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==,cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12= 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac+-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )26A A A π==+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 26A A C π∴<+≤<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题. 例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+,111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立. 解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2s i n 22c o s 2f x xt x '=-+≥在区间(,]126ππ上恒成立, 从而t a n 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=所以t≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1s i n 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为 12c o s 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin (1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α= ( )A .m n -B .11()2m n -C .2m n -D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。
高考数学一轮总复习 专题25 三角函数模型及应用检测 理
专题25 三角函数模型及应用本专题特别注意:1.方向角与方位角2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形与立体几何的练习5.圆锥曲线中的焦点三角形问题6.三角形与向量的综合【学习目标】能够运用正、余弦定理等知识解决一些测量距离问题、高度问题、角度问题、面积问题、方向问题等.【方法总结】利用正弦定理或余弦定理解三角形的常见题型有:测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等.1.在解三角形时,要根据具体的已知条件合理选择解法,同时不可将正弦定理和余弦定理割裂开来,有时需要综合运用两个定理才能使题目获得解决.2.在解决与三角形有关的实际问题时,首先要明确题意,正确画出平面图形或空间图形,然后根据条件和图形特点将问题归纳到三角形中解决.3.在画图与识图过程中,要准确理解题目中所涉及的几种角,如仰角、俯角、方位角、方向角,以防出错. 高考模拟:一、单选题1.如图所示,设,两点在河的两岸,一测量者在所在的同侧河岸边选定一点,测出的距离为,,后,就可以计算出,两点的距离为()A. B. C. D.【答案】A【解析】分析:由∠ACB与∠BAC,求出∠ABC的度数,根据sin∠ACB,sin∠ABC,以及AC的长,利用正弦定理即可求出AB的长.点睛:(1)本题主要考查正弦定理解三角形,意在考查学生对该基础知识的掌握能力. (2) 求解三角形应用题的一般步骤:①分析:分析题意,弄清已知和所求;②建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;③求解:正确运用正、余弦定理求解;④检验:检验上述所求是否符合实际意义.2.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设三个内角,,所对的边分别为,,,面积为,则“三斜求积公式”为.若,,则用“三斜求积公式”求得的()A. B. C. D.【答案】D【解析】由可得,由可得,整理计算有:,结合三角形面积公式可得:.本题选择D选项.3.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若正方形与正方形的面积分别为25和1,则()A. B. C. D.【答案】D【解析】设AE=也,BE=y,则x+1=y,,解得x=3,y=4,故得到.故答案为:D.4.已知台风中心位于城市东偏北(为锐角)度的150公里处,以公里/小时沿正西方向快速移动,小时后到达距城市西偏北(为锐角)度的200公里处,若,则( )A. B. 80 C. 100 D. 125【答案】C【点睛】本小题主要考查解三角形的实际应用,考查余弦定理解三角形,考查两角和的余弦公式,考查同角三角函数关系.首先要根据题目画出图象,要对方向角熟悉,上北下南左西右东,在点东西向和是平行的,内错角相等,将已知角都转移到中,然后利用正弦定理和余弦定理解三角形.5.南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有周长为且))sin :sin :sin 11A B C =的ABC ∆,则其面积为( )A.4 B. 2 C. 4 D. 2【答案】A6.某新建的信号发射塔的高度为AB ,且设计要求为:29米AB <<29.5米.为测量塔高是否符合要求,先取与发射塔底部B 在同一水平面内的两个观测点,C D ,测得60BDC ∠=︒, 75BCD ∠=︒, 40CD =米,并在点C 处的正上方E 处观测发射塔顶部A 的仰角为30°,且1CE =米,则发射塔高AB =( )A. ()1米 B. ()1米 C. ()1米 D. ()1米 【答案】A【解析】过点E 作EF AB ⊥,垂足为F ,则BC,BF CE 1EF ===米,30AEF ∠=︒,在BDC 中,由正弦定理得: sin 40sin 60sin 45CD BDC BC SIN CBD ⋅∠⋅===∠米.在Rt AEF 中,tan AF EF AEF =⋅∠==.所以 1AB AF BF =+=+(米),符合设计要求.故选A.7.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. (1+2)米 B. 2米 米 米 【答案】D【解析】设BC 的长度为x 米,AC 的长度为y 米,则AB 的长度为(y −0.5)米,当且仅当()()3141x x -=-时,取“=”号,即12x =+时,y 有最小值2. 本题选择D 选项.8.如图,从气球A 上测得正前方的河流的两岸,B C 的俯角分别为75,30︒︒,此时气球距地面的高度是60m ,则河流的宽度BC 等于( )A. )2401m B. )1801mC. )1201mD. )301m【答案】C9.如图,为测量河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,在点C 处测得A点的仰角为60︒ ,再由点C 沿北偏东15︒ 方向走20m 到位置D ,测得30BDC ∠=︒ ,则塔AB 的高是( )A. 10mB.C.D. 【答案】D【解析】设BC=x ,AC=2x ,在三角形BCD 中, 0105,45,BCD CBD ∠=∠=由正弦定理得到sin30x x =⇒=在直角三角形ABC 中,角BCA=060,进而得到AB= . 故答案为:D.10.[2018·赣州模拟]如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为( )A.海里 B.海里 C.海里 D. 40海里【答案】A11.如图,在Rt ABC ∆中, 1AC =, BC x =, D 是斜边AB 的中点,将BCD ∆沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是 ( )A. (B. ,22⎛⎤⎥ ⎝⎦C.D. (]2,4【答案】A考点:1.空间异面直线位置关系;2. 空间想象能力.12.已知在海中一孤岛D 的周围有两个观察站A C 、,且观察站A 在岛D 的正北5海里处,观察站C 在岛D 的正西方.现在海面上有一船B ,在A 点测得其在南偏西60°方向相距4海里处,在C 点测得其在北偏西30°方向,则两个观察站A 与C 的距离为( )A.2D. 【答案】D【解析】画出如下示意图.由题意可得, 120BCD ∠=︒,又60BAD ∠=︒, 所以A,B,C,D 四点共圆,且AC 为直径、90ABC ∠=︒. 在BAD ∆中, 4,5,60AB AD BAD ==∠=︒,由余弦定理得2222212cos 45245212BD AB AD AB AD BAD =+-⋅⋅∠=+-⨯⨯⨯=,∴BD =.∴2BDAC R sin BAD===∠R 为圆的半径). 选D . 13.如图,海中有一小岛C ,一小船从A 地出发由西向东航行,望见小岛C 在北偏东060,航行8海里到达B 处,望见小岛C 在北偏东015,若此小船不改变航行的方向继续前行)21海里,则离小岛C 的距离为( )A. )82海里 B. )21海里 C. )21海里 D. )41海里【答案】C点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.14.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱的水柱的高度,某人在喷水柱正西方向的A处测得水柱顶端的仰角为45,沿A向北偏东30方向前进100m后到达B处,在B处测得水柱顶端的仰角为30,则水柱的高度试()A. 50mB. 100mC. 120mD. 150m【答案】A【解析】15.海洋中有,,A B C 三座灯塔.其中,A B 之间距高为a ,在A 处观察B ,其方向是南偏东40,观察C ,其方向是南偏东70,在B 处現察C ,其方向是北偏东65, ,B C 之的距离是( )A. a C. 12a 【答案】D【解析】依题意可知, ABC 中,A =30°,B =105°,C =45°,且AB a =, 由正弦定理:sin sin BC ABA C=可得: 2sin sin30sin sin452AB a BC A a C =⨯=⨯=. 本题选择D 选项.16.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步? ” 请问乙.走的步数是( )A.92 B. 152 C. 212 D. 492【答案】C17.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设ABC ∆三个内角A B C 、、所对的边分别为a b c 、、,面积为S ,则 “三斜求积”公式为S =若()222sin 4sin 12a C A a c b =+=+,则用“三斜求积”公式求得ABC ∆的面积为( )【答案】A【解析】由正弦定理得24,4a c a ac ==,且2221224a c b ac +-=-==点睛:本题主要考查中国古代数学史,考查正弦定理的应用,考查新定义公式的理解和应用.由于题目已经给出三角形的面积公式,我们只需在题目中找到公式中需要的条件,即可求出三角形的面积.在两个已知条件中,第一个应用正弦定理可以转化为边的关系,第二个可直接求值,将这两个代入三角形面积公式,即可得出结论. 18.如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )B. 15 D. 14【答案】A【解析】对圆柱沿底面直径进行纵切,如图所示:点睛:本题主要考查圆锥曲线与三角函数交汇处的综合应用,属于难题.此题的难点是如何求出长半轴a 的值,需要先利用切线性质求出AOB ∠,再利用相似求出OC 长,即为a ,短轴长为底面半径,故b 比较容易求出,根据椭圆中的关系式222a b c =+,得出c 值,进而求出离心率. 19.如图,无人机在离地面高的处,观测到山顶处的仰角为、山脚处的俯角为,已知,则山的高度为( )A.B.C.D.【答案】A【解析】分析:由已知得∠ACB =45°,从而在ΔABC 中求得AC ,再在ΔACM 中求得MC ,最后在ΔMNC 中求得MC.点睛:本题考查解三角形的实际应用,首先要掌握测量中的俯角、仰角等概念,其次掌握解三角形的常用定理,如正弦定理、余弦定理、三角形的面积公式,解直角三角形等知识,特别要能够通过分析已知条件、隐含条件选用正确的公式求解.20.甲船在岛的正南方处,千米,甲船以每小时千米的速度向正北航行,同时乙船自出发以每小时千米的速度向北偏东的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是()A. 分钟B. 分钟C. 分钟D. 分钟【答案】A【解析】分析:设经过x小时距离最小,然后分别表示出甲乙距离B岛的距离,再由余弦定理表示出两船的距离,最后根据二次函数求最值的方法可得到答案.详解:假设经过x小时两船相距最近,甲乙分别行至C,D如图示可知BC=10﹣4x,BD=6X,∠CBD=120°CD2=BC2+BD2﹣2BC×BD×cosCBD=(10﹣4x)2+36x2+2×(10﹣4x)×6x×=28x2﹣20x+100当x=小时即分钟时距离最小故选:A.点睛:解决测量角度问题的注意事项(1)明确方位角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.二、填空题21.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩 (如图),要测算两点的距离,测量人员在岸边定出基线,测得,,就可以计算出两点的距离为__________.【答案】【解析】分析:根据三角形内角和定理,求得;再正弦定理,可直接求得AB的长度。
三角函数的图象及三角函数模型的简单应用(讲)-2019年高考数学(文)一轮复习讲练测 Word版含解析
2019年高考数学讲练测【新课标版 】【讲】【考纲解读】【知识清单】1.求三角函数解析式(1)()sin y A x ωϕ=+的有关概念(2)用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:(3)由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. (4)利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+. 2.三角函数图象的变换1.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像; 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像. 伸缩变换:把函数()y f x =图像的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y f x ωω=<<的图像; 把函数()y f x =图像的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y fx ωω=>的图像;把函数()y f x =图像的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图像; 把函数()y f x =图像的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图像. 2.由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象.途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 3 .函数()sin y A x ωϕ=+的图像与性质的综合应用(1)x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. (2)对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭. (3)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.(4)()sin()f x A x ωϕ=+的最小正周期都是2||T πω=.【重点难点突破】考点1求三角函数解析式【1-1】【2018云南省师范大学附属中学适应性月考卷一】将函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位,所得的图象所对应的函数解析式是( )A. sin2y x =B. cos2y x =C. 2sin 23y x π⎛⎫=+ ⎪⎝⎭ D. sin 26y x π⎛⎫=- ⎪⎝⎭【答案】C【1-2】【2018.【答案】【领悟技法】1.根据()sin y A x h ωϕ=++()0,0A ω>>的图象求其解析式的问题,主要从以下四个方面来考虑: (1) A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;(2) h 的确定:根据图象的最高点和最低点,即h =最高点+最低点2;(3) ω的确定:结合图象,先求出周期T ,然后由2T πω= (0ω>)来确定ω;(4) 求ϕ,常用的方法有:①代入法:把图像上的一个已知点代入(此时,,A h ω已知)或代入图像与直线y h =的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定ϕ值时,由函数()sin y A x k ωϕ=++最开始与x 轴的交点的横坐标为ϕω-(即令0x ωϕ+=,x ϕω=-)确定ϕ.将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与x 轴的交点)为002x k ωϕπ+=+,其他依次类推即可.2.注意:(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;(2)函数图象与x 轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;(3)函数取最值的点与相邻的与x 轴的交点间的距离为其函数的41个周期. 【触类旁通】【变式一】【2018安徽省巢湖一中、合肥八中、淮南二中等高中十校联盟摸底】已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象如图所示,若将函数()f x 的图象向左平移2π个单位,则所得图象对应的函数可以为( )A. 32sin 24y x π⎛⎫=-+⎪⎝⎭ B. 32sin 24y x π⎛⎫=+⎪⎝⎭ C. 52sin 24y x π⎛⎫=-+ ⎪⎝⎭ D. 52sin 24y x π⎛⎫=+⎪⎝⎭【答案】A【变式二】【2018安徽省六安市寿县第一中学上学期第一次月考】)【答案】BB.考点2 三角函数图象的变换【2-1】【2018届浙江省嘉兴市第一中学高三上期中】为了得到函数sin 26y x π⎛⎫=+⎪⎝⎭的图象,可以将函数cos2y x =的图象( )A. 向右平移6π个单位 B. 向右平移3π个单位C. 向左平移6π个单位D. 向左平移3π个单位 【答案】A【2-2】【2018黑龙江省大庆实验中学上学期期初考】已知函数()cos (0)6f x x ωπωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则函数()f x 的图象( )A. 可由函数()cos2g x x =的图象向左平移3π个单位而得 B. 可由函数()cos2g x x =的图象向右平移3π个单位而得C. 可由函数()cos2g x x =的图象向左平移6π个单位而得D. 可由函数()cos2g x x =的图象向右平移6π个单位而得【答案】D【领悟技法】1. 在解决函数图像的变换问题时,要遵循“只能对函数关系式中的,x y 变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错.2. 图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.注3.解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.4.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.【触类旁通】【变式一】【2018(所得图象对应的函数为偶函数,则( )D.【答案】C移后函数的解析式,结合所得图象对应的函数为偶函数及余弦型函数的性质,即可求出答案.将其图象向左平移()个单位长度,,故选:C.【变式二】【2018届浙江省嘉兴市第一中学9图象,这个变换可以是( )A. 向左平移C. 向左平移【答案】B考点3函数()sin y A x ωϕ=+的图像与性质的综合应用【3-1】【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.【3-2】【2018)图象相邻两条对称轴之,那么函数()A. B. 关于点C. 关于直线D.【答案】A【3-3】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深y(米)是随着一天的时间()t t≤≤单位小时呈周期性变化,某天各时刻t的水深数据的近似值如024,下表:(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从 ①()sin y A t ωφ=+, ②()cos b y A t ωφ=++,③sin y A t b ω=-+(A 0,0,0)ωπφ>>-<<中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全. 【答案】(1) 选②()cos b y A t ωφ=++做为函数模型, 0.9sin 1.56y t π⎛⎫=+ ⎪⎝⎭;(2) 这一天可以安排早上5点至7点以及11点至18点的时间段组织训练. 才能确保集训队员的安全.试题解析:(Ⅰ)根据表中近似数据画出散点图,如图所示:-依题意,选②()cos b y A t ωφ=++做为函数模型,2.40.6 2.40.60.9 1.522A b -+∴==== 2126T ππωω==∴=0.9cos 1.56y t πϕ⎛⎫∴=++ ⎪⎝⎭0.9 1.532.462.40.93 1.5612102y cos t cos cos sin πϕπϕπϕϕπϕπϕ⎛⎫=++ ⎪⎝⎭⎛⎫∴=⨯⨯++ ⎪⎝⎭⎛⎫∴+= ⎪⎝⎭∴=--<<∴=-又函数的图象过点(,)又 0.9cos 1.50.9sin 1.5626y t t πππ⎛⎫⎛⎫∴=-+=+ ⎪ ⎪⎝⎭⎝⎭【领悟技法】1. 求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2. 如何确定函数sin()(0)y A x A ωϕ=+>当0ω<时函数的单调性对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.求函数sin()y A x ωϕ=+ (或cos()y A x ωϕ=+,或tan()y A x ωϕ=+)的单调区间的步骤: (1)将ω化为正.(2)将x ωϕ+看成一个整体,由三角函数的单调性求解.4.特别提醒:解答三角函数的问题时,不要漏了“k Z ∈”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.【触类旁通】( )A. 3B. 2C. 1D. 0 【答案】C【解析】根据函数f(x)=sin(ωx+φ)(ω>0)的部分图象知,(∴π,ω=2;根据五点法画图知,2×(φ=0,解得φ∴;对于①,函数f(x)的最小正周期是T=π,①错误;对于②,x ∈时,f(x)在上是减函数,②错误;【变式二】【2018福建省闽侯第六中学第一次月考】将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标变为原来的12(纵坐标不变),再往上平移1个单位,所得图象对应的函数在下面哪个区间上单调递增( ) A. ,36ππ⎛⎫-⎪⎝⎭ B. ,22ππ⎛⎫- ⎪⎝⎭ C. ,33ππ⎛⎫- ⎪⎝⎭D. 2,63ππ⎛⎫- ⎪⎝⎭【答案】A【易错试题常警惕】易错典例:将函数()()sin 2,22f x x ππθθ⎛⎫=+-<< ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度后得到函数()g x 的图像,若()f x ,()g x的图像都经过点P ⎛⎝⎭,则ϕ的值可以是( ) A.53π B. 56π C.2π D.6π 易错分析:函数()()sin 2f x x θ=+的图像向右平移ϕ个单位长度误写成()()sin 2g x x ϕθ=++.正确解析:依题意()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦,因为()f x ,()g x的图像都经过点P ⎛ ⎝⎭,所以()sin 2sin 2θθϕ⎧=⎪⎪⎨⎪-=⎪⎩,又因为22ππθ-<<,所以3πθ=,2233k ππϕπ-=+或22233k ππϕπ-=+,即k ϕπ=-或6k πϕπ=--,k Z ∈,在6k πϕπ=--,k Z ∈中,取1k =-,即得56ϕπ=,故选B. 温馨提醒:(1)三角函数图像变换是高考的一个重点内容.解答此类问题的关键是抓住“只能对函数关系式中的,x y 变换”的原则.(2)对于三角函数图像平移变换问题,其移变换规则是“左加右减”,并且在变换过程中只变换其中的自变量x ,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向,另外,当两个函数的名称不同时,首先要将函数名称统一,其次要把x ωϕ+变换成x ϕωω⎛⎫+ ⎪⎝⎭,最后确定平移的单位,并根据ϕω的符号确定平移的方向.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休.""数"与"形"反映了事物两个方面的属性.我们认为,数形结合,主要指的是数与形之间的一一对应关系.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【典例】【2018届北京市城六区一模】函数()()3sin f x x ωϕ=+(0,2πωϕ><)的部分图象如图所示,其中0x 是函数()f x 的一个零点. (I)写出ωϕ,及0x 的值; (Ⅱ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【答案】(Ⅰ)0112,,.612x ππωϕ===;(Ⅱ)最小值为3-;最大值为32.(Ⅱ)由(Ⅰ)可知, ()3sin 26f x x π⎛⎫=+ ⎪⎝⎭,结合正弦函数的性质可得函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为3-;最大值为32. 试题解析:(Ⅰ)由函数图像可得函数的最小正周期为T π=,则22T πω==, 当0x =时, ()()313sin 3sin 023sin ,sin 22x ωϕϕϕϕ+=⨯+==∴=,结合2πϕ<可得: 6πϕ=,函数的解析式为: ()3sin 26f x x π⎛⎫=+⎪⎝⎭,函数的零点满足: 2,6212k x k x ππππ+=∴=-, 令2k =可得: 01112x π=.。
高考数学一轮复习 第25讲《三角函数的模型及应用》热点针对训练 理.pdf
1.设向量a=(1, sin θ),b=(3sin θ,1),且a∥b,则cos 2θ等于( D ) A.- B.- C. D. 2.函数y=sin x(3sin x+4cos x)(xR)的最大值为M,最小正周期为T,则有序数对(M,T)为( B ) A.(5,π) B.(4,π) C.(-1,2π) D.(4,) 3.若0<xsin 3x B.4x0,所以f(x)为增函数. 又0<xf(0)=0, 即4x-sin 3x>0,所以4x>sin 3x. 4.(2012·南通市教研室全真模拟)已知电流I(A)随时间t(s)变化的关系式是I=Asin ωt,t[0,+∞),设ω=100π,A=5,则电流I(A)首次达到峰值时t的值为( C ) A. B. C. D. 解析:易得周期T==,则函数I=Asin ωt,t[0,+∞)首次达到峰值时t==. 5.(2013·山东省冲刺预测)如图,在台湾“莫拉克”台风灾区的搜救现场,一条搜救狗沿正北方向行进x m发现生命迹象,然后向右转105°,行进10 m发现另一生命迹象,这时它向右转135°回到出发点,那么x= m. 解析:因为ABC=180°-105°=75°,BCA=180°-135°=45°,A=180°-75°-45°=60°, 所以=,所以x= m. 6.(2012·长春市第四次调研测)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得BCD=15°,BDC=30°,CD=30 m,并在C测得塔顶A的仰角为60°,则塔的高度为 15 m. 解析:在BCD中,根据正弦定理得, BC=·sin CDB=×sin 30°=15, 在RtABC中,AB=BC·tan ACB=15×tan 60°=15为所求. 7.(2013·无锡市第一次模拟)如图,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角CAD的大小是 45° . 解析:tan ADC=tan DAB===3, tan DCA==2, 所以tan DAC=tan(π-ADC-DCA) =- =-=1, 而ADC>45°,DCA>45°,所以0°<DAC0), 则tan α===; tan β==, 因为tan φ=tan(α-β)= =≤==. 当x=,即x=1.2时,tan φ达到最大值, 因为φ是锐角, 所以tan φ最大时,视角φ最大,所以值班人员看表最清楚的位置为AD=1.2 m,即表盘前1.2 m处. 9.(2012·石家庄市质检)某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为ABC、ABD,经测量AD=BD=14,BC=10,AC=16,C=D. (1)求AB的长度; (2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由. 解析:(1)在ABC中,由余弦定理得 AB2=AC2+BC2-2AC·BCcos C =162+102-2×16×10cos C, 在ABD中,由余弦定理及C=D整理得 AB2=AD2+BD2-2AD·BDcos D =142+142-2×142cos C, 由得: 142+142-2×142cos C=162+102-2×16×10cos C, 解得cos C=. 又因为C为三角形的内角,所以C=60°, 又C=D,AD=BD,所以ABD是等边三角形, 故AB=14,即AB的长度为14. (2)小李的设计符合要求,理由如下: SABD=AD·BDsin D,SABC=AC·BCsin C, 因为AD·BD>AC·BC,sin D=sin C, 所以SABD>S△ABC, 由已知建造费用与用地面积成正比,故选择ABC建造环境标志费用较低,即小李的设计符合要求. 。
2019年高考数学一轮复习:三角函数模型的应用
2019年高考数学一轮复习:三角函数模型的应用三角函数模型的应用1.如果某种变化着的现象具有周期性,那么它就可以借助____________来描述. 2.三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.具体的,我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行____________而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.3.y =||sin x 是以______为周期的波浪形曲线.4.太阳高度角θ、楼高h 0与此时楼房在地面的投影长h 之间有如下关系:________________.自查自纠1.三角函数 2.周期 函数拟合 3.π 4.h 0=h tan θ已知某人的血压满足函数解析式f (t )=24sin160πt +110.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解:由题意可得f =1T =160π2π=80.所以此人每分钟心跳的次数为80.故选C .(2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解:由图知-3+k =2,k =5,y =3sin ⎝⎛⎭⎫π6x +φ+5,y max =3+5=8.故选C .电流I (A)随时间t (s)变化的函数关系式为I =5sin (100π·t +π3),则当t =1200 s 时,电流I 为( )A .5 A B.52A C .2 A D .-5 A解:当t =1200s 时,电流I 为5sin ⎝⎛⎭⎫π2+π3=52 (A).故选B .某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温为________℃.解:依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6), 当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5.故填20.5.一物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示,________.解:设y =A sin(ω·t +φ),则从表中可以得到A =4,T =0.8,所以ω=2πT =2π0.8=5π2,所以y =4sin ⎝⎛⎭⎫5π2t +φ, 又由4sin φ=-4.0,得sin φ=-1,取φ=-π2,故y =4sin ⎝⎛⎭⎫5π2t -π2=-4cos 5π2t . 故填y =-4cos 5π2t.类型一 建立三角模型如图,某大风车的半径为2 m ,每12 s 旋转一周,它的最低点O 离地面0.5 m .风车圆周上一点A 从最低点O 开始,运动t (s)后与地面的距离为h (m).(1)求函数h =f (t )的关系式; (2)画出函数h =f (t )的图象.解:(1)如图,以O 为原点,过点O 的圆O 1的切线为x 轴,建立直角坐标系,设点A 的坐标为(x ,y ),则h =y +0.5.设∠OO 1A =θ,则cos θ=2-y 2,y =-2cos θ+2.又θ=2π12·t =πt 6,所以y =-2cos πt 6+2,h =f (t )=-2cos πt6+2.5.(2)列表:描点连线,即得函数h =-2cos π6t +2.5的图象如图所示:【点拨】本题主要考查建模能力,考查三角函数的图象和性质,以及由数到形的转化思想和作图技能,建立适当的直角坐标系,将现实问题转化为数学问题,是解题的关键.如图是一弹簧振子作简谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则这个振子振动的一个函数解析式是________.解:设函数解析式为y =A sin(ωt +φ)(A >0),则A =2,由图象知,T =2×(0.5-0.1)=45,所以ω=2πT =52π,52π×0.1+φ=π2,所以φ=π4,所以函数的解析式为y =2sin ⎝⎛⎭⎫5π2t +π4.故填y =2sin ⎝⎛⎭⎫5π2t +π4.类型二 根据解析式建立图象模型已知电流I =A sin(ωt +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.根据图中数据求I =A sin(ωt +φ)的解析式.解:由图象可知,A =300,周期T =2×⎝⎛⎭⎫1180+1900=175, 所以ω=2πT =150π,又由sin ⎝⎛⎭⎫150π×1180+φ=0,且|φ|<π2,得φ=π6. 所以I =300sin ⎝⎛⎭⎫150πt +π6.【点拨】由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要善于抓住特殊量和特殊点.(经典题)弹簧挂着的小球作上下振动,时间t (s)与小球相对平衡位置(即静止时的位置)的高度h (cm)之间的函数关系式是h =2sin(2t -π4),t ∈[0,+∞).(1)以t 为横坐标,h 为纵坐标,画出函数在长度为一个周期的闭区间上的简图; (2)小球开始振动的位置在哪里?(3)小球最高点、最低点的位置及各自距平衡位置的距离分别是多少? (4)小球经过多长时间往复振动一次?(5)小球1s 能振动多少次?解:(1)画出h =2sin ⎝⎛⎭⎫2t -π4的简图(长度为一个周期).描点并将它们用光滑的曲线连接起来,即得h =2sin ⎝⎛⎭⎫2t -π4(t ≥0)在一个周期的简图,如图所示.(2)t =0时,h =2sin ⎝⎛⎭⎫-π4=-2,即小球开始振动时的位置为(0,-2)(平衡位置的下方2cm 处).(3)t =3π8+k π(k ∈N )时,h =2;t =7π8+k π(k ∈N )时,h =-2.即最高点位置⎝⎛⎭⎫3π8+k π,2,最低点位置⎝⎛⎭⎫7π8+k π,-2,k ∈N ,最高点、最低点到平衡位置的距离均为2cm. (4)小球往复振动一次所需时间即周期, T =2π2=π≈3.14(s).(5)小球1s 振动的次数为频率, f =1T =1π≈13.14≈0.318(次/s).类型三 三角函数拟合受日月引力影响,海水会发生涨落,在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在不至搁浅时返回海洋,某港口水的深度y (米)是时间t (0≤t ≤24,单位:时)的函数,记作(1)根据以上数据,求出函数y =f (t )的近似表达式;(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面距离)为6.5米,如果该船在同一天内安全进出港,问它至多能在港内停留多长时间(忽略进出港所需的时间)?解:(1)根据数据画出散点图,根据图象,可考虑用函数y =A sin(ωt +φ)+h 刻画水深与时间之间的对应关系,则周期T =12,振幅A =3,h =10,所以y =3sin π6t +10(0≤t ≤24).(2)由题意,该船进出港时,水深应不小于5+6.5=11.5(米),即3sin π6t +10≥11.5,sinπ6t ≥12,2k π+π6≤π6t ≤2k π+56π(k ∈Z ),0≤t ≤24,所以12k +1≤t ≤12k +5(k ∈Z ).在同一天内取k =0或1,则1≤t ≤5或13≤t ≤17.所以该船最早能在凌晨1时进港,最晚下午17时出港,在港口最多停留16小时. 【点拨】(1)这是一道根据生活中的实例编拟的题目,由表中数据抽象出数学问题(求解析式、解不等式),从而得出船在港内最多停留的时间,这一过程体现了数学建模的思想;(2)许多实际问题可以根据以前的记录数据寻找模拟函数,再结合几个关键数据求出解析式.已知某海滨浴场海浪的高度y (m)是时间t (0≤t ≤24,单位:h)的函数,记作:y =f (t )经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b .(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1.25 m 时才对冲浪爱好者开放,请依据(1)的结论,判断一天内有多少时间可供冲浪者进行运动.解:(1)由题意知T =12,所以ω=2πT =2π12=π6.由t =0,y =1.5得A +b =1.5;由t =3,y =1.0得b =1.0,所以A =0.5,b =1,即y =12cos π6t +1,t ∈[0,24].(2)由题意知,当y >1.25时才可对冲浪者开放,所以12cos π6t +1>1.25,cos π6t >12.所以2k π-π3<π6t <2k π+π3,k ∈Z ,即12k -2<t <12k +2,k ∈Z .①因为0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <2或10<t <14或22<t ≤24. 所以有8个小时的时间可供冲浪运动.1.三角函数模型的三种模式在现实生活中,许多变化的现象都具有周期性,因此,可以用三角函数模型来描述.如:气象方面有温度的变化,天文学方面有白昼时间的变化,物理学方面有各种各样的振动波,生理方面有人的情绪、智力、体力变化等.研究这些应用问题,主要有以下三种模式:①给定呈周期变化规律的三角函数模型,根据所给模型,结合三角函数的性质,解决一些实际问题;②给定呈周期变化的图象,利用待定系数法求出函数,再解决其他问题;③搜集一个实际问题的调查数据,根据数据作出散点图,通过拟合函数图象,求出可以近似表示变化规律的函数式,进一步用函数性质来解决相应的实际问题.2.三角函数应用问题解题流程三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,利用三角函数的周期性、有界性等,可以解决很多问题,其解题流程大致是:审读题目,理解题意→设角,建立三角函数模型→分析三角函数的性质→解决实际问题.其中根据实际问题的背景材料,建立三角函数关系,是解决问题的关键.3.将图象和性质赋予实际意义在解决实际问题时,要具体问题具体分析,充分运用数形结合的思想,灵活运用三角函数的图象和性质,将图象和性质赋予实际意义.1.函数y =|sin x |的最小正周期是( )A.π4B.π2 C .π D .2π 解:y =|sin x |是以π为周期的波浪形曲线.故选C .2.电流强度I (安)随时间t (秒)变化的函数I =A sin ()ωt +φ(A >0,ω>0,0<φ<π2)的图象如图所示,则ω=( )A .100πB .100C .200πD .200解:由图知T =2(4300-1300)=150,ω=2πT =2π150=100π.故选A .3.(2015·湖北模拟)某商品一年内每件出厂价在5千元的基础上,按月呈f (x )=A sin(ωx+φ)+B (A >0,ω>0,|φ|<π2) 的模型波动(x 为月份),已知3月份达到最高价7千元,7月份达到最低价3千元,根据以上条件可以确定f (x )的解析式是( )A .f (x )=2sin ⎝⎛⎭⎫π4x +π4+5(1≤x ≤12,x ∈N *) B .f (x )=7sin ⎝⎛⎭⎫π4x -π4+5(1≤x ≤12,x ∈N *) C .f (x )=7sin ⎝⎛⎭⎫π4x +π4+5(1≤x ≤12,x ∈N *) D .f (x )=2sin ⎝⎛⎭⎫π4x -π4+5(1≤x ≤12,x ∈N *) 解:根据题意,T = 2×(7-3)=8,ω=2πT =π4,由⎩⎪⎨⎪⎧A +B =7,-A +B =3, 得⎩⎪⎨⎪⎧A =2,B =5, 当x =3时,2sin ⎝⎛⎭⎫π4×3+φ+5=7,得φ=-π4.所以f (x )=2sin ⎝⎛⎭⎫π4x -π4+5.故选D . 4.如图为一半径是3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮自点Q 开始1 min 旋转4圈,水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(A >0),则有( )A .ω=2π15,A =3B .ω=152π,A =3C .ω=2π15,A =5D .ω=152π,A =5解:因为水轮上最高点距离水面r +2=5 m ,即A +2=5,所以A =3.又因为水轮每秒钟旋转8π60=2π15 rad ,所以角速度ω=2π15.故选A .5.为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖指向位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,秒针从P 0(注:此时t =0)开始沿顺时针方向走动,则点P 的纵坐标y 与时间t 的函数关系为( )A .y =sin ⎝⎛⎫π30t +π6B .y =sin ⎝⎛⎫-π60t -π6C .y =sin ⎝⎛⎭⎫-π30t +π6D .y =sin ⎝⎛⎭⎫-π30t -π6 解:由题意,函数的周期为T =60,所以ω=2π60=π30.设函数解析式为y =sin ⎝⎛⎭⎫-π30t +φ⎝⎛⎭⎫0<φ<π2(秒针是顺时针走动).因为初始位置为P 0⎝⎛⎭⎫32,12,所以t =0时,y =12.所以sin φ=12,φ可取π6.所以函数解析式为y =sin ⎝⎛⎭⎫-π30t +π6.故选C . 6.(2016·厦门模拟)如图,已知l 1⊥l 2,圆心在l 1上,半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =sin 2x2,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )A B C D解:如图,AD =t ,OA =1-t ,cos ∠AOC =1-t ,则x =2∠AOC ,从而y =sin 2x2=sin 2∠AOC =1-cos 2∠AOC =1-(1-t )2=-t 2+2t (0≤t ≤1).故选B .7.已知某种交流电电流I (A)随时间t (s)的变化规律可以拟合为函数I =52sin ⎝⎛⎭⎫100πt -π2,t ∈[0,+∞),则这种交流电在0.5 s 内往复运动的次数为________次. 解:因为f =1T =ω2π=100π2π=50,所以0.5 s 内往复运动的次数为0.5×50=25.故填25.8.(北京海淀2017届期中)去年某地的月平均气温y (℃)与月份x (月)近似地满足函数y=a +b sin ⎝⎛⎭⎫π6x +π6(a ,b 为常数).若6月份的月平均气温约为22 ℃,12月份的月平均气温约为4 ℃,则该地8月份的月平均气温约为________ ℃.解:将(6,22),(12,4)代入函数,解得a =13,b =-18,所以y =13-18sin ⎝⎛⎭⎫π6x +π6. 当x =8时,y =13-18sin ⎝⎛⎭⎫π6×8+π6=31.故填31. 9.画出函数y =|cos x |的图象并观察其周期. 解:函数图象如图所示.从图中可以看出,函数y =|cos x |是以π为周期的波浪形曲线. 我们也可以这样进行验证:|cos(x +π)|=|-cos x |=|cos x |, 所以,函数y =|cos x |是以π为周期的函数.10.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式.解:(1)由图可知:这段时间的最大温差为30-10=20(°C).(2)从图可以看出:从6~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,所以T2=14-6=8,所以T =16.因为T =2πω,所以ω=π8.又因为A =30-102=10,b =30+102=20,所以y =10sin ⎝⎛⎭⎫π8x +φ+20, 将点(6,10)代入得sin ⎝⎛⎭⎫3π4+φ=-1,所以3π4+φ=2k π+3π2,k ∈Z ,所以φ=2k π+3π4,k ∈Z ,取φ=3π4,所以y =10sin ⎝⎛⎭⎫π8x +3π4+20,6≤x ≤14. 11.以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月份随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m 件,且当月售完,请估计哪个月盈利最大?并说明理由.解:由已知条件可得,出厂价格函数关系式为y 1=2sin ⎝⎛⎭⎫π4x -π4+6,销售价格函数关系式为y 2=2sin ⎝⎛⎭⎫π4x -34π+8,则利润函数关系式为2019年高考数学一轮复习 第 11 页 共 11 页 y =m (y 2-y 1)=m [2sin ⎝⎛⎭⎫π4x -34π+8-2sin ⎝⎛⎭⎫π4x -π4-6] =-22m sin π4x +2m . 当x =6时,y =2m +22m =(2+22)m ,即6月份盈利最大.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 解:(1)f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3, 因为0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.(2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3, 故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题25 三角函数模型及应用本专题特别注意:1.方向角与方位角2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形与立体几何的练习5.圆锥曲线中的焦点三角形问题6.三角形与向量的综合【学习目标】能够运用正、余弦定理等知识解决一些测量距离问题、高度问题、角度问题、面积问题、方向问题等.【方法总结】利用正弦定理或余弦定理解三角形的常见题型有:测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等.1.在解三角形时,要根据具体的已知条件合理选择解法,同时不可将正弦定理和余弦定理割裂开来,有时需要综合运用两个定理才能使题目获得解决.2.在解决与三角形有关的实际问题时,首先要明确题意,正确画出平面图形或空间图形,然后根据条件和图形特点将问题归纳到三角形中解决.3.在画图与识图过程中,要准确理解题目中所涉及的几种角,如仰角、俯角、方位角、方向角,以防出错. 高考模拟:一、单选题1.如图所示,设,两点在河的两岸,一测量者在所在的同侧河岸边选定一点,测出的距离为,,后,就可以计算出,两点的距离为()A. B. C. D.【答案】A【解析】分析:由∠ACB与∠BAC,求出∠ABC的度数,根据sin∠ACB,sin∠ABC,以及AC的长,利用正弦定理即可求出AB的长.点睛:(1)本题主要考查正弦定理解三角形,意在考查学生对该基础知识的掌握能力. (2) 求解三角形应用题的一般步骤:①分析:分析题意,弄清已知和所求;②建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;③求解:正确运用正、余弦定理求解;④检验:检验上述所求是否符合实际意义.2.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设三个内角,,所对的边分别为,,,面积为,则“三斜求积公式”为.若,,则用“三斜求积公式”求得的()A. B. C. D.【答案】D【解析】由可得,由可得,整理计算有:,结合三角形面积公式可得:.本题选择D选项.3.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形是由4个全等的直角三角形和中间的小正方形组2成,这一图形被称作“赵爽弦图”.若正方形与正方形的面积分别为25和1,则()A. B. C. D.【答案】D【解析】设AE=也,BE=y,则x+1=y,,解得x=3,y=4,故得到.故答案为:D.4.已知台风中心位于城市东偏北(为锐角)度的150公里处,以公里/小时沿正西方向快速移动,小时后到达距城市西偏北(为锐角)度的200公里处,若,则( )A. B. 80 C. 100 D. 125【答案】C【点睛】本小题主要考查解三角形的实际应用,考查余弦定理解三角形,考查两角和的余弦公式,考查同角三角函数关系.首先要根据题目画出图象,要对方向角熟悉,上北下南左西右东,在点东西向和是平行的,内错角相等,将已知角都转移到中,然后利用正弦定理和余弦定理解三角形.5.南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:3“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为且))sin:sin:sin11A B C=的ABC∆,则其面积为()A.4B.2C.4D.2【答案】A6.某新建的信号发射塔的高度为AB,且设计要求为:29米AB<<29.5米.为测量塔高是否符合要求,先取与发射塔底部B在同一水平面内的两个观测点,C D,测得60BDC∠=︒,75BCD∠=︒,40CD=米,并在点C处的正上方E处观测发射塔顶部A的仰角为30°,且1CE=米,则发射塔高AB=()A. ()1米B. ()1米C. ()1米D. ()1米【答案】A【解析】过点E作EF AB⊥,垂足为F,则BC,BF CE1EF===米,4530AEF ∠=︒,在BDC 中,由正弦定理得:sin 40sin 60sin 45CD BDC BC SIN CBD ⋅∠⋅===∠米.在Rt AEF中,tan AF EF AEF =⋅∠==.所以 1AB AF BF =+=+(米),符合设计要求.故选A.7.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. (1+2)米 B. 2米米米 【答案】D【解析】设BC 的长度为x 米,AC 的长度为y 米,则AB 的长度为(y −0.5)米,6当且仅当()()3141x x -=-时,取“=”号,即12x =+时,y有最小值2. 本题选择D 选项.8.如图,从气球A 上测得正前方的河流的两岸,B C 的俯角分别为75,30︒︒,此时气球距地面的高度是60m ,则河流的宽度BC 等于( )A. )2401mB. )1801mC. )1201mD. )301m【答案】C9.如图,为测量河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,在点C 处测得A7点的仰角为60︒ ,再由点C 沿北偏东15︒ 方向走20m 到位置D ,测得30BDC ∠=︒ ,则塔AB 的高是( )A. 10mB.C.D. 【答案】D【解析】设BC=x ,AC=2x ,在三角形BCD 中, 0105,45,BCD CBD ∠=∠=由正弦定理得到sin30x x =⇒=在直角三角形ABC 中,角BCA=060,进而得到AB= . 故答案为:D.10.[2018·赣州模拟]如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为( )A.海里 B.海里 C.海里 D. 40海里【答案】A811.如图,在Rt ABC ∆中, 1AC =, BC x =, D 是斜边AB 的中点,将BCD ∆沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是 ( )A. (B. ,22⎛⎤⎥ ⎝⎦C.D. (]2,4【答案】A9考点:1.空间异面直线位置关系;2. 空间想象能力.12.已知在海中一孤岛D 的周围有两个观察站A C 、,且观察站A 在岛D 的正北5海里处,观察站C 在岛D 的正西方.现在海面上有一船B ,在A 点测得其在南偏西60°方向相距4海里处,在C 点测得其在北偏西30°方向,则两个观察站A 与C 的距离为( )A.2D. 【答案】D【解析】画出如下示意图.由题意可得, 120BCD ∠=︒,又60BAD ∠=︒, 所以A,B,C,D 四点共圆,且AC 为直径、90ABC ∠=︒. 在BAD ∆中, 4,5,60AB AD BAD ==∠=︒,由余弦定理得2222212cos 45245212BD AB AD AB AD BAD =+-⋅⋅∠=+-⨯⨯⨯=,∴BD =.∴2BDAC R sin BAD===∠R 为圆的半径). 选D . 13.如图,海中有一小岛C ,一小船从A 地出发由西向东航行,望见小岛C 在北偏东060,航行8海里到达B 处,望见小岛C 在北偏东015,若此小船不改变航行的方向继续前行)21海里,则离小岛C 的距离为( )A. )82海里B. )21海里C. )21海里D. )41海里【答案】C1点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.14.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45,沿A 向北偏东30方向前进100m 后到达B 处,在B 处测得水柱顶端的仰角为30,则水柱的高度试( )A. 50mB. 100mC. 120mD. 150m 【答案】A【解析】15.海洋中有,,A B C 三座灯塔.其中,A B 之间距高为a ,在A 处观察B ,其方向是南偏东40,观察C ,其方向是南偏东70,在B 处現察C ,其方向是北偏东65, ,B C 之的距离是( )A. a C. 12a 【答案】D【解析】依题意可知, ABC 中,A =30°,B =105°,C =45°,且AB a =, 由正弦定理:sin sin BC ABA C=可得: 2sin sin30sin sin452AB a BC A a C =⨯=⨯=. 本题选择D 选项.16.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步? ” 请问乙.走的步数是( )A.92 B. 152 C. 212 D. 492【答案】C17.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设ABC ∆三个内角A B C 、、所对的边分别为a b c 、、,面积为S ,则 “三斜求积”公式为S =若()222sin 4sin 12a C A a c b =+=+,则用“三斜求积”公式求得ABC ∆的面积为( )【答案】A【解析】由正弦定理得24,4a c a ac ==,且2221224a c b ac +-=-==点睛:本题主要考查中国古代数学史,考查正弦定理的应用,考查新定义公式的理解和应用.由于题目已经给出三角形的面积公式,我们只需在题目中找到公式中需要的条件,即可求出三角形的面积.在两个已知条件中,第一个应用正弦定理可以转化为边的关系,第二个可直接求值,将这两个代入三角形面积公式,即可得出结论. 18.如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )B. 15 D. 14【答案】A【解析】对圆柱沿底面直径进行纵切,如图所示:点睛:本题主要考查圆锥曲线与三角函数交汇处的综合应用,属于难题.此题的难点是如何求出长半轴a 的值,需要先利用切线性质求出AOB ∠,再利用相似求出OC 长,即为a ,短轴长为底面半径,故b 比较容易求出,根据椭圆中的关系式222a b c =+,得出c 值,进而求出离心率. 19.如图,无人机在离地面高的处,观测到山顶处的仰角为、山脚处的俯角为,已知,则山的高度为( )A.B.C.D.【答案】A【解析】分析:由已知得∠ACB =45°,从而在ΔABC 中求得AC ,再在ΔACM 中求得MC ,最后在ΔMNC 中求得MC.点睛:本题考查解三角形的实际应用,首先要掌握测量中的俯角、仰角等概念,其次掌握解三角形的常用定理,如正弦定理、余弦定理、三角形的面积公式,解直角三角形等知识,特别要能够通过分析已知条件、隐含条件选用正确的公式求解.20.甲船在岛的正南方处,千米,甲船以每小时千米的速度向正北航行,同时乙船自出发以每小时千米的速度向北偏东的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是()A. 分钟B. 分钟C. 分钟D. 分钟【答案】A【解析】分析:设经过x小时距离最小,然后分别表示出甲乙距离B岛的距离,再由余弦定理表示出两船的距离,最后根据二次函数求最值的方法可得到答案.详解:假设经过x小时两船相距最近,甲乙分别行至C,D如图示可知BC=10﹣4x,BD=6X,∠CBD=120°CD2=BC2+BD2﹣2BC×BD×cosCBD=(10﹣4x)2+36x2+2×(10﹣4x)×6x×=28x2﹣20x+100当x=小时即分钟时距离最小故选:A.点睛:解决测量角度问题的注意事项(1)明确方位角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.二、填空题21.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩 (如图),要测算两点的距离,测量人员在岸边定出基线,测得,,就可以计算出两点的距离为__________.【答案】【解析】分析:根据三角形内角和定理,求得;再正弦定理,可直接求得AB的长度。