2012-2013学年第一学期《概率统计复习题》
概率统计复习题
概率统计复习题概率统计练习题一、选择题1.设AB,C 是三个随机事件,则事件“ A,B,C 不多于一个 发生”的对立事件是(B )A . A,B,C 至少有一个发生B . ^B,C 至少有两 个发生C. A,B,C 都发生D . A,B,C 不都发生2•如果(C )成立,则事件A 与B 互为对立事件。
(其 中S为样本空间)A • AB=fB. AUB=S c.篇二 SID . P(A B) 03 .设A,B 为两个随机事件,则P(A B) ( D ) A ・ P(A) P(B) B . P(A) P(B) P(AB)C.D . 1C. P(A) P(AB)D . P(A) P(B) P(AB)4.掷一枚质地均匀的骰子, 现4点的概率为(D )则在出现偶数点的条件下出 5 •设 X 〜N(1.5,4),贝V P{ 2 X 4}=(A .0.8543B . 0.1457C. 0.35413 )第3页0. 25436.设 X 〜N(l,4),则 P{0<X<\.6}= ( )oA ・ 0.3094 B. 0.1457 C. 0.3541D • 0.25437.设X 〜N(“&)则随着,的增大, P{X<p-a 2}=()A ・增大 B.减小C.不变D.无法确定8.设随机变量x 的概率密度/(小 [ex-2=|o E,则尸()o X<1A ・1B • 1 2C. -1D-1C. 一 1D-110.设连续型随机变量X 的分布函数和密度函数分别为F(x)、/(x),则下列选项中正确的是( )A ・ 0WF(x)SlB ・ 0</(x)<l C. P{X = x} = F(x) D.P{X = x}=f(x)11.若随机变量Y = X }+X 2,且尤,血相互独立。
N(O,1) (z = l,2 ), 则()o9.设随机变量x 的概率密度为/(心tx~2 X > 10 xSlA・y 〜N(0,l) B . Y 〜N(0,2) C. Y不服从正态分布D . Y~N(1,1)12 •设X 的分布函数为F(x),则丫 2X 1的分布函数G(y)为 ( )列结论正确的是()以上都不对14.设X 为随机变量,其方差存在,C 为任意非零常数, 则下列等式中正确的是( )A ・ D(X C) D(X)B . D(X C) D(X)C C. D(X C) D(X) CD . D(CX) CD(X)15 •设 X ~ N(0 1) , Y~N(11) , X,Y 相互独立,令 Z Y 2X ,则 Z~ ( )A ・ N( 2,5)B . N(1,5)C. N(1,6) D .N(2,9)16 •对于任意随机变量X,Y ,若E(XY) E(X)E(Y),则()A ・ D(XY) D(X)D(Y)B . D(X Y) D(X) D(Y) C. X,Y 相互独立D . X,Y 不相互独立17.设总体X ~ N , 2,其中未知,2已知,X1,X 2丄,X n为一组A . X 1 X 2B . P X 1 X 21C. D(X1 X 2) 3A・ B . F2y 1C. 2F(y) 1 13 •设随机变量X !, X 2相互独立,X 1 ~ N(0,1), X 2~N(0,2),下样本,下列各项不是 统计量的是()• •nC.-2(X i X)2 3 4 5i 118设总体X 的数学期望为,X -,X 2,X 3是取自于总体X 的简单随机样本, 则统计量()是 的无偏估计量 A •1X 11X 2-X3B亠11 1 X2 X3 2 3 42 3 5C.-X 1 1X 2 1X 3D .1 X 1 1 1 X 2X 3 23623 7:、填空题1 •设A, B 为互不相容的随机事件P(A) 0.2,P(B) 0.5,则P(AU B) _2 •设有10件产品,其中有2件次品,今从中任取1件为正品的概率是 _____________3 •袋中装有编号为1, 2, 3, 4, 5, 6, 7的7张卡片, 今从袋中任取3张卡片,则所取出的3张卡片中有“6” 无“ 4”的概率为 ______________4 •设A, B 为互不相容的随机事件,P(A) 0.1,P(B) 0.7,则P(AUB) _______________5・设A,B 为独立的随机事件,且P(A) 0.2,P(B) 0.5,则P(AUB) ___________________ 6・设随机变量X 的概率密度f(x) 0:其它 1则PX 0.3 ___________________7.设离散型随机变量X 的分布律为P {X k} ^,(k 1,234,5),5B . x- X 42(X i X)0.6贝H a = ______ .&设随机变量X的分布律为:贝y D(X)= _________________9 •设随机变量X的概率密度f(x) 6e X 0 则P{X 1}= 0x0. 6 -6x10 •设X ~ N(10,0.022),贝V P 9.95 X 10.05 = ______11 .已知随机变量X的概率密度是f(x) 1 e x2,则E(X) =12 •设D(X)=5 ,D(Y)=8, X,Y 相互独立。
2012-2013(1)概率统计(A)(定稿)(答案)
徐州工程学院试卷答案2012 — 2013 学年第 一 学期 课程名称 概率统计 试卷类型 A 考试形式 闭卷 考试时间 100 分钟命 题 人 焦琳 2012 年 12 月 2日 使用班级 理工类1. 21;2. npq 或)1(p np -;3. 43; 4. 9.37; 5. )69.40,31.39(. 二、选择题(共5 小题,每题3 分,共计15分) 1. D ; 2. C ; 3. B ; 4. D ; 5. A . 三、(本题10 分)解:设i A (i =1、2)表示“第i 次取得正品”,则i A 表示“第i 次取得次品” .(1)12211121()()()91045P A A P A A P A ==⨯=; …………4分(2)21212()()()P A P A A P A A =+211211()()()()P A A P A P A A P A =+281219109105=⨯+⨯=. …………6分 四、(本题12 分) 解:(1)由()1F +∞=,得lim ()1x x k e k -→+∞-==; …………4分(2)3113{13}(3)(1)(1)(1)P X F F e e e e ----<<=-=---=-; …………4分 (3)由在()f x 的连续点处有()()F x f x '=,得00(),0xx f x e x -<⎧=⎨≥⎩,. …………4分 五、(本题16 分) 解:(1)1{1}(,)X Y P X Y f x y dxdy +≤+≤=⎰⎰1120164xxdx xdy -==⎰⎰; …………6分(2) 16(1),016,01()(,)=0,0,x X x x x xdy x f x f x y dy +∞-∞⎧-<<<<⎧⎪==⎨⎨⎩⎪⎩⎰⎰其他其他. …………4分 206,013,01()(,)=0,0,yY xdx y y y f x f x y dx +∞-∞⎧⎧<<<<⎪==⎨⎨⎩⎪⎩⎰⎰其他其他 ; …………4分 (3)因为(,)()()X Y f x y f x f y ≠,所以X 和Y 不是相互独立的. …………2分 六、(本题12 分) 解:(1)120()(,)12x E X xf x y dxdy dx xy dy +∞+∞-∞-∞==⎰⎰⎰⎰140445x dx ==⎰; …………6分 (2)13()(,)12x E XY xyf x y dxdy dx xy dy +∞+∞-∞-∞==⎰⎰⎰⎰150132x dx ==⎰. …………6分 七、(本题10 分)解:似然函数 11()(1)(1)()nnni i i i L x x θθθθθ===+=+∏∏,对数似然函数 1l n ()l n (1)l n nii L n x θθθ==++∑, …………4分令 1l n ()l n 01ni i d n L x d θθθ==+=+∑,得θ的最大似然估计值为 1ˆ1ln nii nxθ==--∑, …………4分θ的最大似然估计量为 1ˆ1ln nii nXθ==--∑. …………2分八、(本题10分) 解:检验假设222201:0.048:0.048H H σσ=≠ …………2分拒绝域为222102(1)(4)n s αχσ--≤或2222(1)(4)n s αχσ-≥,…………3分 0.1α=,20.00778s =,5n =,0.950.0522(4)0.71,(4)9.49χχ==,观察值220.0522(1)40.0077813.51(4)9.490.048n sχσ-⨯=≈>=,…………3分故拒绝H,喷洒该种农药后小麦叶片宽度的方差不正常.…………2分。
2012-2013(1)概率统计试卷A
设新干燥工艺下的 NDMA 含量(以 10 亿份中的份数计)服从正态分布.试问:在显著性水 平 0.05 下,新工艺下的 NDMA 平均含量下降了吗? (已知:z0.05=1.645,z0.025=1.96,t0.05(9) =1.8331,t0.025(9)=2.2622,t0.05(8)=1.8595,t0.025(8)=2.3060.)
2 x , 设随机变量 X 的概率密度为 f ( x) 0,
1. 求常数 A 和 P{ X 0.5} .
A x0 , 其他.
得分:
六、计算题 (每小题 6 分,共 12 分)
2. 求随机变量 Y 2X 1的概率密度.
1, 0 x 1, 0 y 2 x 1. 设随机变量 X,Y 的联合概率密度为 f ( x, y ) ,求条件概率密度 f X |Y ( x | y) . 其他. 0,
设某社区有 1200 户居民,每户某月的用电量为 0.1kW、0.14kW、0.2kW 的概率分别为 0.3、 0.5、0.2,求该社区这个月的用电总量超过 169.2 kW 的可能性.(已知标准正态分布函数值: , (1.5) 0.9332, (2) 0.9772.) (1) 0.8413
得分:
八、计算题 (每小题 6 分,共 12 分)
2 ( a x ), 0 x a 1. 设随机变量 X 的概率密度为 f ( x ) a 2 , X 1 , X 2 ,, X n 是来自总体 X 其他. 0,
的一个样本,求 a 的矩估计量.
2. 已知总体 X 的分布律为
得分啤酒时,麦芽的干燥过程会形成致癌物质亚硝基二甲胺(NDMA) . 统计数据表明,以往 的干燥工艺所形成的 NDMA 的平均含量(以 10 亿份中的份数计)都高于 2.5. 今研发了一种 麦芽干燥新工艺,新工艺下采集的一组 NDMA 含量(以 10 亿份中的份数计)的数据如下: 2 1 2 2 4 1 2 1 3
概率统计课程复习考试试题及答案卷
《概率统计》复习纲要A一、单项选择题1.对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。
当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于( )。
A 、 B 、 C 、 D 、 2.袋中有5个球(3个新球,2个旧球)。
现每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )。
A 、3/5B 、3/4C 、1/2D 、3/10 3.事件A 与B 相互独立的充要条件为( )。
A 、P(B)P(A)B)P(A +=⋃B 、ΦAB ,ΩB A ==⋃C 、P(A)P(B)P(AB)=D 、P(B)P(A)B)P(A -=- 4.以A 表示事件“零件长度合格且直径不合格”,则A 的对立事件为( )。
A 、零件长度不合格且直径合格B 、零件长度与直径均合格C 、零件长度不合格或直径合格D 、零件长度不合格 5.对于任意两个事件A 与B ,则有P(A-B)为( )。
A 、P(A)-P(B)B 、P(A)-P(B)+P(AB)C 、P(A)-P(AB)D 、P(A)+P(AB) 6.设二维随机变量(X,Y )的分布律为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41a1b 41010,已知事件{X=0}与{X+Y=1}相互独立,则a ,b 的值是( )。
A 、61b ,31a ==B 、31b ,61a ==C 、103b ,51a ==D 、81b ,83a ==7.设函数⎪⎪⎩⎪⎪⎨⎧>≤<≤=1x ,11x 0,2xx ,0(x)F ,则( )。
A 、F(x)是随机变量的分布函数B 、F(x)不是随机变量的分布函数C 、F(x)是离散型随机变量的分布函数D 、F(x)是连续型随机变量的分布函数 8.设随机变量()2,~σμN ξ,且{}{}c ξP c ξP >=≤,则c =( )。
A 、0 B 、μ C 、μ- D 、σ9.设ξ服从[0,1]的均匀分布,12+=ξη则( )。
《概率论与数理统计(本科)》复习题
《概率论与数理统计(本科)》复习题《概率论与数理统计(本科)》期末考试复习题⼀、选择题1、设A 、B 、C 为三个事件,则A 、B 、C 全不发⽣的事件可以表⽰为( ). (A)ABC (B) A B C ?? (C) A B C ?? (D) A B C2、设A 和B 是任意两个事件,且A B ?,()0P B >,则下列结论必成⽴的是()(A )()()P A P A B < (B )()()P A P A B >(C )()()P A P A B ≤ (D )()()P A P A B ≥3、设A 和B 相互独⽴,()0.6P A =,()0.4P B =,则()P A B =()(A )0.4 (B )0.6 (C )0.24 (D )0.54、设A,B 为两随机事件,且B A ?,则下列式⼦正确的是()(A )()()P A B P A ?=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B - 5、以A 表⽰甲种产品畅销,⼄种产品滞销,则A 为( ).(A) 甲种产品滞销,⼄种产品畅销 (B) 甲、⼄产品均畅销 (C) 甲种产品滞销 (D) 甲产品滞销或⼄产品畅销 6、已知()0.5P A =,()0.4P B =,()0.6P A B ?=,则()P A B =()。
(A) 0.2 (B) 0.45 (C) 0.6 (D) 0.75 7、设A B ?,则下⾯正确的等式是( )。
(A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=- (C) )()|(B P A B P = (D) )()|(A P B A P =8、设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是()(A )A 与B 不相容(B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -= 9、设(),(),()P A a P B b P A B c ==?=,则()P AB =( ).(A) a b - (B) c b - (C) (1)a b - (D) b a - 10、对于任意两个事件,A B ,下列式⼦成⽴的是( ).(A) ()()()P A B P A P B -=- (B) ()()()()P A B P A P B P AB -=-+ (C) ()()()P A B P A P AB -=- (D) ()()()P A B P A P AB -=+ 11、已知,()0.2,()0.3A B P A P B ?==,则()P BA =( ).(A) 0.3 (B) 0.2 (C) 0.1 (D) 0.4 12、设B A ,满⾜1)(=B A P ,则有()。
《概率论与数理统计》复习试题带答案(2)
《概率论与数理统计》复习试题带答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤()【正确答案】 A【你的答案】本题分数2分第2题若D(X),D(Y)都存在,则下面命题中错误的是()A. X与Y独立时,D(X+Y)=D(X)+D(Y)B. X与Y独立时,D(X-Y)=D(X)+D(Y)C. X与Y独立时,D(XY)=D(X)D(Y)D. D(6X)=36D(X)【正确答案】 C【你的答案】本题分数2分第3题设F(x)=P{X≤x}是连续型随机变量X的分布函数,则下列结论中不正确的是()A. F(x)不是不减函数B. F(x)是不减函数C. F(x)是右连续的D. F(-∞)=0,F(+∞)=1【正确答案】 A【你的答案】本题分数2分【正确答案】 D【你的答案】本题分数2分第5题从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm,标准方差为1.6cm,若想知这批零件的直径是否符合标准直径5cm,因此采用了t-检验法,那么,在显著性水平α下,接受域为()【正确答案】 A【你的答案】本题分数2分第6题设μ0是n次重复试验中事件A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有limn→∞Pμ0n-p≥ε()A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第7题设X的分布列为X0123P0.10.30.40.2F(x)为其分布函数,则F(2)=()A. 0.2B. 0.4D. 1【正确答案】 C【你的答案】本题分数2分第8题做假设检验时,在()情况下,采用t-检验法.A. 对单个正态总体,已知总体方差,检验假设H0∶μ=μ0B. 对单个正态总体,未知总体方差,检验假设H0∶μ=μ0C. 对单个正态总体,未知总体均值,检验假设H0∶σ2=σ20D. 对两个正态总体,检验假设H0∶σ21=σ22【正确答案】 B【你的答案】本题分数2分第9题已知E(X)=-1,D(X)=3,则E[3(X2-2)]=()A. 9B. 6C. 30D. 36【正确答案】 B【你的答案】本题分数2分第10题X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ}=()A. Φ(k)+Φ(-k)B. 2Φ(k)C. 2Φ(k-1)D. 2Φ(k)-1【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
概率统计A题库(1)
概率统计A 复习题一一、选择题(共8题,每小题3分)1.设A 与B 相互独立, P(A) =0.2,P(B)==0. 4,则P (|)A B =( ) A.0.2 B. 0.4 C. 0.6 D. 0. 82.下列各函数可作为随机变量分布函数的是( )A .F 1(x )=B .F 2(x )=C .F 3(x )=.D .F 4(x )=.3.设随机变量X 的概率密度为 f (x )=则P {-1<X <1}=( ) A .41 B .21 C .43D .1 4.设连续型随机变量X~N (1,4),则21-X ~( ) A .N (3,4) B .N (0,2)C .N (0,1)D .N (1,4)5.设二维随机变量(X ,Y )具有联合密度函数, 0<<1,0<y<1;(,)0, cx x f x y ⎧=⎨⎩其他.则常数C =( ) A .1 B.2C.3D.46.设二维随机变量则P{XY=2}=( )A .15B.310C.12 D.357.设随机变量X 服从参数为2的指数分布,则E (2X -1)=( ) A.0 B.1 C.3D.48.设随机变量X 与Y 不相关,则以下结论中错误..的是( ) A .E(X+Y)=E(X)+E(Y)B.D(X+Y)=D(X)+D(Y)C.E(XY)=E(X)E(Y)D.D(XY)=D(X)D(Y)二、填空题(共8题,每小题3分)9.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 10.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.11、随机变量X 的分布函数为⎩⎨⎧>-=-其他0)1()(2x e A x F x ,常数A= 。
12、设X ~N (3,4),常数c 满足P {X<c }=P {X>c },则常数c= 。
《概率论与数理统计》复习题
《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。
若未被确诊,病人能自然痊愈的概率为0.1。
①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。
概率论与数理统计复习资料
山东科技大学2010—2011学年第一学期《概率论与数理统计》考试试卷(A 卷)一、填空题(本大题共6小题,每小题3分,总计18分)1、1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。
2、设D(X)=4, D(Y)=9, 0.4xy ρ=,则D(X+Y)= 。
3、设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}22P X -≥≤ 。
4、设随机变量X 的期望()3E X =,方差()5D X =,则期望()24E X ⎡⎤+=⎣⎦。
5、设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当a = 时,12311ˆ32X X aX μ=++是总体均值μ的无偏估计。
6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 。
二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)1、设随机变量的概率密度21()01qx x f x x -⎧>=⎨≤⎩,则q=( )。
(A)1/2 (B)1 (C)-1 (D)3/22、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).(A)r n r r n p p C ----)1(11;(B)r n r r n p p C --)1( ;(C)1111)1(+-----r n r r n p pC ;(D)r n r p p --)1(. 3、设)4,5.1(~N X ,则P{-2<x<4}=( )。
(A)0.8543 (B)0.1457 (C)0.3541 (D)0.25434、设,X Y 相互独立,且211~(,)X N μσ,222~(,)Y N μσ,则Z X Y =-服从正态分布,且Z 服从( ).(A) 22112(,)N μσσ+ ; (B)22212(,)N μσσ⋅; (C)221212(,)N μμσσ-+; (D)221212(,)N μμσσ++。
《概率论与数理统计》复习答案
概率论复习一、单项选择题1.袋中有50个乒乓球,其中20个黄球,30个白球,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是(B).A.51 B.52 C.53 D.54 2.设B A ,为随机事件,且5.0)(=A P ,6.0)(=B P ,=)(A B P 8.0.则=)(B A P U (C).A.0.5B.0.6C.0.7D.0.83.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数)(y F Y 为(C).A.)35(-y F XB.3)(5-y F XC.⎪⎭⎫⎝⎛+53y F X D.3)(51+y F X4.设二维随机变量),(Y X 的分布律为则==}{Y X P ( A ).A.3.0B.5.0C.7.0D.8.05.设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D (D).A.0B.1C.4D.66.设),(~2σμN X ,2,σμ未知,取样本n X X X ,,,21 ,记2,n S X 分别为样本均值和样本方差.检验:2:,2:10<≥σσH H ,应取检验统计量=2χ(C).A.8)1(2S n -B.2)1(2S n -C.4)1(2S n -D.6)1(2S n -7.在10个乒乓球中,有8个白球,2个黄球,从中任意抽取3个的必然事件是(B).A.三个都是白球B.至少有一个白球C.至少有一个黄球D.三个都是黄球8.设B A ,为随机事件,且B A ⊂,则下列式子正确的是(A).A.)()(A P B A P =UB.)()(A P AB P =C.)()(B P A B P =D.)()()(A P B P A B P -=-9.设随机变量)4 ,1(~N X ,已知标准正态分布函数值8413.0)1(=Φ,为使8413.0}{<<a X P ,则常数<a (C).A.0B.1C.2D.310.设随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F (B).A.0B.)(x F XC.)(y F YD.111.二维随机变量),(Y X 的分布律为设)1,0,(},{====j i j Y i X P P ij,则下列各式中错误..的是( D ). A.0100P P < B.1110P P < C.1100P P < D.0110P P< 12.设)5(~P X ,)5.0,16(~B Y ,则=--)22(Y X E (A).A.0B.0.1C.2.0 D.113.在假设检验问题中,犯第一类错误的概率α的意义是(C).A.在0H 不成立的条件下,经检验0H 被拒绝的概率B.在0H 不成立的条件下,经检验0H 被接受的概率C.在0H 成立的条件下,经检验0H 被拒绝的概率D.在0H 成立的条件下,经检验0H 被接受的概率14.设X 和Y 是方差存在的随机变量,若E (XY )=E (X )E (Y ),则(B) A 、D (XY )=D (X )D (Y )B 、D (X+Y )=D (X )+D (Y ) C 、X 和Y 相互独立D 、X 和Y 相互不独立 15.若X ~()t n 那么21X ~(B ) A 、(1,)F n ;B 、(,1)F n ;C 、2()n χ;D 、()t n16.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,2σ的无偏估计量是(B )A 、()211n i i X X n =-∑;B 、()2111n i i X X n =--∑;C 、211n i i X n =∑;D 、2X 17、设随机变量X 的概率密度为2(1)2()x f x --=,则(B ) A 、X 服从指数分布B 、1EX =C 、0=DX D 、(0)0.5P X ≤=18、设X 服从()2N σ0,,则服从自由度为()1n -的t 分布的随机变量是(B ) A 、nX S B、2nX S D 19、设总体()2,~σμN X,其中μ已知,2σ未知,123,,X X X 取自总体X 的一个样本,则下列选项中不是统计量的是(B ) A 、31(123X X X ++)B 、)(12322212X X X ++σC 、12X μ+D 、123max{,,}X X X20、设随机变量()1,0~N ξ分布,则(0)P ξ≤等于(C )A 、0B 、0.8413C 、0.5D 、无法判断 21、已知随机变量()p n B ,~ξ,且3,2E D ξξ==,则,n p 的值分别为(D )A 、112,4n p ==B 、312,4n p ==C 、29,3n p ==D 、19,3n p == 22.设321,,X X X 是来自总体X 的样本,EX=μ,则(D )是参数μ的最有效估计。
概率论与数理统计复习题
概率统计练习题一、填空题1、已知P(A)=P(B)=P(C)=25.0,P(AC)=0,P(AB)=P(BC)=15.0,则A 、B 、C 中至少有一个发生的概率为 0.45 。
2、设A 、B 为二事件,P(A)=0.8,P(B)=0.7,P(A ∣B )=0.6,则P(A ∪B)= 0.88 。
3、设X 、Y 相互独立,X ~)3,0(U ,Y 的概率密度为⎪⎩⎪⎨⎧>=-其它,00,41)(41x e x f x ,则(253)E X Y -+= -14 ,(234)D X Y -+= 147 。
4、设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为0.875 .5、已知()3E X =,()D X =2,由切比雪夫不等式估计概率(34)P X -≥≤0.125 。
6、设(100,0.2)XB ,则概率(P 20-X )4≤≈ 0.68 ()84.0)1(=Φ。
7.设X 的分布函数⎪⎩⎪⎨⎧≥-<=1,111,0)(2x x x x F ,则=)(X E 28.已知随机变量X ~),(2σμN ,且)1()5(,5.0)2(-Φ=≥=≥X P X P ,则=μ2,=2σ9 。
9. 已知()0.6P A =,()0.8P B =,则()P AB 的最大值为0.6,最小值为0.4 。
10、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E +=,k b μ+;)(b kX D +=22k σ。
11、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
12、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
13、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E(Y)=4 。
《概率论与数理统计》复习题(含答案)
概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
《概率论与数理统计》
《概率论与数理统计》综合复习资料一、填空题1.由长期统计资料得知,某一地区在4月份下雨(记作事件A )的概率为4/15,刮风(记作事件B )的概率为7/15,刮风又下雨(记作事件C )的概率为1/10。
则:=)|(B A P ; =)(B A P 。
2.一批产品共有8个正品2个次品,从中任取两次,每次取一个(不放回)。
则: (1)第一次取到正品,第二次取到次品的概率为 ; (2)恰有一次取到次品的概率为 。
3.设随机变量)2,1(~2N X 、)3(~P Y (泊松分布),且相互独立,则:)2(Y X E += ; )2(Y X D + 。
4.设随机变量X 的概率分布为X -1 0 1 2 p k 0.1 0.2 0.3 p 则: =EX ;DX = ;Y X =-21的概率分布为。
5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为 。
6.设Y X 、相互独立,且概率分布分别为 2)1(1)(--=x e x f π (-∞<<+∞x ) ; ⎩⎨⎧≤≤=其它,,0312/1)(y y ϕ 则:)(Y X E += ; )32(2Y X E -= 。
7.已知随机变量X 的分布列为 X 0 1 2 P k 0.3 0.5 0.2 则:随机变量X 的期望EX = ;方差DX = 。
8.已知工厂A B 、生产产品的次品率分别为2%和1%,现从由A B 、工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是B 工厂的概率为 。
9.设Y X 、的概率分布分别为⎩⎨⎧≤≤=其它,,0514/1)(x x ϕ; ϕ()y e y y y =>≤⎧⎨⎩-40004,,则:)2(Y X E += ;)4(2Y X E -= 。
10.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤=其它,,02cos )(πx x A x f ,则:系数A = 。
2013概率论与数理统计复习题 (1)
一、选择题1.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为 【 】 (A )518; (B )13; (C )12; (D )以上都不对; 2.设A 、B 、C 为三个事件,则A 、B 、C 恰好有一个发生是 。
【 】(A) ABC ; (B) C B A ⋃⋃; (C) C AB C B A BC A ⋃⋃ ; (D) C B A C B A C B A ⋃⋃;3.“A 、B 、C 三个事件同时不发生”,这一事件可表示为 。
【 】A. C B AB. C B A C B A C B AC. ABCD. C B A 4. 设X 与Y 相互独立,方差D(2X-Y)= 。
【 】 A. 2D(X)+D(Y) B. 2D(X)-D(Y) C. 4D(X)+D(Y) D. 4D(X)-D(Y)5.设随机变量X 与Y 相互独立,其概率分布分别为 【 】010.40.6XP010.40.6Y P则有(A)()0.P X Y == (B )()0.5.P X Y == (C )()0.52.P X Y == (D )() 1.P X Y ==6.设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为 。
【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ; (D) ()()411,430====z P z P 。
7.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==. (C )11,66αβ== (D )51,1818αβ==. ( )8.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )9. 设总体),(~2σμN X ,其中μ已知,2σ未知。
《概率论与数理统计》期末复习题
二、解答题
1.将两信息分别编码为A和B传送出去,接收站收到时, A被误收作B的概率为 0.02,而 B被误收作 A的概率为 0.01.信息 A与信息 B传送的频率程度为2:1。 (1)若接受站收到一信息,是 A的概率是多少? (2)若接受站收到的信息是 A,问原发信息是 A的概率是多少? 解:设
A,A2 分别表示发出A,B. 1
4. 设 X ~ N 1,3 则X的函数Y=
X 1 3
~ N(0,1)
。
5.设二维随机变量(X,Y)的联合分布律为
PX xi , Y y j
1 i 1,2,3; j 1,2,3,4 则 PX x1 __1/3__ 12
2 D 6.已知 EX 1.5 EX 6 ,则 E2 X __ 3 _____( X ) __ 3.75 _____ D2 X _ 15 __
解
因P(X=2)=a+b-(2/3-a)=1/2
于是a=1/6,b=5/6
,a+b=1
X的分布律为
X p
-1 1/6
1 1/3
2 1/2
8. 设连续型随机变量X的分布函数为 A Be x , x 0 求(1)常数A,B的值; F ( x) ( 0) 0, x 0 (2)P(-1<X<1); (3)求X的密度函数。
x0 0 x 1 1 x 2 2 x3 x3
7. 离散型随机变量X的分布函数为 0, x 1 a,1 x 1 F ( x) 且P(X 2) 1 / 2 2 / 3 a,1 x 2 a b, x 2 求a,b及X的分布律,E(X),D(X)。
7. 在假设检验中若原假设H0实际为真时却拒绝H0 ,称这类错误为 弃真(第一类)错误 8.设随机变量 X
概率统计期末复习题
概率统计期末复习一、填空题1、完成一件事情有n 种方法,第一种有m 1种方法,第二种有m 2种方法,…,第n 种有m n 种方法,则完成这件事有: 方法,这种方法则称为 法则。
2、概率的公理化定义: 、 、 。
3、掷两枚骰子,出现点数之和大于9的概率为: 。
4、若事件A 、B 相互独立,且P(A)=0.3,P(B)=0.2,则P(A+B)= 。
5、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,由切比雪夫不等式有P{|X -μ|≥36}≤ 。
6、随机变量X 的K 阶原点矩为 。
7、随机变量X 服从指数分布,则X 的期望是: ,方差是 。
8、(x 1,x 2,…,x n )是取自总体的一个样本,称 为样本均值。
9、已知随机变量T~t(n),则t 0.01(12)= ,已知t 0.99(12)=2.681010、已知X 服从正态分布N(1,4),则Y=3x+5,Y 服从 。
11、随机变量(x,y)不相关的等价条件是: 。
12、D(x+y)= 。
13、随机变量x ,期望E(x)=μ,方差D(x)=σ2,中心化随机变量是: ,标准化随机变量是: 。
二、解答题1、某年级有甲、乙、丙三个班级,各班人数分别占年纪总人数的14 ,13 ,512。
已知甲、乙、丙三个班级中集邮人数分别占该班总人数的12 ,14 ,15,试求: (1) 从该年级中随机地选取一个人,此人为集邮者的概率;(2) 从该年级中随机的选取一个人,发现此人为集邮者,此人属于乙班的概率。
2、已知事件A,B,P(A)=0.5,P(B)=0.7,P(A ∪B)=0.8,试求P(A-B),P(B-A)。
3、已知随机变量X 与Y 独立同分布,且都服从0-1分布,B(1,P),记随机变量:(1) 试求Z 的概率函数。
(2) 试求X 与Z 的联合概率函数。
4、设(X,Y )服从如图区域D 上的均匀分布,求关于X 的和关于Y 的边缘概率密度。
5、设(X,Y)服从区域D:0<X<1,0<Y<X上的均匀分布,求X与Y的相关系数。
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
《概率论与数理统计》分章复习题
第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( ).(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( ).(A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D ) ()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件 (C )A B φ⋂=(空集)(D ))()(B P A P ≥12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( ).(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。
概率论与数理统计(经管类)复习试题及答案
概率论和数理统计真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。
解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。
故选择A。
提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。
2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B.Φ(0.75)C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。
解析:,故选择C。
提示:正态分布的标准化是非常重要的方法,必须熟练掌握。
3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。
第33页解析:,故选择A。
提示:概率题目经常用到“积分的区间可加性”计算积分的方法。
4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-D.1『正确答案』分析:本题考察概率密度的性质。
解析:1=,所以c=-1,故选择B。
提示:概率密度的性质:1.f(x)≥0;4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。
课本第38页5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=『正确答案』分析:本题考察概率密度的判定方法。
解析:① 非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。
概率统计复习题
0,
(1)a, b的值;
(2)P(0.5 X 1.5);
(3)E(2X 1), DX .
0 x 其他
1,且EX
3 5
,求:
7. 已知X ~ E(2), 求Y 3X 2的密度函数.
8. 设X ~ E(5),求EX , DX .
9. 设X ~ U(1, 5),求EX , DX .
X \ Y 1 0 10. 设( X ,Y )的联合分布列为: 1 0.2 0.1
这类错误称为
错误, 把不符合 H0 的总体当做 H0 而
接受, 这类错误称为
错误. 显著性水平 是用来控
制犯第
错误的概率.
28. 设X1, X2 ,L , Xn是来自总体N (, 2 )的样本, 2已知, 要检验
H0 : 0 应用
统计量; 当H0成立时, 该统计量
服从
分布.
29. 设X1, X2 ,L , Xn是来自总体N (, 2 )的样本, 2未知, 要检验
D. k 1 , n 4 2
20. 对总体X ~ N (, 2 )的均值作区间估计, 得到置信度为
95%的置信区间,其意是指这个区间( ). A. 平均含总体95%的值
B. 有95%的机会含的值
C. 平均含样本95%的值 D. 有95%的机会含样本的值
21. 设ˆ1,ˆ2是总体未知参数的两个估计量,则正确的是( ). A. 若Dˆ1 Dˆ2 ,则称ˆ1比ˆ2有效 B. 若Dˆ1 Dˆ2 ,则称ˆ1比ˆ2有效 C. 若ˆ1,ˆ2均为的无偏估计,且Dˆ1 Dˆ2 ,则称ˆ1比ˆ2有效 D. 若ˆ1,ˆ2均为的无偏估计,且Dˆ1 Dˆ2 ,则称ˆ1比ˆ2有效
,
则c
, Y的边缘密度fY ( y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率复习题》 第一套 1.设P(A)=P(B)=P(C)=0.2, P(AB)=P(AC)=0.1, P(BC)=0, 则: P( A B C) ?,P( ABC) ?
解: P( A B C) P(A) P(B) P(C)
P( AB) P(BC) P( AC) P(ABC) 0.4
E(aX bY ) aE( X ) bE(Y ) X ,Y独立 E(XY ) E(X )E(Y )
(3)D(X 2Y ) D(X ) 4D(Y ) 4.2 4 0.25
X ,Y独立 D(aX bY ) a2D(X ) b2D(Y )
5.2
k) k 10
(k
1, 2,3, 4)
则: P(1 X 2.4) ?
解: P(1 X 2.4) P( X 1) P( X 2) 3 10
1234
6. X~ P( ) ,且P(X =1)= P(X =2), 则 ?
解: X ~ P(),则: P(X k) k e
则: (1)E(XY 3) ? (2)E(X 2Y) ? (3)D(X 2Y) ?
解: (1)E(XY 3) E(X )E(Y ) 3 E(X ) 6, E(Y) 0.5
6 0.5 3 6
D(X ) 4.2, D(Y ) 0.25
(2)E(X 2Y ) E(X ) 2E(Y ) 6 2 0.5 5
k!
泊松分布
P(X =1)= P(X =2), 则:1 e 2 e
1! 2!
2
7. 设随机变量X服从参数为n, p的二项分布,已知:
E(X ) 1.6, D(X ) 1.28,则参数n,p = ?
解: X ~ B(n, p)
二项分布
E(X ) np 1.6, D(X ) np(1 p) 1.28
重要公式:P( A B)
解: P(A B) P(A) P(B) P(AB)
P(AB) 0.2
P(A B) 0.2
P(AB) P( A) P( AB)
P( AB) 0.3
3. 某小组有3个男生、5个女生,从中任选2人作组长, 则两人都是女生的概率为 ?
解:
P C52 C30 5
熟背P86-87 常见分布期望、 方差
常见分布的数学期望和方差(P73.背)
X ~ B(n, p) E(X ) np D(X ) np(1 p)
X ~ P()
X ~ U (a,b)
X ~ e()
E(X ) D(X )
E( X ) a b D( X ) (b a)2
P86-87常见分布期望、方差
10.设 X ~ B(100,0.7),由切比雪夫不等式,P( X 70 10) ?
解:
P(
X
E(X
)
)
1
D( X
2
)
P( X
70
10)
P( X
E(X )
10)
1
100
0.7 102
0.3
0.79
11. 设总体 X ~ N (, 2 ) ,X1,X2,X3为来自总体X的样本,
则:Z
1 2
X1
1 2
X2
1 3
X3
是总体均值
的:有偏估计量
解:
E
1 2
X1
1 2
X
2
1 3
X3
1 1 1 1 223
12.设总体 X ~ N (, 2 ) ,从总体中抽出容量, 为n的样本
X1, X 2 ,..., X n ,样本均值为 X ,则
U X ~ N(0,1)
1/ 5 2 x 3
f (x)
0
其他
区间[-2,3] 的均匀分布
p
P( X
1)
区域内的长度 区间总长度
2 5
由二项分布B(3,
p),有:P
C32
2 5
2
1
2 5
C33
2 5
3
44 125
9. 设随机变量X,Y相互独立,且 X ~ B(20,0.3),Y ~ e(2),
P( ABC ) P( A B C) 1 P( A B C) 0.6
ABC BC
0 P( ABC) P(BC) 0 P( ABC) 0
2.已知 P(A) 0.4、P(B) 0.5、P(A B) 0.7 ,则
P(A B) ?P(AB) ?
/ n
2
1
2
n
(Xi
i 1 )2~ Nhomakorabea 2 (n)
13 设 r.v. X~N(2,9),求以下概率?
2
(1) P(0 < X < 4) F(4) F(0)
4
3
2
0
3
2
2 3
2 3
C82
14
3男 共8人 选2人 5女
选0男 选2女
A, B
4. 两人独立地破译密码,他们能单独译出的概率分别为 1/5和1/3,则此密码被译出的概率为多少 ?
解: P(A B) P(A) P(B) P(AB) P(A) P(B) P( A)P(B) 7 15
5. 设随机变量X的分布律为:P(X
2 3
1
2 3
(2) P(X > 3)
1 P(X 3)
2
2 3
1
解题策略:
1 F(3)
1
3
3
2
1
1 3
1.P( X x) F ( x) P(X x) 1 F(x) P( x1 X x2 ) F ( x2 ) F ( x1)
2
12
E(X ) 1
D(
X
)
1
2
X ~ N(, 2) E(X )
D(X ) 2
8. 设随机变量X~U(-2, 3),现对X进行三次独立观测,
求:(1)X的概率密度f(x) (2) P(X >1)
(3)至少有两次的观测值大于1的概率。
解 因为X~U(-2,3),故密度函数为