一、组合结构计算原理混凝土组合桥梁分析实例
钢结构与混凝土结构的组合应用案例分析
钢结构与混凝土结构的组合应用案例分析随着建筑行业的发展和技术的不断进步,钢结构与混凝土结构的组合应用越来越受到人们的关注。
本文将通过分析几个实际案例,探讨钢结构与混凝土结构的组合应用在建筑领域中的优势和潜力。
1. 引言随着城市化进程的加快,建筑结构的设计和施工要求越来越高,如何提高建筑的安全性、经济性和可持续性成为了建筑设计师面临的重要课题。
钢结构和混凝土结构各有其优势,而将两者结合起来,则可以发挥各自的优点,提高建筑结构的性能。
2. 案例一:钢混凝土组合框架在高层建筑中,钢混凝土组合框架的应用越来越广泛。
例如,在某高层住宅项目中,设计师采用了钢混凝土组合框架结构。
在该项目中,钢柱和钢梁承担了大部分的荷载,而混凝土承担了一部分荷载,并提供了抗震和刚度的增强。
分析该案例可以发现,钢结构的优势在于其轻巧、高强度以及施工速度快,而混凝土结构则具有良好的耐久性和抗震性能。
通过将两者组合在一起,可以充分发挥其优势,从而提高建筑结构的整体性能。
3. 案例二:钢筋混凝土桥梁钢结构与混凝土结构的组合应用不仅局限于建筑领域,在桥梁工程中也有广泛的应用。
以某大型跨海桥工程为例,设计师将钢材与混凝土相结合,在桥梁的主体结构中采用钢筋混凝土桥梁体系。
这种组合应用在桥梁工程中具有明显的优势。
钢结构可以提供足够的刚度和抗震性能,而混凝土结构可以增强桥梁的耐久性和荷载承载能力。
此外,由于钢结构的施工速度快,可以有效缩短工期,提高施工效率。
4. 案例三:混合结构的商业建筑在商业建筑领域,钢结构和混凝土结构的组合应用也有很多成功案例。
例如,在某大型购物中心项目中,设计师采用了混合结构,既使用了钢结构,也使用了混凝土结构。
通过这种组合应用,可以实现柱网空间的灵活布置和大跨度的设计。
此外,钢结构可以提供更好的开间高度和空间利用效率,而混凝土结构则能够提供良好的隔声和隔热性能。
5. 总结与展望通过对几个实际案例的分析,可以看出钢结构与混凝土结构的组合应用在建筑领域中具有广阔的市场前景和潜力。
组合梁桥课程设计计算书
3
7
317 330
3
355
25
图 3.2 板的有效计算宽度示意图
翼缘板有效宽度: bs min(80000 / 3,3000,600 12 250) 3000mm ;
,
将混凝土板按与主梁钢材的刚度比进行换算截面: n0
钢-混凝土连续梁桥设计计算书
1 工程结构概况
本设计桥梁为某高速公路跨线桥,设计车道数为双向四车道,设计车速为 120km/h,设计荷载 采用 1.3 倍公路-Ⅰ级荷载。桥梁为跨径布置 50m+80m+50m 的连续梁桥,桥宽为 25.5m。通过综合 分析比较各类桥型,本桥梁采用钢-混凝土组合梁桥结构形式对跨线桥进行初步设计,并进行结构设 计验算。本文先后分别进行截面设计,抗弯强度计算,以及抗剪强度设计。本文设计过程先采用手 工计算,再运用有限元软件进行复核。
目
录
钢-混凝土连续梁桥设计计算书 ............................................................................1 1 工程结构概况 ........................................................................................................... 1 2 结构设计参数及设计原理 ....................................................................................... 1 3 截面特性计算 ........................................................................................................... 2 3.1 钢梁截面特性 ................................................................................................. 3 3.2 混凝土截面特性 ............................................................................................. 3 3.3 组合截面特性 ................................................................................................. 4 4 横向连接系的设计 ................................................................................................... 5 4.1 横向联结系的设计 ......................................................................................... 5 4.2 钢主梁腹板加劲肋的设计 ............................................................................. 6 4.3 主梁荷载的横向分布系数计算 ..................................................................... 7 5 内力计算 ................................................................................................................. 10 5.1 恒载内力计算 ............................................................................................... 10 5.2 活载内力的计算 ........................................................................................... 11 6 主梁作用效应组合与应力验算 ............................................................................. 13 6.1 应力验算 ....................................................................................................... 13 6.2 最不利荷载组合及应力组合 ....................................................................... 18 6.3 负弯矩区混凝土板的配筋计算 ................................................................... 20 6.4 剪力连接件的计算 ....................................................................................... 21 6.5 横隔梁的内力计算 ....................................................................................... 23 7 有限元软件分析计算 ............................................................................................. 26 7.1 有限元建模与计算 ....................................................................................... 26 7.2 结构内力计算结果 ....................................................................................... 27 7.3 结构挠度计算结果 ....................................................................................... 29
实例分析钢—混凝土组合连续箱梁桥的应用
实例分析钢—混凝土组合连续箱梁桥的应用1、前言钢-混凝土组合结构能充分发挥钢材和混凝土的优势性能,与混凝土结构相比能有效减轻结构自重,与钢结构相比能显著提高结构刚度和稳定性能并节省钢材用量,具有良好的经济特性和技术特性,经过几十年的发展被广泛应用于工程实践[1]。
特别是钢-混凝土组合连续箱梁,具有抗弯抗扭刚度大、整体性强、抗震性能好、跨越能力强和快速施工等优点,在桥梁工程建设中被广泛采用。
欧美及日本等发达国家,钢-混凝土组合连续箱梁桥已发展相对成熟,最大跨度已突破200m[2]。
在我国钢-混凝土组合连续箱梁桥的应用较欧美等国落后,但随着我国交通基础建设步伐加快及桥梁工程技术的发展,钢-混凝土组合连续箱梁桥因其本身结构优势和快速施工的特点,逐步广泛应用于中等跨径的城市高架桥梁,尤其是近年来建成及在建的几座知名跨江、跨海桥梁的非通航桥或引桥,出于降低阻水率及结构耐久性等考虑,采用了较大跨度的钢-混凝土组合连续箱梁桥结构,本文将结合几座具体工程实例对钢-混凝土组合箱梁桥在我国的应用进行介绍。
2、武汉二七长江大桥深水区非通航桥武汉二七长江大桥是武汉市二环线的控制性工程,综合结构受力、排洪、跨径协调、景观及用钢量等因素,该桥非通航深水区桥梁采取了6×90m等高钢-混凝土组合连续箱梁桥结构,上、下游分幅布置,双幅桥宽29.5m[3]。
每幅主梁截面采用单箱单室对称倒梯形截面,顶宽14.7m,底宽6.3m,梁高4m,由钢槽形梁和混凝土桥面板通过剪力栓钉连结构成,通过梁体整体横向旋转实现2%的横向坡度设置,跨中标准横断面如图2-1所示。
图2-1 跨中标准横断面(mm)由于结构为钢-混凝土组合连续箱梁结构,中间支点前后附近存在负弯矩区段,此区段内钢梁处于受压区,混凝土桥面板处于受拉区,钢梁和混凝土桥面板受力均不利。
为防止负弯矩区段混凝土桥面板应拉应力而开裂,常用的方法有压载配重法、张拉纵向预应力、支点升降法及混合法[4],经分析比选该桥采取了通过主墩和临时墩共同参与的支点升降法,对负弯矩区段混凝土桥面板施加预应力,从而满足抗裂要求。
钢-混凝土组合梁计算原理及截面设计
【tips】本文由李雪梅老师精心收编整理,同学们定要好好复习!
钢-混凝土组合梁计算原理及截面设计
钢-混凝土组合梁计算原理及截面设计
钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来
的一种新型结构型式。
它主要通过在钢梁和混凝土翼缘板之
间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。
钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自
重,减小地震作用,减小截面尺寸,增加有效使用空间,节
省支模工序和模板,缩短施工周期,增加梁的延性等。
同钢
梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。
近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构
中已得到了越来越广泛的应用,并且正朝着大跨方向发展。
钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和
混凝土结构的优点,具有显著的技术经济效益和社会效益,
适合我国基本建设的国情,是未来结构体系的主要发展方向
之一。
计算原理
在钢-混凝土组合梁弹性分析中,采用以下假定:
1、钢材与混凝土均为理想的弹性体。
2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,
相对滑移很小,可以忽略不计。
3、平截面假定依然成立。
组合梁桥结构的计算理论
弹性计算法验算混凝土硬化前的结构变形。
塑性计算的基本假定是:
(1)假定钢梁的受拉区和受压区均匀受力,并分别达到抗拉和抗压强度(一般比钢材设计强度
低 10%);
(2)混凝土受压区均匀受压并达到弯曲抗压设计强度;
(3)混凝土受拉区开裂,退出工作;
(4)不计混凝土板托和板内的钢筋。
在上述基本假定下,组合梁抗弯承载力按下述公式计算:
当
时,令钢梁受压区截面面积为 ,则钢梁受拉区面积为
(7-14) 。
由平衡条件
图 7-22 塑性理论的截面计算模型(中和轴位于钢梁中)
0 ,有
计算得:
由平衡条件
,有:
式中: ——钢梁受拉区截面应力合力至混凝土翼板截面应力合力间的距离; 2 ——钢梁受拉区截面应力合力至混凝土受压区截面应力合力间的距离;
高的抗压强度和变形能力。
在钢管混凝土结构中,钢管具有如下功能:
1) 钢管本身是耐侧压的模板;
2) 钢管本身可代替钢筋承担拉力和压力;
3) 钢管本身是劲性承重骨架;
4) 钢管可提高核心混凝土的抗压强度。
图 7-4 钢管混凝土结构
(5) 外包钢混凝土结构
外包钢混
凝土结构是外
部配置钢板、型
钢的混凝土结
构。它是在克服
承受作用力的构件或结构。
在桥梁工程中常用的组合结构是钢与混凝土的组合结构。钢-混凝土组合结构的定义:用型钢或
钢板焊接(或冷压)钢截面,在其上面、四周或内部浇筑混凝土,使混凝土与型钢形成整体,并且
共同受力的结构。
目前国内外常用的钢-混凝土组合结构有以下六种类型:
(1)压型钢板与混凝土组合楼板
利用锻压形成的钢板铺在钢梁(次梁)上,通过连接件(或称剪力键)和钢梁的上翼缘焊牢,
钢管混凝土混合结构设计原理及其在桥梁工程中的应用
钢管混凝土混合结构设计原理及其在桥梁工程中的应用摘要:钢管混凝土是--种轻质.高强的组合材料。
近年来在桥梁工程中的应用已越来越多,是一种有效而经济的结构形式。
钢管混凝土不仅已广泛用于拱式桥梁,在其他桥粱及桥粱的其他部位都已有应用。
文章着重介绍了钢管混凝土在桥墩.连续刚构桥,斜拉桥和拱桥上的应用实例,并建议尽快完善桥梁设计规范中的相关内容,以促进钢管混凝土在桥梁工程中的应用与发展。
关键词:钢管混凝土;应用;实例;桥梁工程1前言钢管混凝土是在圆形钢管内填入混凝土形成的一种轻质,高强的组合材料,是套箍混凝土的一种特殊形式。
其基本原理是借助圆形钢管对核心混凝土的套箍约束,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和压缩变形能力。
钢管混凝土除具有强度高、重量轻,延性好,耐疲劳耐冲击等优越的力学性能外,还具有省工省料﹑架设轻便﹑施工快捷等优越的施工性能。
大量试验表明,钢管混凝土的工作性能比较接近于钢,而塑性和韧性还胜于钢。
钢管混凝土在桥梁中的应用是一种最有效,最经济的结构形式,因为:1)钢管对核心混凝土的套箍作用能有效地克服高强混凝土的脆性;2)钢管内无钢筋骨架,便于浇注;3)钢管外无混凝土保护层,能充分发挥高强混凝土的承载力。
钢管混凝土在桥梁工程中的应用越来越多,现简介如下。
2应用实例2.1桥墩日本秋田新干线某高架桥长约1km,其中 150m长路段为软土地带,采用填充土与水泥混合物的钢管桩并采用钢管混凝土桥墩。
对高架桥桥墩采用填充混凝土的钢管,具有如下优点:1)施工快捷;2)承载力大,抗震安全系数高;3)结构柔细,与风景协调。
其设计方法是将钢管截面积转换成钢筋截面积,并将它当作钢筋混凝土构件来计算。
施工步骤为:1)在钢管桩顶部安装锚固架作为承台;2)使用25t吊机将钢管混凝土桥墩的钢管插人锚固架中;3)在墩身与钢管桩钢管接头处填充无收缩水泥浆,并将它们完全固定;4)浇注承台与地下梁的钢筋混凝土;5)在墩身钢管中填充混凝土。
混凝土桥梁结构设计原理
混凝土桥梁结构设计原理混凝土桥梁是一种常见的桥梁结构,它的设计原理涉及到多个方面,包括荷载计算、结构设计、材料选择等。
在本文中,我们将详细介绍混凝土桥梁结构设计的原理。
一、荷载计算混凝土桥梁的荷载计算是设计的基础,它包括静态荷载和动态荷载两个方面。
静态荷载是指在桥梁使用过程中不变的荷载,如自重、人行荷载、风荷载等;动态荷载是指在桥梁使用过程中变化的荷载,如车辆荷载、地震荷载等。
1. 自重荷载混凝土桥梁的自重荷载包括桥梁本身的重量和附属构件的重量。
桥梁本身的重量可以通过结构体系和材料密度计算得出,附属构件的重量则根据实际情况进行估算。
2. 人行荷载人行荷载是指桥梁上人员的荷载,根据不同的使用情况和人员密度,可以采用不同的荷载标准进行计算。
3. 风荷载风荷载是指桥梁在受到风的作用下所受到的荷载,其大小与风速、桥梁形态、桥梁材料等因素有关。
4. 车辆荷载车辆荷载是混凝土桥梁设计中最重要的荷载,其大小与车速、车重、车轴距、车辆类型等因素有关。
车辆荷载的计算需要通过车辆荷载标准进行,不同国家和地区的标准可能有所不同。
5. 地震荷载地震荷载是指地震作用下桥梁所受到的荷载,其大小与地震烈度、桥梁结构、地基条件等因素有关。
地震荷载的计算需要通过地震荷载标准进行。
二、结构设计混凝土桥梁的结构设计需要考虑多个因素,包括桥梁跨度、荷载、材料特性等。
1. 桥梁跨度桥梁跨度是混凝土桥梁设计中最重要的因素之一,它直接影响桥梁的结构形式和材料选择。
一般而言,跨度越大,桥梁的结构形式越为复杂,需要采用更高强度的材料进行支撑。
2. 荷载混凝土桥梁的荷载是设计中最基本的考虑因素之一,荷载越大,桥梁所需的支撑结构和材料就越多。
因此,在设计混凝土桥梁时,需要根据实际情况进行荷载计算。
3. 材料特性混凝土桥梁的材料包括混凝土和钢筋,其特性直接影响桥梁的耐久性和承载能力。
因此,在设计混凝土桥梁时,需要选择合适的混凝土和钢筋材料,并考虑它们的强度、耐久性、施工难度等因素。
钢混组合简支梁桥算例
钢混组合简支梁桥算例-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括以下方面的内容:在这篇文章中,我们将探讨钢混组合简支梁桥的设计原理和计算方法,并通过一个具体的算例进行实例分析。
简支梁桥作为常见的桥梁形式之一,具有结构简单、施工方便、经济实用等特点,广泛应用于各种道路和铁路工程中。
钢混组合简支梁桥,是在传统钢筋混凝土梁桥的基础上引入了钢材的组合材料。
它既充分利用了钢材的高强度、良好延性和耐腐蚀性能,又发挥了混凝土的良好耐久性和抗压性能。
因此,钢混组合简支梁桥在桥梁工程中得到了广泛的关注和应用。
本文将以一个具体的算例作为实例,对钢混组合简支梁桥的设计过程进行详细讲解。
我们将介绍实例桥梁的基本参数,并通过受力分析,探究桥梁结构的受力特点和计算方法。
随后,我们将详细介绍实例桥梁的设计过程,包括各个部分的设计计算和材料选取。
最后,我们将给出实例桥梁的验算结果,并进行结果分析。
通过本文的阅读,读者将能够全面了解钢混组合简支梁桥的设计原理和计算方法,掌握实际应用中的计算步骤和注意事项。
同时,通过实例分析,读者将了解到实际工程中的具体情况和解决问题的方法。
期望本文能够为相关领域的专业人士提供一些有益的参考和借鉴,推动桥梁工程的发展与进步。
1.2文章结构1.2 文章结构本文分为引言、正文、实例分析和结论四个部分。
引言部分主要对文章进行概述,介绍了钢混组合简支梁桥算例的背景和意义。
然后对文章的结构进行了简要说明,包括各个部分的内容和目的。
最后对整个文章进行了总结,提出了预期目标和初步结论。
正文部分是文章的核心内容,侧重于讲解钢混组合简支梁桥的设计原理和计算方法。
首先对简支梁桥进行了定义和特点的介绍,然后详细解释了钢混组合简支梁桥的设计原理,包括其设计思路和重要考虑因素。
接着介绍了算例的选择和设置,并对其进行了结构分析和计算方法的介绍。
正文部分的内容将会详细阐述钢混组合简支梁桥的设计和计算过程,提供具体的案例分析和技术指导。
组合结构在桥梁中的应用
组合结构在桥梁中的应用随着城市化进程的加速,交通建设已成为现代化城市建设的重要组成部分。
而桥梁作为城市交通的快速通道,在现代化城市规划中扮演着非常重要的角色。
桥梁作为承载交通载荷的重要建筑物,其结构设计和材料方案必须考虑到安全、可靠、经济等方面的因素。
对于此类建筑物,使用组合结构可以提高整座桥梁的承载能力,减少建设成本等优点。
组合结构简介组合结构是一种将不同材料或不同工艺的构件组合在一起的结构形式。
在桥梁结构设计中,常见的组合结构包括混凝土和钢、混凝土和预应力钢筋、钢和木材等。
利用组合结构的优势,设计师可以在保证结构稳定性和安全性的前提下,实现建筑物的轻量化和材料节约。
组合结构在桥梁中的应用混凝土和钢结构的组合混凝土和钢结构的组合结构在桥梁中广泛应用。
其中,混凝土作为桥墩和桥面梁的主要建筑材料,而钢结构则主要应用于桥梁的悬索索道、悬挂支架和桥梁的钢桁架。
这种组合结构在桥梁设计中的优点包括材料的节约、建筑物的轻量化以及建筑物结构的强度、刚度和稳定性得到有效保障。
同时,相对于传统桥梁设计,此类组合结构可以减少建筑物重量,降低建设成本,提高风险承受力。
钢和木材的组合在一些特殊桥梁的建设中,使用钢和木材的组合结构可以提高建筑物的整体美观度。
此类组合结构不仅具备良好的强度和刚度,还具有天然木材的美观性能。
而且,在桥梁设计中使用木材进行缆索和支架等部件的组合,也可以显著提高桥梁光滑性和汽车驾驶的安全性。
组合结构桥梁的实际应用新安江大桥新安江大桥作为世界上最大的双塔斜拉桥之一,其主塔高达300米,结构宏伟。
在设计过程中,设计师采用了混凝土和钢的组合结构形式,主桥面梁采用钢、混凝土和预应力锚杆进行结构加固施工,主塔则选用直径90寸的钢管材料,提高了结构强度和稳定性。
香港岛线地铁大桥香港岛线地铁大桥为香港地铁岛线上一座重要桥梁,设计师采用了混凝土和钢组成的组合结构形式,其中桥墩采用高强度混凝土材料,桥面梁选用了钢和混凝土的复合材料结构。
钢(梁)—砼(桥面板)组合梁桥力学性能研究分析
钢(梁)—砼(桥面板)组合梁桥力学性能研究分析钢(梁)—砼(桥面板)组合梁桥力学性能研究分析一、引言钢(梁)—砼(桥面板)组合梁桥是一种常见的桥梁结构形式,由钢梁和砼桥面板组合而成。
该结构形式具有较好的结构性能,广泛应用于公路、铁路等交通运输领域。
本文旨在通过对钢(梁)—砼(桥面板)组合梁桥力学性能的研究分析,深入了解该结构的力学特性,为设计和施工提供科学依据。
二、组合梁桥的力学特性钢(梁)—砼(桥面板)组合梁桥具有如下的力学特性:1. 抗弯性能优越:钢梁作为主要承载结构,具有较高的强度和刚度,能够有效承担桥梁的荷载,并提供较大的抗弯强度。
而砼桥面板则能够增加梁的刚性,提高抗弯性能。
2. 轻量化结构:由于钢材密度较小,采用钢梁作为主梁能够降低桥梁自重,减小对基础的要求。
同时,砼桥面板可以考虑采用空心板等轻质材料,进一步降低桥梁的自重,提高桥梁的承载能力。
3. 界面传力良好:钢梁与砼桥面板通过可靠的连接方式相连接。
界面传力良好,能够有效传递荷载,保证桥梁整体性能。
4. 抗震性能优良:钢梁具有良好的抗震性能,能够在地震等极端加载条件下保持较好的稳定性。
而砼桥面板能够增加钢梁的抗震性能,提高桥梁的整体稳定性。
三、组合梁桥力学性能的研究方法针对钢(梁)—砼(桥面板)组合梁桥的力学性能进行研究时,可以采用如下方法:1. 数值模拟方法:通过建立组合梁桥的三维有限元模型,采用数值模拟方法分析其受力情况。
可以通过改变不同参数来模拟不同工况下的受力效应,进而评估桥梁的承载能力和变形情况。
2. 实验测试方法:通过在实验室或野外进行模型或原型试验,通过加载仪器对组合梁桥进行加荷,记录并分析其受力状况,并通过测量得到的数据进行参数分析与计算,对不同工况下的力学性能进行评估。
3. 统计分析方法:通过采集不同组合梁桥实际使用的运行数据,通过统计、分析和比较,评估不同组合梁桥在实际工程中的应用效果,总结其优缺点,并进行改进和优化。
钢-混凝土组合梁
钢-混凝土组合梁的设计和施工需要 综合考虑多种因素,包括材料特性、 结构形式、施工工艺等,以确保其性 能和安全。
钢-混凝土组合梁在桥梁工程中得到 了广泛应用,特别是在大跨度桥梁和 复杂结构形式中,其优势更加明显。
钢-混凝土组合梁在长期使用过程中 可能会面临一些问题,如疲劳、腐蚀 等,因此需要采取相应的维护和加固 措施。
对未来研究的展望
随着科技的不断进步,钢-混凝 土组合梁在未来仍将是一个重 要的研究方向,需要进一步探
索其性能和优化设计方法。
对于钢-混凝土组合梁的耐久性 问题,需要加强研究,提出更 加有效的防腐、防锈和加固措
相关规范。
05 钢-混凝土组合梁的优势 与挑战
钢-混凝土组合梁的优势
高承载能力
结构自重轻
钢-混凝土组合梁能够承受较大的集中荷载 和均布荷载,具有较高的承载能力。
由于钢材料具有轻质高强的特点,因此钢混凝土组合梁的结构自重相对较轻,有利 于减轻整体结构的重量。
施工速度快
节能环保
钢-混凝土组合梁的构件可以预先在工厂制 作,现场安装方便快捷,能够缩短施工周 期。
总结词
施工方便,工期短
详细描述
钢-混凝土组合梁的施工方便,能够缩短工期,降低施 工成本。该大桥的施工过程采用了预制拼装的施工方法 ,大大提高了施工效率。
工程案例二
总结词
抗震性能好
详细描述
某高层建筑采用钢-混凝土组合梁作为主要承重结构,具 有良好的抗性能,能够有效地抵抗地震作用。
总结词
承载能力高
详细描述
钢-混凝土组合梁的承载能力较高,能够满足高层建筑对 承重结构的要求。同时,该组合梁还具有良好的塑性和韧 性,能够吸收地震能量,减少结构损伤。
钢-混凝土组合弯梁桥设计计算实例
一
( 1 0 ) 相对湿度 : 8 0 %;
( 1 1 ) 设计荷 载等级 : 公路 一 I级 设 计 , 并 用 城
A级荷载进行验算 ; ( 1 2 )地震基本烈度 :桥址区地震动峰值加速 度为 0 . 1 g , 按 Ⅶ 度设 防; ( 1 3 ) 环境 类 别 : I 类 环境 , 按 I I类 环境 设 计 。
钢箱梁采用直腹板 , 底板水平 , 腹板高度变化形成 横坡 , 桥 面横 坡 2 . 0 %, 悬臂 2 m, 全 桥 钢 梁 采 用 工 厂分段预制 , 现场高强螺栓连接后施工桥面板混凝 土 。桥宽 B =1 O . 5 m, 箱底 宽 6 m。 桥 面横 断 面组 成 为: 0 . 7 5 m( 防撞 护 栏 ) + 9 m( 行 车道 ) + O . 7 5 m( 防撞 护栏 ) 。 桥梁立面图见图 l 所示 , 标准横 断面见图 2
序进行校核 , 对 内外侧支座反力进行对比分析。 关 键词 : 钢 一混凝 土组合弯粱桥 ; 设计 ; 计算
中图分 类 号 : u 4 4 8 . 3 8 文 献标 识码 : B 文章 编号 : 1 09 — 7 7 1 6 ( 2 0 1 3 ) 0 4 — 0 0 8 8 — 0 4
( J T J 0 2 5 准则》 ( C J J l l 一 9 3 ) ; ( 9 ) 结构重要性 系数 : 1 . 1 ;
收稿 日期 : 2 0 1 3 — 0 1 — 1 4
孔道偏 差系数 k = 0 . 0 0 1 5 ; 锚具变形 回缩值 △ = O . 0 0 6 。 ( 3 ) Q 3 4 5 q — C钢 板 , 其 技 术 参数 见 表 3所列 。 剪 变模 量 : G=0 . 8 1 x 1 0 MP a 。 3 . 2设 计 荷载 取 值 3 . 2 . 1 恒 载 3 _ 2 _ 1 . 1 一期 恒 载 期恒载包括 预制钢箱梁 、 现 浇 桥 面板 , 按 实 际 断面 计取 重量 。
桥梁钢—混凝土组合结构设计原理(第二版,)2017
桥梁钢—混凝土组合结构设计原理(第二版),2017一、绪论1.1 组合结构的概念桥梁钢—混凝土组合结构是一种由钢结构和混凝土结构组合而成的结构,在桥梁工程中具有广泛的应用。
1.2 发展历史组合结构在桥梁工程中的应用可以追溯至19世纪,随着材料科学和结构设计理论的不断发展,组合结构的设计原理也得到了不断完善。
二、桥梁钢—混凝土组合结构的优势2.1 结构性能优越钢和混凝土两种材料各自具有不同的优势,组合结构能够充分发挥两种材料的性能,提高桥梁的承载能力和抗震性能。
2.2 施工便利钢—混凝土组合结构能够充分利用工厂化生产的优势,实现模块化设计和快速施工。
三、桥梁钢—混凝土组合结构设计原理3.1 结构设计原则组合结构的设计原则包括梁板结构设计、腹板设计、节点设计等方面,需要考虑材料的组合、连接和受力性能。
3.2 荷载分析在进行组合结构设计时,需要对荷载情况进行详细的分析,包括静载荷、动载荷以及风荷载等。
四、桥梁钢—混凝土组合结构设计方法4.1 构件设计桥梁钢—混凝土组合结构的设计需要对构件进行合理的设计,包括梁板、腹板、拉杆等构件的设计。
4.2 连接设计钢—混凝土组合结构的连接设计是关键,需要考虑连接的刚度、强度和耐久性,以确保整个结构的稳定性和安全性。
五、桥梁钢—混凝土组合结构的应用5.1 欧洲经典案例欧洲地区有许多著名的桥梁钢—混凝土组合结构案例,例如米兰大桥、巴黎埃菲尔铁塔等。
5.2 我国发展现状近年来,随着我国桥梁建设的快速发展,桥梁钢—混凝土组合结构在我国也得到了广泛应用,例如深圳湾大桥、杭州湾大桥等。
六、桥梁钢—混凝土组合结构的未来发展随着材料科学和工程技术的不断进步,桥梁钢—混凝土组合结构在未来将会有更广阔的发展前景,可以结合新材料和新技术,实现轻质化、高强度化和耐久性的提升。
七、结论桥梁钢—混凝土组合结构作为一种高效、节能、环保的结构形式,在桥梁工程中具有重要的应用价值。
相信随着工程技术的不断进步和设计理论的不断完善,将会有更多具有创新性的桥梁钢—混凝土组合结构问世,为桥梁工程的发展贡献更多力量。
《组合结构桥梁》课件
预制拼装的施工方法与技术
预制拼装施工方法是将桥梁的各个部分在预制场进行预制,然后运输到施工现场进 行拼装,最终形成完整的桥梁结构。
预制拼装施工技术的优点包括施工速度快、施工质量稳定、环保等。
预制拼装施工技术适用于中小型桥梁和大型桥梁的部分结构,如梁板、桥墩等。
整体吊装的施工方法与技术
整体吊装施工方法是将整个桥梁 结构在预制场进行预制,然后运 输到施工现场进行整体吊装就位
组合结构桥梁的新型材料与技术应用
高性能混凝土
采用具有高强度、耐久性等优点的高性能混凝土作为主要材料,提 高组合结构桥梁的承载能力和耐久性。
新型连接与加固技术
研发和应用新型的连接与加固技术,提高组合结构桥梁的整体性和 稳定性,确保其安全可靠。
预制拼装技术
通过预制拼装技术实现组合结构桥梁的快速施工,提高工程效率,降 低施工成本。
04 组合结构桥梁的工程实例
某大桥的组合结构设计与施工
总结词
大型工程、复杂设计、技术创新
详细描述
该大桥是一座连接城市南北的重要通道,采用组合结构形式,以适应不同跨度和承载要求。设计过程 中,工程师们充分考虑了桥梁的稳定性、耐久性和抗震性能,采用了多项技术创新,确保了施工质量 和安全。
某高速公路的组合结构桥梁
特点
具有高强度、轻质、耐久性好、 施工方便等优点,能够满足现代 桥梁建设对跨度、承载力和美观 性的要求。
组合结构桥梁的应用与发展
应用
广泛应用于大跨度桥梁、高速公路、 城市高架桥等领域。
发展
随着新材料、新工艺的不断涌现,组 合结构桥梁的设计和施工水平不断提 高,未来发展前景广阔。
组合结构桥梁的优缺点分析
。
整体吊装施工技术的优点包括施 工速度快、结构整体性好、抗震
桥梁钢-混凝土组合结构设计原理
桥梁钢-混凝土组合结构是用钢结构和混凝土结构相结合的建筑结构,在桥梁建设中得到了广泛应用。
这种结构把钢结构的高强度、刚度和施工方便性和混凝土结构的耐久性、防火性和隔音隔热性结合起来,形成了一种新型的桥梁结构体系。
下面,我将详细阐述桥梁钢-混凝土组合结构设计原理。
一、钢桥面板上的钢筋混凝土板的使用
采用钢性能优异,刚性好的钢板,把其的上下表面分别用钢筋混凝土板进行封闭,使其构成钢筋混凝土组合钢板,这样钢-混凝土组合结构既继承了钢板的刚性好、不劣化,变形小的优点,又有了钢筋混凝土中的防火,防腐蚀,抗冲击等优点。
二、桥梁梁身钢-混凝土组合结构方案
梁身钢-混凝土组合结构采用了钢筋混凝土板固定在钢板上构成组合梁,将钢结构和混凝土结构结合紧密,钢板的强度和刚度大、重量轻,使得混凝土梁体和斜撑等部件受到的荷载减小,起到一种很好的支撑作用。
三、桥梁下部基础设计
桥梁下部基础承受桥梁自重和行车荷载,应采用钢筋混凝土或普通混凝土构造,并用波形钢截面做基础柱底端斜向牵拉成底部耳板用高强度螺栓固定在铸铁墩上,加强局部破坏的稳定性。
四、桥墩外形与基础独立设计
桥墩外形开放式设计,立面采用平整和倾斜相间的线条,美观大方,基础是混凝土斜桩式墩或钢球墩,直径较小,占地面积小,经济性较强。
采用钢-混凝土组合梁连梁桥和中连拉桥为桥型,使得桥面平整、成型美观,且便于施工,同时还能起到一定的防震效果。
桥梁钢-混凝土组合结构的优点是强度、刚度好,重量轻,施工方便,且具有良好的抗震性能和安全性。
同时,该结构还具有防火、耐腐蚀、服役年限长等优点。
这种设计原则为桥梁建设提供了新思路,未来还将有更广泛的应用。
混凝土梁桥结构设计原理及应用
混凝土梁桥结构设计原理及应用混凝土梁桥结构是一种常见的桥梁结构,它采用混凝土作为主要材料,通过在两端设置支座,将梁与桥墩相连接,从而实现桥梁的跨越。
与钢结构相比,混凝土梁桥具有较高的承载能力、较好的耐久性和较低的维护成本等优势,在公路、铁路、城市道路等领域得到广泛应用。
混凝土梁桥结构设计原理1. 桥梁跨径设计桥梁跨径是指桥梁两个支点之间的距离,它是桥梁结构设计的重要参数。
在混凝土梁桥结构设计中,桥梁跨径的选取应综合考虑以下因素:(1)地形、地质条件和水文情况(2)交通流量和车辆类型(3)桥梁所处的环境和景观(4)桥梁的功能和使用寿命2. 梁的截面设计梁的截面设计是指确定梁的形状和尺寸,以满足桥梁跨度和荷载要求的过程。
混凝土梁桥结构设计中,通常采用矩形截面或T形截面。
在设计中,需要考虑以下因素:(1)梁的受力状态,包括弯矩、剪力和轴力等(2)混凝土的强度和耐久性(3)施工和维护的便利性3. 支座设计支座是将梁与桥墩连接的重要部分,其设计应考虑以下因素:(1)支座的承载能力和稳定性(2)支座的变形和位移(3)支座的耐久性和维护成本4. 桥墩设计桥墩是支撑梁的重要结构部件,其设计应综合考虑以下因素:(1)桥墩的稳定性和承载能力(2)桥墩的变形和位移(3)桥墩的施工和维护成本5. 梁与桥墩连接设计梁与桥墩的连接是混凝土梁桥结构中的关键部分,其设计应满足以下要求:(1)连接的刚度和强度要满足设计要求(2)连接的变形和位移要控制在合理范围内(3)连接的施工和维护成本要尽量降低混凝土梁桥结构应用混凝土梁桥结构广泛应用于公路、铁路、城市道路等领域,具有以下优点:1. 承载能力强混凝土梁桥结构采用混凝土作为主要材料,具有较高的抗压强度和抗弯强度,可以满足各种荷载要求。
2. 耐久性好混凝土梁桥结构具有较好的耐久性和防腐蚀性能,可以适应各种环境条件。
3. 维护成本低混凝土梁桥结构的维护成本较低,可以有效降低桥梁运营成本。
组合结构的计算
组合结构的计算
由链件和梁式杆组合成的结构,称为组合结构,又称桁 梁结构,例如图13-19(a)所示的悬索式桥梁,其中一部分 杆件如悬索、吊杆等只受轴力作用,是链杆;另一部分杆件如 桥面大梁,除了轴力外同时还承担弯矩和剪力,是梁式杆件。 又如三铰屋架以及图13-19(b)所示的五角形屋架,它们都 是组合结构。
工程力学
图ቤተ መጻሕፍቲ ባይዱ3-19
组合结构的计算
计算组合结构的内力时,仍采用结点法或截面法。应用 截面法计算组合结构时,应注意被截的是轴力杆件还是梁式 杆。对于梁式杆,截面上一般应有弯矩、剪力和轴力;对于 轴力杆件,截面上只有轴向力,另外链杆必须是直杆且两端 是完全铰结,杆中无垂直于杆轴的外力作用。为了不使隔离 体上的未知力过多,应尽可能避免截断梁式杆。因此,计算 组合结构的一般步骤:先求出各链杆的轴力,然后根据荷载 和所求得的轴力作梁式杆的M、FS和FN图。
组合结构桥梁
组合结构桥梁设计新理念
0
主要内容
钢-混组合结构桥梁概论
钢与混凝土的连接
组合钢板梁桥
波折腹板组合箱梁桥 组合桁架桥
组合刚构桥
组合结构桥梁设计新理念
1
组合结构桥梁设计新理念
2
组合结构桥梁概论
组合结构分类
组合结构设计理念 组合结构力学特点 组合结构桥梁的分类及其特点
组合结构桥梁设计新理念
组合结构桥梁设计新理念
38
概论--组合结构桥梁的分类及其特点
◇钢板梁+混凝土桥面板 ◇钢箱梁+混凝土桥面板 ◇钢桁架梁+混凝土桥面板 ◇钢梁+混凝土梁
◇组合梁斜拉桥
◇杨浦大桥(中国,1993年完成)
组合结构桥梁设计新理念
39
概论--组合结构桥梁的技术特点概括
序号 1 2 名称 组合钢板梁桥 形式 钢板梁+混凝土桥面板 闭合截面钢箱梁+混凝土桥面板 槽形截面钢箱梁+混凝土桥面板 波折钢腹板+混凝土上下翼缘板 钢桁架梁+混凝土桥面板 钢桁架腹杆+混凝土上下翼缘板 钢板梁+混凝土墩 钢箱梁+混凝土墩 钢桁架梁+混凝土墩 钢梁+混凝土梁 特点 抗弯刚度增大。 抗弯、扭刚度增大,顶钢板未充分利用。 省去顶钢板、施工难度加大。 自重减轻,预应力能有效施加。 抗弯刚度增大,连接件设置较困难。 省去上下弦杆,施工难度加大。 省去支座,负弯矩区性能改善,抗震性能提 高,悬臂施工法能够使用。 跨度增大,连接较难处理。
◇组合箱梁桥—用波折钢腹板组合箱梁的斜拉桥
◇栗东桥 (日本)
◇矢作川桥(日本)
组合结构桥梁设计新理念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、组合结构计算原理
2. 组合截面应力计算——累计荷载效应
小结: 1.显然叠合梁的最终应力与施工工艺直接相 关。 2.通过施工阶段设置中分离变量形式可以容 易得到单项荷载的效应。 3.组合截面应力及内力查看需选择“部分”。
一、组合结构计算原理
3.虚拟荷载法计算混凝土板升降温后应力
������������
一、组合结构计算原理
本章小结: 1.组合结构的最终应力状态与施工阶段相关,通过各阶段累加可以得到最终效应,但各阶 段的截面特性因根据具体的施工工艺确定。 2.混凝土桥面板升降温可以通过等效荷载法计算。 3.混凝土收缩同样可以根据等效荷载法计算,但需计算混凝土有效弹性模量。 4.从校核计算结果考虑可以用混凝土降温模拟收缩效应。 5.Civil程序计算有效刚度下的收缩、徐变效应仅需将混凝土弹性模量修改为有效弹性模量。
(3)有效弹性模量的虚拟荷载法计算收缩效应
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (3)有效弹性模量的虚拟荷载法计算收缩效应
注: 1.显然从虚拟荷载法本身考虑,完全可以将收缩效应通过温度梯度的方法计算。 2.模型计算有效弹性模量的温度梯度效应需做如下修改: 修改材料的弹性模量为有效弹性模量 输入温度梯度荷载时应按有效弹性模量
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (3)有效弹性模量的虚拟荷载法计算收缩效应
注: 1通过修改弹性模量及持续时间可得到相应的收缩应变值。 2.最终收缩应力与理论值基本一致。(误差是由于总的收缩量不一致造成) 3.收缩徐变终值与截面本身无关,可以通过临时替换混凝土截面查看。(组合截面不能输出此值) 4.程序计算名义收缩系数按《04混规》得到,上图输入数据均为了对比方便输入。
二、钢-混凝土组合桥梁分析实例
5.使用阶段荷载——温度
注: 1.组合截面整体升降温即使连续梁也有自应力。 2.温度梯度要综合考虑截面宽度的变化以及温度梯度折线的变化。 3. 不同材料应分别输入其弹性模量及膨胀系数。 4.注意温度梯度一般输入的参考位置是顶。
二、钢-混凝土组合桥梁分析实例
5.使用阶段——活载及沉降
二、钢-混凝土组合桥梁分析实例
本章小结: 1.组合结构的最终应力状态与施工阶段相关,通过各阶段累加可以得到最终效应,但各阶 段的截面特性因根据具体的施工工艺确定。 2.混凝土桥面板升降温可以通过等效荷载法计算。 3.混凝土收缩同样可以根据等效荷载法计算,但需计算混凝土有效弹性模量。 4.从校核计算结果考虑可以用混凝土降温模拟收缩效应。 5.Civil程序计算有效刚度下的收缩、徐变效应仅需将混凝土弹性模量修改为有效弹性模量。
4.设置施工阶段及施工阶段联合截面
注: 1.施工阶段联合截面设置以截面为对象进行相关的设置。 2.施工阶段设置的材料理论厚度龄期的优先级高于定义单元时赋予的值。 3.一般截面类型根据激活施工阶段不同程序可以自动识别同样截面不同的单元。 4.混凝土湿重模拟桥面板形成过程注意将材料的容重改为0。 5.定义收缩徐变函数时注意标号强度为N mm单位体系。
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
一、组合结构计算原理
2. 组合截面应力计算——二期荷载效应
注: 1.换算为钢材后,计算混凝土应力需要除 弹模比。 2.应力结果通过选择“应力部分”查看钢 及混凝土的应力。 3.实际结构为了校核联合后截面特性查看 二期荷载的应力比较方便。
一、组合结构计算原理
1.组合截面形成过程中的应力累加——叠合截面形成后应力
注: 1.显然至此混凝土桥面板不受力,仅钢箱梁承受混凝土及钢的自重 效应。 2.桥面板形成后二期荷载等后续荷载将有全截面承担。
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
������0
=
������������
+
������������ ������������
������ = ������0 + ������0���������2���
注:
������0
=
������������������������ ������������������������ +
������������
������
=
����分析实例
3.边界及施工荷载 (2)荷载
注: 1.荷载工况:
查看单项内力结果 荷载组合 2.荷载组: 施工阶段调用。 3.利用辅助单元很容易得到隔板位置, 横梁位置,支撑线位置等等,便于加载。
二、钢-混凝土组合桥梁分析实例
3.边界及施工荷载
二、钢-混凝土组合桥梁分析实例
一、组合结构计算原理
(3)有效弹性模量的虚拟荷载法计算徐变效应
注: 1.理论上可以用有效荷载法计算徐变效应,仅P0 M0的计算方法与收缩不同。 2.由于徐变效应不同于收缩效应,与受力后的应变直接相关,实际结构各截面受力不同从而徐变效应不同。 3.Civil程序分析相对简单,只需要将混凝土的弹性模量修改为有效弹性模量即可(与收缩有效弹性模量不同)。
二、钢-混凝土组合桥梁分析实例
5.使用阶段——活载及沉降
2014GTSnx
注: 1.车道数量根据规范表4.3.1-3及行车道宽度确定。 2.一般结构考虑内篇外偏及中载计算足以。
目录
一、组合结构计算原理
1.组合截面形成过程中的应力累加 2.组合截面应力计算方法 3.虚拟荷载法计算混凝土板降温效应 4.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应
二、钢-混凝土组合桥梁分析实例
1.项目简介 2.单元划分及SPC导入联合截面 3.边界及施工荷载 4.设置施工阶段及施工阶段联合截面 5.使用阶段——活载及沉降
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
1
2
3
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
4
5
6
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
=
������0
+
������0
+ ������0������
注: 1.仅混凝土板升降温,应力计算相对简单,可以通过上述过程非常容易得到其效应。 2.收缩徐变与混凝土板降温效应相当,可通过同样方法得到,仅计算集中力P0方法不同。
一、组合结构计算原理
3.虚拟荷载法计算混凝土板升降温后应力
一、组合结构计算原理
二、钢-混凝土组合桥梁分析实例
1.项目简介
本桥为某高速路联络线匝道桥中的一联,桥梁全宽 10.5m。本联上部结构采用(38+33.5+37.5)m钢混组 合连续梁,下部结构桥墩为柱式,基础为承台接灌注桩; 桥台为肋板式,基础为承台接灌注桩。
主梁为单箱双室,梁高2米宽10.22m,预制高1.65m, 钢箱底板厚30mm,上翼板厚25mm,腹板厚16mm, 钢材均采用Q345qD,分4段预制后现场采用高强螺栓拼 接。钢箱顶部混凝土桥面板厚0.27m,采用C50无收缩混 凝土现浇。
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (2)混凝土折减刚度
注: 1.《钢-混凝土组合桥梁设计规范》给出了 明确的有效弹模比的计算方法。 2.其中混凝土的徐变系数可以通过查表内插 方法方便得到。
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应
+
������������ ������������
������
=
������������������������ ������������
+ +
������������ ������������ ������������ ������������ ������������
1. ������������ ������������ ������������ ������������ 通过AUTOCAD或其余工具比较容易得到。 2. ������0 ������0 是中间值,不是最终换算截面特性
顶板混凝土预应力钢束采用高强低松弛钢绞线,管道 采用金属波纹管成型。设计摩阻系数μ=0.25,孔道偏差 系数K=0.0015。
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——建立单元节点
注: 1.曲线桥梁可以通过导入CAD线形的方法建立单元节点。 2.导入技巧: 节点位置:支撑线、截面变化位置、加载荷载位置(隔板、横梁等) CAD根据上述内容分层,Civil程序可根据图层将导入内容分组。 节点最终位置通过连接节点位置得到(Civil程序不能识别圆曲线) 导入CAD图形的绘制单位应与Civil一致。 可绘制辅助线(支撑线,加载点等)一并或分批导入便于后续操作。
一、组合结构计算原理
1.组合截面形成过程中的应力累加——架设钢箱自重效应
注: 1.此阶段仅架设钢箱,内力及应 力仅与钢箱本身的截面特性有关。 2.查看结果时选择part1即可。
一、组合结构计算原理
1.组合截面形成过程中的应力累加——桥面板湿重
注: 1.此阶段混凝土桥面板在钢箱上浇筑,混凝土湿重作为外荷载作用在钢箱上,内力及应力 仅与钢箱本身的截面特性有关。 2.此法施工应注意定义材料时将混凝土材料的自重修改为0,避免重复加载。
注: 1.理论厚度h=2A/u,A为混凝土 桥面板的截面积,u为混凝土桥面 板与大气接触的周边长度。 2.表中混凝土龄期取为7天,表示 混凝土浇筑完成至开始受力的时 间。