数学建模实验答案 初等模型
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
(4数学建模)几个问题的初等数学模型
在不同无差别曲线的上,如 p3 ( x3 , y3 ) 满意程度满 意程度高于 p1 , p2 ,相反, p4 ( x4 , y4 )的满意程度低于 p1 , p2 。 这样,甲有无数条无差别曲线,从而得 到一曲线族,不妨记为 f ( x, y ) C1 C1 为满意度 随着 C1 的增加,曲线向右上方移动,且曲线是 单调下降的、下凸的。同样,对乙也有对的偏爱程 度的无差别曲线族,记 g ( x, y ) C2 C2为满意度 也许 f , g 就没有解析表达式,但他们的偏爱 程度是可以用曲线表示的。
rA n1 , n2
p1
n1 p2
p2
n2
3、确定分配方案
设 A, B 两方已分别占有n1 和n2 席,利用相对不 公平值 rA 和 rB 讨论当总席数增加 1 席时的分配:
p1 p2 不妨设 , 即对 A 不公平, 再分配一席时 n1 n2
有 3 种可能:
p1 p2 1°若 ,这说明即使 A 增加 1 席,仍 n1 1 n2
模型假设
• 录象带的运动速度是常数 v ; • 计数器读数 n与右轮转数 m成正比,记 m=kn; • 录象带厚度(加两圈间空隙)为常数 w; • 空右轮盘半径记作 r ;
• 时间 t=0 时读数 n=0 .
建模目的
建立时间t与读数n之间的关系 (设v,k,w ,r为已知参数)
模型建立
建立t与n的函数关系有多种方法
2、衡量不公平的数量指标
讨论 A, B 两方公平分配,设 A 有 p1个人, 有 B p1 p2 p2 个人 ,占席位分别是n1 和n2 ,显然,当 n1 n2 时席位分配是公平的。由于人数是整数,故常有
的一方吃亏,即对这一方不公平。
数学建模实验答案
14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';
数学建模第二章 初等模型
第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。
需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。
进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。
§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。
那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。
当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。
首先给出一种自然的想法,也就是通常所执行的方法。
即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。
当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。
这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。
但是这个分配方案是存在弊病的,它有明显的不合理性。
例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。
数学建模实验二初等模型实验
数学建模实验⼆初等模型实验集美⼤学计算机⼯程学院实验报告课程名称:数学模型班级:计算12 实验成绩:指导教师:付永钢姓名:实验项⽬名称:初等模型试验学号:上机实践⽇期:实验项⽬编号:实验⼆上机实践时间:2014.11⼀、实验⽬的掌握初等模型的建⽴的基本思路和⽅法,并了解其求解过程。
对给定的初等模型问题能够借助Matlab ⼯具进⾏求解。
⼆、实验内容实验 1 ⽤Matlab 验证划艇⽐赛成绩模型的结果,通过数值结果来检验你所得到的模型正确性。
(⾸先要阅读本⽬录中的Matlab 数据拟合和matlab 数据处理的相关材料)实验2 求解汽车刹车距离的模型,⽤Matlab 给出你的求解结果。
验证应该遵循的t 秒准则的标准。
实验3 从教材P56中的第7,13,14题,任选⼀题,建⽴相应的初等模型,并借助matlab 进⾏求解,并给出合理的模型解释。
三、实验使⽤环境WindowsXP 、Matlab6.1四、实验步骤1、划艇⽐赛成绩的模型检验根据推导出的模型公式和数据,对参数βα,进⾏求解βαn t =。
⾸先转换成对数形式:,log 'log n t βα+=其中ααlog '=然后对给定数据进⾏拟合。
代码:n=[1 2 4 8]t=[7.21 6.88 6.32 5.84]lgn=log(n);lgt=log(t);p=polyfit(lgn,lgt,1);alpha=exp(p(2));belta=p(1);x=1:20;y=alpha*x.^belta ;plot(x,y,’c*-‘) ;xlabel(‘Number of Athlete ’);ylabel(‘Time Cost ’);Matlab 拟合函数图像:结果分析:划艇⽐赛模型的结果为t∞n-(1/9).。
在matlab中检验得belta =-0.1035与-(1/9)接近。
因此,模型正确。
2、汽车刹车距离验证代码:function E=fun1(a,x,y)Y=a(1)*x.*x+0.75*x;E=y-Y;%M⽂件结束%⽤lsqnonlin调⽤解决:x=[29.3 44 58.7 73.3 88 102.7 117.3];y=[44 78 124 186 268 372 506];a0=[0.5];options=optimset('lsqnonlin');a=lsqnonlin(@fun1,a0,[],[],options,x,y)%绘图plot(x,y,'o');hold on;x=[0:200];y=a(1)*x.*x+0.75*x;plot(x,y,'-');hold off结果分析:汽车刹车距离求解结果在Matlab的模型如上所⽰。
数学建模之初等模型
且
tn (n 1)T
S
0 n
(n
1)( L
D)
另外,汽车不会永远加速前进。我们设汽车在加速到某个给定速度 v*
后匀速前进,则加速的时间是
t* v * / a tn
综合上面的分析得到
Sn (0)
Sn
(t
)
Sn
(0)
Sn
(0)
a 2
(t
a 2
(tn
L1 v
L2 v
t2
(ni
1)d v
~ti
Li v
Li1 v
ti1
(ni 1)d v
~ti
Li v
Li1 v
ti1
向左疏散的总时间 Tl (x) 就是最后一个人离开的时间。 如果共l个房间,则
Tl (x) ~tl (xd l1 Li ) / v i 1
其中x是第i个 房间向左疏散的人数。 类似可以求出向右疏散的总时间Tr (nl 1 x) 。 求x使得
Tl (x) Tr (nl 1 x)
即得到疏散方案。
思考题: (1)对多层的楼房的疏散问题应如何分析? (2)疏散时人与人之间的间距多大较好?
先考虑向左疏散的人用了多少时间。
设疏散队列中人与人间隔是d,行进速度v,房宽为 L1, L2,, Lm 。第i个 房间第一个人到门口的时间tis为 ,则第k个房间的人向左疏散的时间为
1
v
k i1
Li
nkd
tk
s
k l
问题:多个教室的学生可能出现重叠!
数学建模之初等模型-精品文档
因为考虑了降雨的方向,淋湿的部位只有顶部和前面。 分两部分计算淋雨量。
•顶部的淋雨量
C ( D / v ) w ( pr d sin ) 1
rsin 表示雨滴垂直下落的速 度。
•前表面淋雨量
D /v 表示在雨中行走的时间 ,wd 表示顶部面积
结果表明:淋雨量是速度的减函数,当速度尽可能大时 淋雨量达到最小。 假设你以6米/秒的速度在雨中猛跑,则计算得
4 3 C 14 . 7 10 m 1 . 47 升 180 情形3 90
此时,雨滴将从后面向你身上落下。
4
C 6 . 95 10 [( 0 . 8 sin 6 cos ) / v 1 . 5 ]
2 升的雨水,大约有4 酒瓶的水量。这是不可思议的。 表明:用此模型描述雨中行走的淋雨量不符合实际。 原因:不考虑降雨的方向的假设, 使问题过于简化。
2)考虑降雨方向。 若记雨滴下落速度为 r (米/秒)
, p 1 雨滴的密度为 p
表示在一定的时刻 在单位体积的空间
雨滴下落 的反方向
w
d
内,由雨滴所占的
2 h 1 . 50 米 , w 0 . 50 米 , d 0 . 20 米 , 即 S 2 . 2 米 。
你在雨中行走的最大速 度 v 6 米 / 每秒,则计算 你在雨中行走了 167 秒,即 2 分 47 秒。
从而可以计算被淋的雨水的总量为2.041(升)。
经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了
若雨滴是以120 的角度落下,即雨滴以 30 的角
v 4 sin 30 2 m /s 的速度行走 从背后落下,你应该以
数学建模第二章初等模型
市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v
由
(1),(2),(3)
及
(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)
初等数学建模试题极其答案
1.你要在雨中从一处沿直线走到另一处.雨速是常数.方向不变。
你是否走得越快.淋雨量越少呢?2.假设在一所大学中.一位普通教授以每天一本的速度开始从图书馆借出书。
再设图书馆平均一周收回借出书的1/10.若在充分长的时间内.一位普通教授大约借出多少年本书?3.一人早上6:00从山脚A上山.晚18:00到山顶B;第二天.早6:00从B下山.晚18:00到A。
问是否有一个时刻t,这两天都在这一时刻到达同一地点?4.如何将一个不规则的蛋糕I平均分成两部分?5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家.家中的狗一直在二人之间来回奔跑。
已知哥哥的速度为3公里/小时.妹妹的速度为2公里/小时.狗的速度为5公里/小时。
分析半小时后.狗在何处?6.甲乙两人约定中午12:00至13:00在市中心某地见面.并事先约定先到者在那等待10分钟.若另一个人十分钟内没有到达.先到者将离去。
用图解法计算.甲乙两人见面的可能性有多大?7.设有n个人参加某一宴会.已知没有人认识所有的人.证明:至少存在两人他们认识的人一样多。
8.一角度为60度的圆锥形漏斗装着10端小孔的面积为0.5平方厘米.9.假设在一个刹车交叉口.所有车辆都是由东驶上一个1/100的斜坡.计算这种情下的刹车距离。
如果汽车由西驶来.刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。
包扎时用很长的带子缠绕在管道外部。
为了节省材料.如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。
:顶=1:a:b.选坐.v>0,而设语雨L(1q -+v x ),v≤x Q(v)=L(v x -q +1),v>x2.解:由于教授每天借一本书.即一周借七本书.而图书馆平均每周收回书的1/10.设教授已借出书的册数是时间t 的函数小x(t)的函数.则它应满足(时间t 以周为单位)其中 初始条件表示开始时教授借出数的册数为0。
解该线性题得X(t) =70[1-e t 10 ]由于当t ∞时.其极限值为70,故在充分长的时间内.一位普通教授大约已借出70本书。
数学建模答案--完整版
验
目
的
4、用 MATLAB 计算函数 f ( x ) 实
sin x cos x 在 x= 处的值. 2 3 1 x
5、用 MATLAB 计算函数 f ( x) arctan x ln( x 1) 在 x=1.23 处的值.
验
15、求极限 lim
x 0
sin 2 x 1 cos x
过
>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,‘right’) ans =
程
2
1 21x ( ) 16、求极限 lim x 0 3
>> syms x y >> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17、求极限 xlim
y x 2 , y x3 , y x 4 这三条曲线的
图形,并要求用两种方法加各种标注.
x t2 13、作曲线 y sin t 的 3 维图象. z t
实
x (1 cos u ) cos v 14、作环面 y (1 cos u ) sin v 在 (0, 2 ) (0, 2 ) 上的 3 维图象. z sin u
验
19、求极限 lim
1 cos 2 x x 0 x sin x
>> syms x y >> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) 过 ans = 2 20、求极限 lim
数学建模初等模型
1032 632 342 96.4, Q2 94.5, Q3 96.3 第20席 Q1 1011 67 3 4 1032 80.4, Q2 , Q3 同上 第21席 Q1 1112
Q值方法 分配结果
Q1最大,第20席给甲系 Q3最大,第 21席给丙系
甲系11席,乙系6席,丙系4席
进一步深入考虑
①
若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。 多测几次,取平均 值 听到回声再按跑表,计算得到的时间中包含了 将e-kt用泰勒公式展开并 令k→ 0+ ,即可 反应时间 得出前面不考虑空气阻力时的结果。 不妨设平均反应时间 为0.1秒 ,假如仍 设t=4秒,扣除反 应时间后应 为3.9秒,代入 式①,求得h≈69.9米。 再一步深入考虑
计算 Qi
ni (ni 1)
, i 1,2, , m
11
该席给Q值最大的一方
Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
17
常识:刹车距离与车速有关
问 题 分 析
10英里/小时(16公里/小时)车速下2秒钟行驶 29英尺( 9米) >>车身的平均长度15英尺(=4.6米) “2秒准则”与“10英里/小时加一车身”规则 不同 反 司机 制动系统 反应时间 应 状况 灵活性 距 车速 离 常数
刹 车 距 离
制 制动器作用力、车重、车速、道路、气候… … 动 最大制动力与车质量成正比, 常数 距 离 使汽车作匀减速运动。
数学建模_初等模型
1805年,英国和法国进行了一场惨烈的海战。其中,尼尔 森担任英国统帅,他的对手则是大名鼎鼎的拿破仑。尼尔森的 舰队有27艘战舰,而拿破仑的舰队却有33艘战舰。根据以往的 战争经验,若两军相遇,一方损失兵力大约是对方兵力的10%。 如果按照这一公式计算,显然人多势众的法军将获胜,而且在 第11次遭遇战中全歼英军,如表所示。
(k3 ∈ R+ ) (k4 ∈ R+ )
⎧⎨⎩TOnn++11
= On + ΔOn = Tn + ΔTn =
= (1 (1 +
+ k1)On k2 )Tn −
− k3OnTn k4OnTn
现在,取k1=0.2、 k2=0.3、 k3=0.001、 k4=0.002,解得平衡 点(O,T)=(150,200)或(0,0)【舍去】
在什么情况下双方的核军备精神才不会无限扩张而存在暂 时的平衡状态,处于这种平衡状态下双方拥有最少的核武器数 量是多大,这个数量受哪些因素影响,当一方采取诸如加强防 御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发 生什么变化?
最后英军战胜了法军,而且双方伤亡情况与历史事实也很 相近。当年,英军在战役A和战役B中战胜法军,但法军没有增 援C,而是选择了撤退,大约有13艘战舰退回法国海港。
点评:数学建模以解决某现实问题为目的,从问题中抽象 并归结出来的数学问题。从现象到模型,数学建模必须反映现 实,既然是一种模型,它就不是现实问题的全部复制,常常会 忽略一些次要因素,作一些必要的简化,但本质上必须反映现 实问题的数量规律。
斑点猫头鹰
老鹰 天数 老鹰 斑点猫头鹰 天数
情况4:老鹰仍然成为胜利者, 斑点猫头鹰最后还是灭绝了。与 数量 前面三种情况相比,两个种群的 初始数量相同,可以说是站在同 一条起跑线上。但是,老鹰种群 以绝对的优势赢得胜利,而斑点 10 猫头鹰种群惨遭灭绝。
数学建模 第一章 初等模型
型. 由此模型可解决这两个问题.
2V0
⑴炮弹发射后落地时纵坐标 y
2
0,
2
即
kx l (k 1) x , ( x 0), k x . 2 l (k 1)
dx 1 1 k 0 k 1. 2 2 dk l (k 1) k 1为函数的极大值点, 即最佳角度满足
第一章 初等模型
在这一章中, 我们介绍几个初等模型及相应的求解方法. 所谓初等模型, 指的是该模型并不涉及高深的数学问题,
用常用的数学工具即可求解此类问题.
一、微积分方法寻找最优点
问题一
铁路线上 AB 段的距离为100km, 工厂C 距 A 处
20km, 并且 AC AB.(见下图) 为了运输需要, 要在 AB上选定一点 D, 向工厂修筑一条公路. 已知铁路每公里 货运的运费与公路每公里货运的运费之比为3: 5, 问D 点
⑼
该方法就称为最小二乘法.
最小二乘法的几何意义
y
y ax b
O
x
进一步地, 若所求曲线为以多项式时, 则也有相应的方 程.
曲线拟合关系中的方程⑼常称为法式方程.
利用软件MatLab,可以简单地得到拟合多项式中的各 项系数. MatLab中曲线拟合命令是 polyfit.
基本格式 polyfit
应选在何处? 建模 设 AD xkm, 则
A x D B
DB 100 x,
20km
C
CD 400 x 2 .
再设铁路上货运的运费为 3k / km, 公路上货运的运费为
5k / km, 从 B 到 C 的总运费为 y, 则
y 5k CD 3k DB
数学建模初等模型
模型3(经典模型)
经典模型是根据生理学中的已知结果和比例关系推导出来的 公式,应当说,它并不属于经验公式。为建立数学模型,先 提出如下一些假设:
(1)举重成绩正比于选手肌肉的平均横截 面积A,即L=k1A
(2)A正比于身高 l的平方,即 A=k2l2 (3)体重正比于身高 l的三次方, 即B=k3l3
则可作 y
变量y替=a换x+使b之转化为线性in1关[ y系i 或 (用ax类i 似b方)]2
法拟最合小。
此式对a和b的偏导数均 为0,
解相应方程组,求得:
其中(xxi ,y和i) y
分别为xi和yi 的平均值 x O
a
n i1
(
xi
x)( yi
y)
n i1
(
xi
块下落时间 t1≈t-t2将t1代入式①再算一次,得出 崖高的近似值。例如, 若h=69.9米,则 t2≈0.21 秒,故 t1≈3.69秒,求得 h≈62.3米。
经验模型
当问题的机理非常不清楚难以直接利用其他知 识来建模时,一个较为自然的方法是利用数据 进行曲线拟合,找出变量之间的近似依赖关系 即函数关系。
解得:
Ta
1 k1l k2d
2 (k1l) /
T1 T2
(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
室
室
1内
外
0.9 0.8 T1
数学建模中的初等模型
y0= s2(x–y)+ s(2y– x )
y y0 1 s x s(2 s) 2 s
y0=s2y
y=y0/s2
分析 模型 x<y, y= y0+(1-s)x
x=y, y=y0/s
x=a y,
y
y0 sa
y0 sx/ y
y
x=y
x=2y
y<x<2y, y y0 1 s x s(2 s) 2 s
初等模型
• 研究对象的机理比较简单 • 用静态、线性、确定性模型即可达到建模目的 可以利用初等数学方法来构造和求解模型 如果用初等和高等的方法建立的模型,其应用效果 差不多,那么初等模型更高明,也更受欢迎.
尽量采用简单的数学工具来建模
1. 双层玻璃窗的功效
室
室
问 双层玻璃窗与同样多材料的单层
内 T1
平衡点PP´
xm xm , ym ym
y
y0 y=f(x)
0
x0
P(xm , ym )
P(xm,ym) x=g(y)
x
甲方的被动防御也会使双方军备竞赛升级.
模型解释
• 甲方将固定核导弹基地改进为可移动发射架.
乙安全线y=f(x)不变 y
甲方残存率变大
威慑值x 0不变
x减小,甲安全线
y0
x=g(y)向y轴靠近
x=2y, y=y0/s2 y0~威慑值 s~残存率
利用微积分知识可知 y是一条上凸的曲线,且
y=f(x)
y0 0
• y0变大,曲线上移、变陡. • s变大,y减小,曲线变平.
x
模型解释
• 甲方增加经费保护及疏散工业、交通中心等目标.
乙方威慑值 y0变大 (其他因素不变) 乙安全线 y=f(x)上移
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验02 初等模型(4学时)
(第2章初等模型)
1.(编程)光盘的数据容量p23~27
表1 3种光盘的基本数据
CAV光盘:恒定角速度的光盘。
CLV光盘:恒定线速度的光盘。
R2=58 mm, R1=22.5 mm,d, ρ见表1。
CLV光盘的信息总长度(mm) L
CLV
22
21
()
R R
d
π-
≈
CLV光盘的信息容量(MB) C
CLV
= ρL CLV / (10^6)
CLV光盘的影像时间(min) T
CLV = C
CLV
/ (0.62×60)
CAV光盘的信息总长度(mm) L
CAV
2
2
2
R
d π≈
CAV光盘的信息容量(MB) C
CAV
= ρL CAV / (10^6)
CAV光盘的影像时间(min ) T
CAV = C
CAV
/ (0.62×60)
1.1(验证、编程)模型求解
要求:
①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。
程序如下:
②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。
★要求①的程序的运行结果:
★要求②的程序及其运行结果:
1.2(编程)结果分析
信道长度LCLV 的精确计算:21
2R CLV
R L d
π=⎰
模型给出的是近似值:2221()
CLV R R L L d
π-=
≈
相对误差为:CLV L L
L
δ-=
要求:
①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。
分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。
②结果与P26的表2和P27(教材)的结果比较。
[提示]
定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。
要用数组d参与计算,可用quadv(用help查看其用法)。
★编写的程序和运行结果:
程序:
运行结果:
2.(验证,编程)划艇比赛的成绩p29~31
模型:t=αnβ
其中,t为比赛成绩(时间),n为桨手人数,α和β为参数。
为适合数据拟合,将模型改为:log t=logα + βlog n
(1) 参数α和β估计程序如下:
(2) 实际值与计算值比较(数据比较和和拟合图形)
参考数据结果:
第1列为桨手人数,第2列为实际比赛平均成绩,第3列为计算比赛平均成绩。
参考图形结果:
要求:
①运行问题(1)中的程序。
②编程解决问题(2):实际值与计算值比较(数据比较和和拟合图形)。
★(验证)用数据拟合求参数α和β。
给出α和β值和模型:
模型为:
★(编程)实际值与计算值比较(数据比较和和拟合图形),程序和运行结果:程序:
数值结果:
图形结果:
3.(编程,验证)污水均流池的设计p34~37
表2 (p35) 社区一天以小时为单位间隔的生活污水流量(单位:m3/h )
3.1(编程)均流池的恒定流出量和最大容量模型(离散)
每小时污水流入均流池的流量为f (t ), t =0, 1, 2, …, 23。
一天的平均流量 23
1()24t g f t ==∑
均流池中污水的空量 c (t ), t =0, 1, 2, …, 23。
c (t +1)=c (t )+f (t )-g , t =0, 1, 2, …, 22 (模型)
要求:
①求g,画f(t)和g的图形(与P35图1比较)。
②求c(t), t=0, 1, 2, …, 23, c(0)=0,并求其中的最小值M(与P36表3比较)。
求c(t), t=0, 1, 2, …, 23, c(0)=-M(与P36表4比较)。
画c(t)分别当c(0)和c(-M)时的图形(与P37图2比较)。
★要求①的程序和运行结果:
程序:
命令窗口的结果:
图形窗口的结果:
★要求②的程序和运行结果:程序:
命令窗口的结果:
图形窗口的结果:
3.2(验证)均流池的恒定流出量和最大容量模型(连续)p56习题3 每小时污水流入均流池的流量为f (t ), t =0, 1, 2, …, 23。
用3次样条插值得到连续函数f (t ), 0≤t ≤23。
(仍用f (t )表示)
一天的平均流量 230
1()230g f t dt =-⎰ 均流池中污水的容量 c (t ) , 0≤t ≤23。
c (t +Δt )-c (t )=(f (t )-g ) Δt
0(),(0)dc f t g c c dt
=-= (模型) (1) 求g ,画f (t )和g 的图形(与P35图1比较)。
程序:
(2) 求c(t), 0≤t≤23, c(0)=0时的最小值M。
画c(t)初值条件分别为c(0)=0和c(0)=-M时的图形(与P37图2比较)。
程序:
要求
①运行(1)中的程序,结果与P35图1比较。
②运行(2)中的程序,结果与P37图2比较。
③阅读并理解程序。
★要求①的运行结果:
命令窗口的结果:
图形窗口的结果:
★要求②的运行结果:
命令窗口的结果:
图形窗口的结果:
4.(编程)天气预报的评价p49~54
31天4种(A~D)预报方法的有雨预报(%)及实际观测结果
2 40 30 50 80 1;
3 60 30 80 70 1;
4 60 30 90 70 1;
5 60 30 0 20 0;
6 30 30 10 50 1;
7 80 30 10 40 0;
8 70 30 20 30 0;
9 80 30 40 30 0;
10 60 30 60 40 0;
11 80 30 20 80 1;
12 40 30 30 40 0;
13 90 30 90 40 1;
14 50 30 60 20 0;
15 10 30 20 10 0;
16 60 30 50 80 1;
17 20 30 10 30 0;
4.1(编程求解)计数模型p50~52
若预报有雨概率>50%,则认为明天有雨,<50%则认为无雨,且依照明天是否有雨的实际观测,规定预报是否正确,从而统计预报的正确率。
求出4种预报的结果计数矩阵:
预报的正确率:对角线数字之和/全部数之和。
要求: ① 编写程序求出4种预报的结果计数(天数),并分别计算出它们的预报正确率(取2位小数)。
② 结果与p51中的结果比较。
★ 程序和运行结果:
程序:
预报和实测都有雨的天数 预报有雨而实测无雨的
运行结果:
4.2(编程求解)记分模型p52~53
将预报有雨概率的大小与实测结果(有雨或无雨)比较,给予记分。
注意:要将M中的预报概率值转换为小数。
模型1
记第k天某种预报有雨概率为p k,第k天实测有雨为v k=1,无雨为v k=0,令第k天的某种预报得分为
将s k对k求和得到某预报的分数S1(越大越好)。
模型2
s k = | p k - v k |
将s k对k求和得到某预报的分数S2(越小越好)。
模型3
s k = ( p k - v k )2
将s k对k求和得到某预报的分数S3(越小越好)。
要求:
①编程求4种预报在模型1、2、3下的相应分数S1、S2、S3。
②运行结果与p52的结果比较。
★程序和运行结果:
4.3(部分编程求解)图形模型——模型1p53
以预报有雨概率p(值为小数)为横轴,实测值v(值为0或1)为纵轴,奖表tab的数据在图上用符号*标出,其中*上面的数字是坐标在*的天数。
预报A的程序:
运行结果示例:
要求:
①自己完成上面未完整的程序并运行。
②修改预报A的程序,分别用于B、C、D,并运行。
③运行结果与p53中的结果比较。
★预报A的完整程序:
★预报A、B、C、D的程序运行结果(图形):
4.4(验证)图形模型——模型2p53~54
对每个不同的预报有雨概率p,统计实测有雨的天数占预报这个p的全部天数的比例q(p和q越接近越好)。
以p为横轴,q为纵轴,将表tab数据进行统计后在图上有*标出,并在图中画斜线q=p。
预报A的程序:
运行结果示例:
要求:
①运行上面程序,仍后修改程序,分别用于B、C、D,并运行。
②运行结果与p54中的结果比较。
③阅读并理解程序。
★预报A、B、C、D的程序运行结果(图形):
附1:实验提示
第2题
数据拟合函数polyfit
附2:第2章初等模型2.1 光盘的数据容量
2.3 划艇比赛的成绩
2.5 污水均流池的设计
2.9 天气预报的评价。