2013襄阳中考数学试题答案(免费)

合集下载

湖北省襄阳市47中2013年中考数学综合题汇编1等腰三角形

湖北省襄阳市47中2013年中考数学综合题汇编1等腰三角形

2013中考综合题(一季-等腰三角形)(共七季)1.如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是( 2 ,0 ),E点坐标是( 2 , 2 );(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.MN=4CM=MN=4,解得:﹣MN=4,MN=4)6+b=444=,=,∴BN===,=,∴BN==•,2.如图,在平面直角坐标系中,有一条直线l :433+-=x y 与x 轴、y 轴分别交于点M 、N ,一个高为3的等边三角形ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移.(1)在平移过程中,得到111C B A ∆,此时顶点1A 恰落在直线l 上,写出1A 点的坐标 ;(4分)(2)继续向右平移,得到222C B A ∆,此时它的外心P 恰好落在直线l 上,求P 点的坐标;(4分)(3)在直线l 上是否存在这样的点,与(2)中的2A 、 2B 、2C 任意两点能同时构成三个等腰三角形,如果存在, 求出点的坐标;如果不存在,说明理由. (4分)(1)()3,31A(2)设()y x P ,,连接P A 2并延长交x 轴于点H ,连接P B 2 在等边三角形222C B A 中,高32=H A ∴3222=B A ,32=HB∵点P 是等边三角形222C B A 的外心∴302=∠H PB ,∴1=PH 即1=y 将1=y 代人433+-=x y ,解得:33=x ∴()1,33P(3)点P 是222C B A ∆的外心,∵22PB PA = 22PC PB = 22PA PC = 22B PA ∆,22C PB ∆,22C PA ∆是等腰三角形 ∴点P 满足条件,由(2)得()3,33P 由(2)得:()0,342C ,点2C 满足直线l :433+-=x y 的关系式. ∴点2C 与点M 重合. ∴302=∠PMB 设点Q 满足条件,22B QA ∆,22QC B ∆,22QC A ∆能构成等腰三角形.此时22QB QA = 222C B Q B = 222C A Q A =作x QD ⊥轴于D 点,连接2QB∵322=QB ,60222=∠=∠PMB D QB ∴3=QD ,∴()3,3Q………………………………10分设点S 满足条件,22B SA ∆,S B C 22∆,S A C 22∆能构成等腰三角形. 此时22SB SA = S C B C 222= S C A C 222= 作⊥SF x 轴于F 点∵322=SC ,30222=∠=∠PMB B SC ∴3=SF∴()3,334-S ………………………………11分 设点R 满足条件,22B RA ∆,R B C 22∆,R A C 22∆能构成等腰三角形. 此时22RB RA = R C B C 222= R C A C 222= 作⊥RE x 轴于E 点∵322=RC ,3022=∠=∠PMB E RC ∴3=ER∴()3,343-+R答:存在四个点,分别是()1,33P ,()3,3Q ,()3,334-S ,()3,343-+R………………………………………………………………12分3.如图,已知直线y =3x -3分别交x 轴、y 轴于A 、B 两点,抛物线y =x 2+bx +c 经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合). (1)求抛物线的解析式: (2)求△ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使△ABM 为等腰三角形?若不存在,请说明理由:若存在,求出点M 的坐标.解:(1)求出A (1,0),B (0,-3)……………………1分 把A 、B 两点的坐标分别代入y =x 2+bx +c 得 ⎩⎨⎧-==++301c c b 解得:b =2,c =-3…………………………3分 ∴抛物线为:y =x 2+2x -3…………………4分 (2)令y =0得:0=x 2+2x -3 解之得:x 1=1,x 2=-3所以C (-3,0),AC =4…………………6分 S △ABC =分86342121⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=⨯⨯=⋅OB AC (3)抛物线的对称轴为:x =-1,假设存在M (-1,m )满足题意 讨论: ①当MA =AB 时 10222=+m6±=m∴M 1(-1,6),M 2(-1,-6)……………………10分 ②当MB =BA 时 10)3(122=++m∴M 3=0,M 4=-6……………………………………10分 ∴M 3(-1,0),M 4(-1,-6)……………………12分 ③当MB =MA 时222)32=m+m+(12+m=-1∴M5(-1,-1)……………………………………13分答:共存在五个点M1(-1,6),M2(-1,-6),M3(-1,0),M4(-1,-6),M5(-1,-1),使△ABM为等腰三角形……………………………………14分4. 如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C 向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

湖北省襄阳市中考数学试卷及答案Word剖析版

湖北省襄阳市中考数学试卷及答案Word剖析版

A . 4a﹣a=3
B.a•a2=a3
考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 3801346
分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不 变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计
奈曼四中 2013 年中考数学备考资料
故选 A. 点评:
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相
反数是负数,一个负数的相反数是正数,0 的相反数是 0.
2.(3 分)(2013•襄阳)四川芦山发生 7.0 级地震后,一周内,通过铁路部门已运送救灾物资
15810 吨,将 15810 吨,将 15180 用科学记数法表示为( )
-1-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

湖北省襄阳市47中2013年中考数学综合题汇编7圆的问题

湖北省襄阳市47中2013年中考数学综合题汇编7圆的问题

2013中考综合题(七季-圆的问题)(共七季)1.如图,直线y=﹣x+2分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC上的动点.(1)求∠ABC的大小;(2)求点P的坐标,使∠APO=30°;(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.x+2中,令),=))∠AQO=2.如图12,在平面直角坐标系中,圆D 与y 轴相切于点C(0,4),与x 轴相交于A 、B 两点,且AB=6.(1)则D 点的坐标是( , ),圆的半径为 ; (2)sin ∠ACB= ;经过C 、A 、B 三点的抛物线的解析式 ; (3)设抛物线的顶点为F,证明直线FA 与圆D 相切;(4)在x 轴下方的抛物线上,是否存在一点N ,使CB N ∆面积最大,最大值是多少,并求出N 点坐标.解:(1)(5,4)------------1分 5------------2分(2)sin ∠ACB=53,425412+-=x x y --------------4分(3)证明:因为D 为圆心,A 在圆周上,DA=r=5,故只需证明90DAF ∠=︒,图12NP抛物线顶点坐标:F 9(5,)4-,925154,444DF AF =+===, (5分)所以22222215625255416490DA AF DF DAF ⎛⎫⎛⎫+=+=== ⎪ ⎪⎝⎭⎝⎭∴∠=︒所以AF 切于圆D 。

(6分)(4) 存在点N ,使CBN ∆面积最小。

设N 点坐标(a,425412+-a a ),过点N 作NP 与y 轴平行,交BC 于点P 。

可得P 点坐标为(a,421+-a ) ----------------7分 ∴NP=421+-a -(425412+-a a )=a a 2412+- ∴S △BCN =S △BPN +S △PCN =21×BO ×PN=21×8×(a a 2412+-)=16-(a-4)2 -----------8分当a=4时,S △BCN 最大,最大值为16。

2013-2019年湖北省襄阳市中考数学试题汇编(含参考答案与解析)

2013-2019年湖北省襄阳市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019湖北省襄阳市年中考数学试题汇编(含参考答案与解析)1、2013年湖北省襄阳市中考数学试题及参考答案与解析 (2)2、2014年湖北省襄阳市中考数学试题及参考答案与解析 (25)3、2015年湖北省襄阳市中考数学试题及参考答案与解析 (48)4、2016年湖北省襄阳市中考数学试题及参考答案与解析 (72)5、2017年湖北省襄阳市中考数学试题及参考答案与解析 (98)6、2018年湖北省襄阳市中考数学试题及参考答案与解析 (121)7、2019年湖北省襄阳市中考数学试题及参考答案与解析 (144)2013年湖北省襄阳市中考数学试题及参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.12D.12-2.四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×1043.下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a34.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°5.不等式组21217xx-⎧⎨--⎩≥>的解集在数轴上表示正确的是()A.B.C.D.6.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°7.分式方程121x x=+的解为()A.x=3 B.x=2 C.x=1 D.x=﹣18.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.9.如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .4610.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 211.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m 3) 0.2 0.25 0.3 0.4 0.5 家庭数(个)12241那么这组数据的众数和平均数分别是( )A .0.4和0.34B .0.4和0.3C .0.25和0.34D .0.25和0.312.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E 、B ,E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为( )A .9π B C 32π- D 23π-二、填空题(本大题共5小题,每小题3分,共15分)13.计算:)|3|1-+= .14有意义的x 的取值范围是 . 15.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .16.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是 .17.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .三、解答题(本大题共9小题,满分69分)18.(6分)先化简,再求值:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中,1a =+1b = 19.(6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆低端B 的俯角为45°,测得旗杆顶端A 的仰角为30°,如旗杆与教学楼的水平距离CD 为9m ,则旗杆的高度是多少?(结果保留根号)20.(6分)有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?21.(6分)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图. 根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第 小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?22.(6分)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数myx的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.23.(7分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.24.(9分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.25.(10分)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.26.(13分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.12D.12【知识考点】相反数.【思路分析】根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.【解答过程】解:2的相反数是﹣2.故选A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:15180=1.581×104,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.。

(中考数学真题复习)第10讲 不等式与不等式组 基础例题 附答案解析

(中考数学真题复习)第10讲 不等式与不等式组 基础例题 附答案解析

中考数学复习不等式与不等式组一、选择题1.(2013·广东)不等式5x -1>2x +5的解集在数轴上表示正确的是(D)图9-12.(2013·绵阳)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C)图9-2A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■3.若a <b <0,则下列式子:①a +1<b +2;②a b>1;③a +b <ab ;④1a <1b中,正确的有(C)A .1个B .2个C .3个D .4个4.(2012·攀枝花)下列说法中,错误的是(C)A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个二、填空题5.(2013·烟台)≥0,的最小整数解是__x =3__.6.(2013·宁夏)点P (a ,a -3)在第四象限,则a 的取值范围是__0<a <3__.7.(2013·内江)一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组≥0,的整数,则这组数据的平均数是__5__.8的解集是-1<x <1,则(a +b )2012=__1__.三、解答题9.解不等式组:(1)(2013·北京解:由3x >x -2,得x >-1,由x+13>2x ,得x <15,∴-1<x <15.(2)(2013·毕节≤3(x+2),2x-1+3x 2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.≤3(x+2),①2x-1+3x 2<1,②,由①得:x ≥-1,由②得:x <3,不等式组的解集为:-1≤x <3.在数轴上表示如图9-3所示:图9-3不等式组的非负整数解为2,1,0.10.(2013·河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2((2-5)+1=2(-3)+1=-6+1=-5(1)求(-2)⊕3的值;解:(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)若3⊕x的值小于13,求x的取值范围,并在图9-4所示的数轴上表示出来.图9-4解:∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1,在数轴上表示如图9-5所示.图9-5B组能力提升11.(2012·襄阳)≤0有解,则a的取值范围是(B)A.a≤3B.a<3C.a<2D.a≤212的解集为x>3,则m的取值范围是__m≤3__.13.(2013·乐山)对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若n-12≤x<n+12,则<x>=n,如<0.46>=0,<3.67>=4.给出下列关于<x>的结论:①<1.493>=1;②<2x>=2<x>;③若<12x-1>=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有<m+2013x>=m+<2013x>;⑤<x+y>=<x>+<y>.其中,正确的结论有__①③④__(填写所有正确的序号).14.(2013·乐山)已知关于x、y①②的解满足不等式组≤0,求满足条件的m的整数值.解:由②-①×2得7y=4,y=47,x=m+87,y=47满足不等式组≤0,3m+247+47≤0,m+87+207>0.解得-4<m≤-43.m为整数时,m=-3或m=-2,∴满足条件的m的整数值为-3或-2. 15.(2013·十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是__-2≤a<-1__.(2)如果x+12=3,求满足条件的所有正整数x.解:根据题意得3≤x+12<4,解得:5≤x<7,则满足条件的所有正整数为5,6.16.(2012·湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2-4>0.解:∵x2-4=(x+2)(x-2),∴x2-4>0可化为(x+2)(x-2)>0.由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式x2-4>0的解集为x>2或x<-2.问题:(1)一元二次不等式x2-16>0的解集为__x>4或x<-4__;解析:∵x2-16=(x+4)(x-4)∴x2-16>0可化为(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等于组②,得x<-4,∴(x-4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式x2-16>0的解集为x>4或x<-4.>0的解集为__x>3或x<1__;(2)分式不等式x-1x-3>0,解析:∵x-1x-3解得x>3或x<1.(3)解一元二次不等式2x2-3x<0.解析:∵2x2-3x=x(2x-3),∴2x2-3x<0可化为x(2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得,解不等式组①,得0<x<32解不等式组②,无解,.∴不等式2x2-3x<0的解集为0<x<32。

2013全国中考数学试题分类汇编 勾股定理

2013全国中考数学试题分类汇编 勾股定理

(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.==10ADB=AB×点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.DAO=BAD=AD=×=×,×=CE==.(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5.解:∵==线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .5 答案:B解析:由勾股定理,得AC =5,因为平行边形的对角线互相平分,所以,DE 一定经过AC 中点O ,当DE ⊥BC 时,DE 最小,此时OD =32,所以最小值DE =3 (2013•达州)如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。

设AE=x ,则x 的取值范围是 . 答案:2≤x ≤6解析:如图,设AG =y ,则BG =6-y ,在Rt △GAE 中,x 2+y 2=(6-y )2,即x =8(0)3y ≤≤,当y =0时,x 取最大值为6;当y =83时,x 取最小值2,故有2≤x ≤62013•雅安)在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) . ﹣ABC 的面积是 CA .48B .60C .76D .80(2013鞍山)△ABC 中,∠C=90°,AB=8,cosA=,则BC 的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC 的长,然后利用勾股定理即可求得BC 的长.解答:解:∵cosA=,∴AC=AB •cosA=8×=6, ∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. (2013鞍山)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .图1考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=(),BE=,B==8却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)x∴x=(﹣(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.=,AB=2CD=2,EF==3,或.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .(2013•包头)如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE=1,BE=2,CE=3,则∠BE ′C= 135 度.______________.【答案】(2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁..离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁..的点..,离容器上沿0.3m与蚊子相对A处,则壁虎捕捉蚊子的最短距离为1.3 m(容器厚度忽略不计).2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.上的点的横坐标是=2(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为A、5B C D、5(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD 的长为()...×5=×××,h=×=•BD=。

【精校】2013年湖北省襄阳市初中毕业生学业考试数学(含答案)

【精校】2013年湖北省襄阳市初中毕业生学业考试数学(含答案)

数学试题一、选择题(3*12=36分)1. 2的相反数是()A、-2B、2C、D、2. 四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学计数法表示为()A、1.581×103B、1.581×104C、15.81×103D、15.81×1043.下列运算正确的是()4.如图1,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A、60°B、70°C、80°D、90°5.不等式组的解集在数轴上表示正确的是()6、如图2,BD平分∠ABC,CD∥AB,若∠BCD =70°,则∠ABD 的度数为()A、55°B、50°C、45°D、40°7、分式方程121x x=+的解为()A、x = 3B、x = 2C、x = 1D、x = -18、如图3所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()9、如图4,平行四边形ABCD的对角线交于点O,且AB = 5,△OCD的周长为23,则平行四边形ABCD 的两条对角线的和是()A、18B、28C、36D、4610二次函数的图像如图5所示:若点在此函数图像上,的大小关系是()11、七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个)1 2 2 4 1那么这组数据的众数和平均数分别是()A、0.4和0.34B、0.4和0.3C、0.25和0.34D、0.25和0.312、如图6,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为()二、填空题(3*5=15分)13、计算:14、使代数式有意义的x的取值范围是15、如图7,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m。

2013年湖北省襄阳市中考数学试卷及答案(Word解析版)

2013年湖北省襄阳市中考数学试卷及答案(Word解析版)
2013年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)2.(3分)(2013•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810 4.(3分)(2013•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()5.(3分)(2013•襄阳)不等式组的解集在数轴上表示正确的是()6.(3分)(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()7.(3分)(2013•襄阳)分式方程的解为()8.(3分)(2013•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()9.(3分)(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()10.(3分)(2013•襄阳)二次函数y=﹣x+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x013•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做12.(3分)(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()二、填空题(3*5=15分)13.(3分)(2013•襄阳)计算:|﹣3|+=.14.(3分)(2013•襄阳)使代数式有意义的x的取值范围是.15.(3分)(2013•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管m.16.(3分)(2013•襄阳)襄阳市辖区.17.(3分)(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.

2013全国中考数学试题分类汇编 视图与投影

2013全国中考数学试题分类汇编 视图与投影

...这个物体的小正方体的个数为()株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是( )A B CD...(2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。

(2013•德州)图中三视图所对应的直观图是 (2013•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是( )第5题图...A .圆柱B .圆锥C .圆台D .长方体 考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,故选B . 点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.(2013•泸州)左下图为某几何体的示意图,则该几何体的主视图应为4题图2013•2013•内江)一个几何体的三视图如图所示,那么这个几何体是( )C B A D...(2013•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()...(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )(2013•沈阳)右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体(2013•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()......(2013•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是A .①②B . ②③C . ②④D . ③④ 答案:B解析:①的三视图都是正方形,④的三视图都是圆,三个完全相同;②的主视图和侧视图是矩形,俯视图是圆,③的主视图和侧视图都是等腰三角形,俯视图是圆和圆心,故选B 。

湖北省襄阳市47中2013年中考数学综合题汇编4面积问题

湖北省襄阳市47中2013年中考数学综合题汇编4面积问题

2013中考综合题(四季-面积问题)(共七季)1.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.tan∠DAC=.,解得:×DE×OA===.==y=,解得,点坐标为(,点坐标(,)代入=﹣(﹣)x ,解得点坐标为(,﹣点坐标(,﹣=﹣(﹣))﹣2.如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC 翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.AC==10=5,..x(,3.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A 两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.=4,∴OP==2×24.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.,即﹣AM•ND=t﹣).,∴S=﹣)(<t≤<,<时,t=5.在平面直角坐标系中,已知M 1(3,2),N 1(5,-1),线段M 1N 1平移至线段MN 处(注:M 1与M ,N 1与N 分别为对应点).(1)若M (-2,5),请直接写出N 点坐标.(2)在(1)问的条件下,点N 在抛物线216y x k =+上,求该抛物线对应的函数解析式.(3)在(2)问条件下,若抛物线顶点为B ,与y 轴交于点A ,点E 为线段AB 中点,点C(0,m )是y 轴负半轴上一动点,线段EC 与线段BO 相交于F ,且OC ︰OF=2m 的值.(4)在(3)问条件下,动点P 从B 点出发,沿x 轴正方向匀速运动,点P 运动到什么位置时(即BP 长为多少),将△ABP 沿边PE 折叠,△APE 与△PBE 重叠部分的面积恰好为此时的△ABP 面积的14,求此时BP 的长度.(1)N (0,2) …………1分 (2)∵N (0,2)在抛物线y=61x 2+323x+k 上∴k=2∴抛物线的解析式为y=61x 2+323x+2 …………3分(3)∵y=61x 2+323x+2=61(x+23)2∴B (-23,0)、A (0,2)、E (-3,1) ∵CO :OF=2: 3∴CO=-m, FO=-23m, BF=23+23m ∵S △BEC = S △EBF + S △BFC =12ABC S ∆∴21(23+23m)(-m+1) = 11)22m ⨯⨯-整理得:m 2+m = 0 (图1) ∴m=-1或0 …………5分 ∵m < 0 ∴m =-1 …………6分 (4)在Rt △ABO 中,tan ∠ABO=BO AO =322=33 ∴∠ABO=30°,AB=2AO=4①当∠BPE>∠APE 时,连接A 1B则对折后如图2,A 1为对折后A 的所落点,△EHP 是重叠部分. ∵E 为AB 中点,∴S △AEP = S △BEP =21S △A BP ∵S △EHP =41S △ABP ∴1ΔA HE S = S △EHP = S △BH P =41S △ABP ∴A 1H=HP ,EH=HB=1∴四边形A 1BPE 为平行四边形 (图2) ∴BP=A 1E=AE=2即BP=2②当∠BPE=∠APE 时,重叠部分面积为△ABP 面积的一半,不符合题意…………9分 ③当∠BPE<∠APE 时.则对折后如图3,A1为对折后A 的所落点.△EHP 是重叠部分∵E 为AB 中点,∴S △AEP = S △BEP =21S △A BP ∵S △EHP =41 S △A BP ∴S △EBH = S △EHP=1ΔA HP S =41S △A BP ∴BH=HP ,EH=HA 1=1 又∵BE=EA=2∴AP EH 2111∴AP=2 (图3)在△APB 中,∠ABP=30°,AB=4,AP=2.∴∠APB=90° ∴BP=综合①②③知:BP=2或6.如图1所示,已知直线y kx m =+与x 轴、y 轴分别交于A 、C 两点,抛物线2y x bx c =-++经过A 、C 两点,点B 是抛物线与x 轴的另一个交点,当12x =-时,y取最大值254.(1)求抛物线和直线的解析式;(2)设点P 是直线AC 上一点,且S ABP :S BPC 1:3=,求点P 的坐标; (3)若直线12y x a =+与(1)中所求的抛物线交于M 、N 两点,问: ①是否存在a 的值,使得090MON ∠=?若存在,求出a 的值;若不存在,请说明理由;②猜想当090MON ∠>时,a 的取值范围(不写过程,直接写结论). (参考公式:在平面直角坐标系中,若11(,)M x y ,22(,)N x y ,则M ,N 两点间的距离为MN =解:(1)由题意得212(1)24(1)254(1)4b c b ⎧-=⎪⎪⨯-⎨⨯--⎪=⨯-⎪⎩解得{16b c =-=∴抛物线的解析式为26y x x =--+ ∴(3,0)A -,(2,0)B∴直线AC 的解析式为26y x =+ ···················· (2分) (2)分两种情况:①点P 在线段AC 上时,过P 作PH x ⊥轴,垂足为H ∵13ABP BPC S AP S PC ==△△ ∴14AP AC =∵PH ∥CO ∴14PH AH AP CO AO AC === ∴32PH =,34AH = ∴94HO =∴93(,)42P -②点P 在线段CA 的延长线上时,过P 作PG x ⊥轴,垂足为G ∵13ABP BPC S AP S PC ==△△ ∴12AP AC =∵PG ∥CO ∴12PG AG AP CO AO AC === ∴3PG =,32AG = ∴92GO =∴9(,3)2P --综上所述,193(,)42P -或29(,3)2P -- ··················· (4分) (3)①方法1:假设存在a 的值,使直线12y x a =+与(1)中所求的抛物线26y x x =--+交于11(,)M x y 、22(,)N x y 两点(M 在N 的左侧),使得090MON ∠=由2126y x ay x x ⎧⎪=+⎨⎪=--+⎩ 得2232120x x a ++-= ∴1232x x +=-,126x x a ⋅=-又1112y x a =+,2212y x a =+∴121211()()22y y x a x a ⋅=++2121211()42x x x x a a =⋅+++26344a a a -=-+∵090MON ∠= ∴222OM ON MN +=∴22222211222121()()x y x y x x y y +++=-+- ∴12120x x y y ⋅+⋅=∴2636044a a a a --+-+= 即22150a a +-=∴3a =-或52a = ∴存在3a =-或52a =使得090MON ∠= ·方法2:假设存在a 的值,使直线12y x a =+与(1)中所求的抛物线26y x x =--+交于11(,)M x y 、22(,)N x y 两点(M 在x 轴上侧),使得090MON ∠=,如图,过M 作MP x⊥于P ,过N 作NQ x ⊥于Q 可证明 MPO △∽OQN △ ∴MP POOQ QN=即1122y x x y -= ∴1212x x y y -= 即12120x x y y ⋅+⋅= 以下过程同上 ②当532a -<<时,090MON ∠>7.如图,在平面直角坐标系中,直线2+-=x y 与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2. (1)求∠OAB 的度数; (2)求证:⊿AOF ∽⊿BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,⊿OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.,∴BE=AF=ON ∴BE•AF=OM•ON=2OM•ON.EF((==()•PM﹣PF•PE﹣OM•EM,[PF(PF•EM+OM•PE)PE(=m),时,2=a+﹣﹣=,即a=b=时,﹣(﹣+2)﹣8.如图,已知抛物线y=12x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)b=▲,点B的横坐标为▲(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=12x2+bx+c交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC 的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有▲个.解(1);(点B坐标根据二次函数对称性来求解)(2)直线AE解析式,联立二次函数解析式解得点E直线CD解析式,因为C、D、E三点共线,所以点E代入CD解析式可解得所以抛物线解析式为(3)(表示出△PBC的面积并判断出最大、最小值即可求出范围)①设点P,则当时,;当时,。

2013年襄阳市襄城区中考数学适应性试题和答案

2013年襄阳市襄城区中考数学适应性试题和答案

襄城区2013年中考适应性考试数学试题(时限:120分钟 满分:120分)一、选择题(每小题3分,共36分)1.-21的倒数是( )A.-21B.-2C.2D.212.李明的作业本上有四道题:(1)a 2·a 3=a 5,(2)(2b 2)3=8b 6,(3)(x+1)2=x 2+1,(4)4a 6÷(-2a 3)=-2a 3,如果你是他的数学老师,请找出他做错的题是( )A.(1)B.(2)C.(3)D.(4) 3.函数y=12+-x x 中的自变量的取值范围为( ) A.x >-2 B.x >2且x ≠-1 C.x ≥2 D.x ≥2且x ≠-1 4. 右图是某几何体的三种视图,则该几何体是( ) A .正方体 B .圆柱体 C .圆锥体D .球体5. 下列图形中既是轴对称图形,又是中心对称图形的是( )6.下列说法正确的是( ) A.一个游戏的中奖率是101,则做10次这样的游戏一定会中奖 B.为了解全国中学生的心理健康情况,应采用普查的方式 C.一组数据6,8,7,8,8,9,10的众数和中位数都是8D.若甲组数据的方差S 2甲=0.01,,乙组数据的方差S 2乙=0.1,则乙组数据比甲组数据稳定7.北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 ( )平方米.A .0.258×106B .2.58×105C .25.8×104D .258×1038. 在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有 苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )主视图俯视图 左视图A B C DA .43倍 B .32倍 C .2倍 D .3倍9. 下列一元二次方程中,没有实数根的是( )A .x 2+2x-1=0 B .x 2+22x-1=0C .x 2+2x+1=0D .-x 2+2x+2=010. 如图,以点O 为圆心的两个同心圆,半径分 别为5和3,若大圆的弦AB 与小圆相交,则弦 长AB 的取值范围是( )A .8≤AB ≤10 B .AB ≥8C .8<AB <10D .8<AB ≤1011. 如图已知扇形AOB 的半径为6cm ,圆心角的 度数为120°,若将此扇形围成一个圆锥,则围成 的圆锥的底面半径为( )A .2㎝ B. 4㎝ C .1㎝ D.8㎝ 12. 如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )二、填空题(每小题3分,共15分)13. 如图,在△ABC 中,∠C =90°.若BD ∥AE , ∠DBC =20°,则∠CAE 的度数是 .14. 已知一等腰三角形的两边长x 、y 满足方程组⎩⎨⎧,823,32=+=-y x y x 则此等腰三角形的周长为 . 15. 如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平 分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则AF 的长为__________.16. 某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是 . 17. 如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 . 三、解答题(本题有9个小题,共69分)AE18.(6分)先化简:)3231(21943322-+⋅-÷+x x x x ;若结果等于32,求出相应x 的值.19.(6分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班 体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包 括左端点,不包括右端点).求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?20.(6分)为了支援四川雅安地区人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?21.(6分)如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:2≈1.414,3≈1.732,6≈2.449)22.(7分)如图,△ABC 是边长为5的等边三角形,将△ABC 绕点C 顺时针旋转120°,得到△EDC,连接BD ,交AC 于F.(1)猜想AC 与BD 的位置关系,并证明你的结论; (2)求线段BD 的长.23.(7分)如图,反比例函数y=xk(k >0)与矩形OABC 在第一象限相交于D 、E 两点,OA=2,AFEDC B AOC=4,连接OD 、OE 、DE.记△OAD 、△OCE 的面积分别为S 1、S 2 . (1)①点B 的坐标为 ;②S 1 S 2(填“>”、“<”、“=”); (2)当点D 为线段AB 的中点时,求k 的值及点E 的坐标; (3)当S 1+S 2=2时,试判断△ODE 的形状,并求△ODE 的面积.4.(8分)为加强对学生的爱国主义教育,某学校团组织决定在“五·四”青年节到来之际,计划租用6辆客车送一批团员师生去烈士塔参加新团员入团宣誓仪式.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车的总费用为y 元.(1)求出y (元)与x (辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?25.(11分)如图,已知以Rt △ABC 的直角边AB 为直径做圆O ,与斜边AC 交于点D ,E 为BC 边的中点,连接DE. (1)求证:DE 是⊙O 的切线;(2)连接OE 、AE ,当∠CAB 为何值时,四边形AODE是平行四边形,并说明理由;(3)在(2)的条件下,求sin ∠CAE 的值.26.(12分)矩形OABC 在平面直角坐标系中的位置如图 所示,A 、C 两点的坐标分别为A (6,0),C (0,-3),直线y=-43x 与BC 边相交于D 点. (1)若抛物线y=ax 2-49x 经过点A ,试确定此抛物线的解析式; (2)在(1)中的抛物线的对称轴上取一点E ,求出EA+ED 的最小值;(3)设(1)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的点P 的坐标.E B襄城区2013年中考适应性考试数学试题答案一、选择题:1.B2.C3.C4.B5.D6.C7.B8.B9.C 10.D 11.A 12.D 二、填空题:13. 70° 14.5 15.6 16.5317. )2,6(或)2,6(- 三、解答题: 18.解:……(3分)由32x =32,可得x 2=2,解得 x =±2. ……(6分) 19. 解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8.因为100.8>100,所以一定超过全校平均次数. ……(2分) (2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. ……(4分) (3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为5033. ……(6分) 20. 解:(1)2000 ……(1分) (2)设该公司原计划安排x 名工人生产帐篷,则由题意得:20002000022000(125)(1022)(50)x x -⨯+=--+%, 5163(50)x x ∴=+.解这个方程,得750x =.经检验,750x =是所列方程的根,且符合题意.答:该公司原计划安排750名工人生产帐篷. ……(6分) 21.解:∵在直角三角形ABC 中,sin45°=ABAC, ∴AC=AB ·sin45°=225. ∵在直角三角形ABC 中,∠C=90°,∠ABC=45°, ∴BC=AC=225, ∵在直角三角形ADC 中,tan30°=CDAC,∴CD=030tan AC =256 ∴BD=CD-BC=25(6-2)≈2.5875≈2.29∵6-2.59=3.41(米)>3米,∴这样改造是可行的. ……(6分) 22.解:(1)AC 与BD 互相垂直平分.证明:连接AD ,由题意知,△ABC ≌△EDC ,∠ACE=120°,又∵△ABC 是等边三角形,∴AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°, ∴∠ACE+∠ACB=120°+60°=180°,∴B 、C 、E 三点在一条直线上.∴AB ∥DC ,∴四边形ABCD 为菱形,∴AC 与BD 互相垂直平分. ……(4分) (2)由(1)知,四边形ABCD 为菱形,∴∠DBE=21∠ABC=30°, ∵∠DBE+∠BDE+∠E=180°,∴∠BDE=90°. ∵ B 、C 、E 三点在一条直线上,∴BE=10,∴ BD=22DE BE -=22510-=53 ……(7分)23.解:(1)①点B 的坐标为(4,2);②S 1=S 2 ……(2分) (2)k 的值为1,点E 的坐标为(4,41) ……(4分) (3)可证得△ODE 为直角三角形. ∴SODE∆=21OD·DE=21×5×253=415……(7分) 24.解:(1)y=280x + 200(6-x )= 80x+1200(0≤x ≤6). ……(3分) (2)可以有结余.由题意,知 ⎩⎨⎧≥-+≤+240)6(30451650120080x x x解之,得4≤x ≤585. 故预支的租车费用可以有结余. ∵x 取整数,∴x 取4或5.∵k=80>0,∴y 随x 的增大而增大,∴当x=4时,y 的值最小,其最小值y=4×80+1200=1520(元),∴最多可结余1650-1520=130(元). ……(8分) 25.(1)证明:连接OD 、BD.∵AB 是⊙O 的直径,∴∠ADB=90°, ∵∠ADB+∠BDC=180°,∴∠BDC=90°, ∵E 为BC 边的中点,∴BE=DE=CE=21BC ∴∠BDE=∠DBE, ∵OB=BD, ∴∠OBD=∠ODB, 又∵∠ABC=∠OBD+∠DBE=90°,∴∠ODB+∠BDE=90°,即∠ODE=90°, ∴OD ⊥DE ,∴DE 是⊙O 的切线. ……(4分) (2)解:当∠CAB=45°时,四边形AODE 是平行四边形. 又∵∠ABC =90°,∴∠CAB=∠C =45°,∴AB=BC. 同理可得BD=CD, ∵∠BDC=90°,E 为BC 边的中点, ∴DE ⊥BC, ∴∠CED=∠ABC =90°, ∴DE ∥AB. 又∵DE=21BC,OA=21AB, ∴DE=OA. ∴四边形AODE 是平行四边形. ……(8分)(3)过点E 作EF ⊥AC 交AC 于点F,设EF=x ,则CE=BE=2x,BC=AB=22x, 在Rt △ABE 中,AE=22BE AB +=10x在Rt △AFE 中,sin ∠CAE=AE EF=xx 10=1010 ……(11分)26.解:(1)抛物线y=ax 2-49x 经过点A (6,0), ∴0=36a-49×36, ∴a=83,故抛物线的解析式为y=83x 2-49x. ……(3分)(2)直线y=-43x 与BC 边相交于D 点,当y=-3时,x=4,∴点D 的坐标为(4,-3).∵点O 与点A 关于对称轴对称,且点E 在对称轴上, ∴EA=EO, ∴EA+ED=EO+ED,则最小值为OD=2234+=5,∴EA+ED 的最小值为5. ……(6分)(3)抛物线的对称轴与x 轴的交点P 1符合条件. ∵OA ∥CB ,∴∠P 1OM=∠CDO.∵∠OP 1M=∠DCO=90°,∴Rt △P 1OM ∽Rt △CDO.∵抛物线的对称轴为x=3,∴点P 1的坐标为(3,0). 过点O 作OD 的垂线交抛物线的对称轴于点P 2. ∵对称轴平行于y 轴,∴∠P 2MO=∠DOC.∵∠P 2OM=∠DCO=90°, ∴Rt △P 2MO ∽Rt △DOC. ∴点P 2也符合条件,∠OP 2M=∠ODC. ∵P 1O=CO=3,∠P 2P 1O=∠DCO=90°, ∴Rt △P 2P 1O ≌Rt △DCO. ∴P 1P 2=CD=4.∵点P 2在第一象限,∴点P 2的坐标为(3,4).∴符合条件的点P 有两个,分别是P 1(3,0),P 2(3,4). ……(12分)F。

襄州区2013中考数学适应性试题参考答案

襄州区2013中考数学适应性试题参考答案

襄州区2013年中考适应性测试数学试题参考答案一、选择题:(本大题共12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABBABDCCCBAD二、填空题:(本大题共5个小题,每小题3分,共15分) 13.2 14.3=x 15.0 16.a ≥1 17.1或3 三、解答题:(本大题共9个小题,共69分) 18.解:原式=11)2()1)(1(--∙+-+a aa a a a …………………………1分=121-++a a …………………………2分 = 221+--+a a a =21+-a …………………………3分当222-=a 时, 原式= 22221+--= 221- …………………………4分=42-…………………………5分 19.设垂直于墙的一边长为x 米,根据题意得:80)2224(=+-x x …………………………2分 解这个方程得: 51=x ,82=x …………………………………………3分 当51=x 时,2224+-x =16>12,不符合题意,舍去;当82=x 时,2224+-x =10<12,符合题意; 所以,8=x ………4分 答:车棚的长和宽分别为10米和8米. …………………………5分20.解:过点P 作PE ⊥AB 于点E,∵AB 为南北方向,∴△AEP 和△BEP 分别为直角三角形, 再Rt △AEP 中,∠APE=90°-60°=30°,AE=21AP= 21×80=40,…………………2分 ∴EP=100×cos30°=403 海里,在Rt △BEP 中,BE=EP=403 海里,………………………4分 ∴AB=40+403 .∴)322(20)34040(+=÷+答:“中国渔政310”船赶往渔船出事地点最少需要的时间为 )322(+小时.… 6分 21.(1)50,640 ………………………………2分(2)列表如下:甲乙 丙 丁 甲 ▲ 乙,甲 丙,甲 丁,甲 乙 甲,乙 ▲ 丙,乙 丁,乙 丙 甲,丙 乙,丙 ▲ 丁,丙 丁甲,丁乙,丁丙,丁▲由上表可知,从4为同学中选两位同学的等可能结果共有12种,其中恰好抽到甲,丙同学的结果共有2种 . ………………5分 所以,其中恰好抽到甲,丙同学的概率是:61122=…………6分 22.解:(1)∵反比例函数)0(≠=m xmy 过点B (1,-4) ∴4)4(1-=-⨯=m ∴xy 4-= …………………………………1分当14=-=y x 时, ∴A(-4,1)∴⎩⎨⎧=+--=+144b k b k ∴⎩⎨⎧-=-=31b k∴ 3--=x y …………………………………2分 (2)在直线3--=x y 中,当0=y 时,3-=x ,∴C(-3,0) 同理可求直线3--=x y 与y 轴交点的坐标为(0,-3)∴)133313(21⨯+⨯+⨯=∆AOB S =215 ……………5分(3)不等式0<-+xmb kx 的解集是﹣4<x <0和x >1 ……………6分 23.(1)证明:∵四边形ABCD 是菱形, ∴∠ADB =∠CDB,AD=DC ∵DP=DP ∴△DCP ≌△DAP∴∠DCP =∠DAP ……………………………………3分 (2)∵ 四边形ABCD 是菱形∴AB =AD =DC =2,AB ∥CD …………………………4分 ∴21==PB PD BF CD ,∠CDB=∠DBA ∴AD=AB=AF=2 ……………………………5分 ∴∠ADF=90°,∠DBP=∠ADB ∴∠DFB+∠DBF=90°∵PA ⊥BF,∴∠DAF+∠DAP=90°∴∠DAF =∠DFA ……………………………6分 ∴AD =DF =2∴BD =222)22(-+=32…………………………7分24.(1)证明:∵ △EBD 是由△CBD 折叠而得,∴ED =DC,BE=BC ;……………1分∵四边形ABCD 是矩形,∴AB=CD,∠BAD =∠BED =90° ∴ED =AB,而∠EFD=∠AFD ∴△AFD ≌△EFD∴AF =EF ……………3分 (2)设AF =x∵AB=3,BC=BE=4,AF =EF∴ BF =4-x∵∠BAF =90°∴222BF AB AF =+∴222)4(3x x -=+ ∴87=x ……………5分∴tan ∠ABF =247387==AD AF ……………6分 (3)∵四边形ABCD 是矩形, ∴∠BAD =90°,AD ∥BC; ∴AC =5432222=+=+BC AB ,∴ΔAGF ∽ΔCGB ……………7分∴GCAGBC AF =设AG =m ,则CG =5-m ,∴mm-=5487……………9分解之得:3935=m ,即AG =3935……………10分25.解:(1)设大货车用x 辆,则小货车用(20-x )辆,根据题意得16x +10(20-x )=228 ,………………2分 解得x=10,∴20-x=10。

湖北省襄阳市47中2013年中考数学综合题汇编3四边形

湖北省襄阳市47中2013年中考数学综合题汇编3四边形

2013中考综合题(三季-四边形)(共七季)1.如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)27 3(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F . (1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由. (3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.∵当x =0时,y =2 ∴C (0,2) 将C 、D 坐标代入抛物线解析式得:27932c b c =⎧⎪⎨-++=⎪⎩ 解得b =72,c =2∴抛物线的解析式为y =-x 2+72x +2 (2)∵PF ∥OC∴当四边形OCPF 是平行四边形时,PF=OC=2 由题意得,P (m ,-m 2+72m+2),F (m ,12m+2) ∵点P 在y 轴右侧 ∴m >0 ∴PF=|-m 2+72m+2-(12m+2)|=|-m 2+3m |=2 当P 在CD 上方时,-m 2+3m=2备用图则m 2-3m+2=0,解得m=1或2 当P 在CD 下方时,-m 2+3m=-2 则m 2-3m-2=0解得m=32或32(舍去)故,当m=1或2OCPF 是平行四边形 (3)点P 坐标为(12,72)或(236,1318) ① 当P 在CD 上方时,PF=-m 2+3m ,如下左图。

由△PKF ∽△CHF ∽△GOC 可求得:(6m-2m 2),(3m-m 2),m ∵∠PCF =45° ∴PK=CK=CF+FK则5(6m-2m 2)=5(3m-m 2)+2m 整理得2m 2-m=0 解得m=0(舍去)或12∴P (12,72) ② 当P 在CD 下方时,PF=m 2-3m ,如下右图。

与①同理,可求得:PK=5(2m 2-6m),FK=5(m 2-3m),CF=2m 由PK=CK=CF-FK 得(2m 2(m 2-3m) 整理得6m 2-23m=0 解得m=0(舍去)或236∴P (236,1318)2.如图,已知抛物线42-+=bx ax y 经过A (-8,0),B (2,0)两点,直线4-=x 交x 轴于点C ,交抛物线于点D .(1)求该抛物线的解析式;(2)点P 在抛物线上,点E 在直线4-=x 上,若以A ,O ,E ,P 为顶点的四边形是平行四边形,求点P 的坐标;(3)若B ,D ,C 三点到同一条直线的距离分别是1d ,2d ,3d ,问是否存在直线l ,使2321d d d ==?若存在,请直接写出3d 的值;若不存在,请说明理由.解:(1)∵抛物线42-+=bx ax y 经过A (-8,0),B (2,0)两点,∴⎩⎨⎧=-+=--042404864b a b a , 解得:⎪⎪⎩⎪⎪⎨⎧==.2341b a ²²²²²²²²²²² 2分∴423412-+=x x y ;²²²²²²²²²²²²²²²²²²² 3分 (2)∵点P 在抛物线上,点E 在直线4-=x 上,设点P 的坐标为m (,)423412-+m m ,点E 的坐标为4(-,)n . 如图1,∵点A (-8,0),∴8=AO . ①当AO 为一边时,EP ∥AO , 且8==AO EP , ∴84=+m ,解得:121-=m ,42=m .∴P 1(12-,14),P 2(4,6) ²²²²²²²²²²²²²²²²²² 5分 ②当AO 为对角线时,则点P 和点E 必关于点C 成中心对称,故CP CE =.∴⎪⎩⎪⎨⎧-=-+-=,4234142n m m m 解得:⎩⎨⎧=-=,64n m ∴P 3 (4-,6-).∴当P 1(12-,14),P 2(4,6),P 3 (4-,6-)时,A ,O ,E ,P 为顶点 的四边形是平行四边形. ²²²²²²²²²²²²²²²²²² 7分 (3)存在直线l ,使2321d d d ==. ²²²²²²²²²²²²²²²² 8分 3d 的值为:22,26,1056,1056. ²²²²²²²²² 12分(1221由题意得C (-4,0) ,B (2,0) ,D (-4,-6), ∴OC =4 ,OB =2,CD=6.∴△CDB 为等腰直角三角形.∴CH=CD 45sin ⋅,即:23226=⨯=CH . ∵BD=2CH ,∴BD=26.①∵CO :OB=2:1,∴过点O 且平行于BD 的直线满足条件 作BE ⊥直线1l 于点E ,DF ⊥直线1l 于点F ,设CH 交直线1l 于点G . ∴DF BE =,即:21d d = . 则12==BO CO BE CG , 12=GH CH ,即1213=d d ,∴132d d =,∴2321d d d ==.∴CH CG 32=,即2223323=⨯=d . ②如图2,在△CDB 外作直线l 2平行于DB ,延长CH 交l 2于点G ′, 使G H CH '=, ∴2623=='=CH G C d .③如图3,过H ,O 作直线3l ,作BE ⊥3l 于点E ,DF ⊥3l 于点F ,CG ⊥3l 于点G ,由①可知,BH DH = 则DF BE =,即:21d d = . ∵CO :OB=2:1,∴2321d d d ==. 作HI ⊥x 轴于点I ,∴HI= CI=CB 21=3. ∴OI =4-3=1, ∴10132222=+=+=OI HI OH . ∵△OCH 的面积=310213421d ⋅=⨯⨯,∴51063=d . ④如图3,根据等腰直角三角形的对称性,可作出直线4l ,易证:2321d d d ==,51063=d .∴存在直线l ,使2321d d d ==.3d 的值为:22,26,1056,1056.3、如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若AEF ∠=90°,且EF 交正方形外角的平分线CF 于点F 。

襄阳中考真题数学答案及解析

襄阳中考真题数学答案及解析

襄阳中考真题数学答案及解析襄阳中考作为中国中学毕业生的重要考试之一,对学生学业发展起着至关重要的作用。

而数学科目又是其中具有一定难度和挑战性的科目之一。

因此,了解并掌握襄阳中考数学真题的答案及解析对于学生备考是非常有帮助的。

为了帮助广大学生更好地备考,我们将分析一道襄阳中考数学真题并给出答案及解析。

假设题目为:已知三边长为5 cm、6 cm、7 cm的三角形,求其面积。

首先,我们可以使用海伦公式来求解这个问题。

根据海伦公式,三角形的面积可以通过其三边长计算得出。

公式如下:面积= √[s(s - a)(s - b)(s - c)]其中,s 是三边长 a、b、c 之和的一半,即 s = (a + b + c)/2。

接下来,我们可以根据给定的题目信息进行计算。

根据题目所给的三边长,我们可以得到 a = 5 cm,b = 6 cm,c = 7 cm。

将这些数据代入海伦公式,我们可以计算出 s 的值:s = (5 + 6 + 7)/2 = 9 cm。

然后,我们代入 s 的值,计算面积:面积= √[9(9 - 5)(9 - 6)(9 - 7)]= √[9(4)(3)(2)]= √(216)≈ 14.7 cm²所以,三边长为5 cm、6 cm、7 cm的三角形的面积约为14.7 cm²。

通过这个例子,我们可以看出,在解答数学题目时,理解并掌握相关公式的应用是非常重要的。

而对于海伦公式来说,它不仅可以计算已知三边长求面积,还可以用于解决其他相关的问题,如推导出三角形的高、角的正弦、余弦、正切等。

除了海伦公式,襄阳中考数学还包括其他一些重要的知识点和技巧,如代数运算、几何图形的性质、统计与概率等。

掌握这些知识点和解题技巧可以帮助学生在考试中更加得心应手。

总结起来,襄阳中考数学真题的答案及解析对于学生备考至关重要。

通过了解并掌握相关的数学知识和解题技巧,学生可以更好地应对考试,取得优异的成绩。

因此,希望广大学生能够认真准备,灵活运用所学知识,以取得令人满意的成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位同学取得优异成绩
t;求解答网>祝各位同学取得优异成绩
相关文档
最新文档