概率论期末考试题型知识点和公式复习
概率统计公式大全(复习重点)
概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。
本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。
一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。
例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。
解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。
2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。
解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。
二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
概率论与数理统计期末复习重要知识点及公式整理讲解
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
《概率论与数理统计》期末复习重点总结
概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论总复习-知识总结(一)
概率论总复习-知识总结(一)概率论总复习-知识总结概率论是一门广泛应用于自然科学、社会科学、医学、金融等领域的数学学科,是研究随机事件及其发生规律的学科。
下面就概率论常见的概念、公式和计算方法进行总结和复习。
一、基本概念1. 试验和事件:试验是人为、自然、社会等各种实际现象的模拟或观测过程,试验的每一个结果称为该试验的一个基本事件;事件是由基本事件构成的,即试验结果的任意某些组合,可以是单个事件,可以是多个事件组合形成的复合事件。
2. 样本空间和事件域:样本空间是由一切可能的基本事件组成的集合;事件域是指样本空间中,所有事件的全体,即事件的集合。
3. 必然事件和不可能事件:试验中一定会发生的事件称为必然事件,常用符号Ω表示;试验中不可能发生的事件称为不可能事件,常用符号Ø表示。
4. 等可能概型:所有基本事件的发生是等可能的,即每个基本事件发生的概率相等。
5. 概率的基本性质:对于任何事件A,有0 ≤ P(A) ≤ 1,并且P(Ω) = 1,P(Ø) = 0;对于任意两个互不相容的事件A和B,有P(A∪B) =P(A) + P(B)。
二、概率的计算方法1. 古典概型:若试验基本事件有限且等可能,则事件A的概率P(A) = A中基本事件数 / S中基本事件总数。
2. 几何概型:可以利用图形面积的比值计算。
3. 组合计数:若A是从n个不同元素中取m个元素集合,则其包含m个元素的子集个数称为A的组合数。
三、条件概率和独立事件1. 条件概率:设A、B是两个事件,且P(A) > 0,则事件B在事件A发生的条件下发生的概率记为P(B|A),称为条件概率,P(B|A) = P(AB) / P(A)。
2. 乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。
3. 全概率公式和贝叶斯公式:全概率公式是用于计算复杂事件的概率,表示为P(B) = ΣiP(Ai)P(B|Ai);贝叶斯公式是在已知结果的情况下,得出反推因果关系的方法,表示为P(Ai|B) = P(Ai)P(B|Ai) /ΣjP(Aj)P(B|Aj)。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计考前必备公式
概率论与数理统计考前必备公式==================================概率论与数理统计是大学生必修的数学课程之一,也是多个专业领域的基础知识。
这门课程主要研究随机现象以及随机事件的概率,探索统计规律,并应用于实际问题的分析与决策。
在概率论与数理统计的学习过程中,我们会接触到大量的公式,这些公式是我们进行问题求解的基础。
本文档将为大家整理并介绍概率论与数理统计考前必备的公式,帮助大家在考试中更好地把握重点,提高成绩。
1.随机变量与分布1.1随机变量随机变量是一种数值型的随机量,它的取值由随机实验的结果决定。
我们将随机变量分为离散型和连续型两类。
1.离散型随机变量定义:$X$是一个随机变量,如果它的取值有穷多个或者可列无穷多个,那么$X$是离散型随机变量。
2.连续型随机变量定义:$X$是一个随机变量,如果它的取值为一个区间或者多个区间,那么$X$是连续型随机变量。
1.2分布函数分布函数是描述随机变量取值情况的函数,记作$F(x)$,其中$x$为实数。
根据随机变量的类型,分布函数可为离散型随机变量的概率质量函数或连续型随机变量的概率密度函数。
1.离散型随机变量概率质量函数概率质量函数描述离散型随机变量取值的概率分布。
对于离散型随机变量$X$,其概率质量函数定义如下:$$P(X=x_i)=p_i,\q u ad i=1,2,\d ot s$$2.连续型随机变量概率密度函数概率密度函数描述连续型随机变量取值的概率分布。
对于连续型随机变量$X$,其概率密度函数定义如下:$$F(x)=\in t_{-\in f ty}^{x}f(x)d x$$1.3均匀分布均匀分布是最简单的连续型随机变量分布之一,主要用于描述在一个区间内所有点出现的概率相等的情况。
1.均匀分布的概率密度函数均匀分布的概率密度函数定义如下:$$f(x)=\be gi n{cas e s}\f ra c{1}{b-a},&a\le qx\l eq b\\0,&\t ex t{其他}\e n d{ca se s}$$其中$a$为区间下界,$b$为区间上界。
概率论与数理统计期末考试复习
j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;
概率统计公式大全(复习重点)
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
概率论与数理统计期末复习重要知识点及公式整理
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X只有两个可能取值,且其分布为,则称X服从处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:;两点分布的方差:(2)二项分布:若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:;二项分布的方差:(3)泊松分布:若一个随机变量X的概率分布为,则称X服从参数为的泊松分布,记为X~P ()泊松分布的概率分布:泊松分布的期望:;泊松分布的方差:4.连续型随机变量:如果对随机变量X的分布函数F(x),存在非负可积函数,使得对于任意实数,有,则称X为连续型随机变量,称为X的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X的概率密度为,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:均匀分布的期望:;均匀分布的方差:(2)指数分布:若连续型随机变量X的概率密度为,则称X服从参数为的指数分布,记为X~e ()指数分布的概率密度:指数分布的期望:;指数分布的方差:(3)正态分布:若连续型随机变量X的概率密度为则称X服从参数为和的正态分布,记为X~N(,)正态分布的概率密度:正态分布的期望:;正态分布的方差:(4)标准正态分布:,标准正态分布表的使用:(1)(2)(3)故定理1:设X~N(,),则6.随机变量的分布函数:设X是一个随机变量,称为X的分布函数。
分布函数的重要性质:7.求离散型的随机变量函数、连续型随机变量函数的分布(1)由X的概率分布导出Y的概率分布步骤:①根据X写出Y的所有可能取值;②对Y的每一个可能取值确定相应的概率取值;③常用表格的形式把Y的概率分布写出(2)由X的概率密度函数(分布函数)求Y的概率密度函数(分布函数)的步骤:①由X的概率密度函数随机变量函数Y=g(X)的分布函数②由求导可得Y的概率密度函数(3)对单调函数,计算Y=g(X)的概率密度简单方法:定理1 设随机变量X具有概率密度,又设y=g(x)处处可导且恒有(或恒有),则Y=g(X)是一个连续型随机变量,其概率密度为;其中是y=g(x)的反函数,且练习题:2.4 第7、13、14总习题第3、6、9、10、11、13、14、17、18、19第三章重要知识点:1.离散型二维随机变量X与Y的联合概率分布表:Y……X…………. . . ..................……. . . .................. (1)(1)要会由X与Y的联合概率分布,求出X与Y各自概率分布或反过来;类似P63 例2(2)要会在X与Y独立的情况下,根据联合概率分布表的部分数据,求解其余数据;类似 P71 例3(3)要会根据联合概率分布表求形如的概率;(4)要会根据联合概率分布律之类求出相应的期望、方差、协方差、相关系数等。
概率论与数理统计(完整公式,知识点梳理)
p
k
;
对于分布 二项分布
f ( x)dx
。
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
P( A)
(10)加法 公式 (11)减法 公式 (12)条件 概率
L( A) 。其中 L 为几何度量(长度、面积、体积) 。 L ()
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
积分元 f ( x)dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离 散型随机变量理论中所起的作用相类似。
4 / 27
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数
F ( x) P( X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
概率论与数理统计期末复习知识点
fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n
则
Ai Ai
Ai Ai
i 1
概率论题型基础知识点总结
概率论题型基础知识点总结概率论题型基础知识点总结概率论是概率分析与运算的理论基础,常用于研究随机现象的规律。
掌握概率论的基础知识点对于理解概率问题的本质和解题过程至关重要。
本文将对概率论题型的基础知识点进行总结和归纳。
一、概念理解1. 随机现象:具有多种可能结果的现象,每种可能发生的结果称为随机事件。
2. 样本空间:随机现象所有可能结果的集合。
3. 随机事件:样本空间的子集,可以是一个结果,也可以有多个结果。
用大写字母表示,如A、B。
4. 必然事件:必然发生的事件,其对应的集合是样本空间的子集合。
5. 不可能事件:不可能发生的事件,其对应的集合是空集。
二、概率公式1. 相对频率定义:假设某一事件发生的频率稳定下来,那么事件发生的概率就等于这个事件发生的相对频率。
2. 等可能性定义:在所有可能结果等可能的情况下,某一事件发生的概率等于该事件包含的结果数与样本空间结果数的比值。
3. 事件的互斥与独立:若两个事件不可能同时发生,则称其为互斥事件;若两个事件的发生与否没有相互影响,则称其为独立事件。
4. 概率公式:已知随机事件A和B,有概率公式P(A) + P(A') = 1(A'为事件A的补事件);P(AUB) = P(A) + P(B) -P(AnB)(U为并集,n为交集)。
三、常见题型1. 组合问题:指定事件A、B、C的情况下,求A或B或C至少一个事件发生的概率。
解题思路:使用容斥原理,P(AuBuC) = P(A) + P(B) + P(C) - P(AnB) - P(AnC) - P(BnC) + P(AnBnC)。
2. 逆概率问题:已知概率P(A),求其对立事件A'的概率P(A')。
解题思路:P(A') = 1 - P(A)。
3. 条件概率问题:在已知事件B发生的条件下,求事件A发生的概率P(A|B)。
解题思路:P(A|B) = P(AnB) / P(B)。
期末概率知识点总结初中
期末概率知识点总结初中概率是数学中一个非常重要的概念,它在我们生活中有着广泛的应用。
而在初中阶段,学生们学习的概率知识主要包括基本概率、古典概率和条件概率等内容。
今天我将对这些知识进行总结,以便帮助大家更好地理解和掌握概率知识。
一、基本概率1.1 实验与样本空间在概率论中,实验是指一种可以在某种特定条件下进行的事物观察或测量。
样本空间则是实验所有可能结果的集合。
例如,抛硬币的实验,样本空间为{正面,反面};掷骰子的实验,样本空间为{1,2,3,4,5,6}。
1.2 事件与概率在样本空间中的子集称为事件,事件的发生即为实验的某一结果。
概率是事件发生的可能性大小,通常用P(A)表示。
概率的计算公式为P(A)=事件A的次数/样本空间的大小。
概率的取值范围是0至1之间。
1.3 事件的互斥与独立互斥事件是指两个事件不可能同时发生的情况,如抛硬币得到正反面就是互斥事件。
独立事件则是指一个事件的发生不影响另一个事件的概率大小。
1.4 概率的性质概率具有以下性质:非负性,即概率不会为负数;规范性,即样本空间的概率为1;可列可加性,即事件A与事件B的和事件的概率等于事件A与事件B分别发生的概率之和。
二、古典概率古典概率是通过特定的概率分布来计算事件发生的可能性。
它的计算方法主要是通过频率来估计概率。
2.1 古典概率的计算方法对于有限个元素的样本空间,单个元素发生的概率为1/样本空间的大小。
例如,抛硬币的概率就是1/2。
对于有限个元素的样本空间,事件A发生的概率可以通过公式P(A)=事件A的元素个数/样本空间的大小来计算。
2.2 古典概率的应用古典概率在生活中有着很多应用,例如投掷骰子的概率计算、抽签抽奖的概率计算等等。
2.3 古典概率的局限性古典概率只适用于样本空间有限的情况,而不适用于样本空间无限的情况。
三、条件概率条件概率是指在另一个事件已经发生的前提下,另一个事件发生的概率大小。
条件概率的计算方法为P(A|B)=P(A∩B)/P(B)。
概率论期末复习知识点
知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) . (7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律 分布律也可用下列表格形式表示:2.* (1) 0i p ≥, 1,2,,,;i n =(2) 11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.jp =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为 多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布. 设离散型随机变量X 的概率函数为则随机变量函数Y 的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率.3.联合分布函数二维随机变量(,)X Y 的联合分布函数.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i ml i mx x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.**二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞; (2) (,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布.12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.第四章 随机变量的数字特征本章重点:随机变量的期望。
概率论期末复习重点
概率论期末总复习第一章 随机事件 1、 事件的关系与运算 2、 古典概率3、 条件概率的概念与性质,乘法公式4、 事件的独立性5、主要公式(1)()()()()P A B P A P B P AB ⋃=+- (2))()()(AB P A P B A P -=- (3)()()1P A P A =- (4)()()()|P AB P B A P A =(5)()()()()()||P AB P A P B A P B P A B ==(6)n 重贝努利试验中,事件A 发生k 次的概率为 6、 主要例题:P10例1.3.3、例; 7、主要习题:P23习题、、、例1、已知8.0)(,5.0)(,3.0)(===B A P B P A P Y ,求(1)P(AB);(2)P (A -B );(3))(____B A P 解:(1)由)()()()(AB P B P A P B A P -+=Y得()()()()P AB P A P B P A B =+-⋃ (2)3.003.0)()()(=-=-=-AB P A P B A P(3)2.08.01)(1)()(___________=-=-==B A P B A P B A P Y Y 第二章随机变量 1、离散型分布列()i i P X x P ==,i =1,2,……(1)0≥iP (2)11=∑∞=i i P2、分布函数)()(x X P x F ≤=3、连续型概率密度函数)(x f (1)0)(≥x f (2)()1f x dx ∞-∞=⎰ (3)⎰-==≤<b a a F b F dx x f b X a P )()()()((4))()('x F x f = 4、常用离散型(1)两点(0-1)分布E (x )=P ,D (x )=P (1-P ) (2)二项分布X ~B (n ,p ) E (x )=np ,D (x )=np (1-p ) (3)泊松分布X ~)(λP!)(K e K X P K λλ-==,K =0,1,2,……0>λE (x )=D (x )=λ 5、常用连续型 (1)均匀分布],[~b a U X (2)指数分布][~λE X (3)正态分布),(~2σu N X(4)标准正态分布X ~N (0,1) 6、重要例题:P39例2.3.3、; 7、重要习题:P48习题、、、、 例1、设随机变量X 的密度函数为求:(1)常数K ;(2)分布函数F (x )(3)P (<X<2)(4)E (x ),D (x )解:(1)⎰⎰∞∞-====101022|2)(1Kx K Kxdx dx x f ,K =2(2)⎰⎰∞-===≤xxdt dt t f x F x 000)()(0时, (3)43|2)()25.0(15.0215.025.0====<<⎰⎰x xdx dx x f X P (4)32|322)()(10310====⎰⎰∞∞-x xdx x dx x xf x E 第三章 多维随机变量 一、二维离散型随机变量(x,y ) 1、联合分布律()i i ij P X x y P ===,Y性质:(1)0≥ij P (2)111=∑∑∞-∞=j i ij P2、边缘分布11() ()i i ij j j ij j i P P X x P P P Y y P ∞∞⋅⋅========∑∑、()(),X f x f x y dy +∞-∞=⎰,()(),Y f x f x y dx +∞-∞=⎰3、独立性X 与Y 独立j i ij P P P ⋅⋅=⇔4、条件分布()()(),|i j ij i j jj P X x Y y P P X x Y y P P Y y ⋅=======二、重要例题:P53例3.2.1 三、重要习题:P79习题、、、、、 例1、设随机变量X 和Y 的分布律为问(1)βα,为何值时,X 与Y 独立?(2)()(),E X E Y (3)()1|1P X Y == 解:(x ,y )的边缘分布如上表,由独立特性得 第四章随机变量的数字特征 一、数学期望(1)1 ()() i i i x P E X xf x dx ∞=∞∞⎧⎪=⎨⎪⎩∑⎰-离散连续(2)设Y =g (x ),则1()()()()i ii g x P E Y g x f x dx ∞=∞-∞⎧⎪=⎨⎪⎩∑⎰(3)性质:E (C )=C ,E (ax+b )=aE (x )+b 二、方差(1)2()[()]D X E X E X =-(2)简化公式:22()()(())D X E X E X =- (3)性质:D (C )=0,2()()D aX b a D X += 三、重要例题:P89例4.1.7;P94例; 四、重要习题:P104习题、、 1、设总体X 的概率密度为()10xe f x θθ-⎧⎪=⎨⎪⎩00<≥x x (0θ>,未知),n X X X ,,,21Λ是来自总体X 的样本,求未知参数θ的极大似然估计量。
概率论期末复习知识点
知识点第一章 随机事件与概率本章重点:随机事件的概率计算.1.**事件的关系及运算(1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ=(5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义古典概型:()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质(1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式贝叶斯公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布.1.**离散型随机变量及其分布律分布律也可用下列表格形式表示:2.*概率函数的性质(1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率设(,)X Y 为二维离散型随机变量,ij p为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数()Y g X =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质(1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()F x P X x =<()()()P a X b F b F a ≤<=-.3.联合分布函数二维随机变量(,)X Y 的联合分布函数.4.联合分布函数的性质(1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+.5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度.(,)(,)F x y P X x Y x =<<6.**概率密度()f x 及连续型随机变量的性质(1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==;(5) 设()f x 是连续型随机变量X 的概率密度,则有=()baf x dx⎰.7.**常用的连续型随机变量的分布(1) 均匀分布(,)R a b ,它的概率密度为其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),xf x xμσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N为标准正态分布,它的概率密度为22(),xf x x-=-∞<<+∞,标准正态分布的分布函数记作()xΦ,即22()txx dt-Φ=⎰,当出0x≥时,()xΦ可查表得到;当0x<时,()xΦ可由下面性质得到()1()x xΦ-=-Φ.设2~(,)X Nμσ,则有()()xF xμσ-=Φ;()()()b aP a X bμμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X,Y)的分布函数(,)F x y,如果存在一个二元非负函数(,)f x y,使得对于任意一对实数(,)x y 有成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.**二维连续型随机变量及联合概率密度的性质(1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量(1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布.12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=. 第四章 随机变量的数字特征本章重点:随机变量的期望。
概率统计公式大全复习重点
第一章随机事件和概率1排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数;)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数;2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成;乘法原理两个步骤分别不能完成这件事:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成;3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验;试验的可能结果称为随机事件;5基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的;这样一组事件中的每一个事件称为基本事件,用ω来表示;基本事件的全体,称为试验的样本空间,用Ω表示;一个事件就是由Ω中的部分点基本事件ω组成的集合;通常用大写字母A,B,C,…表示事件,它们是Ω的子集;Ω为必然事件,为不可能事件;不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件;6事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,A发生必有事件B发生:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B;A、B中至少有一个发生的事件:A B,或者A+B;属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件;A、B同时发生:A B,或者AB;A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥;基本事件是互不相容的;Ω-A称为事件A的逆事件,或称A的对立事件,记为A;它表示A 不发生的事件;互斥未必对立;②运算:结合率:ABC=ABC A∪B∪C=A∪B∪C分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC德摩根率:∞=∞==11iiii AABABA=,BABA=7概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数PA,若满足下列三个条件:1° 0≤PA≤1,2° PΩ =13° 对于两两互不相容的事件1A,2A,…有常称为可列完全可加性;则称PA为事件A的概率;8古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω ;设任一事件A,它是由mωωω21,组成的,则有PA={})()()(21mωωω=)()()(21mPPPωωω+++9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型;对任一事件A,)()()(Ω=LALAP;其中L为几何度量长度、面积、体积;10加法公式PA+B=PA+PB-PAB当PAB=0时,PA+B=PA+PB11减法公式PA-B=PA-PAB当B⊂A时,PA-B=PA-PB 当A=Ω时,P B=1- PB12条件概率定义设A、B是两个事件,且PA>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP;条件概率是概率的一种,所有概率的性质都适合于条件概率;例如PΩ/B=1⇒P B/A=1-PB/A13乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…An,若PA1A2…An-1>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A;14独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的;若事件A、B相互独立,且0)(>AP,则有若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立;必然事件Ω和不可能事件与任何事件都相互独立;与任何事件都互斥;②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,PAB=PAPB;PBC=PBPC;PCA=PCPA并且同时满足PABC=PAPBPC那么A、B、C相互独立;对于n个事件类似;15全概公式设事件n BBB,,,21 满足1°n BBB,,,21 两两互不相容,),,2,1(0)(niBP i=>, 2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= ;16贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n, 2°niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n;此公式即为贝叶斯公式;)(i B P ,1=i ,2,…,n ,通常叫先验概率;)/(A B P i ,1=i ,2,…,n ,通常称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断;17伯努利概型我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的;这种试验称为伯努利概型,或称为n 重伯努利试验;用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0 =;第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东商学院华商学院试题题型课程名称概率论(A卷)课程代码课程班号(本科)共 3 页一、单项选择题(本大题共10小题,每小题2分,共20分,错选、多选或未选均无分)二、填空题(本大题共10小题,每小题2分,共20分,错填、不填均无分)三、计算题(本大题共3小题,共40分)四、综合题(本大题共2小题,共20分)课程名称概率论(B卷)课程代码课程班号(本科)共 4 页一、单项选择题(本大题共10小题,每小题2分,共20分,错选、多选或未选均无分)二、填空题(本大题共10小题,每小题2分,共20分,错填、不填均无分)三、计算题(本大题共3小题,每小题10分,共30分)四、综合题(本大题共3小题,每小题10分,共30分)概率论期末复习知识点第一章1.事件的表示2.事件的关系与运算3.概率性质及其应用4.古典概型5.条件概率6.全概率公式7.贝叶斯公式8.事件的独立性重点:条件概率,全概率公式,贝叶斯公式第二章1.离散型随机变量的概率分布2.两点分布3.二项分布4.泊松分布5.概率密度函数及其性质6.连续型随机变量的分布函数7.均匀分布8.指数分布9.标准正态分布、正态分布10.随机变量相关的概率计算11.离散型随机变量函数的概率分布重点:○1正态分布,二项分布○2离散型随机变量及函数的概率分布第三章1.离散型随机向量联合概率分布及分布函数2.二维连续型随机向量的联合概率密度、性质及其应用3.二维连续型随机向量的分布函数4.均匀分布5.二维正态分布6.边缘概率密度7.随机变量的独立性8.二维随机向量的相关概率计算重点:○1联合概率密度○2边缘概率密度○3随机变量的独立性○4二维正态分布第四章1.离散型随机变量的期望2.连续型随机变量的期望3.随机变量函数的期望4.方差5.方差的性质6.协方差、协方差的性质7.相关系数重点:○1数学期望(随机变量及函数的数学期望)○2方差(离散型随机变量的方差)○3协方差和相关系数第五章1.雪比切夫不等式的应用2. 棣莫弗——拉普拉斯中心极限定理的应用 重点:棣莫弗——拉普拉斯中心极限定理概率论期末公式复习对偶律: ,B A B A = ; B A AB = 概率的性质 1. P (Ø)=0;2. A 1,A 2,…, A n 两两互斥时:P (A 1∪A 2∪…∪A n )=P (A 1)+…+P (A n ),3.)(1)(A P A P -=(A 是 A 不发生)(D )4.若A ⊂B , 则有: P (A )≤ P(B ),P (AB ) = P (A ),P (B -A )=P (B )-P (A ),P (A ∪B )=P (B ).5.)()()()(AB P B P A P B A P -+=⋃(D ), P (B -A )=P (B )-P (AB )。
古典概率模型中,事件A 的概率基本事件总数中包含基本事件数A A P =)(从n 件商品中取出k 商品,共有)!(!!k n k n C kn -=[即⎪⎪⎭⎫ ⎝⎛k n ]种取法[12)1(!⋅⋅⋅-⋅= n n n ]。
D 1- P (B )>0,称下式为事件B 发生条件下,事件A 的条件概率, )()()|(B P AB P B A P =乘法公式:若P (B )>0,则 P (AB )=P (B )P (A |B ) ;若P (A )>0,则P (AB )=P (A )P (B |A )。
设A 1, A 2,…,A n 是两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0, i =1, 2,…, n ; 另有一事件B , 它总是与A 1, A 2,…, A n 之一同时发生,则全概率公式:∑==ni i i A B P A P B P 1)()()(|贝叶斯公式:. ,,2 ,1 , )()()()()|(1n i A B P A P A B P A P B A P nj j j i i i ==∑=||(D 1) 定义:称 A , B 独立,如果P (AB )= P (A )P (B )(D )。
定理. 若事件A , B 独立相互独立,则A 与B 、A 与B 、A 与B 也相互独立。
随机变量 X 的分布函数:F (x )= P (X ≤x ), -∞< x <∞。
性质:P (a 1<X ≤b 1)=F (b 1)-F (a 1).D 2- 定义 :设离散型随机变量 X 所有可能取的值为,,,21 x x 且有。
,2,1,)( ===k p x X P k k 则称p 1 , p 2, …为离散型随机变量 X 的概率分布或分布律。
其中 p 1 , p 2, …满足;,2,1 ,0)1( =≥k p k.1(2))n(1i =∑∞=k p离散型随机变量的分布函数(累计频率): ==≤=∑≤xx k k p x X P x F )()(⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<≤<+∞x x x x x x x x x x p p p n )(322112111)()(1--=k k k x F x F p ,;,2,1 =kk k n k p x X E )(1)(∞=∑=,kk n k p x X E 2)(12)(∞=∑=,22)]([)()(X E X E X D -=(D 2)。
D 3- X ~ B (n , p )-参数为(n , p )的二项分布:用X 表示 n 重贝努里试验中事件A 发生的次数,则:n k p p C k X P k n k kn , ,1 ,0 ,)1()( =-==-(D 3). np X E =)(,)1()(p np X D -=.X ~P (λ)-参数为λ的泊松分布:. ,2 ,1 ,0 ,!)();( ====-k k ek X P k p kλλλ其中λ>0 是常数,λ=)(X E ,λ=)(X D 。
X 为连续型随机变量:有密度函数 0)(≥x f 使: , )()(1111⎰=≤<b a dx x f b X a P设其它bx a x h x f <≤⎩⎨⎧=0)()( ,密度函数的性质: 1 )(⎰∞∞-=dx x f 1 )(⎰=b adx x h 或(D ) 分布函数=≤=)()(x X P x F x b b x a a x dt t h xa ≤<≤<⎪⎩⎪⎨⎧⎰1)(0(常用到的不定积分公式:vdu uv udv x arctg x dx x xdx e dx e k x dx x x xk k⎰-=⎰=+⎰-=⎰-=⎰+=⎰--+,1,cos sin ,,1221αααααα等).在 f (x )的连续点,有:. )()(x f x F ='⎰=badx x h x X E , )()(⎰=badx x h x X E , )()(2222)]([)()(X E X E X D -=D 4- ),(~2σμN X :参数为常数μ和σ>0的正态分布:密度函数为∞<<∞-=--x ex f x ,21)(222)(σμσπ,μ=)(X E ,2)(σ=X D 。
标准正态分布,记作)1,0(~N X ,0)(=X E ,1)(=X D :).( d 21)( 21)(2/2/22可查表得出分布函数:,,密度函数:t e x x e x x t x ⎰∞---=Φ∞<<∞-=ππϕ ,,若) (~ 2σμN X )1,0(~N X σμ-,}{11b X a P <<. 11⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=σμσμa b }{1b X P <.1⎪⎭⎫ ⎝⎛-Φ=σμb )(1)( 0 x x x Φ-=-Φ>时,当(D 4) X ~U(a , b )-均匀分布,密度函数:⎪⎩⎪⎨⎧≤≤-=.,0, ,1)(其他b x a ab x f 2/)()(b a X E +=,12/)()(2a b X D -=. X ~E(λ)-参数为λ的指数分布, 密度函数:0)( .0 , 0 , 0 , )(>⎩⎨⎧<≥=-λλλx x e x f x ,λ/1)(=X E ,2/1)(λ=X D .X 1,X 2独立,.2,1),,(~2=i N X i i i σμ a X 1+b X 2+c ~N (a μ1+b μ2+c ,a 2σ12+b 2σ22) E (aX +b )= a E (X )+b ,D (aX +b )= a 2D (X ),E (aX +bY +c )= a E (X )+ b E (X )+c , X ,Y 独立,D (aX +bY +c )= a 2D (X )+b 2D (X ).二维离散型随机变量(X ,Y ): p ij ),(j i y Y x X P ===≥0,1)(1)(1=∑∑∞=∞=ij m i n j p ,ij n j i p p )(1∞=⋅∑=,ij m i j p p )(1∞=⋅∑=, 分布函数=),(y x F ij y Y x X p ji ≤≤∑∑,2,1.,2,1,===⋅⋅j i p p p j i ij 独立:。
ijj i m i n j p y x g Z E Y X g Z ),()(),,()(1)(1∞=∞=∑∑== ),()()()()(,,,,,2222Y E X E XY E Y E X E Y X XY Y X Z ,,,,可计算:时=)()()(),(Y E X E XY E Y X Cov -=等。
独立→不相关:0),(=Y X Cov ,或)()()(Y E X E XY E =。
二维连续型随机变量(X ,Y )密度函数),(),(),(⎩⎨⎧∈=其它D y x y x h y x f [均匀分布时,d y x h 1),(=,d 为D 的面积], D 是矩形(含正方形)、全部区域、三角形(含大三角形)、圆盘、直线与抛物线所围区域等。
D 5- )),((),(),(),(1)()()()(2121dx y x h dy dy y x h dx dxdy y x h dxdy y x f y y dc x x b a Dϕϕψψ⎰⎰=⎰⎰=⎰⎰=⎰⎰=+∞∞-+∞∞-或 (a 是区域D 左边界的最小值,b 是区域D 右边界的最大值,ψ1(x )是区域D 的下边界函数,ψ2(x )是区域D 的上边界函数;c 是区域D 下边界的最小值,d 是区域D 上边界的最大值,φ1(x )是区域D 的左边界函数,φ2(x )是区域D 的右边界函数)。