2012-2013年湘教版九年级上学期数学期末试题及答案doc
湘教版九年级上册数学期末考试试题含答案解析
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知一元二次方程x2+x﹣1=0,下列判断正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定2.已知如图,DE∥BC,,则=()A.B.C.2 D.33.若a>3,则+=()A.1 B.﹣1 C.2a﹣5 D.5﹣2a4.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.5.已知粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,现从中任取一支粉笔,则取出白色粉笔的概率是()A.B.C.D.6.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40︒B.3sin50︒C.3tan40︒D.3tan50︒7.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)8.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是()A .15mB .20mC .20mD .10m9.将二次函数y=x2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+210.如图是二次函数y=ax2+bx+c (a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题11.某工厂今年3月份的产值为50万元,4月份和5月份的总产值为132万元.若设平均每月增长的百分率为x ,则列出的方程为:_____.12.方程x2-4x=0的解为______.13.若△ABC ∽△A′B′C′,且''AB A B =34,△ABC 的周长为12 cm ,则△A′B′C′的周长为_______cm.14.抛物线y=x2﹣2x ﹣1与x 轴的交点坐标分别是(x1,0),(x2,0),则+=_____.15.如图,在平面直角坐标系中有两点A (6,0),B (0,3),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为_____时,△BOC 与△AOB 相似.16.在Rt△ABC中,∠C=90°,AC=BC,那么sinA=________.三、解答题17.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.18.解方程:x2﹣10x+25=7.19.如图所示,在宽为20米,长为32米的矩形空地上修的两条宽度相同且互相垂直的水泥路,余下部分作为草地.现要使草地的面积为540平方米,求水泥路的宽应为多少米?20.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.21.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).22.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)23.有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.现要把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上.(1)如果此矩形可分割成两个并排放置的正方形,如图1,此时,这个矩形零件的两条邻边长分别为多少mm?请你计算.(2)如果题中所要加工的零件只是矩形,如图2,这样,此矩形零件的两条邻边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条邻边长.24.如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x 轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.26.如图8,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈1213,cos67.4°≈513,tan67.4°≈125)参考答案1.B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解:∵a=1,b=1,c=﹣1,∴△=b2﹣4ac=12﹣4×1×(﹣1)=5>0,∴方程有两个不相等实数根.故选:B.考点:根的判别式.2.B【解析】试题分析:根据DE∥BC,证得△ADE∽△ABC,再根据相似三角形对应边的比相等,可证DE:BC=AD:AB,即可求解.解:∵,∴AD:AB=1:3.∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB=1:3.故选B.考点:相似三角形的判定与性质.3.C【解析】试题分析:根据二次根式的性质,即可解答.解:∵a>3,∴a﹣2>0,3﹣a<0,+==a﹣2+a﹣3=2a﹣5.故选:C.考点:二次根式的性质与化简.4.B【解析】试题分析:本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.解:由题意,设BC=4x,则AB=5x,AC==3x,∴tanB===.故选B.考点:锐角三角函数的定义;互余两角三角函数的关系.5.C【解析】试题分析:由粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,直接利用概率公式求解即可求得答案.解:∵粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,∴现从中任取一支粉笔,取出白色粉笔的概率是:=.故选C.考点:概率公式.6.D【详解】试题分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanACBBC=,∴tan3tan50AC BC B=⋅=︒.故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.7.A【详解】试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.考点:位似变换;坐标与图形性质.8.C【解析】试题分析:在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解:在Rt△ABC中,∵BC=10m,tanA=1:,∴AC=BC÷tanA=10m,∴AB==20(m).故选C.考点:解直角三角形的应用-坡度坡角问题.9.D【解析】试题分析:本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.考点:二次函数的三种形式.10.C【解析】试题分析:①根据直线x=﹣1是对称轴,确定b﹣2a的值;②根据x=﹣2时,y>0确定4a﹣2b+c的符号;③根据x=﹣4时,y=0,比较a﹣b+c与﹣9a的大小;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等判断即可.解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.考点:二次函数图象与系数的关系.11.50(1+x)+50(1+x)2=132【详解】试题分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),关系式为:4月份的产值+5月份的产值=132,把相关数值代入即可求解.解:4月份的产值为50×(1+x),5月份的产值在4月份产值的基础上增加x,为50×(1+x)×(1+x),则列出的方程是50(1+x)+50(1+x)2=132,故答案为50(1+x)+50(1+x)2=132.考点:由实际问题抽象出一元二次方程.12.【详解】试题分析:x2﹣4x提取公因式x,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.解:x2﹣4x=0x(x﹣4)=0x=0或x﹣4=0x1=0,x2=4故答案是:x1=0,x2=4.考点:解一元二次方程-因式分解法.13.16cm【详解】∵△ABC∽△A′B′C′,3 ''4 ABA B,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.14.﹣2【解析】试题分析:根据抛物线与x轴的交点问题得到x1、x2为方程x2﹣2x﹣1=0的两根,则利用根与系数的关系得到x1+x2=2,x1+x2=﹣1,然后把+通分后利用整体代入的方法计算即可.解:∵抛物线y=x2﹣2x﹣1与x轴的交点坐标分别是(x1,0),(x2,0),∴x1、x2为方程x2﹣2x﹣1=0的两根,∴x1+x2=2,x1+x2=﹣1,∴+===﹣2.故答案为﹣2.考点:抛物线与x轴的交点.15.(﹣1.5,0),(1.5,0),(﹣6,0)【分析】本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.【详解】解:∵点C在x轴上,∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,若OC与OA对应,则OC=OA=6,C(﹣6,0);若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).故答案为(﹣1.5,0),(1.5,0),(﹣6,0).考点:相似三角形的判定;坐标与图形性质.16.2【详解】AC BC =90C ∠=︒,∴A=45°,根据特殊角三角函数值,可得sinA=sin45°=22. 故答案为:22.考点:特殊角的三角函数值17.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.7x2=57【详解】试题分析:先变形,再开方,即可得出两个一元一次方程,求出方程的解即可. 试题解析:x2﹣10x+25=7,(x ﹣5)2=7,x ﹣5=±77x2=57考点:解一元二次方程-配方法.19.2m【详解】试题分析:把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32﹣x )和(20﹣x ),根据矩形的面积公式,列出关于道路宽的方程求解.解:设水泥路的宽为x m ,则可列方程为:(32﹣x )(20﹣x )=540解得:x=2或x=50(不合题意,舍去),答:水泥路的宽为2m .考点:一元二次方程的应用.20.(1)y=x2﹣2x ﹣3;(2)(4,0).【解析】试题分析:(1)有顶点就用顶点式来求二次函数的解析式;(2)由于是向右平移,可让二次函数的y 的值为0,得到相应的两个x 值,算出负值相对于原点的距离,而后让较大的值也加上距离即可.解:(1)∵二次函数图象的顶点为A (1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).考点:待定系数法求二次函数解析式;二次函数图象与几何变换.21.CE的长为(4+)米【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×,∵DH=1.5,∴,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE==((米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题22.E点,概率为1 3.【分析】先列表:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【详解】解:列表如下:1 2 31 2 3 42 3 4 53 4 5 6共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占2种,摸出的两个小球标号之和是6的占1种;所以棋子走E点的可能性最大,棋子走到E点的概率=39=13.考点:列表法与树状图法.23.(1)这个矩形零件的两条边长分别为mm,mm;(2)S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).【解析】试题分析:(1)由于矩形是由两个并排放置的正方形所组成,则可设PQ=ymm,则PN=2ymm,易证△APN∽△ABC,由相似三角形的性质解答即可;(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答解:(1)设矩形的边长PN=2ymm,则PQ=ymm,∵PN∥BC,∴△APN∽△ABC,∴,即,解得y=,∴PN=×2=(mm),答:这个矩形零件的两条边长分别为mm,mm;(2)设PN=xmm,由条件可得△APN∽△ABC,∴,即,解得PQ=80﹣x.∴S=PN•PQ=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,∴S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).考点:相似三角形的应用.24.(1)y=﹣x+2;(2)y=﹣x2+x+2;(3)点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).【解析】试题分析:(1)先在Rt△ABO中,运用勾股定理求出OB===2,得出B(﹣2,0),再根据等腰梯形的对称性可得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式;(2)设所求抛物线的解析式为y=ax2+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式;(3)先由点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,得出m<﹣2或m>4,n=﹣m2+m+2<0,于是PM=m2﹣m﹣2.由于∠PMC=∠AOC=90°,所以当Rt△PCM与Rt△AOC相似时,有==或==2.再分两种情况进行讨论:①若m<﹣2,则MC=4﹣m.由==,列出方程=,解方程求出m的值,得到点P的坐标为(﹣4,﹣4);由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.由==时,列出方程=,解方程求出m的值均不合题意舍去;由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(6,﹣4).解:(1)由A(0,2)知OA=2,在Rt△ABO中,∵∠AOB=90°,AB=2,∴OB===2,∴B(﹣2,0).根据等腰梯形的对称性可得C点坐标为(4,0).设直线AC的函数解析式为y=kx+n,则,解得,∴直线AC的函数解析式为y=﹣x+2;(2)设过点A,C,D的抛物线的函数解析式为y=ax2+bx+c,则,解得,∴y=﹣x2+x+2;(3)∵点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,∴m<﹣2或m>4,n=﹣m2+m+2<0,∴PM=m2﹣m﹣2.∵Rt△PCM与Rt△AOC相似,∴==或==2.①若m<﹣2,则MC=4﹣m.当==时,=,解得m1=﹣4,m2=4(不合题意舍去),此时点P的坐标为(﹣4,﹣4);当==2时,=2,解得m1=﹣10,m2=4(不合题意舍去),此时点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.当==时,=,解得m1=4,m2=0,均不合题意舍去;当==2时,=2,解得m1=6,m2=4(不合题意舍去),此时点P的坐标为(6,﹣4);综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).考点:二次函数综合题.25.(1)13元或15元(2)14元,最大利润为720元【解析】解:(1)设每件商品提高x元,则每件利润为(10+x-8)=(x+2)元,每天销售量为(200-20x)件,依题意,得:(x+2)(200-20x)=700.整理得:x2-8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;答:把售价定为每件13元或15元能使每天利润达到700元.(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,根据题意得:y=(x-8)(200-)=-20x2+560x-3200, =-20(x2-28x )-3200,=-20(x2-28x+142)-3200+20×142 =-20(x-14)2+720,∴x=14时,利润最大y=720.答:应将售价提为14元时,才能使所赚利润最大,最大利润为720元.26.解:⑴在Rt ∆DBC 中,sin BDDCB CD ∠=, 666.512sin sin 67.413BD CD DCB ∴====∠(m ). ……………………………3分DF AE F ABDF ⊥作于,则四边形为矩形, …………………………4分8DF AB ∴==,6AF BD ==,6EF AE AF ∴=-=, ……………………5分,10Rt EFD ED ∆==在中(m ). ……………7分10 6.516.5L ∴=+=(m ) ……………………………………8分【解析】略。
湘教版九年级上册数学期末考试试卷含答案详解
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在Rt △ABC 中,已知∠C=90°,AC=3,BC=4,那么∠A 的余弦值等于( ) A .35B .45C .34D .432.下列方程中,关于x 的一元二次方程是( ) A .()()23121x x +=+ B .21120x x+-= C .2ax bx c ++=0 D .2221x x x +=-3.如图,矩形ABCD ∽矩形ADFE ,AE=1,AB=4,则AD=( )A .2B .2.4C .2.5D .34.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③5.如图,点M 在BC 上,点N 在AM 上,CM=CN ,AM BMAN CM=,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA 6.下列运算中,结果正确的是( )A .2a 2+a=3a 2B .2a ﹣1=12aC .(﹣a )3•a 2=﹣a 6D .123+=2﹣3 7.如果手头没有硬币,下列方法可以模拟掷硬币实验的是( )A .掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B .掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C .用计算器产生1和2两个随机整数,1代表正面,2代表反面D .转动如图所示的装盘,指针指向“红”代表正面,指针指向“蓝”代表反面 8.设x 1 、x 2是方程x 2+x ﹣4=0的两个实数根,则x 13﹣5x 22+10=( ) A .﹣29B .﹣19C .﹣15D .﹣99.已知有一块等腰三角形纸板,在它的两腰上各有一点E 和F ,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为( )A .43B .245 C .43或245D .23或12510.如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论中,正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF = D .:1:2AB EF =二、填空题11.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=____.12.已知:∠1=30°30′,∠2=28.5°,则sin(∠1﹣∠2)≈________(可用计算器,精确到0.001)13.①sin2A+cos2A=________,②tanA•cotA=________.14.Rt△ABC中,∠C=90°,AB=10,BC=8,则cosB=________15.如图,E、P、F分别是AB、AC、AD的中点,则四边形AEPF与四边形ABCD________ (填“是”或“不是”)位似图形.16.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD=_____.17.已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=____.三、解答题18.如图,在直角坐标系中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)在第一象限内找一点P,以格点P、A、B为顶点的三角形与△ABC相似但不全等,请写出符合条件格点P的坐标;(2)请用直尺与圆规在第一象限内找到两个点M、N,使∠AMB=∠ANB=∠ACB.请保留作图痕迹,不要求写画法.19.某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)21.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14 DC,连结EF并延长交BC的延长线于点G,连结BE.(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG的长.22.ABC 是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .(1)证明:ABD BCE △≌△; (2)找出一组相似三角形并证明;(3)若9,1AF DF ==,你能求出哪条线段的长度(除线段AD 外)?请指出这条线段并求出它的长度.23.曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?24.如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA △∽△;(2)若6,4AB BC ==,求DF 的长.25.如图1所示,上海中心大厦是上海市的一座超高层地标式摩天大楼,是我国最高的建筑,建筑主体共计119层.某数学小组欲测此上海中心大厦的楼高,设计出如图2所示的测量方案.具体方案如下:小组成员在地面A 处通过激光测距,测得仰角37a =︒,光路AB 长1000m 3,光路AB 被写字楼BN 楼顶的一面玻璃(视为点B )反射,反射的激光束沿光路BC 恰好可以到达上海中心大厦CM 楼顶(视为点C ).已知写字楼与上海中心大厦的直线距离MN 为576m (写字楼与上海中心大厦位于同一平面),图2中的虚线为法线.(所有结果保留整数,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈).(1)求写字楼BN 的高度. (2)求上海中心大厦的楼高CM .参考答案1.A 【详解】试题解析:在Rt △ABC 中,∵∠C =90∘,AC =3,BC=4,5AB ∴=3cos .5AC A AB ∴== 故选A 2.A 【分析】A 、根据一元二次方程的定义A 满足条件,B 、分母中有未知数,不是整式方程,B 不满足条件,不选BC 、判断二次项系数为a 是否为0即可,不选CD 、看二次项系数是0,不是一元二次方程,不选D 【详解】A 、根据一元二次方程的定义A 满足条件,故A 正确,B 、分母中有未知数,不是整式方程,不选B ,C 、二次项系数为a 是否为0,不确定,不选C ,D 、没有二次项,不是一元二次方程,不选D . 故选择:A . 【点睛】本题考查一元二次方程问题,关键掌握一元二次方程定义满足的条件. 3.A 【详解】 设AD=x ,∵矩形ABCD ∽矩形ADFE , ∴AD:AE=AB:AD , 又∵AE=1,AB=4, ∴:14:x x =, ∴24x =, 又∵0x >, ∴2x =. 即AD=2. 故选A.4.D【详解】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.5.B【详解】∵CM=CN,∴∠CNM=∠CMN,∴180°-∠CMN=180°-∠CNM,即∠AMB=∠ANC,∵CM=CN,AM BM AN CM=,∴AM BMAN CN=,∴△AMB∽△ANC.故选B.6.D【解析】A选项中,因为22a a+中两个项不是同类项,不能合并,所以本选项错误;B 选项中,因为122a a-=,所以本选项错误; C 选项中,325()a a a -⋅=-,所以本选项错误;D 2== 故选D. 7.A 【解析】A 选项中,一个瓶盖可用盖面朝上表示硬币的正面,盖面朝下表示硬币的反面,两者出现的概率一样,可作实验替代物,所以本选项正确;B 选项中,图钉尖朝上的概率大于面朝上的概率,不可做实验替代物,所以本选项错误;C 选项中,用计算器产生1和2两个随机整数,1代表正面,2代表反面,两数产生的概率不同,不能代替抛掷硬币的实验,所以本选项错误;D 选项中,转动如图所示的装盘,指针指向“红”代表正面,指针指向“蓝”代表反面,由于还有一个“黄色区域”,本实验中有三种等可能结果,与抛掷硬币实验情况不一样,所以本选项错误; 故选A. 8.B 【解析】∵22x x 、是方程240x x +-=的两个实数根, ∴2211221240401x x x x x x +-=+-=+=-,,, ∴22112244x x x x =-=-,, ∴3212510x x -+ =112(4)5(4)10x x x ---+ =2112420510x x x --++ =1124(4)510x x x --+- =125()14x x +-=514--=19-.故选B.9.B【解析】根据题意,本题需分点(1)A为等腰三角形的顶点,点D为等腰三角形底边的中点;(2)点A为等腰三角形底边的中点,点D为等腰三角形的顶点;两种情况来讨论:(1)如图1,当点A为等腰三角形的顶点,点D为底边的中点时,设BD=DC=a,AB=AC=b,则BE=b-2,CF=b-4,∵AB=AC,∴∠B=∠C,又∵BD=DC,BE≠CF,DE≠DF,∴点B与点C,点E与点D,点D与点F为对应点,即△BED∽△CDF,∴BE:CD=BD:CF,即(b-2):a=a(b-4)=3:2,解得:a=125,∴BC=2a=245,该等腰三角形的底边长为:245.,(2)如图2,当点D为等腰三角形的顶点,点A为底边中点时,设AB=AC=a,BD=CD=b,则BE=b-3,CF=b-2,∵BD=CD,∴∠B=∠C,∴点B与点C为对应点,①若点E与点F、点A与点C为对应点,则△BEA∽△CFA,∴BE:CF=EA:FA=BA:CA,即(b-3):(b-2)=a:a=2:4,此时a、b无解,故此种情况不成立;②若点E与点A,点A与点F为对应点,由△BEA∽△CAF,∴BE :CA=EA :AF=BA :CF ,即(b-3):a=2:4=a :(b-2),解得:a=23,b=103,则此时AB=23,BE=13, 又∵AE=2,∴此时AB 、BE 、AE 不能围成三角形,故此种情况不成立; 综上所述,这个等腰三角形底边长为:245. 故选B.点睛:(1)由题意可知本题需分两种情况讨论:① A 为等腰三角形的顶点,点D 为等腰三角形底边的中点;②点D 为等腰三角形的顶点,点A 为底边中点;(2)解得三角形的边长时,需用三角形三边间的关系检验,看是否能够围成三角形.10.A【分析】根据平行线分线段成比例性质:三条平行线截两条直线,所得的对应线段成比例,据此可得结论.【详解】解:∵////AB CD EF ,:1:2BD DF =,∴:1:3AC AE =,故A 选项正确;:2:3CE EA =,故B 选项错误;:CD EF 的值无法确定,故C 选项错误; :AB EF 的值无法确定,故D 选项错误;故选:A .【点睛】本题考查了平行线分线段成比例定理,熟练掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.11.214【详解】∵12x x 、是关于x 的一元二次方程250x x a -+=的两个实数根,∴12125x x x x a +=⋅=,,又∵22121212()()10x x x x x x -=+-=,∴122x x -=,又∵12x x -=2,解得:214a =. 点睛:(1)若关于x 的一元二次方程2(0)0 ax bx c a ++=≠的两根分别是12x x 、,则:1212c x x a x x a+=-⋅=,;(2)当120x x ->时,12x x -=12.0.035【解析】∵∠1=30°30′,∠2=28.5°,∴∠1-∠2=30°30′-28°30′=2°,∴sin(∠1-∠2)=sin2°≈0.035.13.1 1【解析】如图,设Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a b c 、、,则sinA=a c,cosA=b c ,tanA=a b ,cotA=b a ,222+=a b c , ∴(1)sin 2A+cos 2A=2222222()()1a b a b c c c c c++===; (2)tanA•cotA=1a b b a ⋅=.点睛:解答本题的要点是:画出符合要求的图形,结合锐角三角形函数的定义和勾股定理进行推理计算即可得到答案.14.45【解析】∵Rt △ABC 中,∠C=90°,AB=10,BC=8∴cosB=84105 BCAB==.15.是【解析】由已知易得:AF:AD=AP:AC=AE:AB,∴PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴四边形AEPF∽四边形ABCD,∴根据位似图形的定义:“两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在同一直线上,则这两个图形叫位似图形”可知:四边形AEPF和四边形ABCD是位似图形.即答案为:“是”.16.6 5【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=443AB⋅=,∴CE=BE-BC=2,5=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.17.﹣1【解析】∵1是关于x的一元二次方程x2+mx+n=0的一个根,∴1+m+n=0,∴m+n=-1.18.(1)P(1,4)或P′(3,4);(2)见解析.【分析】(1)分△APB∽△ABC,△BPA∽△ABC,△BAP∽△ABC三种情况分析讨论,并把全等的情况去掉即可;(2)根据同弧所对的圆周角相等,以BC为直径作Rt△ABC的外接圆即可找到符合条件的点M、N.【详解】(1)如图1所示:当△AP1B∽△ABC时,P1A:AB=AC:AB=1:2,解得P1A=4,此时点P的坐标为(1,4);当△BP2A∽△ABC时,P2B:AB=AB:AC=2:1,解得P2B=4,此时点P的坐标为(3,4);当△BAP3∽△ABC时,P3B:AB=AC:AB=1:2,解得P3B=1,此时两三角形全等,不符合题意,舍去;综上所述,点P的坐标为(1,4)或(3,4);(2)如图,作△ABC的外接圆,在ACB上取两点M,N即可.【点睛】(1)解第1小题时,围绕△PAB需满足三个条件:①必须是直角三角形;②AB是直角边;③与△ABC相似,但不全等;进行分析讨论即可;(2)解第2小题时,由△ABC是Rt△,以BC为直径作出其外接圆,利用同弧所对的圆周角相等即可得到答案.19.(1)见解析;(2)2 3【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:82 123.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.缆车从点A运行到点C的垂直上升的距离约为234m.【详解】试题分析:缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,在Rt △ABD 和Rt △△BCE 中,解直角三角形即可得到结论.试题解析:如图所示,缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,又∵△ABD和△BCE 均为直角三角形,∴()sin30sin422000.50.67234BD CE AB BC m +=⋅︒+⋅︒=⨯+=. 考点:解直角三角形.21.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.22.(1)见详解;(2)BDF BEC ∽△△,理由见详解;(3)能求出BD 的长度,BD =【分析】(1)根据题意易得,60AB BC ABD BCE =∠=∠=︒,然后问题可求证;(2)由(1)可得BAD CBE ∠=∠,60ABE CBE ∠+∠=︒,则有60AFE BAD ABE ∠=∠+∠=︒,然后可得60BFD BCE ∠=∠=︒,进而问题可求解;(3)由题意易得10AD BE ==,由(2)可得BDF BEC ∽△△,则有BD DF BE CE=,进而问题可求解.【详解】(1)证明:∵ABC 是等边三角形,∴,60AB BC ABD BCE =∠=∠=︒,∵BD CE =,∴()ABD BCE SAS △≌△;(2)解:BDF BEC ∽△△,理由如下:由(1)可得ABD BCE △≌△,∴BAD CBE ∠=∠,∵60ABC ∠=︒,∴60ABE CBE ∠+∠=︒,∴60ABE BAD +=︒∠∠,∴60AFE BAD ABE ∠=∠+∠=︒,∴60AFE BFD BCE ∠=∠=∠=︒,∵FBD CBE ∠=∠,∴BDF BEC ∽△△;(3)解:能求出BD 的长度,理由如下:由(1)(2)可得:ABD BCE △≌△,BDF BEC ∽△△,∴AD BE =,BD DF BE CE =, ∵9,1AF DF ==,∴10AD BE==,∵BD CE=,∴110BDBD=,∴210BD=,∴BD=【点睛】本题主要考查相似三角形的性质与判定及等边三角形的性质,熟练掌握相似三角形的性质与判定及等边三角形的性质是解题的关键.23.(1)平均每次下调的百分率是10%;(2)选择方案②更优惠,理由见解析.【解析】试题分析:(1)设平均每次下调的百分率为x,根据题意列出一元二次方程,解方程即可得到符合要求的答案;(2)根据题意分别计算出两种方案的优惠金额,在比较大小即可得到答案;试题解析:(1)设平均每次下调的百分率是x,依题意得:4000(1﹣x)2=3240 ,解得:x=0.1=10%或x=1.9(不合题意,舍去)∴平均每次下调的百分率是10%(2)方案①优惠金额=100×3240×(1﹣99%)=3240元;方案②优惠金额=100×1.4×12×2=3360元;∵3360>3240,故选择方案②更优惠.24.(1)见解析;(2【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A , ∴AB AE DF AD=,∴DF =AB AD AE ⋅ 【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似. 25.(1)200m ;(2)632m .【分析】(1)过点B 作BD ⊥CM 于点D ,根据题意判断四边形BDMN 是矩形,得到∠ABD =α=37°,结合反射角=入射角得到∠CBD =∠ABD =37°,最后在R t △ANB 中利用正弦定义可得BN 的长;(2)在R t △BDC 中,由正切的定义解得CD 的长,进而可得上海中心大厦的高度CM .【详解】解:(1)如图所示,过点B 作BD ⊥CM 于点D ,∵BD ⊥CM ,CM ⊥MN ,BN ⊥MN ,∴∠BDM =∠CMN =∠BNM =90°,∴四边形BDMN 是矩形,∴BN =DM ,BD =MN =576m ,BD //MN ,∴∠ABD =α=37°,由物理知识,反射角=入射角得:∠CBD =∠ABD =37°,在R t △ANB 中,sin BN AB α=, 1000sin 0.62003BN AB α∴=⋅≈⨯≈m , 答:写字楼BN 的高度约200m .(2)由(1)得432DM BN == m ,在R t △BDC 中,tan CD CBD DB∠=, tan 5760.75432CD DB CBD ∴=⋅∠≈⨯≈m ,∴CM =DM +CD =432+200=632m ,答:上海中心大厦的楼高CM 是632m .【点睛】本题考查解直角三角形的应用-仰角俯角问题,涉及正切、正弦等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.。
湘教版九年级数学上册期末考试题及答案【完整】
湘教版九年级数学上册期末考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( )A .8B .18C .18-D .-82.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.下列图形中,是中心对称图形的是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.2的相反数是__________.2.分解因式:x2-2x+1=__________.3.若式子x1x有意义,则x的取值范围是_______.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=__________度.5.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、B6、A7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣22、(x-1)2.3、x1≥-且x0≠4、455、.6、12三、解答题(本大题共6小题,共72分)1、x=52、(1)证明见解析(2)1或23、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m22,1,2.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)20%;(2)60元。
湘教版九年级上册数学期末考试试题有答案
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。
湘教版九年级上册数学期末考试试卷带答案(1)
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( ) A .2-B .3-C .4D .6-2.已知反比例函数ky x=的图象经过点(1,2),则k 的值为( ) A .0.5B .1C .2D .43.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=4.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是( )A .34B .43C .35D .455.下列说法正确的是( ) A .对应边都成比例的多边形相似 B .对应角都相等的多边形相似 C .边数相同的正多边形相似 D .矩形都相似6.对于二次函数214y x =的图象,下列结论错误的是( ) A .顶点为原点B .开口向上C .除顶点外图象都在x 轴上方D .当0x =时,y 有最大值7.如图,在ABC ∆中,DE ∥BC ,5AD =,10BD =,4AE =,AC =( )A .8B .9C .10D .128.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5B .平均数是5C .众数是6D .方差是69.如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,EH ∥BC ,则四边形EFGH的面积是ABC ∆的面积的:( )A .19B .13C .49D .9410.关于反比例函数y =﹣3x,下列说法错误的是( )A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点二、填空题11.已知点1.(3,)A y ,2.(5,)B y 在函数5y x=的图象上,则12,y y 的大小关系是________ 12.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为_____s .13.将抛物线22y x =向左平移2个单位后所得到的抛物线为 ________ 14.方程()()30x m x --=和方程2230x x --=同解,m =________.15.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为 .16.如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,且tan ∠ADE =43,AC =5,则AB 的长____.三、解答题17.如图一根竖直的木杆在离地面3.1m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为多少?(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)18020192sin30︒︒+-19.如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.20.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=,m=,第3组人数在扇形统计图中所对应的圆心角是度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?22.已知关于x 的一元二次方程2102ax bx ++=. (1)若1x =是方程的一个解,写出a 、b 满足的关系式; (2)当1b a =+时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的a 、b 的值,并求出此时方程的根.23.如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围; (2)若α=45°,求BD :DC 的值; (3)求证:AM •CN =AN •BD .24.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m ,宽为40m .(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.25.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=mx的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.参考答案1.A【分析】先把x=1代入方程220x ax b++=得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 2.C 【解析】 【分析】将(1,2)代入解析式中即可. 【详解】解:将点(1,2)代入解析式得, 21k =, k =2. 故选:C . 【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键. 3.D 【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可. 【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根, 这里a=1,b=-2,c=0, b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意; 12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120cx x a⋅==,故D 选项错误,符合题意, 故选D. 【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键. 4.C 【详解】解:在Rt △ABC 中,∠C=90°,AB=5,BC=3, sinA=35BC AB =, 故选C .考点:锐角三角函数的定义. 5.C 【详解】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案. 解:A 、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误; B 、对应角都相等的多边形,属于形状不唯一确定的图形,故错误; C 、边数相同的正多边形,形状相同,但大小不一定相同,故正确; D 、矩形属于形状不唯一确定的图形,故错误. 故选C .考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形. 6.D 【分析】根据二次函数的性质逐项判断即可. 【详解】根据二次函数的性质,可得: 二次函数214y x =顶点坐标为(0,0),104>开口向上,故除顶点外图象都在x 轴上方, 故A 、B 、C 正确;当x=0时,y 有最小值为0,故D 错误. 故选:D. 【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键. 7.D先由DE∥BC得出AD AEAB AC=,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴AD AE AB AC=,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴5415AC=,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.8.C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C.【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.9.B根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似比,可求出S △AEH 、S △AFG 与S △ABC 的面积比,从而表示出S △AEH 、S △AFG ,再求出四边形EFGH 的面积即可. 【详解】∵在矩形中FG ∥EH ,且EH ∥BC , ∴FG ∥EH ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∵AB 被截成三等分, ∴13AE AB =,23AF AB =, ∴S △AEH :S △ABC =1:9,S △AFG :S △ABC =4:9, ∴S △AEH =19S △ABC ,S △AFG =49S △ABC ,∴S 四边形EFGH = S △AFG -S △AEH =49S △ABC -19S △ABC =13S △ABC .故选:B . 【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键. 10.B 【解析】 【分析】反比例函数y =kx(k ≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断. 【详解】A 、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B 、∵k =﹣2<0,∴图象位于二、四象限,且在每个象限内,y 随x 的增大而增大,故本选项错误,符合题意,C 、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D 、∵x 、y 均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意. 故选:B .本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.12y y >【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A (3,y 1),B (5,y 2)在函数5y x=的图象上, ∴153y =,2515y ==, ∴y 1>y 2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.12.4.【分析】根据关系式,令h=0即可求得t 的值为飞行的时间.【详解】解:依题意,令0h =得:∴20205t t =-得:(205)0t t -=解得:0t =(舍去)或4t =∴即小球从飞出到落地所用的时间为4s故答案为4.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单. 13.22(2)y x =+【分析】根据平移规律“左加右减,上加下减”即可写出表达式.根据函数的图形平移规律可知:抛物线22y x =向左平移2个单位后所得到的抛物线为()222y x =+.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.14.1-【解析】【分析】分别求解两个方程的根即可.【详解】解:()()30x m x --=,解得x=3或m ;()()223310x x x x --=-+=,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.15.13【详解】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13;②当3是斜边时,根据勾股定理,∠A 的邻边=∴=;所以tanA 的值为13 16.3.【分析】先根据同角的余角相等证明∠ADE =∠ACD ,在△ADC 根据锐角三角函数表示用含有k 的代数式表示出AD=4k 和DC=3k ,从而根据勾股定理得出AC=5k ,又AC=5,从而求出DC 的值即为AB.【详解】∵四边形ABCD 是矩形,∴∠ADC =90°,AB =CD ,∵DE ⊥AC ,∴∠AED =90°,∴∠ADE +∠DAE =90°,∠DAE +∠ACD =90°,∴∠ADE =∠ACD ,∴tan ∠ACD =tan ∠ADE =43=AD CD, 设AD =4k ,CD =3k ,则AC =5k ,∴5k =5,∴k =1,∴CD =AB =3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17.8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:3.1,38AC m B =∠=︒, ∴ 3.15sin 0.62AC AB B ===, ∴木杆折断之前高度()3.158.1AC AB m =+=+=故答案为8.1m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.18.1【分析】先计算锐角三角函数值,然后再根据实数的运算法则进行计算即可.【详解】解:原式1122-⨯ =1+1-1=1.【点睛】本题考查锐角三角函数,实数的混合运算,熟记特殊角的三角函数值及实数各运算法则是解题的关键.19.可以求出A 、B 之间的距离为111.6米.【分析】 根据OD OE OB OA =,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD ∽, ∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20.(1)()2161608555y x x x =-++≤≤;(2)王师傅必须在7米以内. 【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a 的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x 的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设()235y a x =-+,过点()80, ∴代入,解得15a =- ∴抛物线(第一象限部分)的函数表达式为()2161608555y x x x =-++≤≤ (2)091.85y ==∴200916165555x x =-++ 07x ∴=或-108x ≤≤,图象对称∴负半轴为-7答:王师傅必须在7米以内.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x 的值.21.(1)25,20,126;(2)补全的频数分布直方图如图所示;见解析;(3)40~50岁年龄段的关注本次大会的人数约有60万人.【分析】(1)随机选取总人数减去其他组人数即可得到a ,第4组人数除以调查总人数即可得到答案;第3组人数所占百分比乘以360度,即可得到答案;(2)由(1)值,2030x ≤<有25人,即可得到答案;(3)300万乘以调查40~50岁年龄段的百分比可得答案.【详解】(1)100535201525a =----=,()%20100100%20%m =÷⨯=,第3组人数在扇形统计图中所对应的圆心角是:35360126100︒⨯=︒, 故答案为25,20,126;(2)由(1)值,2030x ≤<有25人,补全的频数分布直方图如图所示;(3)2030060100⨯=(万人), 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查扇形统计图和条形统计图,解题的关键是熟练读出扇形统计图和条形统计图的信息.22.(1)102a b ++=;(2)原方程有两个不相等的实数根;(3)2a =,2b =,1212x x ==-(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a +1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a 、b 的值,再代入方程解方程即可.【详解】解:(1)把1x =代入方程可得102a b ++= ,故a 、b 满足的关系式为102a b ++=;(2)△221422b a b a =-⨯=-, ∵1b a =+,∴△2(1)2a a =+-2212a a a =++-210a =+>,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=220b a -=,即22b a =,取2a =,2b =(取值不唯一), 则方程为212202x x ++=, 解得1212x x ==-. 【点睛】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.23.(1)∠MDB ==2α﹣60°,∠NDC =180°﹣2α,(30°<α<90°);(2;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM =x .解直角三角形用x 表示BD ,CD 即可解决问题.(3)证明△BDM ∽△CND ,推出DM ND =BD CN ,推出DM •CN =DN •BD 可得结论. 【详解】(1)由翻折的性质可知∠AMN =∠DMN =α,∵∠AMB =∠B +∠MDB ,∠B =60°,∴∠MDB =2α﹣60°,∠NDC =180°﹣∠MDB ﹣∠MDN =180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM =x .∵α=45°,∴∠AMD =90°,∴∠BMD =90°,∵∠B =60°,∴∠BDM =30°,∴BD =2x ,DN =BD •cos30°,∴MA =MD ,∴BC=AB=x,∴CD=BC﹣BD﹣x,∴BD:CD=2x:﹣x.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴DMND=BDCN,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.24.(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.25.(1)t=2s时,△PBQ的面积为4;(2)t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=144 5x【分析】(1)利用三角形的面积公式构建方程求出t即可解决问题.(2)分两种情形分别利用相似三角形的性质构建方程即可解决问题.(3)求出P,Q两点坐标,利用待定系数法构建方程求出t的值即可解决问题.【详解】(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴12•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,PBAB =BQBC,∴828-t=6t,解得t=125.②当△BPQ∽△BCA时,BPBC=BQBA,∴826-t=8t,解得t=32 11,∴t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=mx的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=125,∴P(245,6),∴1445m,∴反比例函数的解析式为y=1445x.【点睛】本题主要考查了相似三角形的判定与性质以及反比例函数的性质,属于综合性比较强的题.。
湘教版九年级上册数学期末考试试卷附答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案) 1.sin60°的值等于( )A .12 B C D 2.方程220x x -=的根是( )A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==- 3.如图,线段AB 两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 4.下列说法中,正确的是( )A .所有的等腰三角形都相似B .所有的菱形都相似C .所有的矩形都相似D .所有的等腰直角三角形都相似5.如图,河坝横断面迎水坡AB 的坡比是BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( )A .9mB .6mC .D .6.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=7.将方程231210x x --=进行配方、配方正确的是( ) A .()2325x -=B .()23213x -=C .()225x -=D .()21323x -=8.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154 C .83D .1039.如图,在平面直角坐标系中,函数4y x=()0x >与1y x =-的图像交于点(),P a b ,则代数式11a b-的值为( )A .12-B .12C .14-D .14二、填空题10.如果反比例函数(k y k x=是常数,0k ≠)的图象经过点(2,3),则k =____. 11.已知四个数a b c d ,,,成比例.若2,3,6a b d ===.则c =____. 12.解方程:22590x -=的解是____.13.抛物线y=3(x ﹣1)2+1的顶点坐标是_____.14.若关于x 的一元二次方程2x x m 0++=有两个相等的实数根,则m=_______. 15.藏羚羊是国家保护动物,某地区为估计该地区藏羚羊的数量,先捕捉20只给它们分别作上记号然后放还,带有标记的藏羚羊完全混合于羊群后,第二次捕捉40只,发现其中有2只有标记,从而估计这个地区有藏羚羊_____.16.已知a 是方程2202110x x -+=的一个根,则322202120211a a a --=+____. 17.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点()()120.5,,2,y y --均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的序号是____(填写正确的序号).三、解答题18.计算:)()0202101230311sin -⎛-++-⎫⎪⎝⎭.19.已知关于x 的一元二次方程260x kx ++=一个根是2,求k 的值及方程的另一个根. 20.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(1)求这50个样本数据的平均数、众数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动?21.如图,直升飞机在大桥AB 的上方Р点处,此时飞机离地面的高度450PO =米,且A B O 、、三点在一条直线上,测得大桥两端的俯角分别为130,245∠=︒∠=,求大桥的长AB(结果用根式表示).22.如图,反比例函数my x=的图象与一次函数y kx b =+的图象交于,A B 两点,点A 的坐标为(2,6),点B 的坐标为(,1)n .(1)求反比例函数与一次函数的表达式;(2)直线AB 与y 轴交于点P ,点E 为y 轴上一个动点,若5AEBS=,求点E 的坐标.23.如图,在平面直角坐标系中,抛物线27922y x x =--+与直线12y x b =+交于A B 、两点,其中点A 在x 轴上,已知A 点坐标()1,0,点P 是直线AB 上方的抛物线上一动点(不与点AB 、重合)过P 作y 轴的平行线交直线于点C ,连接PA PB 、.(1)求直线的解析式及点B 的坐标;(2)当APB △面积最大时,求点P 的坐标以及最大面积.24.如图,在四边形ABCD 中,AD //BC ,∠C =90°,AB =AD =25,BC =32,连接BD ,AE ⊥BD ,垂足为E . (1)求证:ABE ∽DBC ; (2)求线段AE 的长.25.顶角等于36的等腰三角形称为黄金三角形,如图1,在ABC 中,已知:,AB AC =且36,A DE ∠=是AB 的垂直平分线,交AC 于D ,并连接BD .(1)BCD △是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由; (2)设1,AB BC x ==,试求x 的值;(3)如图2,在ABC 中将BC 延长至点F ,使1CF AC ==,求BCAF的值.参考答案1.C【分析】把特殊角三角函数值代入求解即可.【详解】由正弦定理可得:sin60°故选C【点睛】此题考查了特殊角的三角函数值,掌握这些特殊角的三角函数值是解此题的关键.2.C【分析】本题可用因式分解法,提取x后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x.【详解】解:∵x2-2x=0∴x(x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C.【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用3.A【详解】试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,2∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C 的坐标为:(3,3). 故选A .考点:位似变换;坐标与图形性质. 4.D 【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案. 【详解】A 、所有的等腰三角形,边的比不一定相等,对应角不一定对应相等,故错误;B 、所有的菱形,边的比一定相等,而对应角不一定对应相等,故错误;C 、所有的矩形,对应角的度数一定相同,但对应边的比值不一定相等,故错误;D 、所有的等腰直角三角形,边的比一定相等,而对应角对应相等,故正确. 故选D . 【点睛】考查相似多边形的判定,对应角相等,对应边的比相等,缺一不可. 5.B 【详解】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m1sin302BC AB ===︒. 故选B . 6.D 【分析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可. 【详解】第一次降价后的价格为:25×(1-x); 第二次降价后的价格为:25×(1-x)2; ∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.D【分析】先将常数项移到方程右边,再将二次项系数化为1,最后两边加上一次项系数的一半的平方,写成完全平方公式即可.【详解】解:方程移项得:3x2-12x=1,方程两边除以3得:x2-4x=13,配方得:x2-4x+4=13+4=133,即(x-2)2=133,故选:D.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.8.A【分析】延长FE交BC于点D,作EG⊥AB、作EH⊥AC,由EF∥AC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠GAE=∠HAE,从而知四边形BDEG是正方形,再证△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,设BD=BG=x,则AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再证△CDF∽△CBA,CD DF BC AB=可得92DF=,据此得出EF=DF-DE=52.【详解】解:如图,延长FE交BC于点D,作EG⊥AB于点G,作EH⊥AC于点H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四边形BDEG是正方形,在△GAE和△HAE中,∵GAE HAEAGE AEE HAA E ∠=∠∠=∠⎧⎪⎨⎪=⎩,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,设BD=BG=x,则AG=AH=6﹣x、CD=CH=8﹣x,∵=10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴CD DFBC AB=,即686DF=,解得:36982 DF==,则EF=DF﹣DE=95222-=,故选A【点睛】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键. 9.C 【分析】把P(a ,b )代入两解析式得出b a -和ab 的值,整体代入11b aa b ab--=即可求解C【详解】 ∵函数4y x=()0x >与1y x =-的图像交于点P(a ,b ), ∴4b a=,1b a =-,即4ab =,1b a -=-, ∴1114b a a b ab --==-. 故选:C . 【点睛】本题考查了代数式的求值以及反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式. 10.6 【分析】 把点(2,3)代入(0)ky k x=≠即可求出k 的值. 【详解】解:因为反比例函数(0)ky k x=≠经过点(2,3), 把(2,3)代入(0)ky k x=≠,得236k =⨯=, 故答案为:6. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(0)k y k x=≠的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .11.4【分析】 由四条线段a 、b 、c 、d 成比例,根据成比例线段的定义,即可得a cb d=,又由a=2,b=3,d=6,即可求得c 的值.【详解】解:∵四条线段a 、b 、c 、d 成比例, ∴a c b d =, ∵a=2,b=3,d=6. ∴2=36c , 解得:c=4.故答案为:4.【点睛】此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.12.35x =± 【分析】利用直接开平方法解方程即可.【详解】解:22590x -=,即2925x =,解得35x =±, 故答案为:35x =±. 【点睛】本题主要考查解一元二次方程-直接开平方法,掌握一元二次方程的解法是解题的关键. 13.(1,1 ).【解析】试题分析:利用抛物线顶点式y=a (x ﹣h )2+k 直接求出顶点坐标即可.解:∵抛物线y=a (x ﹣h )2+k 的顶点坐标为(h ,k ),∴y=3(x ﹣1)2+1的顶点坐标是(1,1).故答案为(1,1 ).考点:二次函数的性质.14.14. 【详解】∵关于x 的一元二次方程2x x m 0++=有两个相等的实数根,∴方程根的判别式于0,∴由△=1﹣4m=0解得:m=14. 故答案为:14. 考点:一元二次方程根的判别式.15.400【详解】解:根据概率的计算法则可得:藏羚羊的数量为:40÷220=400只. 故答案为:400.考点:概率的应用16.2021-【分析】由方程根的定义可得2202110a a -+=,变形为212021a a +=.再将2202110a a -+=等号两边同时乘a 并变形得322021a a a -=-,代入322202120211a a a --+逐步化简即可. 【详解】∵a 是方程2202110x x -+=的一个根.∴2202110a a -+=,即212021a a +=.将2202110a a -+=等号两边同时乘a 得:2(20211)0a a a -+=,即322021a a a -=-. ∴2322202120211120212021202112021a a a a a a a a a a a +--=--=--=-=-=-+. 故答案为:-2021.【点睛】本题考查一元二次方程解的定义以及代数式求值.熟练掌握整体代入的思想是解答本题的关键.17.②③⑤【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b=2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用5a-2b+c=5a-4a-3a=-2a <0,则可对⑤进行判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点坐标为(1,0),∴抛物线与x 轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,所以③正确;∵点(-0.5,y 1)到直线x=-1的距离比点(-2,y 2)到直线x=-1的距离小,而抛物线开口向上,∴y 1<y 2;所以④错误;∵5a-2b+c=5a-4a-3a=-2a <0,故⑤正确,故答案为:②③⑤.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.18.4【分析】直接利用零指数幂的性质以及负整数指数幂的性质和特殊角的三角函数值分别化简得出答案.【详解】解:)()0202101230311sin -⎛-++-⎫ ⎪⎝⎭ 112312=-⨯++ 4=【点睛】此题主要考查了实数运算,三角函数,正确化简各数是解题关键.19.5k =-,23x =【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-k ,2t=6,然后先求出t 的值,再计算k 的值.【详解】解:设方程的另一根为t ,根据题意得2+t=-k ,2t=6,解得t=3,k=-5.故答案为:5k =-,23x =.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了根与系数的关系.20.(1)平均数是3.3次,众数是4次;(2)3960.【分析】(1)根据加权平均数的公式和众数的定义即可求出.(2)利用样本估计总体的方法,用1200×平均数即可.【详解】(1)观察条形统计图,可知这组样本数据的平均数是:132731741855 3.350x ⨯+⨯+⨯+⨯+⨯==次, 则这组样本数据的平均数是3.3次.在这组样本数据中,4出现了18次,出现的次数最多,这组数据的众数是4次.(2)这组样本数据的平均数是3.3次,估计全校1200人参加活动次数的总体平均数是3.3次,故全校1200人参加活动次数为3.312003960⨯=次.【点睛】本题考查的是条形统计图,平均数,众数以及样本估计总体.读懂统计图,从统计图中得到必要的信息是解题的关键.21.)4501m . 【分析】利用特殊角的三角函数解三角形即可.【详解】由题意得:304590PAO PBO POB POA ∠=︒∠=︒∠=∠=︒,,,tan tan 30PO PAO AO ∠=︒=AO = tan tan 451PO PBO BO∠=︒==,即求出450BO =米,则4501)AB AO BO =-==米.【点睛】本题考查解直角三角形,掌握特殊角的三角函数值是解答本题的关键.22.(1)12y x =,172y x =-+;(2)E 的坐标为(0,6)或(0,8). 【分析】(1)把点A 的坐标代入y=m x,求出反比例函数的解析式,把点B 的坐标代入y=12x ,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y=kx+b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设直线AB 与y 轴的交点为P ,点E 的坐标为(0,m ),连接AE ,BE ,求出点P 的坐标(0,7),得出PE=|m-7|,根据S △AEB =S △BEP -S △AEP =5,求出m 的值,从而得出点E 的坐标.【详解】解:()1把点(2,6)A 代入my x =,得12m =. 则反比例函数的表达式为12y x =.把点(,1)B n 代入12y x =,得12n =.则点B 的坐标为(12,1).由直线y kx b =+过点()()2,6,12,1A B ,得2621k b k b +=⎧⎨+=⎩ 解得127k b ⎧=-⎪⎨⎪=⎩ 则一次函数的表达式为172y x =-+()2如图,设直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE , 则点P 的坐标为(0,7)∴PE=|m-7|∵S △AEB =S △PEB -S △PEA =5 ∴12×|m-7|×12-12×|m-7|×2=5. ∴12×|m-7|×(12-2)=5∴|m-7|=1.∴m 1=6,m 2=8∴点E 的坐标为(0,6)或(0,8)【点睛】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.23.(1)1122y x =-,B 的坐标为()5,3--;(2)点Р的坐标为()152,2-,APB △面积的最大值为27.【分析】(1)先求出抛物线27922y x x =--+与x 轴交点A 的坐标,再将A 点坐标代入 12y x b =+,利用待定系数法求出直线的解析式为1122y x =-,与抛物线的解析式联立,解方程组279221122y x x y x ⎧=--+⎪⎪⎨⎪=-⎪⎩,即可求得B 点的坐标; (2)设P (x ,27922x x --+),则C (x , 1122x -),则PC=-x 2-4x+5,利用三角形面积公式得到S △APB =12PC•|x A -x B |=12(-x 2-4x+5)×(1+5),然后利用二次函数的性质解决问题.【详解】解:()1A 点的坐标为()1,0,将()1,0代入12y x b =+, 得1012b =⨯+, 解得12b =-, ∴直线的解析式为1122y x =- 由279221122y x y x ⎧=--+⎪⎪⎨⎪=-⎪⎩ 解得1110x y =⎧⎨=⎩,2253x y =-⎧⎨=-⎩B ∴的坐标为()5,3--()2设279,22(P x x x --+),则11,22x x C ⎛⎫- ⎪⎝⎭, 221127945222x PC x x x x ⎛⎫⎛⎫∴=--+-=--+ ⎪ ⎪⎭⎝⎭-⎝, ()()222114515312153227(22APB A B S PC x x x x x x x ∆∴=⋅-=--+⨯+=--+=-++), 当2x =-时,APB ∆面积最大,最大值为27,此时点Р的坐标为()152,2-. 【点睛】本题考查了二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征,两函数交点坐标的求法,三角形的面积,难度适中.24.(1)证明见解析;(2)AE =15.【分析】(1)由等腰三角形的性质可知∠ABD =∠ADB ,由AD ∥BC 可得∠ADB =∠DBC ,即可得出∠ABD =∠DBC ,根据∠AEB =∠C =90°,即可可证明△ABE ∽△DBC ;(2)由等腰三角形的性质可知,BD =2BE ,根据相似三角形的性质可求出BE 的长,在Rt △ABE 中,利用勾股定理求AE 即可得答案.【详解】(1)∵AB =AD =25,∴∠ABD =∠ADB ,∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ABD =∠DBC ,∵AE ⊥BD ,∴∠AEB =∠C =90°,∴△ABE ∽△DBC ;(2)∵AB =AD ,AE ⊥BD ,∴BE =DE ,∴BD =2BE ,∵△ABE ∽△DBC ,∴AB BE BD BC=,∵AB=AD=25,BC=32,∴25232BE BE=,∴BE=20,∴AE15.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定方法是解题关键.25.(1)△BDC是黄金三角形,理由见解析;(2)x=(335【分析】(1)先根据AB=AC,∠A=36°证明∠ABC=∠ACB=72°,再根据线段垂直平分线的性质证明∠ABD=∠A=36°,∠BDC=∠C,从而可得结论;(2)证明BDC ABC∆∆,根据相似三角形的性质可得方程,求解方程即可;(3)证明FBA ABC∆∆可得结论.【详解】解:()1BCD是黄金三角形.证明如下:点D在AB的垂直平分线上,,AD BD∴=,ABD A∴∠=∠36,A AB AC∠=︒=72ABC C∴∠=∠=,36,ABD DBC∴∠=∠=︒又72BDC A ABD∠=∠+∠=,,BDC C∴∠=∠,BD BC∴=BCD∴△是黄金三角形.()2设,1BC x AC==,由()1知,AD BD BC x===.,DBC A C C∠=∠∠=∠BDC ABC∴∆∆,BC DC AC BC ∴=即11x x x-=整理得210x x +-=,解得x =. 因为x 均为正数,所以x = () 336,A AB AC ∠=︒=,72ACB B ∴∠=∠=,18072108ACF ∴∠=︒-=︒,1,36AC CF F CAF ∴==∠=∠=72,BAF B ∴∠=︒=∠,FBA ABC ∴∆∆BC AB =,AB AF =2BC BC AB AF AB AF ∴=⨯==⎝⎭. 【点睛】此题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答此题的关键.。
湘教版九年级上册数学期末考试试卷及答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数经过(-2,3),则下列哪个点在此函数图象上()A.(-1,-6) B.(3,2) C.(-2,-3) D.(-6,1) 2.一元二次方程x2+4x=3配方后化为()A.(x+2)2=3 B.(x+2)2=7 C.(x-2)2=7 D.(x+2)2=-1 3.点B是线段AC的黄金分割点,且AB<BC.若AC=4,则BC的长为()A.2B.2C D14.Rt△ABC中,∠C=90°,若AB=4,cosA=35,则AC的长为()A.95B.125C.163D.55.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h).则估计本班大多数同学一周写数学作业的时间约为()A.4h B.5h C.6h D.7h6.已知二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,则m的值为()A.B C.D.27.如图,在△ABC中,∠A=90°,sinB=35,点D在边AB上,若AD=AC,则tan∠BCD的值为( )A.15B.16C.17D.188.函数y=mx与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .9.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( ) A .2m ≠B .6m =且2m ≠C .6m <D .2m =或6m ≤10.如图,已知直线l 1∥l 2∥l 3,直线m 、n 分别与直线l 1、l 2、l 3分别交于点A 、B 、C 、D 、E 、F ,若DE =3,DF =8,则BCAC的值为( )A .35B .58C .53D .85二、填空题11.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.12.已知2334b a b =-,则a b=________ 13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h 为___米.14.若关于x 的一元二次方程220x x k +-=有实数根,则k 的取值范围是__________. 15.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.16.如图所示,D 为AB 边上一点,AD :DB=3:4,DE //AC 交BC 于点E ,则S △BDE :S △AEC 为_____.17.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =24x (x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C 、D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E 、F ,则OFB EADS S的值为_____.三、解答题18.计算:4sin60°+(3.14- )0230°.19.随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查的学生总人数,并补全条形统计图; (2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.20.某高速公路建设中,需要确定隧道AB 的长度.已知在离地面1800m 高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角分别为60°和45°(即∠DCA =60°,∠DCB =45°).求隧道AB 的长.(结果保留根号)21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°, (1)求证:BD 2=BA·BE ; (2)若AB=6,BE=8,求CD 的长.22.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根. (1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值.23.如图,直线y 1=kx+b 与函数y 2=(0)kx x的图象相交于点A(-1,6),与x 轴交于点C ,且∠ACO=45°,点D 是线段AC 上一点. (1)求k 的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B 点,直接写出y 1<y 2自变量x 的取值范围,并求出△AOB 的面积.(3)若S △COD :S △AOC =2:3,求点D 的坐标.24.如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3) .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.25.(1)如图1,在四边形ABCD中,点M在BC上,∠B=∠C=∠AMD时.求证:△ABM∽△MCD.(2)如图2,在△ABC中,点M是边BC的中点,点D,E分别在边AB,AC上.若∠B=∠C=∠DME=45°,BC=CE=6,求DE的长.参考答案1.D【分析】将已知点代入反比例函数的解析式kyx=中求出k值,再根据k=xy解答即可.【详解】解:设反比例函数的解析式为kyx =,将(﹣2,3)代入解析式中,得:k=﹣2×3=﹣6,只有D选项满足k=﹣6×1=﹣6,故选:D.【点睛】本题考查反比例函数图象上的点的坐标特征、待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解答的关键.2.B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.B【分析】根据黄金分割的定义可得出较长的线段AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴AC,∵AC=4,∴BC=2.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.4.B【分析】根据三角函数可求出AC长.【详解】解:∵∠C=90°,若AB=4,∴cosA=ACAB,即345AC=,AC=125,故选:B.【点睛】本题考查了三角函数的计算,解题关键是理解余弦的意义,熟练进行计算.5.C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.6.A【分析】根据次数为2可列方程,再根据函数增减性确定m值.【详解】解:根据题意可知,232m-=,解得,m=∵二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,∴m+2<0,解得m<-2,综上,m=故选:A.【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.7.C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD. 【详解】解:作DE⊥BC于E.∵∠A=90°,sinB=35,设AC=3a=AD,则AB=4a,BC=5a, ∴BD=AB-AD=a.∴DE= BD·sinB=35 a,∴根据勾股定理,得BE=45 a,∴CE=BC-BE=215a, ∴tan ∠BCD=1.7DE CE = 故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键. 8.C 【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案. 【详解】解:A 、由反比例函数的图象在可一、三象限知m >0时,-m <0, ∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限 ∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0, ∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限 C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0, ∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限, ∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0, ∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限, ∴D 错误; 故选C. 【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键. 9.D 【分析】分两种情况讨论,当方程是一元一次方程时,20m -=,或方程是一元二次方程时,根据一元二次方程的定义,二次项系数不为零,再结合一元二次方程根的判别式:当0∆≥时,方程有实根,据此解题. 【详解】解:当20m -=时,即2m =时,原方程是一元一次方程450x +=54x ∴=-,方程有实根;当2m ≠时,一元二次方程2(2)230m x mx m -+++=有实根,则0∆≥ 即22444(2)(3)0b ac m m m -=--+≥ 4240m -+≥解得6m ≤故选:D . 【点睛】本题考查方程的根、一元二次方程的根的情况求参数等知识,是重要考点,涉及分类讨论的数学思想,掌握相关知识是解题关键. 10.B 【分析】根据平行线分线段成比例定理解答即可. 【详解】 解:∵l 1∥l 2∥l 3, ∴=EF BCDF AC, ∵DE =3,DF =8, ∴838BCAC-=,即BC AC =58, 故选:B .【点睛】本题考查了平行线分线段成比例定理,注意:一组平行线截两条直线,所截的线段对应成比例.11.2k >【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k ->,解得2k >,故答案为:2k >.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.12.119【解析】 ∵2334ba b =-,∴8b=3(3a-b),即9a=11b ,∴119a b =, 故答案为119.13.1.4【分析】根据相似三角形对应边成比例列式计算即可得解.【详解】由题意得,40.843h =+,解得h=1.4.故答案为1.4.【点睛】本题考查了相似三角形的应用,熟练掌握性质定理是解题的关键.14.1k ≥-【分析】一元二次方程220+-=有实数根,即240x x k∆=-≥b ac【详解】解:一元二次方程220+-=有实数根x x k24440∴∆=-=+≥b ac kk≥-解得1【点睛】本题考查24b ac∆=-与系数的关系.15.7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x轴的距离是纵坐标的绝对值,注意:分类讨论.16.16:21【分析】根据平行线分线段成比例得出DE:AC=BD:AB=4:7,再根据相似三角形的面积比等于相似比的平方可求得S△BDE:S四边形ADEC=16:33,然后根据平行线间的距离相等得到S△ADE:S△AEC=DE:AC=4:7,进而可求得S△BDE:S△AEC.【详解】解:∵DE∥AC,∴△BDE∽△BAC,又AD:DB=3:4,∴DE:AC=BD:AB=4:7,∴S △BDE :S △BAC =16:49,∴S △BDE :S 四边形ADEC =16:33,∵DE ∥AC ,∴△ADE 与△AEC 的高相等,∴S △ADE :S △AEC =DE :AC=4:7=12:21,∴S △BDE :S △AEC =16:21,故答案为:16:21.【点睛】本题考查平行线分线段成比例、相似三角形的判定与性质、平行线的性质、比例性质,熟练掌握平行线分线段成比例和相似三角形的面积比等于相似比的平方是解答的关键.17.16【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a , ∵BE ∥x 轴,∴点F 纵坐标为24a , ∵点F 是抛物线2y x 上的点,∴点F横坐标为12x a ==, ∵CD x 轴,∴点D 纵坐标为2a ,∵点D 是抛物线24x y =上的点, ∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴==== ∴1141218362OFB EAD BF OE SS AD CE ⋅⋅==⨯=⋅⋅,故答案为16.【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.18.23.【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果.【详解】4sin60°+(3.14-π)0230°2=1 3=23.【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键.19.(1)见解析;(2)48︒;(3)800人.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【详解】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90−24−18−12=36,补全的条形统计图如图所示:;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360︒×1290=48︒, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48︒;(3)3000×2490=800(人), 答:该校对在线阅读最感兴趣的学生有800人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.隧道AB 的长为(1800﹣m【分析】易得∠CAO =60°,∠CBO =45°,利用相应的正切值可得BO ,AO 的长,相减即可得到AB 的长.【详解】解:∵CD //OB ,∴∠CAO =∠DCA =60°,∠CBO =∠DCB =45°,在Rt CAO 中,tan ∠CAO =CO OA=tan60°,∴1800OA =∴OA =在Rt CAO 中,tan ∠CBO =CO OB=tan45°, ∴OB =OC =1800,∴AB =OB ﹣OA =1800﹣答:隧道AB 的长为(1800﹣m .本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC ,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE ,∴BD:BE=BA:BD ,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8 ,∴∴AD2=BD2-AB2=12 即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴CA=BA×tan60°,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)0m ;(2)-2(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可;【详解】解:(1)∵此方程有两个不相等的实数根,∴b 2-4ac>0 ,即4m 2-4(m 2+m)>0,∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m , ∵x 12+x 22=12,∴(x 1+x 2)2-2x 1x 2=12,∴m=3或m=-2,由(1)可知m<0,故m=3舍去,∴m=-2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 23.(1)16,5k y x =-=-+;(2)10x -<<或6x >,352;(3)D (1,4) 【分析】(1)将A(-1,6)代入y=(0)k x x <可求出k 的值,再求出点C 的坐标,然后用待定系数法即可求出一次函数的解析式;(2)解1256y x y x =-+⎧⎪-⎨=⎪⎩即可求出点B 的坐标,根据图象可求出y 1<y 2时自变量x 的取值范围,根据S △AOB =12OC AE ⋅求解即可求出△AOB 的面积; (3)过点D 作DF ⊥x 轴,垂足为F ,设D(x ,-x+5)(x >0),然后根据DF :AE=2:3列方程即可求解.【详解】解:(1)∵反比例函数经过点A(-1,6) ,∴k=-1×6==-6.如图1,作AE ⊥x 轴,交x 轴于点E ,∴E(-1,0),EA=6,∵∠ACO=45°,∴CE=AE=6,∴C(5,0) ,∴650k b k b -+=⎧⎨+=⎩,∴15k b =-⎧⎨=⎩,∴直线y 1`=-x+5;(2)解1256y x y x=-+⎧⎪-⎨=⎪⎩,得x 1=-1,x 2=6,故B(6,-1).如图2,由图象可知,当y 1<y 2时,-1<x<0或 x>6 ,S △AOB =1·2OC AE =352;(3)如图1,作DF⊥x轴,交x轴于点F.∵S△COD:S△AOC=2:3,∴DF:AE=2:3.设点D(x,-x+5),即有(-x+5):6=2:3,∴x=1,∴D(1,4).【点睛】本题考查了反比例函数与一次函数额综合,待定系数法求解析式,三角形的面积等,解题关键是能够熟练运用反比例函数的性质.24.(1)2y x2x3=-++;(2)存在,P(1,2),△PAC(3)存在,点M的坐标为(1,1),(1),(1,,(1,0)【分析】(1)将A、B、C分别代入抛物线表达式中求解a、b、c即可解答;(2)由于为定值,所以要使得△PAC的周长最小,只需PA+PC最小,由点A与点B关于对称轴对称,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置,求出直线BC的解析式,将x=1代入即可求得点P的坐标及最小周长;(3)根据题意,分三种情况:①MA=MC ;②MA=AC ;③MC=AC 进行求解即可解答.【详解】解:(1)将A,B,C代入抛物线的解析式y=ax2+bx+c中,得:9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x2x3=-++;(2)因为所以要使得△PAC的周长最小,只需PA+PC最小,由题意,抛物线的对称轴为直线x=1,根据抛物线的对称性,点A的对称点为B,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置.设直线BC的解析式为y=kx+t,将B(3,0)、C(0,3)代入,得303k tt+=⎧⎨=⎩,解得:13kt=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,当x=1时,y=2,∴P(1,2),又BC= =∴△PAC周长的最小值为AC+BC=(3)设M(1,n),A(-1,0),C(0,3),则MA2=4+n2;MC2=1+(3-n)2;AC2=10,根据题意,分三种情况:①当MA=MC时,由4+n2=1+(3-n)2得:n=1,②当MA=AC 时,由4+n2=10得:n=③当MC=AC 时,由1+(3-n)2 =10得:n1=0,n2=6,但当n=6时,A,C,M三点共线,不构不成三角形,需舍去,综上所述,满足条件的点M的坐标为(1,1),(1),(1,,(1,0).【点睛】本题是二次函数的综合题,主要考查待定系数法求二次函数的解析式、二次函数的图象与性质、轴对称-最短路径、两点间距离公式、等腰三角形的判定、解一元一次方程、解一元二次方程等知识,解答的关键是明确题意,找寻知识的关联点,利用数形结合思想和分类讨论的方法等解题方法进行推理、探究和计算.25.(1)见解析;(2)103【分析】(1)由∠AMB +∠AMD +∠DMC =180°及△ABM 内角和为180°、∠B =∠AMD ,可得∠BAM =∠DMC ,从而可判定△ABM ∽△MCD ;(2)可判定△BDM ∽△CME ,从而有对应边成比例,则易求得BD 的长,然后在Rt △ADE 中,利用勾股定理或求得DE 的长.【详解】(1)∵∠AMB +∠AMD +∠DMC =180°,∠B +∠AMB +∠BAM = 180°,∠B =∠AMD ∴∠BAM =∠DMC∵∠B =∠C∴△ABM ∽△MCD(2)∵M 是BC 的中点∴BM =CM =1122BC =⨯ ∵∠DMB +∠DME +∠EMC =180°,∠B +∠DMB +∠BDM = 180°,∠B =∠DME∴∠BDM =∠EMC∵∠B =∠C∴△BDM ∽△CME ∴BM BD CE CM=∴4163 BM CMBDCE===∵∠B=∠C=45°∴∠A=180°-∠B-∠C=90°∴由勾股定理得:AB=AC8BC=∴AD=AB-BD=168833-=,AE=AC-CE=8-6=2在Rt△ADE中,由勾股定理得:103 DE=【点睛】本题考查了相似三角形的判定与性质,勾股定理,三角形内角和定理,关键是得出两个三角形相似.。
湘教版九年级上期末测试卷附答案
2013年数学九年级上册期末试题(时量 120分钟 满分120分)一.选择题(每小题3分,共30分)1.方程x 2=x 的解是 ( )A. x=0B. x=1C. x=±1D. x=1, x=02.下列命题中是假命题的是 ( )A .直角三角形两锐角互余B .等腰三角形两底角相等C .同旁内角互补D .从直线外一点向直线作垂线,垂线段最短3.下列事件不是必然事件的是( )A. 两条直线相交,对顶角相等B. 垂直平分线上的点到线段两端点的距离相等C. 三角形任意两边之和大于第三边.D. 两相似多边形面积之比等于周长之比.4.一斜坡长10m ,它的高为6m ,将重物从斜坡起点推到坡上4m 处停下,则停下地点的高度为 ( )A .2 mB .2.4 mC .3 mD .4 m5.方程x 2-2x-3=0变为(x+a)2=b 的形式,正确的是 ( )A. (x+1)2=4B. (x-1)2=4C. (x+1)2=3D. (x-1)2=36.如图,若将四根木条钉成的矩形木框变为平行四边形ABCD ,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 ( )A.30ºB. 45ºC.600D.9007.用13m 的铁丝网围成一个长边靠墙面积为20m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程( )A .(13)20x x -=B .20)13(2=-x x C .113202x x ⎛⎫-= ⎪⎝⎭ D . 20)213(2=-x x 8.已知b a 、是关于0)32(22=+++m x m x x 的一元二次方程的两个不相等的实数根,且满足m ba 则,111-=+的值为 ( ) A. 3或-1 B. 3 C. -1 D. 3或1 9.在△ABC 中,∠A 、∠B 都是锐角,且sinA=21, cosB=23,则此三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.形状不能确定X10.同时抛掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则朝上的面的点数中,一个点数能被另一个点数整除的概率是( ) A. 187 B. 43 C. 1811 D. 3623 二、填空题(每小题4分,共32分)11.把方程)1(24)3)(3(-=+-+x x x 化为一般形式是 ,12.定理“等腰梯形的对角线相等”的逆定理是13.已知:y=x 2-6x+8,当y=0时,x=14.若△ABC ∽△A ′B ′C ′,且43=''B A AB ,△ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ;15.李叔叔有两副完全相同的手套(分左,右手)上班时,他从中任意拿了两只就出门了,那么这两只手套恰好配成一副手套的概率是16.梯形的中位线长为12cm ,一条对角线把中位线分成1:3两部分,则梯形较长的底边为 cm.17.如图所示,把两个等宽的纸条按图示放置,如果重叠部分1+1,则重叠部分的四边形面积是 。
湘教版九年级上册数学期末考试试题及答案
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.一元二次方程2220x x +=-的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.反比例函数k y x=经过点(1,3-),则k 的值为( ) A .3 B .3- C .13 D .13- 3.方程(1)x x x -=的解是( )A .0x =B .1x =C .120,1x x ==D .120,2x x == 4.如图,平行四边形ABCD 中,E 是BC 延长线上一点,连结AE 交CD 于F ,则图中相似的三角形共有( )A .1对B .2对C .3对D .4对5.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是( )A .80米B .85米C .120米D .125米 6.在Rt △ABC 中,∠C=90°.若AC=2BC ,则sinA 的值是( )A .12BCD .27.已知两个相似三角形的相似比为2∶3,较小三角形面积为12平方厘米,那么较大三角形面积为( )A .18平方厘米B .8平方厘米C .27平方厘米D .163平方厘米8.在△ABC 中,若tanA=1,,你认为最确切的判断是( ) A .△ABC 是等腰三角形 B .△ABC 是等腰直角三角形C .△ABC 是直角三角形D .△ABC 是等边三角形9.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C .2 D10.把两条宽度都为1的纸条交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为( ).A .1sin αB .1cos αC .sin αD .1二、填空题11.已知57y x =,则+-x y x y =_____________.12.计算:·cos30°+3tan60°= _______________.13.已知反比例函数3y x=的图像上有两点M 11(,)x y ,N 22(,)x y ,且10x <,20x >,那么1y 与2y 之间的大小关系是_____________.14.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则列出的方程是_______________.15.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.16.一张矩形的纸片ABCD 中,AB=10,AD=8.按如图方式折,使A 点刚好落在CD 上。
湘教版九年级数学上册期末考试题及答案【完美版】
湘教版九年级数学上册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A.102B.112C.122D.928.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△=15,则CD的长为()ABDA.3 B.4 C.5 D.610.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.因式分解:x2y﹣9y=________.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、B6、C7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、y(x+3)(x﹣3)3、如果两个角是等角的补角,那么它们相等.4、35、40°6、-1三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42.3、(1)略(2)略4、(1)略;(2)1;(3)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
湘教版九年级上册数学期末考试试题附答案
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.一元二次方程2531x x x -=+化为一般形式()200++=≠ax bx c a 后,a ,b ,c 的值分别是( )A .5a =,4b =-,1c =-B .5a =,4b =,1c =C .4a =,5b =-,1c =D .5a =-,4b =,1c =- 2.下列计算正确的是( )A 1BCD 5-3.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠-4.如图,直线a ,b ,c 被直线1l ,2l 所截,交点分别为点A ,C ,E 和点B ,D ,F .已知////a b c ,且3AC =,4CE =,则BDBF的值是( )A .34B .43C .37D .475.如图,ABC 中,点D ,E 分别在AB ,AC 上,//DE BC ,若1AD =,2BD =,则ADE 与ABC 的面积之比为( )A .1:2B .1:3C .1:4D .1:96.在Rt ABC 中,90C ∠=︒,12AC =,5BC =,那么下列各式中正确的是( ) A .5tan 12A =B .5tan 13A =C .5sin 12A =D .5cos 12A =7.坐标平面内下列个点中,在坐标轴上的是( )A .(3,3)B .(﹣3,0)C .(﹣1,2)D .(﹣2,﹣3)8.如图大坝的横断面,斜坡AB 的坡比i =1:2,背水坡CD 的坡比i =1:1,若坡面CD 的长度为AB 的长度为( )A .B .C .D .249.在一个不透明袋子中装有7个只有颜色不同的球,其中3个红球和4个蓝球,从袋子中任意摸出1个球,是红球的概率为( ) A .47B .37C .13D .1410.一元二次方程2x 2+6x +3= 0 经过配方后可变形为( ) A .233(+)24x = B .2(+3)6x = C .2(3)12x -=D .2315()24x -=二、填空题11.已知2x =2y =x 2+y 2﹣2xy 的值为_____. 12.已知α、β是方程2202010x x +-=的两个根,则αβαβ++=________.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是________.14.如图,在△ABC 中,D ,E ,F 分别是边AB ,BC ,CA 的中点,四边形BEFD 周长为14,则AB +BC 的长为_____.15.已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标______. 16.在Rt ABC 中,90C ∠=︒,若cos 45B =,则tan B =________.三、解答题17.计算:18.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.19.计算:2sin60cos45sin30tan60︒+︒-︒⋅︒.20.从2021年起,江苏省高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.如图,在△ABC中,点D、E、F分别在AB、BC、AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC;(2)若12AFFC=,且S△DBE=2,求△ABC的面积.23.如图,平行四边形ABCD 中,BCD ∠的平分线交AD 于E ,ABC ∠的平分线交ED 于点F .(1)求证:AE DF =;(2)若120A ∠=︒,BF =3EF =,求BC 的长.24.如图,直线1y mx =与双曲线2ky x=(0k ≠)相交于A 、B 两点,点A 的坐标为()1,2.(1)求直线1y 和双曲线2y 的表达式; (2)当12y y >时,请求出x 的取值范围;(3)如图,若在第一象限的双曲线上有一点C ,OA OC =,连接AC ,求AOC △的面积.25.如图1,在边长为3的等边△ABC 中,过点A 作AC 的垂线交CB 延长线于点D .点P ,Q 分别在线段BD ,AC 上,且BP AQ =.设BP x =. (1)求BD 的长;(2)过点Q 作QH ⊥BC ,垂足为H ,当以P ,Q ,H 为顶点的三角形与△CDA 相似时,求x 的值;(3)如图2,PQ 交AB 于点E ,过点E 作EF //BD 交AD 于点F .设EF m =,求m 与x 之间的函数关系式.参考答案1.A 【分析】直接利用移项、合并同类项,即可得出a ,b ,c 的值. 【详解】一元二次方程2531x x x -=+化为一般形式20ax bx c ++=后, 25410x x --=,则5a =,4b =-,1c =-. 故选:A . 【点睛】本题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键. 2.B 【分析】根据二次根式的乘法法则对B 进行判断;根据二次根式的加减法对A 、C 进行判断;根据二次根式的性质对D 进行判断. 【详解】;解:A.B.C.D. 5,故选项错误; 故选:B . 【点睛】本题考查了二次根式的计算,熟悉相关性质是解题的关键. 3.D 【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可. 【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥,解得1m ≠-且2m ≥-. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 4.C 【分析】利用平行线分线段成比例定理列出比例式,计算即可. 【详解】 解:∵a ∥b ∥c , ∴34AC BD CE DF ==,∴33347BD BF ==+. 故选:C . 【点睛】本题考查了平行线分线段成比例定理的应用,灵活运用定理、找准对应关系是解题的关键. 5.D 【分析】由//DE BC ,易得~ADE ABC ∆∆,利用相似三角形的性质,2ADE ABCSAD SAB即可.【详解】 //DE BC ,ADE B ∴∠=∠,AED C ∠=∠,~ADE ABC ∴∆∆,2ADE ABC S AD S AB ⎛⎫= ⎪⎝⎭△△∴, 1,2AD BD ,123AB AD BD , 21139ADE ABCS S. 故选择:D . 【点睛】本题考查相似三角形的面积比问题,关键是掌握相似三角形的判定方法,会用方法证明两个三角形相似,掌握相似三角形的性质,会利用性质解决对应线段比、周长比,面积比等问题. 6.A 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义计算,判断即可. 【详解】 解:如图示:在Rt ABC 中,90C ∠=︒, 12AC =,5BC =,由勾股定理得:13AB = 则512BC tanA AC ==,513BC s n ABi A ,1213AC A c BosA , ∴A 选项计算正确; 故选:A . 【点睛】本题考查了勾股定理,锐角三角函数的定义,熟悉相关性质是解题的关键. 7.B 【分析】根据各象限内和坐标轴上的点的坐标特点得到点(3,3)在第一象限;点(-3,0)在x 轴上;点(-1,2)在第二象限;点(-2,-3)在第三象限. 【详解】A 、点(3,3)在第一象限,所以A 选项错误;B 、点(-3,0)在x 轴上,所以B 选正确;C 、点(-1,2)在第二象限,所以C 选项错误;D 、点(-2,-3)在第三象限,所以D 选项错误. 故选B . 【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对一一对应,记住各象限内和坐标轴上的点的坐标特点. 8.C 【分析】过B 作BE ⊥AD 于E ,过C 作CF ⊥AD 于F ,则四边形BEFC 是矩形,得BE =CF ,由坡比得BE=CF=DF=6(米),AE=2BE=12(米),再由勾股定理解答即可.【详解】过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF.∵背水坡CD的坡比i=1:1,CD=∴CF=DF CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=BEAE,∴AE=2BE=12(米),∴AB=,故选:C.【点睛】本题考查了解直角三角形的应用−坡度坡角问题、等腰直角三角形的性质以及勾股定理等知识;熟练掌握坡比的定义,正确作出辅助线构造直角三角形是解题的关键.9.B【分析】直接根据概率公式求解即可.【详解】∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率是37.故选:B.【点睛】本题考查了概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.10.A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.【详解】解:∵2x 2+6x =−3, ∴x 2+3x =−32,则x 2+3x +94=−32+94,即(x +32)2=34,故选:A . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得. 11.12. 【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可. 【详解】解:2x =-,2y =23xy,则22222()(23)12x y xy x y ,故答案为:12. 【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键. 12.-2021 【分析】根据根与系数的关系得出2020αβ+=-,1αβ=-,再代入计算即可. 【详解】∵α,β是方程2202010x x +-=的两个根, ∴2020αβ+=-,1αβ=-, ∴202012021αβαβ++=--=-. 故答案为:2021-. 【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根与系数的关系:若方程两根为12x x 、,则12b x x a +=-,12c x x a=. 13.1:4【分析】根据是相似三角形周长的比等于三角形边长的比解答即可.【详解】因为原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4.故答案为1:4.【点睛】本题考查了相似三角形的性质,关键是根据相似三角形周长的比等于三角形边长的比解答.14.14【分析】根据三角形的中位线可得DF =12BC ,EF =12AB ,判定四边形BEFD 为平行四边形,利用平行四边形的性质可求解.【详解】∵D ,E ,F 分别是边AB ,BC ,CA 的中点,∴DF ∥BC ,EF ∥AB ,DF =12BC ,EF =12AB , ∴四边形BEFD 为平行四边形,∵四边形BEFD 周长为14,∴DF +EF =7,∴AB +BC =14.故答案为:14.【点睛】本题主要考查了三角形的中位线,平行四边形的判定与性质,判定四边形BEFD 为平行四边形是解题的关键.15.(-3,6).【分析】根据坐标的表示方法由点A 到x 轴的距离为6,到y 轴的距离为3,且它在第二象限内即可得到点A 的坐标为(-3,6).【详解】解:∵点A 到x 轴的距离为6,到y 轴的距离为3,且它在第二象限内,∴点A 的坐标为(-3,6).故答案为(-3,6).【点睛】本题考查点的坐标:在直角坐标系中,过一点分别作x 轴和y 轴的垂线,用垂足在x 轴上的坐标表示这个点的横坐标,垂足在y 轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.16.34. 【分析】根据余弦值,求出三角形的各边,再根据锐角的正切等于对边比邻边列式即可.【详解】解:如图示:∵在Rt ABC 中,90C ∠=︒,cos 4B =, ∴4cos 5BC B AB ==, 设4BC x =,则5AB x =, ∴2222543ACAB BC x x x , ∴33tan 44AC BC x B x , 故答案是:34. 【点睛】此题考查了勾股定理解直角三角形喝锐角三角函数的定义,熟悉相关性质是解题的关键. 17.24.【分析】直接利用二次根式的乘除运算法则计算即可得出答案.【详解】原式=8×3=24.【点睛】本题主要考查了二次根式的乘除运算,正确掌握运算法则是解题的关键.18.1m =,此时方程的根为121x x ==【分析】 直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根,∴b 2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m 为正整数,∴m=1,∴此时二次方程为:x 2-2x+1=0,则(x-1)2=0,解得:x 1=x 2=1.【点睛】此题主要考查了根的判别式,正确得出m 的值是解题关键.19.12.【分析】将特殊三角函数值代入求解.【详解】解:2sin60cos 45sin30tan60︒+︒-︒⋅︒212-⎝⎭12=. 【点睛】本题考查的知识点是特殊三角函数值,解题关键是熟记特殊三角函数值.20.(1)13;(2)图表见解析,16【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.【详解】(1)13; (2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P (选化学、生物)21126==. 答:小明同学选化学、生物的概率是16. 【点睛】本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率.21.(1)该轮船航行的速度为/小时);(2)轮船能够正好行至码头MN 靠岸.理由见解析.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC 为直角三角形.根据勾股定理解答.(2)作线段BR AN ⊥于R ,作线段CS AN ⊥于S ,延长BC 交l 于T ,比较AT 与AM 、AN 的大小即可得出结论.【详解】(1)∵130∠=︒ ,260∠=︒,∴ABC 为直角三角形.∵40AB km =,AC =,∴)BC km == .∵1小时20分钟=80分钟,1小时=60分钟,60=/小时).(2)能.理由:作线段BR AN ⊥于R ,作线段CS AN ⊥于S ,延长BC 交l 于T .∵260∠=︒,∴4906030∠=︒-︒=︒.∵)AC km =,∴)43CS km ==.∴()12AS km =︒==.又∵130∠=︒,∴3903060∠=︒-︒=︒.∵40AB km =,∴)40sin 60BR km =⋅︒=.∴140cos 6040202AR km =⨯︒=⨯=().∵BR AN ⊥,CS AN ⊥,∴CS ∥BR ,∴STC RTB ∽△△,所以ST CS RT BR=,2012ST ST ++ 解得:()8ST km =.所以()12820AT km =+=.又因为19.5AM km =,MN 长为1km ,∴20.5AN km =,∵19.520.5AT <<故轮船能够正好行至码头MN 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,勾股定理,含30°角的直角三角形三边之间的关系,相似三角形的判定与性质,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.22.(1)见解析;(2)S △ABC =18.【分析】(1)先说明∠BED =∠C 和∠B =∠CEF ,即可完成证明;(2)先说明四边形ADEF 为平行四边形得到AF =DE ,再根据12AF FC =得到13AF AC =,再证△BDE ∽△BAC ,最后根据相似三角形的性质解答即可.【详解】(1)证明:∵DE ∥AC ,∴∠BED =∠C ,∵EF ∥AB ,∴∠B =∠CEF ,∴△BDE ∽△EFC ;(2)解:∵DE ∥AC ,EF ∥AB ,∴四边形ADEF 为平行四边形,∴AF =DE , ∵12AF FC =,∴13AF AC =, ∴13DE AC =, ∵DE ∥AC ,∴△BDE ∽△BAC , ∴BDE BAC S S ∆∆=(DE AC)2=19, ∴S △ABC =9S △BDE =9×2=18.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的面积之比为相似比的平方成为解答本题的关键.23.(1)见解析;(2)13.【分析】(1)根据平行四边形性质和角平分线性质可得∠ABF =∠AFB ,∠DEC =∠DCE .即可得到AB =AF ,DE =DC .即可求证结论.(2)过点A 作AH ⊥BF ,垂足为H ,利用∠BAF =120°,BF =AB 的长度,结合(1)即可求出 BC 长度.【详解】解:(1)∵四边形ABCD 是平行四边形.∴AD ∥BC .AB =DC .AD =BC .∴∠AFB =∠FBC ,∠DEC =∠ECB .∵CE 是∠BCD 的平分线,BF 是∠ABC 的平分线.∴∠ABF =∠FBC ,∠DCE =∠ECB .∴∠ABF =∠AFB ,∠DEC =∠DCE .∴AB =AF ,DE =DC .∴AF =DE .∴AF ﹣EF =DE ﹣EF .∴AE =DF .(2)过点A 作AH ⊥BF ,垂足为H ,如图:∵∠BAF =120°,BF =∴∠BAH =60°,BH =12BF =∴sin BH AB BAH =∠8.∴AF =DE =AB =8.∵EF =3.∴AE =AF ﹣EF =5.∴AD =AE +ED =13.∴BC =AD =13.【点睛】本题考查了平行四边形的性质,角平分线的性质,等腰三角形的判定和性质知识,关键在于得到∠ABF =∠AFB ,∠DEC =∠DCE ,从而利用等腰三角形形的性质求解.24.(1)直线的表达式为y 1=2x ,双曲线的表达式为22y x =;(2)−1<x <0或x >1;(3)32. 【分析】(1)首先由于A 是直线和双曲线交点,将A 的坐标代入两个解析式中,求出各个解析式中的参数,由此直接写出直线和双曲线解析式;(2)可以联立直线和双曲线的解析式,求解出另一交点B 的坐标,也可以根据函数图象的性质,得到A 和B 是关于原点对称,写出B 的坐标,根据图象直接写出当y 1>y 2时x 的取值范围;(3)先由A 点坐标,过A 作x 轴垂线,垂足为E ,利用勾股定理求出OA 的长,由OA =OC ,得到OC 的长,设C (m ,n ),利用勾股定理,可以列出m 2+n 2=5,又C 点在双曲线上,可以得到mn =2,联立两个解析式,求出m 和n 的值,得到C 点坐标,利用S △AOE =S △COF =1,如图2,可以将△AOC 的面积转化成四边形AEFC 的面积来求.【详解】解:(1)∵直线y 1=mx 与双曲线2k y x=(k ≠0)相交于A 、B 两点,点A 的坐标为(1,2), 将A 代入到直线解析式中得m =2,将A 代入到双曲线解析式中得2=1k,∴k =2,∴直线的表达式为y 1=2x , 双曲线的表达式为22y x =;(2)联立22y x y x⎧=⎪⎨⎪=⎩,解得1112x y =⎧⎨=⎩,2212x y =-⎧⎨=-⎩,∴B 的坐标为(−1,−2),由图1可得,当y 1>y 2时,−1<x <0或x >1;(3)如图2,过A 作AE ⊥x 轴于E ,过C 作CF ⊥x 轴于F ,∵A (1,2),∴OE =1,AE =2,∴OA 2=OE 2+AE 2=5,∵OA =OC ,∴OC 2=OF 2+AF 2=5,设C (m ,n ),∴m 2+n 2=5,又mn =2,联立得2225mn m n =⎧⎨+=⎩, 消元得m 4−5m 2+4=0,∴m 2=1或4,∵C 在第一象限,∴m =2或1,∵A 与C 不重合,∴C 的坐标为(2,1),∴S △AOE =S △COF =1,∵S △AOE +S 四边形AEFC =S △AOC +S △COF ,∴S △AOC =S 四边形AEFC =12 (AE +CF )•EF =12 (2+1)×1=32, 即△AOC 的面积为32.【点睛】本题是一道反比例函数和一次函数综合题,比较两个函数值大小时,可以先求出交点坐标,由图象写出y 1>y 2时,x 的取值范围,注意看图时,一定要分y 轴右侧和左侧来看,即分x >0和x <0来看图,面积问题,一定要注意k 的几何意义,比如本题的S △AOE =S △COF =1,才能实现面积转化.25.(1)3;(2)0或1;(3)1322m x =+. 【分析】(1)根据直角三角形中30角所对的直角边等于斜边的一半即可求得CD ,进而求得BD ; (2)根据已知条件,分别求得,PH QH ,因为QH DC ⊥,90DAC ∠=︒,则判断60QPH ∠=︒和60PQH ∠=两种情况,分别列比例式求得x 的值即可;(3)过点Q 作QN ∥AB 交BC 于点N ,可得△CQN 为等边三角形,由BE ∥QN 可知△PBE ∽△PNQ ,进而求得BE 关于x 的关系式,又因为AE AB BE EF =-=,从而求得m 与x 之间的函数关系式.【详解】解:(1)在Rt △ACD 中,60C ∠=30D ∴∠=︒∴26CD AC ==∴3BD CD BC =-=.(2)在Rt △CQH 中,3CQ x =-,60ACD ∠=∴3sin60)2QH CQ x =⋅=-11(3)22CH CQ x ==-∴3313(3)222PH PC HC x x x =-=+--=+当△PQH ∽△CDA 时,有60QPH ∠=∴QH33)3()22x x -+解得0x =当△QPH ∽△CDA 时,有60PQH ∠=∴PH33)()22x x -=+解得1x =∴0x =或1.(3)过点Q 作QN ∥AB 交BC 于点N ,可得△CQN 为等边三角形3NQ NC QC x ===-,BN x =,2PN x =∵BE ∥QN∴△PBE ∽△PNQ ∴BE PB QN PN=, ∴31(3)222PB x BE QN x x PN x =⋅=⨯-=- ∵EF ∥BD∴30AFE D ∠=∠=∴30AFE FAE ∠=∠=∴EF AE = ∴31133()2222m AB BE x x =-=--=+. 【点睛】本题考查了等边三角形的性质,锐角三角函数,相似三角形的性质与判定,掌握以上知识点是解题的关键.。
湘教版九年级上册数学期末考试试卷及答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下面结论中正确的是( )A .1sin 602︒= B .tan 60︒C .sin 45︒=D .1cos302︒= 2.用配方法解方程 2210x x +-= 时,原方程应变形为( )A .()212x +=B .()212x -=C .()229x +=D .()229x -= 3.已知非零实数a ,b ,c ,d 满足a cb d =,则下面关系中成立的是( ) A .a b d b = B .ac bd = C .a b c d = D .11a c b d ++= 4.在Rt △ABC 中,∠ABC=90°、tanA=43 ,则sinA 的值为( ) A .45 B .35 C .34 D .435.如图,已知345////l l l ,它们依次交直线1l 、2l 于点E ,A ,C 和点D ,A ,B ,如果2AD =,3AE =,4AB =,那么CE =( )A .6B .32C .83D .96.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学成绩90分以上的有25人,由此推测全校九年级学生的数学成绩90分以上的人数大约有( )人 A .50 B .75 C .100 D .125 7.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-且0k ≠ B .1k ≥-且0k ≠ C .1k ≥- D .1k ≤且0k ≠ 8.已知x=1是一元二次方程x 2-2mx+1=0的解,则m 的值是( )A .-1B .0C .1D .0或1 9.已知三角形ABC 与三角形EFM 的相似比为2,且这两个三角形面积的和为25,则三角形ABC 的面积为( )A .5B .21C .15D .2010.如图所示,四边形ABCD 中,//AD BC ,CA 是BCD ∠的平分线,且AB AC ⊥,4AB =,6AD =,则tan B 等于( )A .B .C .114D .二、填空题11.如图,若点 A 的坐标为 ( ,则 sin 1∠ =________.12.已知345x y z ==,则x y z y +-=______. 13.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.14.如果反比例函数y=34a x-的图象在每一个象限内y 随x 的增大而增大,那么a 满足的条件是________ 15.线段6AB cm =,C 为线段AB 上一点(AC BC >),当AC =______cm 时,点C 为AB 的黄金分割点.16.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .17.若1x ,2x 是一元二次方程2420200x x +-=的两个根,则1212x x x x +-的值是______. 18.如图,在△ABC 中,AB=5,BC=12,AC=13,点D 是AC 的中点,则BD=______.三、解答题19.计算:()20112sin 6023π-⎛⎫-+-+︒- ⎪⎝⎭ 20.解方程:(1)2410x x -+=(2)252340x x +-=21.某市对参加今年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分,请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为______,b 的值为______,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,求视力正常的人数占被统计人数的百分比,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?22.如图,湛河两岸AB 与EF 平行,小亮同学假期在湛河边A 点处,测得对岸河边C 处视线与湛河岸的夹角∠CAB=37°,沿河岸前行140米到点B 处,测得对岸C 处的视线与湛河岸夹角∠CBA=45°.问湛河的宽度约多少米?(参考数据:sin37°≈0.60,cos37°=0.80,tan37°=0.75)23.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为60平方米.两块绿地之间及周边留宽度相等的人行通道,请问人行道的宽度为多少米?24.如图,在Rt ABC ∆中,90ACB ∠=,CD AB ⊥,垂足为D ,E 为BC 上一点,连接AE ,作EF AE ⊥交AB 于F .(1)求证:EFB AGC ∆∆.(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)25.已知反比例函数y =m 8x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图,过点A 作直线AC 与函数y =m 8x -的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.26.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x =点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x=于点E ,交BD 于点C . (1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.参考答案1.B【分析】根据特殊角三角函数值进行判断【详解】解:A. sin60︒=B. tan60︒=C. sin45=°,故此选项不符合题意;D. cos30=°,故此选项不符合题意;故选:B【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.A【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程作边利用完全公式表示即可.【详解】x2+2x=1,x2+2x+1=2,(x+1)2=2.故选A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.C【分析】将比例式变形直接求解即可.【详解】解:因为非零实数a ,b ,c ,d 满足a cb d=, 所以肯定有a b c d =,或ad=bc ; 故选:C .【点睛】 此题考查比例线段问题,能够根据比例正确进行解答是解题关键.4.A【解析】如图设AB=3a ,BC=4a ,由勾股定理得AC=5a , sinA=4455BC a AC a ==, 故选A.5.D【分析】 根据平行线分线段成比例定理得到AD AE AB AC=,求得AC 的长,然后利用线段的和差可计算出CE 的长.【详解】解:∵345////l l l ∴AD AE AB AC =,234AC =,解得:AC=6 ∴CE=AE+AC=3+6=9故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 6.D【分析】先求出数学成绩90分以上的认识在样本中所占百分比,再用样本所占比例估计整体的比例,即用总数×样本90分以上所占百分比计算即可.【详解】解:∵随机抽取了100名学生的数学成绩90分以上的有25人,∴数学成绩90分以上的有25人所占百分比为:25100%=25%100⨯, ∴全校九年级学生的数学成绩90分以上的人数大约有500×25%=125人,故选择:D .【点睛】本题考查用样本所占百分比估计总体的数量,掌握样本的选择具有普遍性,随机性,具有代表性,会求样本中考查对象所占样本的百分比,利用总体乘以样本中含量的百分比是解题关及.7.A【分析】根据根的判别式得出k≠0且△=(-2)2-4k•(-1)>0,求出即可.【详解】∵关于x 的一元二次方程kx 2−2x −1=0有两个不相等的实数根,∴k ≠0且△=(−2)2−4k (−1)>0,解得:k >−1且k ≠0.故选择:A .【点睛】 本题考查了根的判别式,和不等式的解法,熟练掌握一元二次方程的定义及的意义,不等式的解法是解题的关键.8.C【解析】试题分析:把x=1代入方程x 2﹣2mx+1=0,可得1﹣2m+1=0,得m=1,故选C .考点:一元二次方程的解.9.D【分析】由ABC ∆与EFM ∆的相似比为2:1,可得S S 4:1ABC EFM ∆∆=:,变形S 4S ABC EFM ∆∆=由S +S =25ABC EFM ∆∆,可求S EFM ∆=5即可.【详解】解:∵ABC ∆与EFM ∆的相似比为2:1,∴S S 4:1ABC EFM ∆∆=:,∴S 4S ABC EFM ∆∆=,∵S +S =25ABC EFM ∆∆,∴4S +S =5S =25EFM EFM EFM ∆∆∆,∴S EFM ∆=5,∴S 4S =45=20ABC EFM ∆∆=⨯,故选择:D .【点睛】本题考查相似三角形的性质,掌握相似三角形的性质,会利用面积比等于相似比的平方构造方程是解题关键.10.B【分析】过点D 作DE ⊥AC 于E ,根据等腰三角形三线合一的性质可得AE=12AC ,根据两组角对应相等的两个三角形相似求出△ABC ∽△EDC ,再根据相似三角形对应边成比例求出BC ,然后利用勾股定理求出AC 的长,从而∠B 的正切值即可得解.【详解】解:∵AD ∥BC ,∴∠DAC=∠BCA ,又∵CA 是BCD ∠的平分线∴∠DCA=∠ACB ,∴∠DAC=∠DCA ,∴AD=CD=6,过点D 作DE ⊥AC 于E ,则AE=CE=12AC ,∵∠DCA=∠ACB ,∠BAC=∠DEC ,∴△ABC ∽△EDC , ∴CD CE BC AC =,即612BC =, ∴BC=12,在直角△ABC 中,∴tan =AC B AB == 故选:B【点睛】本题考查了相似三角形的判定与性质,平行线的性质,等腰三角形三线合一的性质,勾股定理以及求锐角三角函数,作辅助线构造出相似三角形并求出BC 的长度是解题的关键.11 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =2.sin ∠1=AB OA =12.12【分析】 设=0,345x y z k ==≠可得3,4,5,x k y k z k ===再代入求值即可得到答案. 【详解】解:设=0,345x y zk ==≠ 3,4,5,x k y k z k ∴===∴34521.442x y z k k k k y k k +-+-=== 故答案为:1.2【点睛】本题考查的是比例的基本性质,掌握利用设参数法解决比例问题是解题的关键. 13.120 【分析】通过统计图求出课外阅读时间为8小时的人数占总人数的550即可解题. 【详解】解:估计该校1200名学生一周的课外阅读时间为8小时的人数是1200550⨯=120人, 故答案为120人 【点睛】本题考查了条形统计图的实际应用,属于简单题,会看统计图是解题关键. 14.34a >【分析】根据反比例函数的性质可得3-4a <0,再解不等式即可. 【详解】 ∵反比例函数y=34ax-每一个象限内y 随x 的增大而增大, ∴3-4a <0, 解得:a >34,故答案为a >34.【点睛】本题考查了反比例函数的性质.对于反比例函数y=kx,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.15.3()【分析】根据黄金分割点的定义,知AC为较长线段;则,代入数据即可得出AC的值.【详解】解:由题意可得:63=故答案为:3()【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.16.15.【详解】解:29180x x-+=,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1517.2016【分析】根据一元二次方程根与系数的关系可得出12=4x x+-,12=2020x x-,此题得解.【详解】解:由题意可得:12=4x x+-,12=2020x x-∴1212=4(2020)2016x x x x+----=故答案为:2016【点睛】本题考查了一元二次方程根与系数的关系,牢记12=bx x a+-,12c =x x a 是解题的关键.18.6.5 【分析】试题分析:由△ABC 的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC 为斜边,再由D 为斜边上的中点,得到BD 为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD 的长. 【详解】解:∵AB=5,BC=12,AC=13,∴AB 2+BC 2=25+144=169,AC 2=132=169,即AB 2+BC 2=AC 2, ∴△ABC 为以AC 为斜边的直角三角形, 又∵D 为AC 的中点,即BD 为斜边上的中线, ∴BD=12AC=6.5. 故答案为6.5.考点:勾股定理的逆定理;直角三角形斜边上的中线.19.8+【分析】先计算零指数幂,负整数指数幂,代入三角函数值以及绝对值的化简,然后再计算加减即可. 【详解】解:021(1)()2sin 6023π--+-+︒()(21322=+-+-192=+8=+【点睛】本题主要考查零指数幂、特殊锐角三角函数值、负整数指数幂以及绝对值的化简运算,掌握运算顺序和计算法则正确计算是解题关键.20.(1)12x =22x =(2)113x =,218x =- 【分析】(1)使用配方法解一元二次方程; (2)因式分解法解一元二次方程. 【详解】解:(1)2410x x -+= 移项,得:241x x -=- 配方,得:2224+21+2x x -=-2(2)3x -=2x -=∴12x =22x = (2)252340x x +-=(+18)(13)0x x -= +180x =或130x -=∴113x =,218x =-. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 21.(1)60,0.05,见解析;(2)4.6 4.9x ≤<;(3)35%, 17500人. 【分析】(1)先由视力在4.0 4.3x ≤<范围内这个小组有20人,求解总人数,再利用总人数乘以范围在4.9 5.2x ≤<这一小组的频率可求解,a 利用频率公式求解b ,再补全图形,即可得到答案;(2)由200个数据,排在最中间的两个数据是第100个,第101个,而这两个数据的平均数就是中位数,从而可得答案;(3)由视力在4.9以上(含4.9)有两个小组,可列式6010200+,从而可得答案,再利用视力正常的人数占被统计人数的百分比乘以总体的总人数可得答案. 【详解】解:(1)由视力在4.0 4.3x ≤<范围内这个小组有20人,所以总人数为:20=2000.1人, ∴ 2000.360=⨯=a (人), 100.05,200b == 补全图形如下:故答案为:60,0.05,(2)因为200个数据,排在最中间的两个数据是第100个,第101个,这两个数据的平均数就是中位数,所以甲同学的视力情况应在4.6 4.9x ≤<范围内. (3)由视力在4.9以上(含4.9)有两个小组, 所以601035%200+=, 即视力正常的人数占被统计人数的百分比35%, 而5000035%17500⨯=(人)所以估计全市初中毕业生中视力正常的学生有17500人. 【点睛】本题考查的是频数分布直方图,频数与频率的理解,中位数的概念,利用样本估计总体,掌握以上知识是解题的关键. 22.湛河的宽度约60米 【详解】试题分析:过C 作CD ⊥AB 于点D ,设CD =x 米.由∠CBD =45°,得到BD =CD =x . 在Rt △ADC 中,用tan ∠CAD 表示出AD .根据AB =AD +DB =140,列方程求解即可. 试题解析:解:过C 作CD ⊥AB 于点D ,设CD =x 米. 在Rt △BDC 中,∠CDB =90°,∠CBD =45°,∴BD =CD =x .在Rt △ADC 中,∠ADC =90°,∠CAD =37°,∴AD =04tan 370.753x x x== .∵AB =AD +DB =140,∴41403xx +=,∴x =60. 答:湛河的宽度约60米.23.人行道的宽度为1米. 【分析】设人行道的宽度为x 米,根据矩形绿地的面积之和为60米2,列出一元二次方程,再进行求解即可得出答案. 【详解】设人行道的宽度为x 米,根据题意,得(183)(62)60x x --=, 解得11x =,28x =(不合题意,舍去). ∴人行道的宽度为1米. 【点睛】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.24.(1)证明见解析;(2)有,见解析. 【分析】(1)通过线段垂直和三角形内角之和为180°求出BFE DGE ∠=∠和EAC BEF ∠=∠,从而证明AGC EFB △∽△.(2)通过两内角相等写出所有相似三角形即可. 【详解】(1)∵CD AB EF AE ⊥⊥,∴90FDG FEG ∠=∠=︒ ,∴3609090180DGE DFE ∠+∠=︒︒︒=︒-- 又∵180BFE DFE ∠+∠=︒ , ∴BFE DGE ∠=∠ , 又∵DGE AGC ∠=∠ ∴AGC BFE ∠=∠ , 又∵90ACB FEG ∠=∠=︒ ,∴180909090AEC BEF AEC EAC ∠+∠=︒︒=︒∠+∠=︒-, , ∴EAC BEF ∠=∠ , ∴AGC EFB △∽△(2)∵90GAD FAE ADG AEF ∠=∠∠=∠=︒, , ∴AGD AFE △∽△ ; ∴CAD BAC ∠=∠ , ∴ACD ABC △∽△ , 同理得BCD BAC ∽△△ , ∴ACD CBD △∽△ ,即ACD ABC CBD △∽△∽△ , 【点睛】本题考查了相似三角形的性质以及证明,掌握相似三角形的判定定理是解题的关键. 25.(1)m 的值为2;(2)C (﹣4,0). 【解析】试题分析:(1)将A 点坐标代入反比例函数解析式即可得到一个关于m 的一元一次方程,求出m 的值;(2)分别过点A 、B 作x 轴的垂线,垂足分别为点E 、D ,则△CBD ∽△CAE ,运用相似三角形知识求出CD 的长即可求出点C 的横坐标. 试题解析:(1)∵图象过点A (-1,6),∴861m -=-, 解得m=2.(2)分别过点A 、B 作x 轴的垂线,垂足分别为点E 、D ,由题意得,AE=6,OE=1,即A (-1,6), ∵BD ⊥x 轴,AE ⊥x 轴, ∴AE ∥BD , ∴△CBD ∽△CAE , ∴CB BDCA AE=, ∵AB=2BC , ∴13CB CA =, ∴136BD =, ∴BD=2.即点B 的纵坐标为2.当y=2时,x=-3,即B (-3,2), 设直线AB 解析式为:y=kx+b , 把A 和B 代入得:6{32k b k b -+=-+=,解得28=⎧⎨=⎩k b ,∴直线AB 解析式为y=2x+8,令y=0,解得x=-4, ∴C (-4,0).考点:反比例函数综合题.26.(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222∆∆======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可. 【详解】解:(1)∵(),80D -, ∴B 点的横坐标为8-,代14y x =入中,得2y =-. ∴B 点坐标为()8,2--. ∵A 、B 两点关于原点A 对称, ∴()8,2A .∴8216k xy ==⨯=;(2)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上, ∴mn k =,2,2n B m ⎛⎫-- ⎪⎝⎭,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBOOENDCNO OBCE S S S Sk =--==矩形四边形.∴4k =.∵2,2n B m ⎛⎫-- ⎪⎝⎭在双曲线4y x =与直线14y x =上,∴()()2421242n m n m ⎧⎛⎫-⨯-= ⎪⎪⎪⎝⎭⎨⎪⨯-=-⎪⎩,解得1122m n =⎧⎨=⎩或2222m n =-⎧⎨=-⎩(舍去)∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-⎧⎨+=⎩,解得23a b ==. ∴直线CM 的解析式是2233y x =+. 【点睛】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBOOENDCNO OBCE S S S Sk =--==矩形四边形构造方程组解决问题.。
湘教版九年级上册数学期末测试卷及含答案
湘教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、对于一个函数,自变量x取c时,函数值等于0,则称c为这个函数的零点.若关于x的二次函数有两个不相等的零点,关于x的方程有两个不相等的非零实数根,则下列关系式一定正确的是()A. B. C. D.2、若反比例函数y=的图象经过点(-2,4),那么这个函数是()A.y=B.y=C.y=-D.y=-3、已知二次函数,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程的两根之积为()A.0B.C.D.4、不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个B.1个C.2个D.3个5、如图,A、B、C是反比例函数y= (k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条6、如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2B.9:1C.8:1D.7:17、若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8、如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,与反比例函数y= 在第一象限内的图象交于点B(1,3),连接BO,下面三个结论:①S△AOB =1.5,;②点(x1, y1)和点(x2, y2)在反比例函数的图象上,若x1>x2,则y1<y2;③不等式x+2<的解集是0<x<1.其中正确的有()A.0个B.1个C.2个D.3个9、如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A. B. C. D.10、如图,△ABC中,DE∥BC,= ,则OE:OB=()A. B. C. D.11、如图是反比例函数y=的图象,下列说法正确的是()A.常数m<﹣1B.在每个象限内,y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(x,y)在图象上,则P′(﹣x,y)也在图象上12、若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A. 且 kB. 且C.D. 且13、在Rt△ABC中,∠C=90°,tanB=,则cosA=()A. B. C. D.14、关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1、x2,且x 12+x22=7,则(x1-x2)2的值是()A.1B.12C.13D.2515、若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±15二、填空题(共10题,共计30分)16、 +2sin30°-(p - 2)0=________.17、△ABC中,角C的平分线交AB于点T,且AT=2,TB=1,若AB上的高线长为2,则△ABC的周长________.18、计算:2﹣1×+2cos30°=________.19、已知方程x2+kx+5=0的一个根是﹣1,则另一个根为________.20、方程x2-3x-10=0的根为x1=5,x2=-2.此结论是:________的.21、用符号※定义一种新运算:a※b=(a﹣b)×a,则方程x※2=0的解是________.22、某网店一种玩具原价为100元,“双十一”期间,经过两次降价,售价变成了81元,假设两次降价的百分率相同,则每次降价的百分率为________.23、若,且相似比为2:1,的面积为20,则的面积为________.24、关于x的函数y=(k﹣1)x2﹣2x+1与x轴有两个不同的交点,则实数k 的取值范围是________.25、如图,在等腰中,,,点在边上,,点在边上,,垂足为,则长为________.三、解答题(共5题,共计25分)26、先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.27、已知x1, x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=﹣1,求x1,x2和a的值.28、如图,某校有一教学楼AB,其上有一避雷针AC为7米,教学楼后面有一小山,其坡度为i=:1,山坡上有一休息亭E供爬山人员休息,测得山坡脚F与教学搂的水平距离BF为19米,与休息亭的距离FE为10米,从休息亭E测得教学楼上避雷针顶点C的仰角为30°,求教学搂AB的高度.(结果保留根号)(注:坡度i是指坡面的铅直高度与水平宽度的比)29、如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)30、已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.参考答案一、单选题(共15题,共计45分)2、C3、D4、B5、A6、C7、C8、A9、D10、B11、C12、A13、D14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
湘教版九年级数学上册期末考试【及参考答案】
湘教版九年级数学上册期末考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .167.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________.2.因式分解:_____________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=__________.5.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是_________.6.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m的值为多少?3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、D6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4 32、3、84315、k=37或15.6、3三、解答题(本大题共6小题,共72分)1、x=52、(1)34m≥-;(2)m的值为3.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)3.5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
湘教版九年级(上)期末数学考试题(含答案)
湘教版九年级数学(上)期末卷(时间:90分钟 满分100分)学校:___________班级:__________姓名:_____________学号:______得分:_______一、填空(每小题3分,共24分)1.人们口语中常说的:“鸡蛋里挑骨头”是指某一事件______发生(填“必然”、“不可能”或“有可能”)2.已知2143y x x =--,23y x =+,当x =_______时,1y 与2y 的值相等.3.若25a b =,则a b a b+-=_________. 4.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组,m n 的值可以是m =_________,n =_________. 5.点C 是线段AB 的黄金分割点,若AB =5cm ,则BC 的长是_______.6.如图,已知△ABC ∽△DBE . DB =8 , AB =6 ,则ABC S ∆:DBE S ∆=_________.7.在△ABC 中,∠C =90°, cosB = , a =3,则b =_______.8.同时抛两枚质地均匀的骰子,则朝上的点数之积为偶数的概率是________.二、选择题(每小题3分,共30分)1.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是( )A.14 B.12 C.34D. 1 2.在Rt △ABC,∠C =90°, sinB =35,则sinA 的值是( ) A.35 B.45 C.53 D.54 3.已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =8 ,则此梯形的周长为( )A. 19B. 20C. 21D.224.如图2,点A 、B 、C 表示某公司三个车间的位置,现在要建一个仓库,要求它到三个车间的距离相等,则仓库应建在( )A.△ABC 三边的中线的交点上B.△ABC 三内角平分线线交点上C.△ABC 三条边高的交点上D.△ABC 三边垂直平分线的交点上5.已知3x =是关于方程23230x ax a +-=的一个根,则关于y 的方程212y a -=的解 是( )得分 评卷人得分 评卷人 3以上答案都不对6.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组共有( )A. 8人B. 9人C. 10人D. 11人7.在△ABC 中,若sinA =sinB =12, 则△ABC 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.若顺次连结四边形ABCD 各边的中点所得到的四边形是正方形,则四边形ABCD 一定是( )A.矩形B.菱形C.正方形D.对角线垂直且相等的四边形9.把方程2310x x +-=的左边配方后可得方程( ) A.2313()24x += B.235()24x += C.2313()24x -= D. 235()24x -= 10.在Rt △ABC 中,∠ACB =90°, CD ⊥AB 于D,下列式子中错误的是( )A.BC 2=DB ·ABB.A C 2=AD ·ABC.AB 2=AC ·BCD.CD 2=AD ·BD三、解答题(每小题8分,共24分)1.解下列方程(1)23720x x -+= (2)2(21)4(12)50x x -+--=2.计算:(1)12sin30- (2)tan 30tan 451tan 30tan 45--3.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图3的两个可以自由转动的转盘各一次,当两个转盘停后,指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会。
湘教版九年级数学上册期末测试卷及参考答案
湘教版九年级数学上册期末测试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠24.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在矩形ABCD 中,AB =10,4=AD ,点E 从点D 向C 以每秒1个单位长度的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从点C 向点D 以每秒2个单位长度的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .103B .4C .143 D .163二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:2x2﹣8=_______.3.正五边形的内角和等于__________度.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解方程:24111 xx x-=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、B7、A8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、2(x+2)(x﹣2)3、5404、a+8b5、6、12三、解答题(本大题共6小题,共72分)1、3x=2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
湘教版九年级数学上册期末考试及答案【全面】
湘教版九年级数学上册期末考试及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩4.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C.向左平移8个单位D.向右平移8个单位7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.310.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A .45︒B .50︒C .60︒D .75︒二、填空题(本大题共6小题,每小题3分,共18分)1.化简:9=__________.2.分解因式:a 2﹣4b 2=_______.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、A5、A6、B7、A8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、(a+2b)(a﹣2b)3、114、85、)6、9三、解答题(本大题共6小题,共72分)1、32x=-.2、11mm+-,原式=.3、(1)相切,略;(2).4、(1)略(2)菱形5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
湘教版九年级数学上册期末考试试卷及答案
湘教版九年级数学上册期末考试试题一、选择题。
(每小题只有一个正确答案) 1.若函数ky x=的图象经过点A (-1,2),则k 的值为( ) A .1B .-1C .2D .-22.关于反比例函数1y x=,下列说法中正确的是( ) A .它的图象分布在第一、四象限 B .它的图象过点(-1,-2)C .当x <0时,y 的值随x 的增大而减小D .它的图像是轴对称图形,有一条对称轴3.不解方程,判定方程222x x +=-的根的情况是( ) A .无实数根 B .有两个不相等的实数根 C .有两个相等实数根D .只有一个实数根4.如果ab cd =,则下列正确的是( ) A .::a b c d =B .::a c d b =C .::d a c b =D .::d c a b =5.已知ABC DEF ∽△△,若30A ∠=︒,70E ∠=︒,则F ∠的度数为( ) A .30°B .70°C .80°D .120°6.两个相似三角形的周长比是1∶2,则其面积的比是( ) A .1∶2B .2∶1C .4∶1D .1∶47.在直角△ABC 中,∠C =90°,sin A =35,那么tan B =( )A .43B .34C .35D .458.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数x 甲=x 乙=7,方差S 甲2=3,S 乙2=1.2,则射击成绩较稳定的是( ) A .甲B .乙C .一样D .不能确定9.某工厂2019年治理污水花费成本144万元,经技术革新,计划到2021年治理污水花费成本降到100万元,若设每年成本的下降率是x ,则可得方程( ) A .2144(1)100x -= B .2100(1%)144x -= C .2144100x =-D .2144(1)100x +=10.如图,直线2(0)y kx k =->与双曲线ky x=在第一象限内的交点R ,与x 轴、y 轴的交点分别为P 、Q .过R 作RM ⊥x 轴,M 为垂足,若△OPQ ≌△MPR ,则k 的值是( )A .1B .2C .D .-二、填空题11.在比例尺为1∶80000的地图上,一条街道的长约为2.5cm ,它的实际长度约为 km .12.一元二次方程2650x x -+=化为2()x h k +=的形式是____.13.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC =_____.14.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________. 15.在直角△ABC 中,∠C =90°,sin A =23,则cos B =____.16.在直角△ABC 中,∠C =90°,CD ⊥AB ,由____∽____,可得AC 2=AD ·AB .三、解答题 17.解下列方程:(1)2280x -= (2)2(1)(6)x x x -=--18.已知函数23y k x--=-是反比例函数,求k的值.(2)k k19.李威在A处看一兜大树的顶端D处的仰角是30°,向树的方向前进30米到B处看树顶D处的仰角是60°(李威的眼睛离地面高是1.5米),求树高多少?(结果可带根号)20.列方程解应用题如图是一个窗户的框架图,下面部分窗户的高是上面窗户部分的高的二倍,窗户的宽比窗户下面部分的高要多0.4m.(1)若窗户的面积是4.8m2,请求出窗户的宽和高;(2)若一根铝合金料的长是4m,要做成上面的窗户需要准备几根这样的铝合金料?若是6m长的话又用几根?21.如图,在直角坐标系中,直线AB与x轴交于点A,与y轴交于点B(0,1),1∠=,tan BAO2反比例函数ky x=的图于直线AB 有公共点C ,且点C 的横坐标是-1. (1)求cos ∠ABO 的值; (2)求出反比例函数解析式.22.已知关于x 的一元二次方程2410x x m -++=有实数根. (1)若1是方程的一个根,求出一元二次方程的另一根; (2)若方程的两个实数根为1x ,2x ,且1211+x x =3,求m 的值.23.如图,在△ABC 中,AD 、BE 分别是BC 、AC 边上的高.求证:△DCE ∽△ACB .24.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan ,2ABO ∠=8,OB =4OE =.求该反比例函数的解析式.25.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行简单随机抽样调查并得到下图,其中30~35岁的网瘾人数占样本人数的20%.(1)请把图中缺失的数据、图形补充完整;(2)若12~35岁网瘾人数约为4000人,请你根据图中数据估计网瘾人群中12~17岁的网瘾人数.参考答案1.D 【分析】把已知点的坐标代入计算即可. 【详解】 ∵函数ky x=的图象经过点A (-1,2), ∴21k =-, ∴k= -2; 故选D . 【点睛】本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键. 2.C 【分析】根据反比例函数的性质逐项分析即可. 【详解】解:A. 它的图象分布在第一、三象限,该项说法错误; B. 它的图象过点(-1,-1),该项说法错误;C. 当x <0时,y 的值随x 的增大而减小,该项说法正确;D. 它的图像是轴对称图形,对称轴为一三象限的角平分线和二四象限的角平分线,故有两条对称轴,该项说法错误; 故选:C . 【点睛】本题考查反比例函数的性质,掌握反比例函数的图象与性质是解题的关键. 3.A 【分析】先计算判别式的值,然后根据判别式的值判断根的情况. 【详解】解:方程化为一般形式为:x 2+2x+2=0 ∵△=22-4×1×2=-4<0∴方程无实数根, 故选A . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 4.B 【分析】根据比例的基本性质:两内项之积等于两外项之积,计算与已知比较即可得解. 【详解】解:因为A. ::a b c d = 所以ad=bc ,选项错误; 因为B. ::a c d b = 所以ab=cd ,选项正确; 因为C. ::d a c b = 所以ac=bd ,选项错误; 因为D. ::d c a b = 所以ac=bd 选项错误. 故选:B . 【点睛】本题主要考查了比例的基本性质的理解和灵活运用情况. 5.C 【分析】根据ABC DEF ∽△△,从而推出对应角相等求解. 【详解】∵ABC DEF ∽△△,∴3080A D B E C F ∠=∠=∠=∠=∠=∠,,, ∵180D E F ∠+∠+∠=, ∴80.F ∠= 故选:C.考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键. 6.D 【分析】直接根据相似三角形的性质求解即可. 【详解】∵相似三角形的周长比等于相似比,面积比等于相似比的平方, ∴这两个相似三角形的面积比为1∶4, 故选:D . 【点睛】本题考查相似三角形的性质,熟记相似比的平方等于面积比是解题关键. 7.A 【分析】利用三角函数的定义及勾股定理求解. 【详解】 解:如图:3sin 5BC A AB ==,设3,5BC x AB x ==4AC x ∴=44tan 33AC x B BC x ∴=== 故选A . 【点睛】本题考查了解直角三角形的知识,熟练掌握锐角三角函数的定义是解题的关键. 8.B因甲、乙的平均数一样,比较甲、乙的方差即可解答. 【详解】∵x 甲=x 乙=7, S 甲2=3,S 乙2=1.2, ∴S 甲2>S 乙2,∴射击成绩较稳定的是乙. 故选B. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 9.A 【分析】根据“2021年成本=2019年成本⨯(1-每年成本的下降率)2”即可得. 【详解】由题意,可列方程为2144(1)100x -=, 故选:A . 【点睛】本题考查了列一元二次方程,理解题意,正确找出等量关系是解题关键. 10.C 【分析】根据△OPQ ≌△MPR 全等,可以得到OP=PM ,令一次函数的x=0,可以求出Q 的坐标,即可得到MR=2,令一次函数y=0,可以求出P (2k,0),故得到R (4k ,2),代入反比例函数的解析式,求出k 即可. 【详解】解:∵△OPQ ≌△MPR ∴OP=PM ,OQ=RM令一次函数2(0)y kx k =->的x=0,得y=-2 ∴Q (0,-2)∴MR=OQ=2令一次函数y=0,则x=2k∴P (2k,0)∵OP=PM ∴R (4k,2)将点R 代入反比例函数k y x=中得:42kk =,即k=故选:C . 【点睛】本题主要考查了全等三角形,一次函数以及反比例函数,熟练各性质是解决本题的关键. 11.2 【分析】设它的实际长度为x 厘米,根据比例尺的定义得到2.5180000x =,然后利用比例的性质计算出x ,再把单位化为千米即可. 【详解】解:设它的实际长度为x 厘米, 根据题意得2.5180000x =, 解得x=200000(cm ), 200000cm=2km . 故答案为2. 【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.也考查了比例尺. 12.2(3)4x -= 【分析】按照配方法把方程变形即可.【详解】解:2650x x -+=,移项得,26-5x x -=,两边加上一次项系数一半的平方得,26+9-5+9x x -=,配方得,2(3)4x -=故答案为:2(3)4x -=.【点睛】本题考查了一元二次方程的配方,解题关键是熟知配方法的步骤,准确进行变形. 13.3【分析】先由DE ∥BC ,可证得△ADE ∽△ABC ,进而可根据相似三角形得到的比例线段求得BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC =AD :AB ,∵AD =2,DB =4,∴AB =AD +BD =6,∴1:BC =2:6,∴BC =3,故答案为3.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.14.1m ≤,但0m ≠ 【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.15.23【分析】先画出图形,再根据正弦和余弦三角函数的定义即可得.【详解】由题意,画出图形如下:2sin 3BC A AB ==,2cos 3BC B AB ∴==,故答案为:23.【点睛】本题考查了正弦和余弦三角函数,熟记定义是解题关键.16.ΔACD ΔABC【分析】对2AC AD AB=进行变形可得:AC ADAB AC=,结合∠CAD=∠BAC即可得出结论.【详解】∵2AC AD AB=,∴AC AD AB AC=,又∵CAD BAC∠=∠,∴ACD ABC△∽△,故答案为:ACD△,ABC.【点睛】本题考查相似三角形的判定定理,理解两组对应边成比例,且它们的夹角相等的两个三角形相似是解题关键.17.(1)12x=,22x=-;(2)13 2x=-,22x=.【分析】(1)运用直接开平方法求解即可;(2)方程化为一般形式得后运用公式法求解即可.【详解】解:(1)2x2−8=0移项,得2x2=8二次项系数化为1得:x2=4∴x1=2,x2=−2(2)2x(x−1)=-(x−6)方程化为一般形式得:2x2-x-6=0∴a=2,b=-1,c=-6,△=b2-4ac=(-1)2-4×2×(-6)=49>0∴17 4±解得,x1=2,x2=-32.【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握运用一元二次方程的解法.18.1k=-.【分析】根据反比例函数的定义,从x的指数,比例系数的非零性两个角度思考求解即可.【详解】解:∵23(2)k ky k x--=-是反比例函数,∴23120k k k--=--≠且,∴10k+=,∴1k=-,故答案为:1k=-.【点睛】本题考查了反比例函数的定义,熟练掌握反比例函数的系数特点,指数特点是解题的关键.19.( 1.5)米.【分析】树的高度等于CG+DG,只需利用母子直角三角形求得DG的长即可.【详解】解:由题意知EF=30,GC=1.5,∠E=30°,∠DFG=60°,∠DGF=90°∴∠EDF=∠E=30°,∴DF=EF=30,又∵在RtΔDGF中,sin∠DGF=DG DF,∴DG=DF·sin∠DGF=30·sin60°=30;∴DC=DG+GC=( 1.5)(米),∴树的高是( 1.5)米.【点睛】本题考查了母子直角三角形的求解,熟练掌握解直角三角形的基本要领是解题的关键.20.(1)窗户的高是2.4m,宽是2m;(2)4m长的铝合金要准备四根,6m长的铝合金则要两根.【分析】(1)设窗户是上部分高是xm,则整个窗户的高是3x m,宽是(2x+0.4)m,根据面积列式计算即可;(2)4m长的铝合金要准备三根,6m长的铝合金则要两根.【详解】(1)如图,设窗户是上部分高是xm,则整个窗户的高是3x m,宽是(2x+0.4)m,根据题意,列方程得:3x(2x+0.4)=4.8,解得:x=0.8,∴3x=2.4(m),2x+0.4=2(m),∴窗户的高是2.4m,宽是2m,(2)∵整个窗户的周长为:2×2.4+2×3+0.8=11.6(米)≈12(米),∴12÷4=3,12÷6=2,∴4m 长的铝合金要准备三根;6m 长的铝合金则要两根.【点睛】本题考查了一元一次方程的应用,根据题意正确布列方程是解题的关键.21.(1(2)12y x =-.【分析】(1)根据勾股定理求出AB ,再求三角函数值;(2)求出AB 解析式,再求出C 点坐标即可求.【详解】解:(1)如图,在直角坐标系中,B (0,1),1tan BAO 2∠=,∴在RtΔAOB 中,OB =1,OA =2∴AB =∴cos ∠ABO =OBAB ==(2)由(1)可知B (0,1),A (-2,0),设直线AB 的解析式y=mx+n ,把B (0,1),A (-2,0)代入得,201m n n -+=⎧⎨=⎩, 解得,121m n ⎧=⎪⎨⎪=⎩ ∴直线AB 的解析式是y=12x+1又∵C 点的横坐标是-1,∴C 点的纵坐标是11(1)122⨯-+=, ∴C (-1,12)C 点在反比例函数k y x =的图像上, ∴121k =-, 12k =- ∴1122y x x -==-,即反比例函数解析式是12y x=-. 【点睛】本题考查了一次函数与反比例函数的综合和三角函数,解题关键是熟练运用三角函数和待定系数法.22.(1)3;(2)13. 【分析】(1)设方程的另一个根为α,选择合适计算方式,利用根与系数关系定理求解即可; (2)利用根与系数关系定理和根的判别式求解即可.【详解】解:(1)∵1是关于x 的一元二次方程2410x x m -++=的一个根,∴设α是关于x 的一元二次方程2410x x m -++=的另一个根,∴1+α=4,∴α=3,∴关于x 的一元二次方程2410x x m -++=的另一个根是3;(2)∵12,x x 是方程2410x x m -++=的两个实数根,∴=16-4(1)0m ∆+≥,∴3m ≤,又∵1211+x x =3 而124x x +=且121x x m =+, ∴1211+x x =1212431x x x x m +==+, ∴13m =<3,∴m 的值是13. 【点睛】本题考查了根与系数的关系定理的解题应用,根的判别式的应用,熟练掌握根与系数关系定理并灵活应用是解题的关键.23.见解析【分析】首先由在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,证得△CDA ∽△CEB ,即可得CD :CA=CE :CB ,继而证得结论.【详解】证明:∵在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C ,∴△CDA ∽△CEB ,∴CD :CE=CA :CB ,∴CD :CA=CE :CB ,∴△DCE ∽△ACB .【点睛】本题考查了相似三角形的判定与性质.注意证得△CDE ∽△CAB 是解题的关键.24.y=-24x. 【解析】试题分析:根据已知条件求出c 点坐标,用待定系数法求出反比例的函数解析式.试题解析:∵OB=8,OE=4,∴BE=4+8=12.∵CE ⊥x 轴于点E .tan ∠ABO=12CE BE =. ∴CE=6.∴点C 的坐标为C (-4,6).设反比例函数的解析式为y=m x,(m≠0) 将点C 的坐标代入,得6=4m -. ∴m=-24.∴该反比例函数的解析式为y=-24x. 考点:反比例函数与一次函数的交点问题.25.(1)作图见解析,744;(2)1240.【分析】(1)根据30~35岁的网瘾人数占样本人数的20%求出总人数,再求出12-17岁的人数即可;(2)求出网瘾人群中12~17岁的网瘾人数所占百分比即可.【详解】解:(1)48020÷%=2400(人)2400-600-576-480=744(人)补全统计图如图所示:(2)744÷2400×100%=31%4000×31%=1240(人),∴若12~35岁网瘾人数约为4000人,则根据图中数据估计网瘾人群中12~17岁的网瘾人数是1240.【点睛】此题主要考查了条形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第一学期期末考试试卷1、若5x2=6x-8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是A、5,6,-8B、5,-6,-8C、5,-6,8D、6,5,-82、现有一个测试距离为5m的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m的视力表,则图中的ab的值为A.32 B.23C.35D.533、经过调查研究,某工厂生产一种产品的总利润L(元)与产量X(件)的关系式为L=-x2+2000x-10000(0<x<1900),要使总利润达到99万元,则这种产品应生产A.1000件B.1200件C. 2000件D.10000件4、下列命题中错误的命题是A2)3(-的平方根是3± B平行四边形是中心对称图形C单项式yx25与25xy-是同类项 D近似数31014.3⨯有三个有效数字5、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是A.sinA=2B.tanA=12C.cosB=26、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是A. B. C. D.7、如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.128、已知抛物线y=x2﹣4x+3,则下列判断错误的是A. 对称轴x=2B. 最小值y=-1C. 在对称轴左侧y随x的增加而减小D. 顶点坐标(-2,-1)9、已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根10、如果两个相似三角形的相似比是,那么它们的面积比是A B.C.D.二、精心填一填,一锤定音(每小题4分,共32分)11、已知x = 1是关于x的一元二次方程2x2+ kx -1 = 0的一个根,则实数k的值是。
12、命题:“两锐角互余的三角形是直角三角形”的逆命题是。
13、若235a b c==(abc≠0),则a b ca b c++-+= 。
14、计算:sin30°tan45°-cos30°tan30°+=︒︒60tan45sin。
15、请写出一个图象在第二、四象限的反比例函数关系式。
16、将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移5个单位,则所得抛物线的解析式为。
17、如图,AB∥CD,31=CDAB,△COD的周长为12cm,则△AOB的周长是 cm.18、在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为。
三、用心做一做,慧眼识金(每小题7分,共21分)19、已知关于x的方程x2-2(k-3)x+k2-4k-1=0(1)若这个方程有实数根,求k的取值范围;(2)若这个方程有一个根为1,求k的值。
20、如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).21、已知二次函23(1)2(2)2y t x t x=++++,在0x=和2x=时的函数值相等。
A BC DO第17题图ab(第3题图)(1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值;四、综合运用,马到成功(本题8分) 22、据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你计算2012年我国公民出境旅游总人数约多少万人次?五、耐心解一解,再接再励(本题9分)23、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E,连接DE,F 为线段CD 上一点,且∠AFE=∠B 。
(1)求证△ADF ∽△DEC ;(2)若求AF 的长.六、探究试一试,超越自我(本大题2道题,每题10分,共20分)24、关于x 的一元二次方程x 2-(m -1)x +2m -1=0,其根的判别式为16.(1)求m 的值及该方程的根;(2)设该方程的两个实数根为x 1,x 2,且x 12+x 22=10,求m 的值。
24、如图(1)所示:等边△ABC 中,线段AD 为其内角平分线,过D 点的直线11B C AC ⊥于1C 交AB 的延长线于1B . (1)请你探究:AC CD AB DB =,1111AC C DAB DB =是否成立? (2)请你继续探究:若△ABC 为任意三角形,线段AD 为其内角平分线,请问AC CDAB DB=一定成立吗?并证明你的判断.(3)如图(2)所示Rt △ABC 中,090ACB ∠=,8AC =,403AB =,E 为AB 上一点且5AE =,CE 交其内角角平分线AD 与F .试求DFFA的值.AB C C 1B 1D图(1)AEFBCD图(2)2012年九年级第一学期期末考试数学参考答案一、精心选一选,旗开得胜(每小题3分,共30分)二、精心填一填,一锤定音(每小题4分,共32分)11.-1 12.如果三角形是直角三角形,那么它的两个锐角互余 13. 52 14.15.答案不唯一,符合条件即可 16.y=2(x-1)2+2 17.4 18.14三、用心做一做,慧眼识金(每小题7分,共21分)19.解:(1)因为关于x 的方程x 2-2(k-3)x+k 2-4k-1=0有实数根,则△≥0……………1分 又△=(-2(k-3))2-4(k 2-4k-1)=-8k+40≥0……………3分 所以k ≤5……………4分(2)因为关于x 的方程x 2-2(k-3)x+k 2-4k-1=0有一个根为1,把x=1代入方程,得:12-2(k-3)×1+k 2-4k-1=0……………5分整理得:k 2-6k+6=0……………6分解得:k 12=3+7分20.解:∵在直角三角形ABC 中,=tan α=,……………1分∴BC=……………2分∵在直角三角形ADB 中,∴=tan26.6°=0.50……………3分 即:BD=2AB ……………4分 ∵BD ﹣BC=CD=200∴2AB ﹣AB=200……………5分解得:AB=300米,……………6分答:小山岗的高度为300米.……………7分21.解:⑴ 由题意可知依二次函数图象的对称轴为1x =,则()()22121t t +-=+。
……………2分∴32t =-………………………………………4分 ∴2322y x x =-++1………………………………………5分⑵ ∵二次函数图象必经过A 点,∴()()21333622m =--+-+=-×………………………………………6分又一次函数6y kx =+的图象经过A 点∴366k -+=-,∴4k =………………………………………7分四、综合运用,马到成功(本题8分)22.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得5000(1+x )2=7200.………………………………………3分解得 x 1 =0.2=20%,x 2 =﹣2.2 (不合题意,舍去).…………………………5分 答:这两年我国公民出境旅游总人数的年平均增长率为20%…………………6分 (2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x )=7200×120%=8640万人次.……………………7分答:预测2012年我国公民出境旅游总人数约8640万人次.…………………8分五、耐心解一解,再接再励(本题9分)23.解:(1)∵四边形ABCD 是平行四边形∴∠ADF=∠CED ,∠C +∠B=180°。
………………………………………2分又∠AFD +∠AFE=180°,∠AFE=∠B ,∴∠AFD=∠C ,………………………………………3分∴△AD F ∽△DEC 。
………………………………………5分(2)∵AE ⊥BC ,∴AE ⊥AD ,CD=AB=4。
……………6分在Rt △ADE 中,由勾股定理得:DE=6………………………………………7分由△AD F ∽△DEC ,得AD AFED CD=,………………………………………8分即64AF=,解得:9分 六、探究试一试,超越自我(本大题2道题,每题10分,共20分)24.解:(1)关于x 的一元二次方程x 2-(m -1)x +2m -1=0的判别式△=(-(m -1))2-4(2m -1)=m 2-2m +1-8m +4,=m 2-10m +5………………………………………………………2分又△=16,∴m 2-10m +5=16,即m 2-10m -11=0…………………………3分 解得m 1=-1,m 2=11………………………………………………………4分 当m=-1时,原方程为x 2+2x -3=0,解得x 1=1, x 2=-3………………………………………………………5分 当m=11时,原方程为x 2-10x+21=0,解得:x 1=3,x 2=7……………6分(2)由根与系数的关系得x 1+x 2= m -1,x 1x 2= 2m -1,………………………7分 又x 12+x 22=(x 1+x 2)2-2 x 1x 2=(m -1)2-2(2m -1)= m 2-6m +3……………………………8分∵ x 12+x 22=10,∴m 2-6m +3=10,即m 2-6m -7=0解得:m 1=7,m 2=-1………………………………………………10分 25.解:(1)因为ΔABC 是等边三角形,所以AB=BC=CA ,∠BAC=∠ABC=∠ACB=60°。
又线段AD 为∠BAC 的平分线,∴BD=DC ,∠BAD=∠DAC=30°∴DBCDAB AC ==1。
………………………………………………………1分 ∵11B C AC ⊥,在Rt ΔAC 1B 1中,∠C 1AB 1=60°,则∠B 1=30°,AB 1= 2A C 1……………………………2分在Rt ΔAC 1 D 中,同理:AD=2C 1D ,又∠B 1AD=∠B 1=30°∴AD=DB 1。