调频接收机设计

合集下载

调频发射机和接收机设计、制作与测试

调频发射机和接收机设计、制作与测试

调频发射机和接收机设计、制作与测试一、调频发射机设计制作与测试1、电路原理图及工作原理工作原理:1脚和22脚为左右声道信号输入端。

2脚和21脚连接预加重电路,可由外接的电路改变时间常数(T=22.7KΩ×C)。

3脚和20脚为低通滤波器的可调端,外接150pF 的电容可限制15KHz以上信号的输入。

4脚为滤波端,外接电容可改善参考电压的波纹系数。

5脚是立体声复合信号的输出端。

6脚接地,7脚为PLL鉴相器输出。

8脚为电源端,连接+5V 电源。

9脚为RP振荡器端,由其与外围元件构成压控振荡电路。

10脚为RF接地端。

11脚为RF信号输出端,经带通滤波器连接至天线或后级功放。

12脚为PLL电源端。

13、14脚外接-7.6MHz晶振。

15~18脚为并行数据设置端,由它们控制发射器的输出频率,19脚为导频信号调整端。

图1调频发射机设计电路原理图2、电路板设计制作过程 (1)PCB 图设计要求和注意事项○1压控振荡器电路尽量靠近芯片相应的引脚 ○2地线处理有以下几种方式: 集中地 分地线1 分地线2 分地线3 总地线 取电源地 母线接地方式 最后接电源地 一点接地方式 本电路可采取一下两种接地方式,要注意安全距离。

集中地 取电源输入地一点接地方式 各地线集中独立连接后铺铜接地 ○3要注意贴片芯片安装与焊接,不要搞错方向,以免多次拆焊烧坏芯片。

○4由于电路元件参数误差,发射频率和接收频率在 MHz 05.0均属正常。

○5本电路在高频段起振过程中需要一段时间,这是锁相环锁频需要一定时间。

如果无法锁频,即不起振或频率偏离设定值过大,可将7.5T 的电感L2稍微拉长些,但不能太长,太长后低频端的频率就无法锁频。

当然可能还有其他原因。

○6 如果低频噪声较大,主要是供电电压不稳定和布线等原因,在布线已经定型情况下,可采用以下方法减小低频噪声:1、采用蓄电池供电。

2、在发射端加一个30P 或33P 电容。

注:这样接入电容时,发射功率减小一些。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计一、无线调频接收机的原理调频接收机是一种接收调频信号并转换为基带信号的设备,其原理主要包括信号接收、信号解调和信号处理等几个部分。

在信号接收过程中,接收天线接收到调频信号并将其转换为电信号;在信号解调过程中,利用鉴频器和解调器将接收到的信号解调为基带信号;在信号处理过程中,对基带信号进行滤波、放大和解码等处理,最终输出语音、数据等信息。

二、基于Multisim的无线调频接收机设计1. 确定设计参数在进行无线调频接收机的设计前,首先需要确定一些关键的设计参数,包括接收频率、带宽、灵敏度等。

根据设计要求,本文选择接收频率为800MHz,带宽为10kHz,灵敏度为0.5μV。

2. 绘制电路原理图在Multisim软件中,可以通过拖放元件和连线的方式绘制无线调频接收机的电路原理图。

具体包括射频前端、中频放大器、鉴频器、解调器和后端处理等模块。

射频前端包括天线、滤波器和射频放大器;中频放大器包括中频滤波器和中频放大器;鉴频器包括鉴频器和环路滤波器;解调器包括解调放大器和基带滤波器;后端处理包括解码器和输出放大器等。

3. 进行仿真分析在绘制完电路原理图后,可以通过Multisim软件进行仿真分析,验证设计电路的性能和稳定性。

可以对接收灵敏度、信噪比、频率响应等进行仿真测试,并根据仿真结果进行相应的调整和优化。

4. 优化设计电路根据仿真分析的结果,可以对设计电路进行相应的优化,包括调整放大器增益、优化滤波器性能、提高解调灵敏度等。

通过不断地优化设计电路,最终达到设计要求,并且确保接收收率和抗干扰能力得到有效提升。

5. 实现无线调频接收机在完成电路原理图设计和优化后,可以根据Multisim软件进行PCB布局和线路布线,最终实现无线调频接收机的硬件设计。

并通过实际测试,验证设计电路的性能和可靠性,确保其能够稳定地接收和解调调频信号,输出基带信号。

三、实现效果和应用展望通过基于Multisim的无线调频接收机设计,可以实现对无线调频信号的稳定接收和解调,并输出高质量的基带信号。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机在现代通信系统中拥有广泛的应用。

本文将介绍以Multisim为工具进行无线调频接收机设计的方法和步骤。

首先,需要选定一个频段进行接收机的设计。

通常情况下,无线电频段被分为VHF(30MHz-300MHz)、UHF(300MHz-3GHz)和毫米波(3GHz以上)等几个大类。

本文选定VHF 频段作为设计目标。

接着,我们需要确定接收机的基本组成部分,包括前置放大器、混频器、中频放大器、限幅器、解调器等。

设计过程可以分为以下几步。

1.前置放大器的设计前置放大器的主要作用是将接收天线接收到的微弱信号放大,以提高后续电路的信噪比。

在这里,我们选择使用共射放大器电路。

首先,确定前置放大器的增益。

一般来说,增益要求不宜过高,一般取5~20dB为宜。

在Multisim中,可以通过选择不同的电阻、电容和晶体管参数,调整电路的增益。

2.混频器的设计混频器是将接收到的高频信号和本地振荡器产生的信号混合产生中频信号的电路。

在这里,我们选择使用单边带抑制混频器。

单边带抑制混频器的主要优点是只产生一条副载波,从而节省频带和功率。

混频器电路主要由多个二极管组成。

在Multisim中,我们可以通过调整二极管的参数,如电流和反向电压等,来改变混频器的性能。

中频放大器主要是将混频器输出的中频信号进一步放大,以便后续信号处理。

在Multisim中,我们可以选择使用共射放大器或共基放大器电路。

中频放大器还可以配合BPF(带通滤波器)或BPF+CIC(带通滤波器+余弦插值滤波器)实现选频和滤波功能。

BPF可以将不感兴趣的频段滤除,而CIC可以降低信号采样率,以满足后续数字信号处理的要求。

解调器的作用是将中频信号解调成基带信号。

在无线调频接收机中,解调器一般采用移相解调或Foster-Seeley解调电路。

移相解调是指将中频信号与本地振荡器产生的相位相差为90度的信号相乘,得到其幅度和相位信号。

全频道调频接收机的制作FMRadio

全频道调频接收机的制作FMRadio

全频道调频接收机的制作--FM Radio本文介绍的接收头只用一只集成块和一只供电电压在+5V的小巧高频头,耗电少,便于出门携带,真正实现了接收机的袖珍性。

工作原理如附图所示,高频头将天线接收到的信号进行放大和混频,混频后产生的31.5MHz的伴音中频信号由IF1端输出,进入IC的(12)脚。

经IC放大后与42.2MHz第二本振混频,产生10.7MHz第二中频信号,经10.7MHz三端滤波器滤波后送入IC(17)脚,再经IC中放,解调后,进入Ic的(24)脚,最后经Ic内部功放后驱动扬声器工作。

本机高频头所需电源同样采用了由三极管2SC8050及高频变压器组成的升压电路为其提供工作和调谐电压。

由于采用了低电压供电的高频头。

其电源电压可以取得低一些,实验证明电源电压在3.6V左右即可工作,可用三节七号镍氢充电电池或一块 3.6V锂电池供电。

元件选择:高频头的选择对本机很关键,应选用灵敏度高、低电压供电、体积小的全增补高频头TDQ36-5V,TDQ36-5V的引出端子名称和电压如表1所示。

注意本高频头有两个信号输出端,IF2不用.只用IF1。

IC选用日本索尼公司生产的调频调幅收音机专用集成电路CXA1O19,这里只用调频部分,它采用了28脚双列直插式封装,各引脚功能见表2°CXA1019 功能齐全,包括了调频调幅收音机的全部电路,具有外围元件少,耗电省,灵敏度高,失真小等优点。

调谐电位器w 选用100k Q多圈精密电位器,高频头VT与地之间接有一只微型数字电压表来显示本机接收频率情况,以实现本机小型化。

高频变压器B1、振荡线圈B2 选用中周TRF1445 , B1无须改动,B2拆去一圈。

其余元件也应尽量小型化。

本机调试很简单,只需调节B1、B2就能差出10.7MHz中频信号。

该接收头只需外接一根普通收音机上的拉杆天线即可接收到附近全部调频广播电台和电视伴音信号。

作者:周虎|Hlhr 4咖ini-?o ?T ---------------- =UiA'Q —3 土■Olf,却!卩—=H!D-—niH;H 17 »|10 fl ? 6 \ ? 1IC阿叭f 盟2) 36 3?州]■+.评T =,;Id巧口応也20--lOi1CC>,皿:I阿T帥------ \1 1■34h67i1VT nil'BH KI RM IF2]F14,0A3O0/5O/S WS LII J- 45T 口1肚;册Mi+a 'I \ F _ 严t 千册—*IMC1313—单片窄带调频接收电路MC13135是美国MOTOROLA 司开发的二次变频单片窄带调频接收电路,主要 改进和增强了信号处理电路、第一本振级和 RSSI 电路,采用MOTOROLA MOSAIC1.5处理技术,改善音频解调的失真及驱动电路, MC13135具有低噪声,在高稳定性前提下具备较宽的工作电压范围定的特点。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种电子设备,用于接收无线电信号,并将其转换为音频信号,在通信、广播和其他应用中广泛应用。

在现代无线通信领域,无线调频接收机已成为必不可少的设备之一。

本文将介绍如何使用Multisim软件设计并模拟一个基本的无线调频接收机。

我们将从理论上讨论无线电接收机的工作原理,并使用Multisim软件进行模拟实现。

1. 无线调频接收机的工作原理无线调频接收机的主要工作原理是将无线电信号从天线中捕获并将其转换为与之同步的局部振荡器信号。

该局部振荡器信号经过混频器和滤波器处理,输出中频信号。

该中频信号经过放大器和解调器处理后,最终输出音频信号。

为了设计无线调频接收机,我们需要将其分为几个基本模块。

这些模块包括:1)射频放大器:在此模块中,我们使用同轴电缆将输入无线电信号传送到接收机中。

然后,它将无线电信号放大,并将其发送到混频器。

2)混频器:在此模块中,我们将输出由射频放大器产生的信号(RF信号)与局部振荡器的输出(LO信号)混合在一起,产生中频信号。

3)中频放大器:中频放大器被设计用来增加中频信号的振幅。

这使得中频信号更容易处理和解调。

4)解调电路:解调器被设计用来将经过放大的中频信号转换为音频信号。

解调器主要将信号的振幅分离并复制到一个新的音频载波上。

5)音频输出电路:这个模块被设计用来将解调后的信号从解调器输出,输出的信号可以连接到扬声器或其他音响设备。

在Multisim模拟前,我们需要确定接收机的一些关键参数。

这些参数包括:1)局部振荡器频率:这是我们将用来混合RF信号的频率,通常在300kHz-1.2GHz之间。

2)射频信号频率:这是我们要接收的无线电信号的频率,可以从天线上接收到。

4)混频器和放大器的增益:这是我们需要使用的两个关键参数,混频器和放大器的增益应设定为满足设计规格的最小值。

根据以上参数和电路设计原理,我们可以开始使用Multisim软件实现无线调频接收机的模拟。

调频接收机设计课程设计说明书

调频接收机设计课程设计说明书
滤波器
根据接收信号的特性,设计合适的滤波器,滤除带外干扰和噪声,提 高接收信号的信噪比。
电路原理图及PCB设计
01
原理图设计
使用专业的电路设计软件,绘制详细的电路原理图,包括微控制器、射
频前端、模数转换器、滤波器、电源管理等部分的电路连接。
02 03
PCB设计
根据电路原理图,进行PCB布局布线设计,优化电路板性能,减小信号 干扰和损耗。同时,考虑散热、机械强度、可制造性等因素,确保电路 板的稳定性和可靠性。
sizeof(float));
float* demodulated = (float*)malloc(length *
sizeof(float));
float* processed = (float*)malloc(length *
sizeof(float));
程序流程图及代码展示
• // 读取或生成调频信号数据(这里省略具 体实现)
Chapter
调试过程记录
调试前准备
熟悉接收机结构和工作原理,准备必要的测试仪器和工具,如示 波器、信号发生器、频率计等。
调试步骤
按照设计流程逐步进行调试,包括电源电路、本振电路、混频电 路、中放电路、解调电路等各个模块的调试。
调试记录
详细记录每个模块的调试结果,包括波形、幅度、频率等参数, 以便后续分析和优化。
03
硬件设计方案及实现

主要器件选型与参数设置
微控制器
选用高性能、低功耗的STM32F4系列微控制器,具有丰富的外设接 口和强大的处理能力,满足接收机复杂算法和实时性要求。
射频前端
采用高性能的射频芯片,支持宽频带接收,低噪声系数,高线性度, 确保接收信号的准确性和稳定性。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种广泛应用于通信领域的设备,它能够通过接收无线电信号并转换成可供人们理解的信息。

在当今日益发展的通信技术中,无线调频接收机的设计变得愈发重要。

本文将介绍一种基于Multisim的无线调频接收机设计。

Multisim是一款由美国国家仪器公司推出的集成电路设计软件,它可以帮助工程师们进行电子电路的设计、仿真和分析。

在本设计中,我们将利用Multisim软件来搭建一个无线调频接收机。

设计的重点是保证接收机的高灵敏度、低噪声和良好的抗干扰性能。

我们要明确无线调频接收机的基本原理。

无线调频接收机通过天线接收到的无线电信号,经过放大、滤波、解调等过程,将信号转换成可供人们理解的信息。

在本设计中,我们将主要关注接收机的前端部分,包括信号的放大和滤波。

接下来,我们将从以下几个方面介绍基于Multisim的无线调频接收机设计:1. 天线和射频放大器2. 射频滤波器3. 中频放大器和检波器4. 输出滤波器和音频放大器首先是天线和射频放大器。

在接收机的前端,天线负责接收到的无线电信号,并将其输入到射频放大器中。

射频放大器起到放大信号的作用,同时也需要具备一定的抗干扰能力。

在Multisim软件中,我们可以选择合适的射频放大器模型,并进行参数配置和性能仿真。

接下来是射频滤波器。

由于天线接收到的信号中可能包含多种频率成分,需要通过滤波器来对信号进行初步的频率分离。

在Multisim中,我们可以设计并调整滤波器的频率响应曲线,以满足接收机对不同频率信号的需求。

接着是中频放大器和检波器。

经过射频滤波器的处理,信号进入中频放大器,进一步放大信号以便后续处理。

随后信号经过检波器解调成基带信号,在Multisim中我们可以模拟中频放大器和检波器的工作过程,并分析其性能指标。

通过以上设计过程,我们可以得到一套基于Multisim的无线调频接收机设计方案。

该设计方案具备高灵敏度、低噪声和良好的抗干扰性能,能够满足无线通信中对接收机性能的要求。

调频接收机课程设计

调频接收机课程设计

调频接收机课程设计一、引言调频接收机是无线通信领域中重要的设备之一,它能够接收并解调调频信号,实现信息的传输。

在调频接收机课程设计中,我们将学习调频接收机的基本原理、设计方法和实际应用。

本文将全面介绍调频接收机课程设计的相关内容。

二、调频接收机的基本原理调频接收机是基于频率调制原理工作的,它通过解调调频信号,恢复出原始信号。

调频接收机的基本原理包括信号接收、信号解调和信号处理三个主要环节。

在信号接收环节,调频接收机通过天线将调频信号转换为电信号,并进行初步放大;在信号解调环节,调频接收机通过解调电路将调频信号解调为基带信号;在信号处理环节,调频接收机通过滤波、放大、限幅等处理手段对基带信号进行进一步处理。

三、调频接收机的设计方法调频接收机的设计方法包括硬件设计和软件设计两个方面。

硬件设计主要涉及到电路选型、滤波器设计、放大器设计等;软件设计主要涉及到信号解调算法设计、信号处理算法设计等。

在调频接收机的硬件设计中,需要根据具体需求选择合适的电路元件,并进行电路连接和参数计算。

在调频接收机的软件设计中,需要根据解调和处理要求选择合适的算法,并进行编程实现。

3.1 硬件设计在调频接收机的硬件设计中,需要考虑以下几个方面: 1. 选择合适的天线:根据频率范围选择合适的天线,例如,对于广播调频信号,可以选择长波天线或短波天线; 2. 电路选型:根据信号要求选择合适的放大器、滤波器等电路元件,例如,可选择超外差电路作为解调电路; 3. 电路连接:按照电路原理图进行元件连接,确保信号能够流畅地传输; 4. 参数计算:根据具体需求计算电路参数,例如,根据频率范围选择合适的滤波器截止频率。

3.2 软件设计在调频接收机的软件设计中,需要考虑以下几个方面: 1. 解调算法设计:根据调频信号的调制方式选择合适的解调算法,例如,对于频率调制,可以选择锁相环解调算法; 2. 信号处理算法设计:根据解调后的基带信号要求选择合适的信号处理算法,例如,可以选择数字滤波算法、自适应等处理算法; 3. 编程实现:将设计好的解调算法和信号处理算法进行编程实现,实现对调频信号的解调和处理。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计引言:在现代通信系统中,无线调频接收机是一种十分重要的设备,它能够接收并解调调频信号以提取原始信息。

无线调频接收机的设计需要兼顾灵敏度、抗干扰性、频谱效率等指标,因此需要进行精心的设计和测试。

Multisim是一款功能强大的电子电路仿真软件,可以帮助工程师们在设计电路时进行仿真和测试,提高效率和降低成本。

本文将以Multisim 为工具,介绍一种基于Multisim的无线调频接收机设计方案。

无线调频接收机的基本原理:无线调频接收机由天线、射频前端、中频处理、解调器和数字处理等部分组成。

其基本原理是通过天线接收调频信号,并经过射频前端的放大和滤波后进入中频处理单元,最终通过解调器提取原始信息。

在这个过程中,灵敏度、抗干扰性和频谱效率是设计的关键指标。

基于Multisim的无线调频接收机设计:1. 射频前端设计:在无线调频接收机中,射频前端起着放大和滤波的作用,是整个接收机的重要组成部分。

在Multisim中,可以利用各种模拟元件和射频模型来搭建射频前端电路,并通过仿真分析其放大和滤波性能。

可以通过Multisim中的RF模块来模拟射频信号的传输和放大过程,验证射频前端的设计效果。

2. 中频处理设计:中频处理单元需要对射频信号进行混频和滤波处理,将其转换为中频信号,并进行放大和滤波。

在Multisim中,可以使用混频器、滤波器和放大器等模块来搭建中频处理电路,并对其进行仿真测试。

通过Multisim的信号分析功能,可以验证中频处理单元的性能和稳定性。

3. 解调器设计:解调器是无线调频接收机中的核心部分,其性能直接影响到接收机的解调效果和信息提取能力。

在Multisim中,可以利用数模混合技术搭建解调器电路,并通过仿真分析其解调性能。

可以利用Multisim中的数字信号处理模块来模拟解调过程,并评估解调器的性能。

4. 整体系统调试:在设计完成各个部分的电路之后,可以将它们组合在一起构成完整的无线调频接收机系统,并在Multisim中进行整体系统的调试和测试。

课程设计---调频接收机的设计

课程设计---调频接收机的设计

课程设计---调频接收机的设计
调频接收机的设计
调频接收机(FMR)是一种用于接收调频(FM)信号的电路。

它的基本原理是通过一
个或多个检波器(AM)滤波器来提取调频信号,它们可以将非调频信号(如噪声)滤除掉,使只有调频信号能够经过接收机的接收集线器。

调频接收机的结构很简单,主要由振荡器、滤波器和放大器以及相关电路组成。

振荡
器有多种实现,一般采用电子频率锁定振荡器(PLL)来把调频信号转换为相位码;滤波
器用于把非调频信号滤除掉;而放大器则把调频信号放大使之能够经过接收机的接收集线器。

为了设计一种高效的调频接收机,第一步首先要确定信号源,以确定接收机的利用范围,比如调频广播的范围,以及信号的频率范围等。

然后,要设计振荡器,以精确收发指
定频段的调频信号;第三,要设计滤波器,以确保只有调频信号经过接收机;最后,设计
放大器将信号放大至足够能够经过接收机的接收集线器,使用户能够清晰的接收到信号。

由于调频接收机的功能关键,因此在设计之初,要慎重考虑要求并仔细检查每一项功
能及技术性能;有一点要特别注意,那就是尽可能地缩小振荡器整形带宽,这样可有效降
低接收机的泄漏和引入新噪声;同时,还要做好环境抗干扰,保障接收机能够正常地接收
信号。

总之,调频接收机的设计过程非常复杂,需要充分考虑多种参数,以确保它能够正常
接收到调频信号,提高用户的体验。

调频接收系统设计

调频接收系统设计

目录1、引言 (1)2、调频接收机设计 (1)2.1调频接收机的工作原理 (1)2.2混频级电路 (2)2.3集成电路调频接收机 (3)3、调频接收机设计 (4)3.1确定电路形式 (4)3.2设置静态工作点计算元件参数 (5)3.3确定交流信号通路的元件参数 (6)3.4电路安装与调试 (6)4、心得体会 (7)5、实验仪器设备 (7)6、小结................................................................................................................ ..7 参考文献. (8)1 引言随着人们生活水平的不断提高和电子科技的飞速发展,特别是近年来物质生活水平的提高,人们相互之间交往所利用的通信手段也越来越多,人们不断追求生活方式的多样化和个性化;电子科学的发展尤其是无线通信的快速发展给人们工作和生活注入了新的色彩;人们可以随心所欲地享受着无线通信工具所带来的乐趣。

调频模拟通信最早的语音通信方式,广播电台就是它的一种形式,这种传统的通信方式在今天依然有着广泛的应用,并且也向着多样化和个性化和微型化的方向发展;随着时代的发展它的作用也在发生着变化,广播电台虽然现在已经不是人们获取信息的一种主要手段,但是它在很多方面依然发挥着主要的作用,它已经走进了我们的生活,在我们小集体范围内如:学生宿舍、宾馆等场所,由于其使用方便、价格低廉、技术成熟、可进行一对多的无线广播等诸多优点,所以将依然会发挥重要作用。

不仅如此,随着人们追求生活的个性化它在家庭领域也将会给人们带来很大的乐趣,利用一个小型的无线广播台和一个微型的收音机就可实现在家庭的任何角落播放自己喜欢的音乐,会给人们带来无限的乐趣。

本设计就是一个小型的调幅接收系统,实现了语音输入、线路输入、以及二者的同时输入。

2、调频接收机设计2.1 调频接收机的工作原理一般调频接收机的组成框图如图2.1所示.其工作原理是:天线(拉杆天线)接受到的高频信号,经输入调谐路选频为f1,再经高频放大级放大(如果调谐回路输车信号不是很微弱,可省区这一级)经入混频级.本级振荡器输出为含有f1,f2,(f2-f1)等频率分量的信号。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种能够接收调频信号并将其转换成基带信号的设备。

它在无线通信系统中扮演着重要的角色,能够接收到来自发射机的调频信号,并将其解调成数字信号,以便后续的处理和解码。

本文将介绍基于Multisim的无线调频接收机的设计,包括其原理、设计步骤和仿真结果。

Multisim是一款由美国国家仪器公司(National Instruments)开发的电子电路仿真软件,它能够模拟各种电路的工作原理和性能,通过Multisim,我们能够设计和优化各种类型的电路,包括无线调频接收机。

让我们来看一下无线调频接收机的工作原理。

调频接收机通常由天线、射频放大器、混频器、中频放大器、解调器等部分组成。

当调频信号通过天线输入到接收机中时,首先经过射频放大器进行放大,然后进入混频器,与局部振荡器产生的信号混频,得到中频信号。

接下来,中频信号通过中频放大器进行放大,再经过解调器解调成基带信号,最终输出到数字处理部分进行后续的处理。

接下来,我们来构建一个基于Multisim的无线调频接收机的设计。

我们需要准备各个部分的电路元件,包括天线、射频放大器、混频器、中频放大器、解调器等。

然后,按照无线调频接收机的工作原理,将这些电路元件连接起来,形成整个接收机的电路设计。

在Multisim中,我们可以选择合适的电路元件,并通过连接线将它们连接起来,然后设置各个电路元件的参数,包括输入输出阻抗、增益、频率等。

接着,我们可以进行仿真,观察无线调频接收机的工作状态,包括输入输出信号的波形、频谱图等。

在进行仿真过程中,我们可以对接收机的各个部分进行调整,比如调节放大器的增益、混频器的局部振荡频率等,以优化整个接收机的性能。

通过不断地调整和仿真,我们可以得到一个性能优异的无线调频接收机设计。

我们来分析一下通过Multisim进行仿真得到的无线调频接收机的设计结果。

通过仿真,我们可以观察到接收机的输入输出波形,得到其工作状态和性能指标,比如增益、带宽、信噪比等。

高频课程设计---调频接收机的设计

高频课程设计---调频接收机的设计

设计项目:调频接收机的设计一.设计目的通过本课题的设计与调试,提高动手能力,巩固已学的理论知识,建立无线电调频接收机的整体概念,了解调频接收机整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的各个单元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。

初步掌握调频接收机的调整及测试方法。

二.主要技术指标1.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。

接收机的工作频率必须与发射机的工作频率相对应。

如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。

调频广播收音机的灵敏度一般为5~30uV。

3.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。

调频收音机的中频干扰应大于50dB。

4.频率特性接收机的频率响应范围称为频率特性或通频带。

调频机的通频带一般为200KHz。

5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。

此外,还要考虑输出波形失真等问题。

三.调频接收机的工作原理调频接收机的工作原理框图如下已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。

已调波的振幅保持不变。

调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM表示。

调频制无线电广播多用超短波(甚高频)无线电波传送信号,使用频率约为88MHz-108MHz,主要靠空间波传送信号。

接收机可以接收到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。

我们广播节目的声波,经过电声器件转换成声频电信号,并由声频放大器放大,振荡器产生高频等幅振荡信号;调制器使高频等幅振荡信号被声频信号所调制;已调制的高频振荡信号经放大后送入发射天线,转换成无线电波辐射出去。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计1. 引言1.1 背景介绍引言传统的基于模拟电路的调频接收机设计存在着诸多缺点,如频率稳定性差、抗干扰能力低、成本较高等问题。

为了克服这些问题,并提高无线通信系统的性能,人们不断探索新的无线调频接收机设计方法。

本文旨在探讨基于Multisim的无线调频接收机设计方法,通过系统设计、调频接收机设计、信号处理、性能测试以及仿真与实验结果的分析,总结这一设计方法的特点和优势,为无线通信技术的发展提供参考和借鉴。

1.2 研究意义无限的电磁波资源,使得无线通信技术得到了迅速发展。

调频接收机作为无线通信系统的核心部件之一,在无线通信领域具有重要的研究意义和实际应用价值。

调频接收机设计是无线通信系统中的关键环节,直接影响着通信质量和系统性能。

通过深入研究和改进调频接收机的设计,可以提高无线通信系统的灵敏度、抗干扰能力和接收距离,从而提升通信质量和用户体验。

随着物联网、5G等新兴技术的快速发展,对调频接收机的性能要求也在不断提高。

深入研究和优化调频接收机的设计可以为新兴技术的落地应用提供有力的支撑,推动无线通信技术的进步和发展。

调频接收机设计还涉及到信号处理、模拟电路设计等多个领域的知识和技术,对研究人员和工程师的综合素质和技能水平提出了更高的要求。

研究调频接收机设计具有促进学术交流、培养人才和推动科研成果转化的重要意义。

对基于Multisim的无线调频接收机设计进行研究具有重要的意义和价值,对提高无线通信技术的水平和推动相关领域的发展具有积极作用。

2. 正文2.1 系统设计系统设计是无线调频接收机设计中最关键的一步。

在设计过程中,我们需要考虑到整个系统的功能和性能需求,包括频率范围、带宽、灵敏度以及抗干扰能力等方面。

我们需要确定接收机的频率范围。

根据应用场景的需求,我们可以选择不同的频率范围,比如FM广播、无线电通信等。

接着,我们需要确定接收机的带宽,带宽的选择会影响接收机的灵敏度和动态范围。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种可以接收调频信号的电子设备,广泛应用于无线通信系统中。

它能够接收不同频率的无线信号,并将其转换为可供后续处理的基带信号。

基于Multisim 的无线调频接收机设计是一项关于利用Multisim软件来构建和测试无线调频接收机的实验性工作。

本文将介绍基于Multisim的无线调频接收机设计的相关理论知识和实验步骤。

一、无线调频接收机的基本原理无线调频接收机是一种接收调频信号的无线电设备。

在无线通信系统中,调频调制是一种常见的调制方式,它通过改变载波频率来传输信息。

无线调频接收机的基本原理是接收来自天线的无线信号,并通过解调电路将其转换为基带信号。

基带信号经过后续处理可以得到原始信号的信息。

二、Multisim软件介绍Multisim是由National Instruments开发的一款用于电子电路仿真的软件。

它能够模拟各种电子电路的工作情况,并可用于教学、研究和工程设计。

Multisim软件提供了丰富的元件库和仿真功能,能够帮助工程师和科研人员快速高效地设计和验证电路方案。

1. 信号接收和解调电路设计在Multisim中选择适当的元件(如天线、滤波器、放大器、混频器、解调器等)进行电路设计。

根据实际情况,确定合适的频率范围和信号调制方式。

然后连接各个元件,并进行仿真分析,验证电路设计的可行性和稳定性。

2. 信号处理和滤波设计接收到的调频信号经过解调后,需要进行信号处理和滤波。

在Multisim中,可以选择合适的数字信号处理器(DSP)和滤波器进行电路设计和仿真。

通过调节滤波器参数和信号处理算法,优化信号质量和抑制干扰。

3. 效果验证和性能分析设计好无线调频接收机电路后,需要对其性能进行验证和分析。

在Multisim中可以进行各种实验和参数测试,评估接收机的灵敏度、带宽、抗干扰能力等性能指标。

通过实验结果,可以对接收机进行调整和改进,以满足实际应用需求。

调频接收机的设计与制作正文

调频接收机的设计与制作正文

引言社会发展到今天,现代化的通讯工具在我们的生活中显得越来越重要。

调频接收是在发射信号中取出需要接收的信息信号。

它一般由接收天线,选频电路,检波器和输出变换器四部分组成。

无线电的发送是以自由空间为传输信道,把需要传送的信息变换成无线电波传送到远方的接收点。

调频接收机是发射机输出功率越强,发射信号的覆盖范围越大,通信距离也越远。

但发射功率也不能过大,发射功率过大,不仅耗电,影响功放元件寿命,而且干扰性强,影响通话效果,还会产生辐射污染。

接收机的接收灵敏度越高,通信距离就越远。

天线的增益,在天线与机器匹配时,通常情况,天线高度增加,接收或发射能力增强。

无线电接收过程正好和发送过程相反,它的基本任务是将通过天空传来的无线电信号接收下来,并在接收端接收从天空中来的电磁波。

在同一时间,接收天线不仅接收到所需接收的无线电信号,而且也接收到若干个不同载频的无线电信号与一些干扰信号。

为了选择出所需的无线电信号,在接收机的接收天线之后要有一个选频电路,其作用是将所要接收的无线电信号取出来,并把不需要的信号滤掉,以免产生干扰。

利用一个并联LC回路的谐振特性就能够实现选频。

通过选频电路选频,将选出所需要的高频调幅波,从而送给检波器。

检波器检出原始的已调制信号,再送给扬声器使其发声。

1 绪论1.1选题的意义社会发展到今天,信息传输在人类生活中占据重要的地位。

接收机的功能是恢复用于调制发射机的原始的调制信号。

该过程称作解调,实现这一恢复功能的电路称作解调器。

鉴频器是将已调制信号变换成原始的调制信号还原成声音。

由于热、大气和人为干扰及传输和电路失真的影响,已调信号对调制信号来说,通常增加了失真与附加噪声。

对于模拟解调器,我们希望能够使失真和噪声最小,这样输出信号波形就会尽可能地接近原始信号了。

数字解调的作用是产生或恢复出与发射机输入同样类型的数字输出,且具有尽可能少的误差和正确的信号速率。

因此,模拟与数字信号解调器的性能测量方法是不同的。

调频接收机

调频接收机

调频接收机一、方案设计与论证本设计为超外差式调频广播接收机,其一般原理如图1.1所示,先将接受到的射频信号与本地振荡器的信号进行混频,将其降低到国家规定的10.7MHz中频,放大后由鉴频器解调出其中的音频调制信号,送音频电路,驱动音响设备。

图1.1 超外差式调频广播接收机原理框图由于采用超外差式,将87~108MHz范围的射频信号降低到统一的10.7MHz中频,节省了大量的滤波器,放大器,使整机的体积,价格大大降低,同时提高了系统的性能。

本设计采用CXA1238S芯片作为系统的核心部件,它集调幅,调频,锁相环,立体声译码等电路为一体,CXA1238S具有以下特点:1.耗电小,当电源电压为6V时,调幅静态电流为8.5mA,调频静态电流约为11mA。

2.电源电压适应范围宽,在2~10V范围内电路均能正常工作。

3.具有调谐指示LED驱动电路。

4.具有立体声指示LED驱动电路。

5.具有FM静噪功能。

6.调整简单。

1.1 调谐方案论证:方案一:机械调谐,使用可变电容,可变电感组成谐振回路,改变电容电感的值调节谐振回路。

方案二:数字调谐,利用变容二极管实现,由于变容二极管的电容值与其上所加电压有关,由FPGA控制,输出8位数字电压经DA转换后加到变容二极管上,可调节回路的振荡频率。

机械调谐实现简单,调节直观,但频率稳定度差,需要对多个振荡回路同时调节,调试较复杂困难,而且只能进行手动调台;数字调谐精确度较高,如使用8位DA转换器可得到256个电压值,通过单片机的控制,即可手动调谐又可自动调谐。

因此选用方案二。

1.287~108MHz带通滤波器选择带通滤波器用于选出87~108MHz之间的有用信号,有效虑除带外的镜像频率,从而提高整机的镜像抑制比。

方案一:采用运算放大器与阻容元件构成有源带通滤波器,使其中心频率为97.5MHz,带宽21MHz。

方案二:采用陶瓷滤波器LK-BP8804A01,其通带为87~108MHz,输入输出阻抗均为75Ω。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频(FM)接收机是一种帮助我们接收无线电广播信号的设备,它能够通过调整接收频率,接收并解调广播信号,然后将其转化为可听的声音。

在本文中,我们将使用National Instruments公司的软件Multisim来设计一个基于FM接收机的电路。

我们需要明确设计所需的元件。

一个典型的FM接收机电路由以下几个主要的电路组成:1. 频率调谐电路:用于选择所需的接收频率。

它由一个变量电容和电感组成。

通过调节电容的值来调整接收频率。

2. 中频放大器(IF Amplifier):接收器的前端电路,用于增强接收信号的弱度。

它通常由多个放大级组成,其中每个级别都由晶体管构成。

3. 预降噪电路(Pre-emphasis Circuit):用于增强音频信号的高频成分,以提高音质。

它通常由一个电容和一个电阻组成,其中电容和电阻的值是根据所需的频率响应来选择的。

4. 解调器电路(Demodulator Circuit):用于将接收的FM信号解调为音频信号。

最常用的解调方法是使用一个相移解调器电路,它由一个锁相环(Phase-Locked Loop,PLL)组成。

5. 音频放大器(Audio Amplifier):用于增强解调的音频信号的强度,使其可以驱动扬声器。

在Multisim中,我们可以使用不同的组件模型来构建这些电路。

我们可以使用可变电容器和电感器模型来构建频率调谐电路,使用晶体管模型来构建中频放大器,使用电容和电阻器模型来构建预降噪电路等等。

一旦我们完成了电路设计,我们可以使用Multisim来进行仿真。

我们可以模拟不同频率的信号输入到电路中,然后观察电路的响应。

通过调整电容和电感的值,我们可以调整电路的接收频率。

通过观察解调后的音频信号的波形,我们可以评估电路的解调效果。

通过Multisim的仿真功能,我们可以对设计进行快速验证,并对电路进行调整和改进。

这样,我们可以减少实际制作和测试所需的时间和成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南工程学院课程设计任务书
课程名称通信电子线路课程设计
题目调频接收机设计
专业班级电科0801 班
学生姓名
学号
指导老师浣喜明老师
审批
任务书下达日期:2011年05月30日星期一设计完成日期:2011年06月12日星期天
目录
1、任务书 (1)
2、说明书目录 (2)
3、设计总体思路 (3)
4、单元电路设计 (4)
5、总电路设计 (9)
6、设计调试体会与总结 (10)
7、附录(总电路原理图,PCB图) (11)
8、参考文献 (12)
一、调频接收机德工作原理
一般调频接收机的组成框图如图一所示。

其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。

本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。

混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。

由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

二、单元模块设计
1.高频功率放大电路
高频小信号调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC组成的并联谐振回路。

由于LC并联谐振回路的阻抗是随频率而变的,在谐振频率ƒ=1/LC
π2其电阻是纯电阻,达到最大最。

因此,用并联谐振回路作为集电极负载的调谐放大器在回路的谐振频率上有最大的放大增益。

稍微偏离此频率,电压增益迅速减小。

用这类放大器可以放大所需的某一频率范围的信号,而抑制不需要的信号或外界干扰信号。

晶体管采用B107,起到电流控制和放大的作用。

从端口1、2输入信号,3、4输出信号
图二高频小信号谐振放大器
2.混频电路
因为中频比外来信号频率低且固定不变,中频放大器容易获得比较大的增益,从而提高收音机的灵敏度。

在较低而又固定的中频上,还可以用较复杂的回路系统或滤波器进行选频。

它们具有接近理想矩形的选择性曲线,因此有较高的邻道选择性。

如果器件仅实现变频,振荡信号由其它器件产生则称之为混频器。

图三二极管环形混频电路原理电路
3.中频放大电路
中频放大电路的任务是把变频得到的中频信号加以放大,然后送到检波器检波。

中频放大电路对超外差收音机的灵敏度、选择性和通频带等性能指标起着极其重要的作用。

图四是LC单调谐中频放大电路图中T1、T2为中频变压器,它们分别与C1、C2组成输入和输出选频网络,同时还起阻抗变换的作用,因此,中频变压器是中放电路的关键元件。

图四中频放大电路
中频变压器的初级线圈与电容组成LC并联谐振回路,由于并联谐振回路对诣振频率的信号阻抗很大,对非谐振频率的信号阻抗较小。

所以中频信号在中频变压器的初级线圈上产生很大的压降,并且耦合到下一级放大,对非谐振频率信号压降很小,几乎被短路,从而完成选频作用,提高了收音机的选择性。

4.、L562组成的调频波锁相解调器
L562内部结构图
图五调频波锁相解调器
如图五所示采用L562组成调频锁相解调器的外接电路。

输入调频信号电压u i(t)
1、2为Ui(t)输入口
输入信号经C1、C2以平衡方式加到鉴相器的一对输入端口I1和I2
VCO的输出电压从3端取出,经1kΩ电阻、C3电容以单端方式加到鉴相器2输入端,而鉴相器另一输入端15经0.1uF电容交流接地。

从1端取出的稳定基准偏置电压经1kΩ电阻分别加到2端和15端,作为双差分对管的基极偏置电压。

放大器A3的输出端4接12kΩ电阻到地,其上输出VCO电压,该电压是与输入调频信号有相同调制规律的调频信号。

OUT为信号解调输出口;
芯片端口7注入直流,用来调节环路的同步带。

芯片端口10外接去重电容,提高解调电路的抗干扰性。

L562内部结构图
三、总电路设计
将各个模块进行整合,进行调试计算
①灵敏度测量:从接收机输入端输入工作频率ƒ0=13.3MHz、V s=20uV信号,在8Ω的负载
上测得音频输出电压,调节音量电位器使输出电压为0.25V,此电压为噪声电压V N;加
1kHz的调制信号并使频偏Δƒm=25kHz,调节Vs视音频输出电压VΩ=2V,即输出功率为
0.5W,则Vs是信噪比S N=12dB时的整机接收灵敏度。

②输功率出:从接收机输入端输入工作频率ƒ0=13.3MHz、调制频率1kHz、频偏Δƒm=25kHz、
²/R L.
Vs=20uV信号,在8Ω的负载上测得音频输出电压,最大输出功率PΩMAX=VΩ
四、总结体会
刚开始接任务时浣老师,说可以用那个调频锁相环路做,查阅很多书籍,看到书上有用L562芯片来进行调频锁相于是就采用好L562.
首先,第一个模块晶体管高频小信号放大器模块查阅书籍、百度搜索决定用这个来进行信号放大,算是借用吧!
第二个模块混频电路查阅资料得知:为混频器时,混频损耗的理论值为4dB ;为调幅器时,考虑到高频变压器的低频频率特性差的缺点,调制信号改从端口输入,载波信号从端口输入,,从端输出振幅调制信号.
同时了解了第三个模块中频放大器在接收信号中的作用:接收信号的频谱是很宽的,放大器很难做到在很宽的频带内都有一致性很好的增益平坦性,所以通常的做法是将接收到的信号变频到一个固定的频点上,然后放大,这样就带来诸多好处:选择性更好、增益也好控制。

接触到MC3361芯片,理解到芯片在电路中的作用很关键,可以简化电路,减小监测范围,芯片发展的前景很客观
总的来说,这此课程设计获益匪浅,相信这次课程设计会对以后的又不小的帮助!
五、总电路图
六、参考文献
宋树祥周冬梅高频电子线路北京出版社 2007 谈文心邓建国张相臣高频电子线路西安交通大学出版社 2005 市川裕一青木高频电路设计与制作科学出版社2006 曾兴雯高频电子线路电子工业出版社 2009 高吉祥高频电子线路高等教育出版社 2004 罗杰谢自美电子线路设计·实验·测试(第四版)电子工业出版社 2010
课程设计评分
指导教师签名:________________
日期:________________
注:此表装订在课程设计说明书的最后一页。

课程设计说明书装订顺序:封面、任务书、目录、正文、评分表、附件(非16K大小的图纸及程序清单)。

相关文档
最新文档