变压器零序方向过流保护

合集下载

零序方向电流保护

零序方向电流保护

05 零序方向电流保护的优缺 点及改进方法
零序方向电流保护的优点
选择性
零序方向电流保护能够根据故障 电流的方向判断故障线路,从而 有选择性地断开故障线路,避免
误操作。
灵敏性
对于接地故障,零序方向电流保护 的灵敏度较高,能够快速检测到故 障并采取保护措施。
可靠性
零序方向电流保护的原理简单,结 构清晰,运行可靠,能够确保电力 系统的稳定运行。
零序电流速断保护
根据系统运行方式和设备参数, 计算出保护装置能够快速切断故 障电流的整定值。
零序过流保护
根据设备正常运行时的负荷电流 和保护装置的可靠系数,计算出 能够保护设备免受过电流损害的 整定值。
零序方向电流保护的时限整定
瞬时速断时限
为了快速切除故障,零序方向电流保护的瞬时速断时限应与线路的短路电流和 继电器动作时间相配合。
在变压器保护中的应用
变压器是电力系统中的重要设备,其 安全运行对于电力系统的稳定至关重 要。
当变压器发生接地故障时,零序方向 电流保护能够快速切断故障绕组,以 减小对变压器的损坏和避免事故扩大。
变压器零序方向电流保护主要用于防 止变压器绕组间的接地故障,通过检 测零序电流的相位和幅值来实现。
在母线保护中的应用
04 零序方向电流保护的应用
在输电线路中的应用
输电线路零序方向电流保护主要用于防止由线 路两侧零序电流相位差引起的接地故障。
当输电线路发生接地故障时,零序方向电流保 护能够快速准确地检测到故障,并切断故障线 路,以减小对整个电力系统的冲击。
零序方向电流保护的配置需要考虑输电线路的 长度、负荷特性以及系统运行方式等因素,以 确保保护的可靠性和选择性。
零序方向电流保护的缺点

第六节 变压器的零序电流保护

第六节  变压器的零序电流保护

二、变电所多台变压器的零序电流保护每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。

正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。

发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。

电流继电器起动后,常开触点闭合,起动时间继电器KT1。

时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。

不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。

小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。

若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。

若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。

零序电流保护的整定计算:动作电流:(1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以(2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。

设零序电压元件的动作电压为U dz.0,则U dz.0=3I0X0.T零序电流元件的动作电流为动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。

根据经验,零序电压继电器的动作电压一般为5V。

当电压互感器的变比为nTV时,电压继电器的一次动作电压为U dz.0=5n TV变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。

即灵敏度校验:按保证远后备灵敏度满足要求进行校验返回第二节微机保护的硬件框图简介微机保护硬件示意框图如下图所示。

一、电压形成回路微机保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器上取得信息,但这些互感器的二次数值、输入范围对典型的微机电路却不适用,故需要降低和变换。

继电保护问答题500

继电保护问答题500

1 、什么是继电保护装置?答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障或危及其安全运行的事件时,需要向运行值班人员及时发出警告信号,或者直接向所控制的开关发出跳闸命令,以终止这些事件发展的一种自动化措施和设备。

实现这种自动化措施的成套设备,一般通称为继电保护装置。

2 、继电保护在电力系统中的任务是什么?答:继电保护的基本任务主要分为两部分:1、当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给距离故障元件最近的开关发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。

2、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行而会引起事故的电气设备予以切除。

反应不正常工作情况的继电保护装置容许带一定的延时动作。

3、简述继电保护的基本原理和构成方式?答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。

大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。

4、如何保证继电保护的可靠性?答:可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。

任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。

220kV 及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同开关的继电保护装置进行保护。

当任一套继电保护装置或任一组开关拒绝动作时,能由另一套继电保护装置操作另一组开关切除故障。

(完整版)主变零序保护的知识

(完整版)主变零序保护的知识

主变零序保护的知识1 概述变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。

本文就变压器的零序电流保护的一些特点进行介绍。

2 零序电流互感器安装位置对保护的影响零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。

下面按故障点的不同展开如下分析(见图1):由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。

如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。

如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。

我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。

3 变压器中性点电流互感器极性试验一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。

可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

变压器的零序保护的配置原则是什么

变压器的零序保护的配置原则是什么

变压器的零序保护的配置原则是什么?变压器的零序保护的配置原则是什么?答:(1)中性点直接接地电网的变压器应装设零序(接地)保护作为变压器主保护的后备保护和相邻元件接地短路的后备保护。

(2)当变压器中性点同时装设有避雷器和放电间隙时,应装设零序电流保护作为变压器中性点直接接地运行时的保护,并增设一套反映间隙放电电流的零序电流保护和一套零序电压保护作为变压器中性点不接地运行时的保护。

后者作为间隙放电电流的零序电流保护的后备保护。

(3)自耦变压器的零序保护的不能接在中性线回路的电流互感器上,应接在本侧的零序电流滤过器上,并且高、中压侧加装方向元件,以保证选择性。

110kV、220kV中性点直接接地电力网装设保护的一般规定英文词条名:1 全绝缘变压器。

应按规定装设零序电流保护,并增设零序过电压保护。

当电力网单相接地且失去接地中性点时,零序过电压保护经0.3~0.5S 时限动作于断开变压器各侧断路器。

2A.中性点装设放电间隙时,应按规定装设零序电流保护,并增设反应零序电压和间隙放电电流的零序电流电压保护。

当电力网单相接地且失去接地中性点时,零序电流电压保护约经0.3~0.5S 时限动作于断开变压器各侧断路器。

B.中性点不装设放电间隙时,应装设两段零序电流保护和一套零序电流电压保护。

零序电流保护第一段设置一个时限,第二段设置两个时限,当每组母线上至少有一台中性点接地变压器时,第一段和第二段的较小时限动作于缩小故障影响范围。

零序电流电压保护用于变压器中性点不接地运行时保护变压器,其动作时限与零序电流保护第二段时限相配合,用以先切除中性点不接地变压器,后切除中性点接地变压器。

当某一组母线上的变压器中性点都不接地时,则不应动作于断开母线联络断路器,而应当首先断开中性点不接地的变压器,此时零序电流保护可采用一段,并带一个时限在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护保护间隙1.保护间隙protective gap带电部分与地之间用以限制可能发生最大过电压的间隙。

变压器零序方向过流保护

变压器零序方向过流保护

零序方向过流保护小结变压器高压侧(110kV 及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。

变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。

一、变压器接地后备保护概述变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。

对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。

中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。

对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。

在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。

当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。

因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。

对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。

对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。

综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。

二、零序方向过流保护逻辑零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,则由“零序过流元件”、“零序方向元件”和“零序电压闭锁元件”相与构成。

其逻辑图如图1所示。

图1 零序方向过流保护逻辑框图零序电压闭锁元件的零序电压取自TV 开口三角。

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点在变压器保护整定中,零序电流保护是一项关键的配置要点。

零序电流是指正、负序电流和零序电流的矢量和。

它的存在可能意味着线路中存在故障或其他问题,因此保护系统需要能够准确地检测和识别零序电流,并采取适当的措施来解决问题。

本文将介绍一些重要的变压器保护整定中的零序电流保护配置要点。

1. 零序电流保护原理变压器保护系统中的零序电流保护是通过使用差动保护装置来实现的。

差动保护装置监测变压器两侧电流的差异,当存在零序电流时,差异将超过设定的阈值,触发保护系统采取相应的动作。

因此,正确配置差动保护装置是实现零序电流保护的关键。

2. 零序电流保护配置要点在变压器保护整定中,配置零序电流保护时需要考虑以下要点:a. 阈值的选择零序电流保护的阈值应根据变压器的额定容量和特性进行选择。

通常情况下,阈值设置在变压器额定容量的1-2%之间。

但在实际应用中,也需要根据具体情况进行调整。

b. 动作延时设置为了避免误动作和滤除瞬态零序电流,保护系统应该设置适当的动作延时。

动作延时的设置应该根据变压器的特性和负载情况进行调整,以确保保护系统的准确性和可靠性。

c. 灵敏度设置正确设置零序电流保护的灵敏度对于及时检测故障和准确识别零序电流至关重要。

灵敏度设置应根据变压器的特性和所需保护水平进行调整,以确保保护系统的可靠性和灵活性。

3. 零序电流保护的其他考虑因素除了以上的配置要点外,还有一些其他考虑因素应该被纳入变压器保护整定中的零序电流保护:a. 双重地锁定零序电流保护应采用双重地锁定,以确保保护系统在地故障发生时能够正确地动作。

b. 高阻抗接地系统的特殊配置在一些特殊情况下,变压器的中性点可能采用高阻抗接地系统。

此时,对零序电流保护的配置要求更为复杂,需要根据实际情况进行详细分析和设计。

4. 零序电流保护的实施与测试零序电流保护的实施和测试是保证其有效性和可靠性的重要环节。

在实施过程中,应确保电流传感器的正确安装和连接,保护装置的正确配置和设定。

变压器零序(方向)过流保护原理

变压器零序(方向)过流保护原理

变压器零序(方向)过流保护原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!变压器零序(方向)过流保护原理引言在电力系统中,变压器是至关重要的设备之一,它承担着电能的转换和传输任务。

变压器零序电流和间隙电流保护

变压器零序电流和间隙电流保护

目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。

为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。

由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。

为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。

中性点零序CT一般在变压器中性点套管内,而间隙CT一般在间隙后面。

当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。

中性点直接接地时间隙保护起不到作用,为了防止误动应该退出;而中性点不接地时,零序电流没有通路,零序电流保护不起作用,为了防止误动,应该退出,间隙零序过压的问题请问为什么间隙零序过压的定值为什么要整定为180V?是为了躲过什么?间隙零序过压时间一般整定为0.5s,动作后跳各侧开关。

这么短的动作时间为什么是跳各侧开关而不是跳本侧开关?还有就是间隙零序过压和零序过压有何不同?为什么整定值会差那么远(例如在110kV系统中,零序过压可整定为15~30V)?110kV系统的PT辅助绕组为什么是100V先请看系统运行中的过电压:电力系统的过电压一般可分为下面三类,暂时过电压(工频过电压、谐振过电压) ,操作过电压,雷电过电压。

对于中性点雷击过电压处理,人们比较容易形成统一意见。

一般按变压器的标准雷电波的耐受水平,考虑绝缘老化累计效应乘0. 85 的系数,得出的实际绝缘耐受水平大于避雷器的标称雷电冲击放电电压或残压,取合理的系数即可。

主变零序电流保护工作原理

主变零序电流保护工作原理

主变零序电流保护工作原理
主变零序电流保护是变电站保护系统中的一种重要保护方式,其工作原理如下:
1. 采集电流信号:主变零序电流保护通过专用的零序电流互感器或者综合电流互感器采集主变的零序电流信号。

2. 信号处理:采集到的零序电流信号经过放大、滤波、线性化等处理,转化为符合保护设备输入要求的电信号。

3. 比较判断:将处理后的信号与设定的保护动作值进行比较,一般设有上限和下限两个动作值。

如果零序电流超过设定的动作值范围,就认为发生了零序故障。

4. 动作输出:当零序电流超过设定的动作值范围时,保护设备会向断路器或电气触发装置发送信号,启动断路器对主变进行切除动作。

同时,保护设备还会向综合自动装置发送信号,对变电站其他相关设备进行动作。

总的来说,主变零序电流保护通过采集主变的零序电流信号,经过信号处理并与设定值进行比较,当零序电流超过设定值范围时,保护设备会对主变进行切除动作,确保主变在发生零序故障时得到保护。

主变零序过流保护的作用

主变零序过流保护的作用

主变零序过流保护的作用1.引言1.1 概述主变零序过流保护是电力系统中重要的保护措施之一。

电力系统中的主变厂电压等级高,承担着电能的传输和配电任务,因此对主变进行保护显得尤为重要。

而零序过流保护则是针对主变中可能出现的零序故障所设计的一项保护手段。

在电力系统中,零序故障是指电流中存在非平衡的情况,即三相电流不相等。

主变零序过流保护主要是为了防止这种非平衡电流导致主变故障和设备损坏,进而保护系统的安全稳定运行。

主变零序过流保护的作用主要体现在以下几个方面。

首先,它能够及时地检测零序故障,并迅速切除故障分支,防止故障扩大和蔓延,从而避免了设备的损坏和系统的停电。

其次,主变零序过流保护还能够在故障发生时及时报警,提醒运维人员进行检修和排除故障,保证电力系统的安全运行。

此外,主变零序过流保护还能够提高电力系统的可靠性和稳定性,保障用户的用电需求得到满足。

综上所述,主变零序过流保护在电力系统中扮演着至关重要的角色。

它不仅可以保护主变及相关设备的安全运行,还能提高系统的可靠性和稳定性。

为了确保电力系统的正常运行,必须高度重视主变零序过流保护的作用,加强对其原理和操作方法的研究与应用。

只有这样,才能更好地保障电力系统的安全稳定运行,服务于社会经济的发展。

1.2文章结构1.2 文章结构本文将分为以下几个部分来探讨主变零序过流保护的作用:第一部分为引言,主要概述本文的主题和内容,并介绍主变零序过流保护的背景和重要性。

第二部分为正文,主要分为两个子部分来介绍主变零序过流保护的定义、原理和作用。

在2.1节中,将对主变零序过流保护的定义和原理进行详细解读,包括其基本概念、工作原理以及常见的保护方式。

在2.2节和2.3节中,将分别探讨主变零序过流保护的两个主要作用。

其中,2.2节将重点介绍主变零序过流保护在保护主变正常运行和延长设备寿命方面的作用,包括防止主变过载和短路故障的影响。

而2.3节将重点探讨主变零序过流保护在提高电网稳定性和保障供电可靠性方面的作用,包括对电网故障的快速检测和隔离,以及对系统负荷均衡的调节能力。

零序电流及方向保护

零序电流及方向保护
, 采用零序电流及方向保护可以有效提 高系统的稳定性和可靠性,保障建筑 物的正常供电和设备安全。同时,对 于一些重要设备如电梯、消防设备等, 采用零序电流及方向保护可以进一步 提高其供电的可靠性和安全性。
06
零序电流及方向保护的发展 趋势
数字化技术的应用
数字化技术提高了零序电流及方向保 护的准确性和可靠性,通过高速数据 采集和传输,实现对电网故障的快速 响应和处理。
零序方向保护的分类
根据零序电流的获取方式,零序方向保护可以分为自产零序电流型和互感器取流型 两类。
自产零序电流型保护利用变压器的三相电流合成零序电流,具有不受变压器接线方 式影响的优点,但受变压器容量和系统运行方式影响较大。
互感器取流型保护通过互感器从系统中获取零序电流,受变压器容量和系统运行方 式影响较小,但受互感器安装位置和接线方式影响较大。
确定保护装置的整定值
确定零序电流速断保护的整定值
根据系统运行方式和设备特性,计算零序电流速断保护的整定值,以确保在发生故障时保护装置能够 快速切除故障。
确定零序过流保护的整定值
根据系统运行方式和设备特性,计算零序过流保护的整定值,以确保在发生故障时保护装置能够正确 切除故障并避免误动。
04
零序方向保护
集成化保护装置的发展
集成化保护装置是未来发展的趋势, 将零序电流及方向保护与其他保护功 能集成在一起,实现多功能的综合保 护。
集成化保护装置可以简化电网结构和 降低设备成本,提高电网运行的稳定 性和可靠性。
感谢您的观看
THANKS
时间进行整定。
灵敏度校验是指检验保护装 置在最小运行方式下发生单 相接地故障时的灵敏度是否 满足要求,一般要求灵敏系
数大于等于1.5。

变压器的保护

变压器的保护

变压器保护变压器的保护有:瓦斯保护、差动保护、过电流保护、复合电压启动的过电流保护、低电压起动的过电流保护、零序接地保护。

1.瓦斯保护:是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。

当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,从油箱向油枕流动,其强烈程度随故障的严重程度不同而不同,反应这种气流与油流而动作的保护称为瓦斯保护,也叫气体保护。

在气体保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。

浮筒和档板可以围绕各自的轴旋转。

在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位臵,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。

当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于气体继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。

重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。

气体继电器有浮筒式、档板式、开口杯式等不同型号。

目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。

所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。

瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。

包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。

瓦斯保护动作迅速、灵敏可靠而且结构简单。

1、变压器保护功能及原理

1、变压器保护功能及原理

1、变压器保护功能及原理⼀、变压器保护分类1、500KV⾃耦变压器1.1 500KV⾃耦变压器主保护分为三类差动:1)纵联差动(纵联差动速断保护、纵联⽐率差动保护、纵联⽐率变化量差动保护):由⾼、中、低各侧开关CT组成的传统纵联差动保护。

2)分相差动(分相差动速断保护、分相⽐率差动保护、分相⽐率变化量差动保护):由⾼、中压侧开关CT及低压侧三⾓绕组(套管)CT 组成的分相差动保护。

3)分侧差动:由⾼、中压侧开关CT、公共绕组套管CT组成。

1.2 500KV变压器差动保护差流计算:1)纵联差动:差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进⾏。

变压器各侧CT⼆次电流相位由软件⾃动校正,采⽤在Y侧进⾏校正相位。

例如对于Y0/Δ-11的接线,其校正⽅法如下:IA’ = (IA-IB)/根号3;IA’为校正后的Y侧校正后的电流差动电流=⾼压侧校正后电流 + 中压侧平衡系数中压侧校正后电流 +低压侧平衡系数低压侧相电流2)分相差动:差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 低压套管CT侧平衡系数低压套管绕组相电流中压侧平衡系数 = (中压侧CT变⽐/⾼压侧CT变⽐)(中压侧额定电压/⾼压侧额定电压);低压套管CT侧平衡系数 = (低压套管CT变⽐/⾼压侧CT变⽐)(低压侧额定电压根号3/⾼压侧额定电压)3)分侧差动差动电流=⾼压侧相电流 + 中压侧平衡系数中压侧相电流 + 公共绕组平衡系数*公共绕组相电流中压侧平衡系数 = 中压侧CT变⽐/⾼压侧CT变⽐;公共绕组平衡系数 = 公共绕组CT变⽐/⾼压侧CT变⽐1.3 差动保护异常检测和⼀些判别1)CT断线:正常情况下判断CT断线是通过检查构成差动的所有相别的电流中有⼀相或两相⽆流且差流⼤于差流越限门槛值,即判为CT断线。

2)PT断线:PT断线检测逻辑分为三相断线和不对称断线两种判据:第⼀三相电压均⼩于18V,判断为PT三相断线,延时10s发PT断线告警信号;第⼆⾃产3U0 ⼤于18V,且三个线电压不相等并且存在两个线电压之差⼤于18V(⽤于区分⼩电流接地系统的⼀点接地),判断为PT不对称断线,1延时0s发PT断线告警信号;第三保护启动后不再进⾏PT断线检测。

变压器零序方向过流(两段两延时)

变压器零序方向过流(两段两延时)

变压器零序方向过流保护一、保护原理变压器零序方向过流保护,主要用作两侧为大电流系统的三卷变压器或自耦变压器接地故障的后备保护,并兼作相邻线路接地短路的后备保护。

零序功率方向判据与零序过电流判据共同构成零序方向过流保护。

保护的零序电压及零序电流,可取自引出端TA 二次三相的零序电流(3I 0)、或变压器中性点侧零序电流,及同侧母线TV 二次开口三角电压3U 0,也可由装置自产(即输入TA 二次三相电流及同侧母线TV 二次三相电压,由软件计算出3I 0及3U 0)。

保护的动作方程为⎩⎨⎧I P 00303>>gI 03其中:)cos(3330000αϕ+⋅=I U P03U 、0ϕ——零序电压及其与零序电流夹角;α——计算零序功率的内角;g I 03——零序过电流动作整定值。

信号出口信号出口图一 二段式零序方向过流保护逻辑框图二、一般信息 2.12.2投入保护开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。

(注:该保护投入时其运行指示灯是亮的。

)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。

2.3参数监视点击进入变压器零序方向过流监视界面,可监视保护的整定值,零序电流、功率计算值等信息。

三、保护动作整定值测试3.1 零序I段定值测试将II定值抬高,保证只有I段动作;改变电压电流相位,确定功率方向元件满足条件,3.2 零序II段定值测试将I定值抬高,保证只有II段动作;改变电压电流相位,确定功率方向元件满足条件,3.3 零序功率方向内角定值测试输入相应的电流电压,零序电流超过定值,改变参与零序功率计算的零序电流和零序电压之间的夹角,保护从不动作到动作,再从动作到不动作,记录动作范围边界,误差不超过3.4 I段动作时间定值测试将II定值抬高,保证只有I段动作;改变电压电流相位,确定功率方向元件满足条件,突加1.5倍I段定值电流,保护出口动作,记录动作时间。

3.5 II段动作时间定值测试将I定值抬高,保证只有II段动作;改变电压电流相位,确定功率方向元件满足条件,突加1.5倍II段定值电流,保护出口动作,记录动作时间。

零序方向保护

零序方向保护

1采用零序方向保护的意义我国电力系统中性点接地方式有3种:中性点直接接地、中性点经消弧线圈接地和中性点不接地方式。

110 kV及以上电网的中性点均采用第1种接线方式,在这种系统中发生单相接地故障时接地短路电流很大,故称其为大接地电流系统。

在大接地电流系统中发生单相接地故障的概率很高,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电气设备的安全。

大接地电流系统接地短路时,零序电流、零序电压和零序功率的分布与正序分量、负序分量的分布有明显区别:a.当系统任一点单相及两相接地短路时,网络中任何处的三倍零序电流和电压都等于该处三相电流或电压的矢量和,即:? ? 3U0=UA+UB +UC? ? 3I0=IA+I B+ICb.系统零序电流分布只与中性点接地的多少及位置有关,图1为系统接地短路时的零序等效网络。

式中??EΣ——电源的合成电动势;Z0T1、Z0T2——变压器T1、T2的零序阻抗;Z01、Z02——短路点两侧线路的零序阻抗。

当发电厂M侧的变压器中性点接地点增多时,Z0T1将减小,从而使I0和I01增大,I02减小。

反之,I0和I01减小,I02增大。

如果发电厂N侧的中性点不接地,则Z0T2=∞,I01也将增大且等于I0。

两相接地短路时也可得到相应的结论。

c. 故障点的零序电压最高,变压器中性点接地处电压为0,保护安装处的电压U0A=-I0Z0T1,如图2所示。

d. 零序功率S0=I0U0。

由于故障点的电压U0最高,对应故障点的S0也最大。

越靠近变压器中性点接地处S0越小。

在故障线路上,S0是由线路流向母线。

? ? 综上所述,中性点直接接地系统发生接地短路时,将产生很大的零序电流分量,利用零序电流分量构成零序电流保护,可作为一种主要的接地短路保护。

因为它不反映三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以有较好的灵敏度。

如线路两端的变压器中性点都接地,当线路发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过。

零序方向电流保护

零序方向电流保护
➢ 零序电流为发电机本身的电容电流
➢ 方向为从母线流向发电机
在故障线路II上
各相电流 IAII (IBI ICI IBII ICII IBG ICG )
IBII U B /( jX CII ) jU BC0II
ICII U C /( jX CII ) jU CC0II
线路始端零序电流
特点:
发生单相接地时,全系统都会出现零序电压
在非故障线路上有零序电流,其数值等于该线 路本身的电容电流,方向为从母线流向线路
在故障线路上,零序电流为全系统非故障元件对地 电容电流之总和,方向从线路流向母线
5. 中性点不接地电网中单相接地的保护
(1)绝缘监视装置
绝缘监视装置是利用单相接地时出现的零序电压,带延 时动作于信号。
IB
IA
Ia Ib
IμB
IμA
Ir I0
Ic
IC
IμC
Ir
Ia
Ib
Ic
1 nTA
[( IA
IμA )
( IB
IμB )
( IC
IμC )]
1 nTA
( IμA
IμB
IμC )
Iunb
2.零序电流滤过器
ABC
电 缆 头
I0
TA0
优点: ✓ 不平衡电流小 ✓ 接线简单
电缆
三、 零序电流速断保护(I段)
*** ** *
灵敏性的校验按下式进行
延时 信号
K sen
3I0 I set
式中 3I0∑--本线路单相接地时, 非故障线路对地电容电流的总
和,应取最小值。要求Klm≥2。
5. 中性点不接地电网中单相接地的保护
(2)零序电流保护

零序过流保护原理

零序过流保护原理

零序过流保护原理零序过流保护是电力系统中常见的一种保护方式,它主要用于保护系统中的变压器、发电机、电抗器等设备,防止因零序故障引起的设备损坏和系统事故。

零序过流保护的原理和实现方法对于保障电力系统的安全稳定运行具有重要意义。

首先,我们来了解一下零序过流的概念。

在电力系统中,如果出现对地短路或接地故障,会导致电流通过系统的零序回路,形成零序过流。

零序过流的存在会对系统设备造成损坏,同时也可能引发系统的不稳定运行,甚至导致系统事故。

为了有效地保护系统设备和确保系统运行的安全可靠,需要采取相应的零序过流保护措施。

零序过流保护的原理是通过检测系统中的零序电流,当电流超过设定值时,保护装置将启动并采取相应的保护动作,例如断开故障回路或发出告警信号,以防止故障扩大和造成损失。

在实际应用中,零序过流保护通常采用电流互感器和保护装置相结合的方式实现。

电流互感器用于检测系统中的零序电流,将检测到的电流信号传递给保护装置进行处理。

保护装置根据预先设定的保护参数,对检测到的零序电流进行判断,并在必要时启动保护动作,以保护系统设备和确保系统的安全运行。

除了传统的电流互感器和保护装置,现代数字化保护装置也广泛应用于零序过流保护中。

数字化保护装置具有高精度、快速响应和丰富的保护功能,能够更准确地检测零序过流,提高保护的可靠性和灵活性。

总的来说,零序过流保护是电力系统中重要的保护手段,它能够有效地保护系统设备,防止因零序故障引起的损坏和事故。

通过采用合适的零序过流保护装置,可以提高系统的安全性和可靠性,确保电力系统的稳定运行。

在实际工程中,需要根据具体的系统特点和要求,合理选择和配置零序过流保护装置,以实现最佳的保护效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零序方向过流保护小结
变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。

变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。

一、变压器接地后备保护概述
变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。

对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。

中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。

对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。

在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。

当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。

因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。

对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。

对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。

综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。

二、零序方向过流保护逻辑
零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,
所示。

图1 零序方向过流保护逻辑框图
零序电压闭锁元件的零序电压取自TV开口三角。

零序过流元件的零序电流可以自产,也可取自中性点零序TA。

零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。

其原因在于,中性点零序电流对方向没有选择性。

如图2所示系统,变压器T1和T2经过线路L相连,TA0为变压器T1中性点零序TA,TA1为变压器T1端口TA,M1为端口母线。

以变压器T1为例,讨论零序方向元件。

零序方向过流保护作为变压器的后备保护,则d1(变压器内部)和d2(线路侧)点分别为正方向和反方向的接地点。

对于零序电流正方向的定义,如果三相TA极性端靠近母线,如图5所示,以母线流向变压器为正。

无论是正方向还是反方向发生接地短路,接地点零序电压最大,变压器中性点零序电压最低,零序电流由接地点流向变压器中性点。

作单相接地时的零序网络,在图3、4中,U0为接地点的零序电压,也是保护装置采到的零序电压;I0为保护装置采到的零序电流;忽略电阻后,X L为线路的零序电抗,X T1和X T2分别为变压器T1和T2的零序电抗。

TA0在正反方向接地短路时滤取到的零序电流为I01。

TA1在正方向接地短路时自产得到的零序电流为I02,在反方向接地短路时自产零序电流为I01。

在图
图2 发生接地的系统示意图
(a)零序网络(b)零序电流电压向量图
(a)零序网络(b)零序电流电压向量图
图4 反方向发生接地时的零序网络示意图
由图3,4可得,无论是正方向(d1点)还是反方向(d2点)发生接地故障,流过TA0的零序电流方向始终为由接地点流向变压器中性点,其方向并不改变。

而方向电流由TA1自产时,若正方向发生接地故障,接地点d1零序电压最大,零序源在变压器内部,零序电流的方向由变压器流向母线;若反方向发生接地故障,接地点d2零序电压最大,零序源在变压器外部,零序电流的方向由母线流向变压器;因此,只有自产零序电流,才能区分是正方向还是反方向发生接地故障,才能保证零序方向元件动作的选择性。

零序方向元件的最大灵敏角与接地零序网络有关,零序电压和零序电流按图5所示的极性接线时,当方向指向母线时,最大灵敏角为70˚~85˚,软件固定为70˚;当方向指向变压器时,最大灵敏角为-95˚~-110˚,软件固定为-110˚。

当零序方向元件的方向电压取自产时,如果发生TV断线,则方向电压滤取到一个“虚假”的零序电压,可能导致零序方向元件误动。

对这个问题的处理有两种方式:一是将方向电压切换至TV开口三角,二是将零序方向元件退出。

前者的处理方式不影响零序方向元件的功能,但要求用户必须正确校验开口三角电压的极性;后者的处理方式不再计及方向,零序方向过流变成单纯的零序过流保护。

反正TV断线后必须退出检修,这时电压不起作用,所以退出方向元件是可以接受的。

当零序电流由三相电流自产时,如果发生TA断线,会出现“虚假”的自产零序电流,可能导致零序过流元件误动,所以该保护可选零序电压闭锁。

当变压器发生接地故障时,除了产生零序电流,还出现零序电压,但是TA断线时,三相电流自产虽然可以滤取到零序电流,但无零序电压产生。

所以零序电压闭锁可以防止因TA断线导致的误动。

零序网络中零序电流的分布,主要取决于线路和中性点接地变压器的零序阻抗,而与电源的数目及位置无关。

例如,如果图2中变压器T2中性点不接地,则图3中TA1中将不会自产得到零序电流I02。

图5 零序方向元件极性接线图
三、零序方向过流保护的几个定值的说明
零序电流:零序过流定值。

零序电压闭锁选择:是否带零序电压闭锁,选1为带零序电压闭锁,选0为不带零序电压闭锁。

零序电压:零序电压闭锁值。

如果零序电压闭锁选择整定为0,则该项定值不起作用,可以不整定。

该零序电压取自TV开口三角。

零序电流选择:零序过流元件的零序电流取法,选1为零序电流自产,选0为零序电流取自中性点。

零序电压选择:零序方向元件的方向电压取法,选1为零序电压自产,选0为零序电压取自开口三角。

方向指向变压器(母线):方向指向的含义是指潮流方向,也即电流的流向。

方向指向变压器(母线),是指电流流向变压器(母线)。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档