初一数学《整式的加减》同步练习题及答题思路解析

合集下载

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项经典复习题(含答案解析)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项经典复习题(含答案解析)

一、解答题1.已知多项式2x 2+25x 3+x ﹣5x 4﹣13. (1)请指出该多项式的次数,并写出它的二次项和常数项;(2)把这个多项式按x 的指数从大到小的顺序重新排列.解析:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13;(2)﹣5x 4+25x 3+2x 2+x ﹣13. 【分析】 (1)根据多项式的次数、项等定义解答即可;(2)按x 得降幂排列多项式即可.【详解】解:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13; (2)这个多项式按x 的指数从大到小的顺序为:432215253x x x x -+++-. 【点睛】本题考查的是多项式的概念及应用.2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a a b b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时,窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

整式加减法练习题的详细解析与解答

整式加减法练习题的详细解析与解答

整式加减法练习题的详细解析与解答整式加减法是初中数学中的重要知识点,掌握好这部分内容对于解决代数表达式的运算和化简问题非常重要。

在本文中,我们将详细解析和解答一些整式加减法的练习题,帮助大家更好地理解和掌握这一知识点。

例题一:将3a^2b^2 + 2ab – ab^2 + 4b – 5a^2 + 6a + 7b^2按照同类项进行整理。

解析与解答:首先,我们按照字母的幂次从高到低进行排序,依次为3a^2b^2和-5a^2,然后是2ab和- ab^2,最后是6a、4b和7b^2。

根据同类项的定义,同类项是具有相同字母及其指数的项。

在这个例子中,3a^2b^2和-5a^2都是同类项,因为它们都包含字母a的平方和字母b的平方。

同样,2ab和- ab^2都是同类项,因为它们都包含字母a和字母b的一次幂。

最后,6a、4b和7b^2都是单独的项,因为它们没有相同的字母及其指数。

整理后的式子为:3a^2b^2 - 5a^2 + 2ab - ab^2 + 6a + 4b + 7b^2。

例题二:计算表达式(2a^2 + 3ab - 5b^2) + (-a^2 - 4ab - 3b^2)的结果。

解析与解答:首先,我们按照同类项对括号中的式子进行整理。

其中,2a^2和-a^2是同类项,3ab和-4ab是同类项,-5b^2和-3b^2是同类项。

整理后的式子为:(2a^2 - a^2) + (3ab - 4ab) + (-5b^2 - 3b^2)。

计算同类项的系数时,根据符号要进行正负号的运算。

具体计算结果如下:2a^2 - a^2 = a^2,3ab - 4ab = -ab,-5b^2 - 3b^2 = -8b^2。

因此,最终结果为:a^2 - ab - 8b^2。

通过以上两个例题,我们可以看到整式加减法在对代数表达式进行简化和化简时起到了重要的作用。

掌握好整式加减法的方法和技巧,能够帮助我们更好地理解和解决其他代数问题。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为.【答案】4.【解析】把x2-4xy+3y2分解为(x-y)(x-3y),然后把x-y=4,x-3y=1代入求值即可.试题解析:原式=(x-y)(x-3y)把x-y=4,x-3y=1代入上式得:原式=4×1=4.【考点】1.因式分解.2.求代数式的值.2.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.3.先化简,再求值:若,求代数式的值.【答案】156.【解析】依据绝对值和有理数的偶次方的性质,可得;把原式化简代入即可. ∵,又∵,∴,∴,原式=,=,=,=,当时,原式= ,=-4×9×(-2)+7×3×4,=72+84,=156.【考点】1.整式的加减;2.绝对值;3.有理数的乘方.4.(1)5x-(3x-2y)-3(x+y),其中x=-2,y=1.(2)先化简,再求值:a(a-1)-(a2-b)= -5 求:代数式-ab的值.【答案】(1)3;(2).【解析】(1)先去括号、合并同类项得出-x-y,再把x=-2,y=1代入求出即可.(2)先去括号、合并同类项求出a-b=5;再化简,代入即可求值.试题解析:(1)原式=5x-3x+2y-3x-3y=-x-y,当x=-2,y=1时,原式=-(-2)-(-1)=3.(2)原等式变形得:a2-a-a2+b=-5∴a-b=5将a-b=5代入上式得:原式=.【考点】整式的加减—化简求值.5.(-8x2-16y)- (3x2-9y) ,其中x=,y=【答案】-1.【解析】原式去括号合并得到最简结果,将x、y的值代入计算即可求出值.试题解析: (-8x2-16y)- (3x2-9y)=-2x2-4y-x2+3y=-3x2-y当x=,y=时,-3x2-y=-3×()2-=-1考点: 整式的加减—化简求值.6.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.7.在排成每行七天的日历表中取下一个方块(如图).若所有日期数之和为189,则的值为()A.21B.11C.15D.9【答案】A【解析】日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是的话,它上面的数是,下面的数是,左边的数是,右边的数是,左边最上面的数是,最下面的数是,右边最上面的数是,最下面的数是.若所有日期数之和为189,则,即,解得:,故选A.8.观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.【答案】20【解析】根据图形易知,当图形n=1时,个数=2×(n+1)。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.甲、乙、丙三人分别拿出相同数量的钱,合伙订购某种商品若干件.商品买来后,甲、乙分别比丙多拿了7、11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知甲要付给丙14元, 那么乙还应付给丙元.【答案】70.【解析】依据题意找出甲、乙、丙之间的关系,列整式运算即可.设丙拿了件商品,则甲拿了件商品,乙拿了件商品,∵三人出了同样的钱,则每人本来应该各拿件商品,∴甲多拿了1件商品,乙多拿了5件商品,∵甲给丙 14元,即1个商品 14 元,故乙应给丙 14×5 =" 70" 元.【考点】整式的加减混合运算.2.若a=2,b=20,c=200,则.【答案】622【解析】因为,将代入可得.3.化简:【答案】【解析】先根据去括号法则去括号,再合并同类项即可得到结果.【考点】整式的化简点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.4.若-5x a yz b与 2x3y c z2是同类项,则abc的值是()A.-35B.35C.6D.-6【答案】C【解析】同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.由题意得,,,则,故选C.【考点】同类项点评:本题属于基础应用题,只需学生熟练掌握同类项的定义,即可完成.5.把多项式按字母b降幂排列为;【答案】-【解析】先分别判断出各项中字母b的次数,再按照从大到小的顺序排列即可.把多项式按字母b降幂排列为-.【考点】多项式点评:解题的关键是要注意在排列多项式各项时,要保持原有的符号.6. 2x+(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.9x4【答案】C【解析】先去括号,再合并同类项即可.,故选C.【考点】整式的加减点评:解题的关键是熟记合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.7.下列各式成立的是()A.B.C.D.【答案】D【解析】根据合并同类项法则及去括号法则依次分析各项即可判断.A、C、与不是同类项,与不是同类项,无法合并,B、,故错误;D、,本选项正确.【考点】本题考查的是整式的加减点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简:a-4(2a-b)-2(a+2b)【答案】-9a【解析】先去括号,再合并同类项即可.原式=a-8a+4b-2a-4b=-9a.【考点】本题考查的是整式的加减点评:解答本题的关键是注意在去括号时,若括号前是“-”号,把“-”号和括号去掉,括号里各项的符号都要改变.9.下列各式计算正确的是()A.B.C.D.【答案】B【解析】同类项的定义:所含有的字母相同,并且相同字母的指数也相同的项叫同类项;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.A.,C.与不是同类项,D.与不是同类项,故错误;C.,本选项正确.【考点】本题考查的是同类项的定义,合并同类项的法则点评:本题属于基础应用题,只需学生熟练掌握同类项的定义,合并同类项的法则,即可完成。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有个水龙头,个抽水马桶漏水。

如果一个关不紧的水龙头一个月漏掉a立方米水,一个抽水马桶一个月漏掉b立方米水,那么一个月造成的水流失量至少是( )立方米.A.6a+2b B.C.D.【答案】C.【解析】因为全市至少有个水龙头,一个关不紧的水龙头一个月漏掉a立方米水,所以全市水龙头一个月造成的水流失量至少是:立方米,全市至少有个抽水马桶漏水,个抽水马桶一个月漏掉b立方米水,所以全市马桶一个月造成的水流失量至少是:立方米,所以一个月造成的水流失量至少是:立方米,所以C正确.【考点】整式的加减.2.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.3.在排成每行七天的日历表中取下一个方块(如图).若所有日期数之和为189,则的值为()A.21B.11C.15D.9【答案】A【解析】日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是的话,它上面的数是,下面的数是,左边的数是,右边的数是,左边最上面的数是,最下面的数是,右边最上面的数是,最下面的数是.若所有日期数之和为189,则,即,解得:,故选A.4.化简关于的代数式.当为何值时,代数式的值是常数?【答案】【解析】解:将去括号,得,合并同类项,得.若代数式的值是常数,则,解得.故当时,代数式的值是常数.5.已知实数,满足,则等于()A.3B.-3C.D.-1【答案】A【解析】根据根号下为非负数及任何数的平方为非负数可判断:x-2=0,y+1=0.x=2,y=-1。

所以x-y=3.选A【考点】整式运算点评:本题难度较低,主要考查学生对实数与整式运算知识点的掌握。

为中考常考题型,要求学生牢固掌握。

6.将n张长度为10厘米的纸条,一张接一张地粘成长纸条,粘合部分的长度都是3厘米,则这张粘合后的长纸条总长是______________厘米.(用含n的代数式表示)【答案】7n+3【解析】由题意可知10n-3(n-0)=7n-3.根据题意显然粘和部分共有(n-1)个,所以10n-3(n-1)=7n+3【考点】代数式的求法点评:本题属于利用代数式的基本形式进行找规律推导分析进而利用基本知识运算7.下列各式计算正确的是 ( )A.B.C.D.【答案】D【解析】A ;B.已经为最简式。

(必考题)初中七年级数学上册第二单元《整式的加减》经典习题(含答案解析)

(必考题)初中七年级数学上册第二单元《整式的加减》经典习题(含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a 元D .(1+20%)15%a 元 3.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg 4.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-46.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .1009 7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n8.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .559.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022 10.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2 11.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1- 12.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个 13.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- 14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数 二、填空题16.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.17.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.18.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.19.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.20.计算7a 2b ﹣5ba 2=_____.21.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.22.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______. 23.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________. 24.多项式234324x x x -+-按x 的降幂排列为______.25.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个26.图中阴影部分的面积为______.三、解答题27.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.28.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 29.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.30.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?。

人教版2020-2021年初一数学上册同步练习:整式的加减【含答案】

人教版2020-2021年初一数学上册同步练习:整式的加减【含答案】

人教版2020-2021年初一数学上册同步练习:整式的加减【含答案】一、单选题1.化简1(93)2(1)3x x --+的结果是( )A .21x -B .1x +C .53x +D .3x - 【答案】D【解析】原式去括号合并即可得到结果.【详解】原式=3x-1-2x-2=x-3,故选:D .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0 【答案】A【解析】根据同类项的定义得出m 的方程解答即可.【详解】根据题意可得:2m ﹣1=m+1,解得:m =2,故选A.【点睛】本题考查了同类项,解一元一次方程,正确把握同类项的概念是解题的关键.3.多项式8x 2﹣3x +5与3x 3﹣4mx 2﹣5x +7多项式相加后,不含二次项,则m 的值是( )A .2B .4C .﹣2D .﹣4 【答案】A【解析】将两个多项式进行合并后令二次项的系数为0即可求出m 的值.【详解】(8x 2﹣3x+5)+(3x 3﹣4mx 2﹣5x+7)=8x 2﹣3x+5+3x 3﹣4mx 2﹣5x+7=3x 3+(8﹣4m )x 2﹣8x+13, 令8﹣4m =0,∴m =2,故选:A .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.下列计算正确的是( )A .x 2﹣2xy 2=﹣x 2yB .2a ﹣3b =﹣abC .a 2+a 3=a 5D .﹣3ab ﹣3ab =﹣6ab【答案】D 【解析】根据同类项的定义及合并同类项法则逐一判断即可.【详解】A.x 2与-2xy 2不是同类项,不能合并,故该选项计算错误,B.2a 与3b 不是同类项,不能合并,故该选项计算错误,C.a 2与a 3不是同类项,不能合并,故该选项计算错误,D. ﹣3ab ﹣3ab =﹣6ab ,计算正确,故选D .【点睛】本题考查同类项的定义及合并同类项,所含字母相同,并且相同字母的指数也相同的项叫做同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.熟练掌握定义和运算法则是解题关键.5.下列各式子中与 2m 2 n 是同类项的是( )A .-2mnB .3m 2 nC .3m 2 n 2D .-mn 2【答案】B【解析】与2m 2 n 是同类项的单项式必须满足只含字母m ,n ,且字母m 的次数为2,n 的次数为1,即可得出答案.【详解】与2m 2 n 是同类项的是:3m 2 n .故选B .【点睛】本题考查了同类项的定义.同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.计算23a a -,结果正确的是( )A .﹣1B .1C .﹣aD .a 【答案】C【解析】根据合并同类项法则即可求解.【详解】23a a a -=-,故选:C .【点睛】此题主要考查合并同类项,解题的关键是熟知合并同类项的方法.7.已知a −b =2且b −c =1,则代数式a (a −b )−2c(b −c)的值为( )A .2B .4C .6D .8【答案】C 【解析】根据a-b=2且b-c=1,可以求得a-c 的值,然后即可求得题目中的式子的值,本题得以解决.【详解】解:∵a-b=2且b-c=1,∴(a-b )+(b-c )=a-c=3,∴a (a-b )-2c (b-c )=a×2-2c×1=2a-2c=2(a-c )=2×3=6.故选:C .【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式的化简求值的方法.8.下面的计算正确的是( )A .22541a a -=B .235a b ab +=C .()33a b a b +=+D .()a b a b -+=--【答案】D【解析】各项化简得到结果,即可作出判断.【详解】A 、原式=a 2,本选项错误;B 、原式不能合并,本选项错误;C 、原式=3a+3b ,本选项错误;D 、原式=-a-b ,本选项正确,故选:D .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.下列运算正确的是( )A .3226()ab a b =B .235a b ab +=C .22532a a -=D .22(1)1a a +=+ 【答案】A【解析】利用完全平方公式、幂的乘方与积的乘方,合并同类项的法则进行解题即可.【详解】()2326ab a b =,A 正确;23a b +不能合并同类项,B 错误;222532a a a -=,C 错误;22(11)2a a a +=++,D 错误;故选:A .【点睛】本题考查整式的运算,熟练掌握完全平方公式、幂的乘方与积的乘方,合并同类项的法则是解题的关键.10.下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 【答案】C 【解析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确; D.513y -与233x y 不是同类项,故本选项错误; 故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.二、填空题11.小程做一道题“已知两个多项式 A 、B ,计算 A ﹣B”小程误将 A ﹣B 看 作 A+B ,求得结果是 9x ²﹣2x+7.若 B=x ²+3x ﹣2,则 A ﹣B= ________________.【答案】7x 2−8x +11.【解析】先根据A+B=9x 2-2x+7且B=x 2+3x-2求得A=8x 2-5x+9,再代入A-B 中去括号、合并同类项即可得.【详解】∵A=(9x 2-2x+7)-(x 2+3x-2),=9x 2-2x+7-x 2-3x+2,=8x 2-5x+9,∴A-B=(8x 2-5x+9)-(x 2+3x-2),=8x 2-5x+9-x 2-3x+2,=7x 2-8x+11,故答案为:7x 2-8x+11.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.解题的关键是先去括号,然后合并同类项.12.一个长方形的周长为 6a+4b ,相邻的两边中一边的长为 2 a ﹣b ,则另一边长为_________.【答案】a +3b .【解析】根据长方形的周长公式列出整式相加减的式子,再去括号,合并同类项即可.【详解】根据题意另一边长为:12(6a+4b )-(2a-b ),=3a+2b-2a+b ,=a+3b ,故答案为:a+3b .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.13.合并同类项:22246a a a +-=_____.【答案】29a【解析】根据合并同类项法则计算可得.【详解】原式()224619a a =+-=, 故答案为:29a .【点睛】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.14.如果单项式-x 2y m +1与3x n y 3是同类项,那么m -n ______.【答案】0.【解析】根据同类项的概念可得方程,进而得出答案.【详解】∵单项式-x 2y m+1与3x n y 3是同类项,∴n=2,m+1=3,解得:m=2,故m-n=0.故答案为:0.【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.15.若代数式-2x a y 3与3x 5y 4-b 是同类项,则代数式3a -b =______.【答案】14.【解析】依据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项得出a 、b 的值,代入计算可得.【详解】∵-2x a y 3与3x 5y 4-b 是同类项,∴a=5,3=4-b ,即b=1,则3a-b=3×5-1=14,故答案为:14.【点睛】考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.三、解答题16.先化简,再求值:()()2222523425x y xy y x--+- ,其中 x = -2, y = 3. 【答案】248y xy -+,-84.【解析】先去括号,再合并同类项,最后代入求值即可.【详解】原式=222256825x y xy y x -++-=248y xy -+当x =-2,y =3时,原式=2438(2)3-⨯+⨯-⨯=-36﹣48=-84.【点睛】本题考查了整式的加减运算和求值的应用,主要考查学生的计算和化简能力,题目比较好,难度适中.17.先化简,再求值:(2x2y-4xy2)-(-3xy2+x2y),其中x=-1,y=2.【答案】6【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;【详解】解:原式=2x2y-4xy2+3xy2-x2y=x2y-xy2,当x=-1,y=2时,原式=2+4=6;【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

最新人教版初中数学七年级数学上册第二单元《整式的加减》测试题(含答案解析)

最新人教版初中数学七年级数学上册第二单元《整式的加减》测试题(含答案解析)

一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x = 3.若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6-4.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3. A .38 B .34 C .28 D .44 5.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm6.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +257.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .48.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 9.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n10.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨11.下列判断错误的是 ( )A .若,则B .若,则C .若,则D .若,则12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.若方程2(2)3m m x x ---=是一元一次方程,则m =________.14.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 15.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.16.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________. 17.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x=__________.18.要使代数式154t+与15()4t-的值互为相反数,则t的值是_________.19.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.20.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.三、解答题21.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?22.如表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分),按套餐1和套餐2计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当主叫通话时间t(分)满足什么条件时,选择套餐1省钱;当主叫通话时间t(分)满足什么条件时,选择套餐2省钱.月基本费/元主叫通话时间/分上网流量/MB套餐149200500套餐269250600接听超时费(元/分)超流量费(元/MB)套餐1免费0.20.323.运用等式的性质解下列方程: (1)112x +=; (2)212x -=; (3)185x =-; (4)3212x x =+; (5)352x-=(需检验); (6)2153x +=-(需检验); (7)23257m m -=(需检验) 24.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?25.学校要购入两种记录本,预计花费460元,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本. (1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱? 26.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答. 【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.2.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.3.B解析:B【分析】x+=2,解方程可得.由已知可得4【详解】x+=2,解得x=-2.由已知可得4故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.4.C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.5.C解析:C【解析】试题分析:原来正方形的边长为x,则=39,解得:x=5.考点:一元一次方程的应用6.B解析:B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x+20=4x﹣25.故选B.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.7.D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.8.C解析:C 【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.9.A解析:A【分析】要比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m=0无解,∴m>0.(2)∵|3x−4|+n=0有一个解,∴n=0.(3)∵|4x−5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.10.C解析:C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,找到等量关系,然后列出方程.11.D解析:D 【解析】 【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案. 【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则,正确;D. 当c=0时,若,a 就不一定等于b ,故本选项错误;故选D. 【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.12.D解析:D 【解析】 【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断. 【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x -1)-(x +2)=3(4-x),故③正确; 去括号得:2x -2-x -2=12-3x ,故②正确, 故选:D. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题13.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定解析:1或2 【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值. 【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =; ②当20m -=时,解得2m =. 综上,1m =或2. 故答案为:1或2. 【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.14.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速解析:18 【分析】设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时,由逆水速度=静水速度-水流速度,列出方程,可求解. 【详解】解:设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时, 由题意可得:(20)16x x --=, 解得:18x =,∴轮船在静水中的速度为18千米/小时,故答案为:18. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.15.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=解析:45 【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可. 【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立, 则化简以后方程的一次项系数以及常熟项都是0, 移项得:(23)251(3)+-=+-m x x m n , 合并同类项得:(222)13-=+-m x m n , ∴222=0-m ,13=0+-m n , ∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.16.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键 解析:34- 【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=- 126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 17.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:1 3【点睛】考核知识点:解一元一次方程.理解题意是关键.18.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】因为代数式154t+与15()4t-的值互为相反数,所以154t++15()4t-=0,解得:t=1 10,【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 19.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg,则一个果冻质量为2xg,再根据图②列出关于x的方程求解即可.【详解】解:由图①设一块巧克力质量为xg,则一个果冻质量为2xg,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.20.8人【解析】【分析】设张老师带的学生数为x 人车费原价为a 元/人则在甲车主处需要费用为08a (1+x )元在乙车主处需要09ax 元根据两车的费用一样建立方程求出其解即可【详解】设张老师带的学生数为x 人车解析:8人【解析】【分析】设张老师带的学生数为x 人,车费原价为a 元/人,则在甲车主处需要费用为0.8a (1+x )元,在乙车主处需要0.9ax 元,根据两车的费用一样建立方程求出其解即可.【详解】设张老师带的学生数为x 人,车费原价为a 元/人,由题意,得0.8a (1+x )=0.9ax ,解得:x=8,故答案为:8人.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据当两车主的费用一样建立方程是关键.三、解答题21.(1)80个(2)15张(3)6张;9张【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.22.(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出.【详解】(1)143,109,900套餐1:490.2(220200)0.3(800500)+⨯-+⨯-490.2200.3300=+⨯+⨯49490=++143=(元).套餐2:690.2(800600)+⨯-690.2200=+⨯6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =.故答案为:143;109;900.(2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等;当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =;当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)12x =-;(2)32x =;(3)13x =-;(4)12x =;(5)16x =;(6)9x =-;(7)70m =-【分析】(1)两边同时减1即可求解;(2)两边同时加1,再同时除以2即可求解;(3)两边同时减5,然后两边同时除以-1即可求解;(4)两边同时减去2x ,即可求解;(5)两边同时减1,然后两边同时乘2即可求解,注意检验;(6)两边同时减去3,然后两边同时除以23即可求解,注意检验; (7)两边同时加327m ⎛⎫-⎪⎝⎭,得1235m -=.两边除以135-,即可求解,注意检验. 【详解】(1)两边减1,得12x =-. (2)两边加1,得23x =,两边除以2,得32x =. (3)两边减5,得13x =-,两边除以-1,得13x =-.(4)两边减2x ,得12x =.(5)两边加3,得82x =,两边乘2,得16x =. 检验:当16x =时,左边=5=右边,故16x =是原方程的解. (6)两边减1,得263x =-,两边除以23,得9x =-. 检验:当9x =-时,左边=-5=右边,故9x =-是原方程的解. (7)两边同时加327m ⎛⎫-⎪⎝⎭,得1235m -=. 两边除以135-,得70m =-. 检验:当70m =-时,左边=-30=右边,故70m =-是原方程的解.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 24.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 25.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键26.623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =-解得:331mx=-,4(37)1935 x x-=-4747x=1x=由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是()A.32015-1B.32014-1C.D.【答案】C.【解析】设S=1+3+32+33+ (32014)则有3S=3+32+33+ (32015)∴3S﹣S=32015﹣1,解得:S=(32015﹣1),则1+3+32+33+…+32014=.故选C.【考点】整式的混合运算.2.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.【答案】见解析【解析】解:设原来的两位数是,则调换位置后的新数是.∴.∴这个数一定能被9整除.3.先化简,再求值:,其中a是方程的一个根。

【答案】,1【解析】因为a是方程根据求根公式可得x=则代入【考点】整式运算及求根公式。

点评:本题难度中等,主要考查学生对整式化简求值运算的掌握。

需要涉及平方差公式和完全平方公式等等。

4.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度= ;第二个图案的长度= ;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数。

【答案】(1) 0.9 ,1.5 (2) (3)50【解析】=0.3×3=0.9m,=0.3×5=1.5m(2)根据图像可知:n=1时,=0.3×3=0.9m,n=2时,=0.3×5=1.5m,…当n=n时,(3)30.3=0.3(2n+1),解得n=50【考点】探索规律点评:本题难度较高,需要学生通过图像分析总结出规律。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm,则正方形的面积与长方形的面积的差为A.a2B.a2C.a2D.a2【答案】D.【解析】设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);正方形的面积为[(2x+a)]2,长方形的面积为x(x+a),二者面积之差为[(2x+a)]2﹣x(x+a)=a2.故选D.【考点】整式的混合运算2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文3a+b,2b+c,2c+d,2d.例如,明文1,2,3,4对应密文5,7,10,8.当接收方收到密文14,9,24,28时,则解密得到的明文四个数字之和为.【答案】25.【解析】根据题意列出4个等式,把它们相加即可求出结论.试题解析:设这四个数字分别为a、b、c、d,则有:3a+b="14" ①2b+c=9 ②2c+d="24" ③2d=28 ④①+②+③+④得:3(a+b+c+d)=75∴a+b+c+d=25【考点】整式运算.3.先化简,再求值:,其中,.【答案】66【解析】解:.将,代入得原式.4.化简关于的代数式.当为何值时,代数式的值是常数?【答案】【解析】解:将去括号,得,合并同类项,得.若代数式的值是常数,则,解得.故当时,代数式的值是常数.5.先化简,再求值:,其中,.【答案】-2【解析】先去括号,再合并同类项,最后代入求值即可.原式==当,时,原式=.【考点】整式的化简求值点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.6.已知一个多项式与的和等于,则这个多项式是A.B.C.1D.【答案】A【解析】先根据题意列出代数式,再去括号,合并同类项.由题意得这个多项式是故选A.【考点】整式的加减点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.7.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.8.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.7B.4C.1D.9【答案】A【解析】代数式的代入计算。

整式加减法的练习题及解答技巧

整式加减法的练习题及解答技巧

整式加减法的练习题及解答技巧整式加减法是数学中的基础概念和计算方法之一,对于培养学生的逻辑思维和数学运算能力至关重要。

本文将为大家提供一些整式加减法的练习题,并探讨解题技巧。

1. 整式加法练习题(1) (2x^2 + 3x - 5) + (4x^2 + x + 2)(2) (7a^2 - 4a + 3b) + (2a^2 + 5a - 7b)(3) (-3x^2 + 2x - 1) + (x^2 - x + 4)2. 整式减法练习题(1) (5x^2 + 3x - 4) - (2x^2 - x + 3)(2) (6a^2 + 5a - 2b) - (3a^2 - 2a + 4b)(3) (-4x^2 + 3x - 1) - (x^2 - 2x + 5)解答技巧:在解答整式加减法的题目时,我们可以采用如下的步骤:1. 将同类项进行合并。

同类项是指具有相同字母和指数的项,例如2x和3x就是同类项。

2. 合并同类项时,注意正负号的运算,正数加正数为正数,负数加负数为负数。

3. 执行加法或减法运算。

4. 化简结果,即将结果中的同类项合并。

下面我们以具体的例子来演示:例题1:(2x^2 + 3x - 5) + (4x^2 + x + 2)解答:首先将同类项进行合并,合并后的表达式为:(2x^2 + 4x^2) + (3x + x) + (-5 + 2)化简得:6x^2 + 4x - 3例题2:(-3x^2 + 2x - 1) + (x^2 - x + 4)解答:将同类项进行合并,合并后的表达式为:(-3x^2 + x^2) + (2x - x) + (-1 + 4)化简得:-2x^2 + x + 3在整式减法的题目中,同样遵循上述的步骤,只是在执行减法运算时需要注意减去括号中每一项的符号。

例题:(5x^2 + 3x - 4) - (2x^2 - x + 3)解答:首先将减号右边的表达式中的每一项的符号取反,得到:(5x^2 + 3x - 4) + (-2x^2 + x - 3)之后按照整式加法的步骤进行运算,得到结果为:3x^2 + 4x - 7练习题是提高数学能力的有效途径,但在应用整式加减法的过程中,还需注意一些常见的易错点。

七年级数学整式的加减练习及解析

七年级数学整式的加减练习及解析

七年级数学整式的加减练习及解析一、单选题1.已知整式的值为6,则整式2x2-5x+6的值为()A.9B.12C.18D.24【答案】C【解析】观察题中的两个代数式,可以发现,2x2-5x=2(x2-x),因此可整体求出式x2-x的值,然后整体代入即可求出所求的结果.解答:解:∵x2-x=6∴2x2-5x+6=2(x2-x)+6=2×6+6=18,故选C.2.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为A.180B.182C.184D.186【答案】C【解析】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,∵3×5﹣1=14,;5×7﹣3=32;7×9﹣5=58;∴m=13×15﹣11=184.故选C.3.将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是()A.35B.41C.45D.51【答案】D【解析】【分析】观察图形发现:第一个图形有1=1个正三角形,第二个图形有1+2+2=5个正三角形,第三个图有1+2+3+2+4=12个正三角形,第四个图有1+2+3+4+2+4+6=22个正三角形,由此可知第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=,由此进行计算即可得.【详解】观察图形发现:第一个图形有1=1个正三角形,第二个图形有1+2+2=5个正三角形,第三个图有1+2+3+2+4=12个正三角形,第四个图有1+2+3+4+2+4+6=22个正三角形,…∴第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=,n=6时,=51,故选D.【点睛】本题考查了规律型——图形的变化类,通过观察所给图形得到找出图形之间的运算规律,利用规律解决问题是关键.4.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【答案】D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.5.已知当x=1时,2ax2﹣bx的值为﹣1,则当x=﹣2时,ax2+bx的值为()A.2B.﹣2C.5D.﹣5【答案】B【解析】因为当x=1时,2ax2﹣bx的值为﹣1,所以2a﹣b=﹣1,当x=﹣2时,ax2+bx=4a ﹣2b=2(2a﹣b)=﹣2,故选B.6.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1B.4C.2018D.42018【答案】A【解析】【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【详解】若n=13,第1次结果为:3n+1=40,第2次结果是:, 第3次结果为:3n+1=16, 第4次结果为:=1,第5次结果为:4, 第6次结果为:1, …可以看出,从第四次开始,结果就只是1,4两个数轮流出现, 且当次数为偶数时,结果是1;次数是奇数时,结果是4, 而2018次是偶数,因此最后结果是1, 故选A . 【点睛】本题考查了规律题——数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.7.多项式33233234383387x x y x y x x y x y x -+++--的值( ) A . 与x ,y 有关 B . 与x 有关 C . 与y 有关 D . 与x ,y 无关 【答案】D【解析】根据整式的加减—合并同类项,可知33233234383387x x y x y x x y x y x -+++--=0,因此多项式与x 、y 均无关.故选:D.8.一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .B .C .D . 【答案】C【解析】解:∵该列数为:﹣1,3,﹣9,27,﹣81,…,∴该列数中第n 个数为﹣(﹣3)n ﹣1(n 为正整数).设该三个相邻数中间的数为x﹣3x ,根据题意得:+x ﹣3x =a ,解得:x =C . 点睛:本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.9.观察下列图形规律,其中第1个图形由6个○组成,第2个图形由14个○组成,第3个图形由24个○组成,…,照此规律下去,则第8个图形○的个数一共是()A.84 B.87 C.104 D.123【答案】C【解析】分析:把每一个图形分为上下两部分,用列举法分别找出这两部分的计算规律.详解:图计算图①1+3+1+1=6图②1+3+5+2+3=14图③1+3+5+7+3+5=24……图⑧1+3+5+7+9+11+13+15+17+8+15=107.故选C.点睛:寻找图形的计数规律,要善于找到切入点,可将问题分成“变”与“不变”两部分来考虑,尤其是抓住不变的部分,以此为基础观察变化部分的规律,关键是观察图形的结构组成,通过列举部分图形,找出其中的变化规律,从而推测出通式.10.下列说法:①若a为任意有理数,则总是正数;②方程是一元一次方程;③若ab>0,a+b<0,则a<0,b<0;④是分数;⑤单项式的系数是,次数是4.其中错误的有()A.1个B.2个C.3个D.4个【答案】C【解析】根据乘方的意义,可知a2≥0,因此a2+1>0,是正数,故①正确;根据一元一次方程是整式方程,故②不正确;根据ab>0,可知a、b同号,再由a+b<0,可知a <0、b<0,故③正确;由于π是无理数,故④不正确;单项式的系数是,故⑤正确.故选:C.11.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第10个“五边形数”应该为(),第2018个“五边形数”的奇偶性为()A.145;偶数B.145;奇数C.176;偶数D.176;奇数【答案】B【解析】【分析】仔细观察所给的图形,找出图形中蕴含的规律,根据所得的规律即可解答.【详解】∵第1个“五边形数”为1,1=×12﹣×1,第2个“五边形数”为5,5=×22﹣×2,第3个“五边形数”为12,12=×32﹣×3,第4个“五边形数”为22,22=×42﹣×4,第5个“五边形数”为35,35=×52﹣×5,…∴第n个“五边形数”为n2﹣n,将n=10代入,得第10个“五边形数”为×102﹣×10=145,当n=2018时,n2=3×2018×1009,是偶数,n=1009是奇数,所以n2﹣n是奇数.故选B.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.12.x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为()A.0 B.﹣1 C.﹣2 D.2【答案】D【解析】根据整式的加减法,去括号合并同类项可得x 2+ax ﹣y ﹣(bx 2﹣x +9y +3)= x 2+ax ﹣y ﹣bx 2+x -9y -3=(1-b )x 2+(a+1)x+(-1-9)y-3,由于值与x 的值无关,可得1-b=0,a+1=0,解得a=-1,b=1,因此可求-a+b=2. 故选:D.点睛:此题主要考查了整式的值与字母无关形的题目,解题关键是明确无关的主要特点是系数为0,然后通过整式的化简,让相关的系数为0即可求解.13.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a , b ()a b >,则()a b -等于( )A . 8B . 7C . 6D . 5 【答案】B【解析】设重叠部分面积为c ,(a-b )可理解为(a+c )-(b+c ),即两个正方形面积的差,所以a-b=(a+c )-(b+c )=16-9=7. 故选:A .点睛:本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.14.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A . (0,21008)B . (21008,21008)C . (21009,0)D . (21009,-21009) 【答案】B【解析】观察,发现:A(0,1)、A1(1,1),A2(2,0),A3(2,−2),A4(0,−4),A5(−4,−4),A6(−8,0),A7(−8,8),A8(0,16),A9(16,16)…,(24n,24n)(n为自然数).∴A8n+1∵2017=252×8+1,(2252×4,2252×4),即点A2017的坐标是(21008,21008).∴A2017故选B.15.观察下列单项式的排列规律:3x,,,,,,照这样排列第10个单项式应是()A.39x10B.-39 x10C.-43 x10D.43 x10【答案】B【解析】分析:第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为3,第2个单项式的系数的绝对值为7,那么第n个单项式的系数可用(4n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.详解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n,∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选B.点睛:本题考查了单项式.也考查了数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.16.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以元的价格出售,则按萱萱的建议商品卖出后,商店()A.赚钱B.赔钱C.不嫌不赔D.无法确定赚与赔【答案】D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利.【详解】由题意得,商品的总进价为,商品卖出后的销售额为,则,因此,当>时,该商店赚钱:当<时,该商店赔钱;当时,该商店不赔不赚.故答案为D.【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键.17.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为,小正方形的面积为4,若用,表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是()A. B.C. D.【答案】C【解析】A.因为正方形图案的边长为7,同时还可用来表示,故正确;B.因为正方形图案面积从整体看是,从组合来看,可以是,还可以是,所以有,,即,,所以,即;C.,故是错误的;D.由B可知.故选C.18.现有一列数:a1,a2,a3,a4,…,a n-1,a n(n为正整数),规定a1=2,a2- a1=4,,…,(n≥2),若,则n的值为( ).A.2015B.2016C.2017D.2018【答案】C【解析】分析:根据条件a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),求出a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,由此得出a n=n(n+1).根据=﹣化简+++…+=﹣,再解方程﹣=即可求出n的值.详解:∵a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),∴a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,…∴a n=n(n+1).∵+++…+=﹣+﹣+﹣+…+﹣=﹣=,∴=﹣,解得:n=2017.故选C.点睛:本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出a n=n(n+1).19.按一定规律排列的一列数:,,,,…,其中第6个数为( )A.B.C.D.【答案】D【解析】【分析】观察可知第n个数分母是n,分子是(n+1)2-1的算术平方根,据此即可得.【详解】根据一列数:,,,,…,可知第n个数分母是n,分子是(n+1)2-1的算术平方根,据此可知:第六个数是=,故答案为:.【点睛】本题考查了规律题——数字的变化类,仔细观察找出这列数的变化规律是解题的关键. 20.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为()A.2018B.2017C.55D.45【答案】D【解析】【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)10第三项系数为1+2+3+…+9=45.故选D.【点睛】本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.21.定义一种运算:,其中是正整数,且,表示非负实数的整数部分,例如,.若,则的值为()A.2015B.4C.2014D.5【答案】B【解析】【分析】根据新定义分别计算出, ,,,,,,,,,,由此可得a的值分别为1、2、3、4、5,且从序号1开始每5个一循环,由于,可得.【详解】,,,,,,,同理可得,,,,,,所以B选项是正确的.【点睛】本题主要考查规律型数字变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况,找出数字的变化规律是解题的关键.22.已知a-7b=-2,则4-2a+14b的值是( ).A.0B.2C.4D.8【答案】D【解析】运用添括号法则,将式子-2a+14b放入带的负号的括号中,即可得到-2(a-7b),再运用整体思想代入求值即可.解:4-2a+14b=4-2(a-7b)=4-2×(-2)=4+4=8.故选D.二、解答题23.已知多项式3+-8与多项式-+2+7的差中,不含有2、的项,求+的值.【答案】3【解析】试题分析:先求出两个多项式的差,再根据题意,不含有x、y,即含x、y项的系数为0,求出m、n的值,再代入求值即可.试题解析:3+-8-(-n+2+7)=3+-8+n-2y-7=(3+n) +(m-2)y-15因为不含,y项所以3+n=0n=-3m-2=0m=2+=(-3)2+2×(-3)=324.你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(1)由上面的规律我们可以大胆猜想,得到=________利用上面的结论,求(2)的值;(3)求的值.【答案】(1);(2);(3)【解析】分析:(1)根据已知算式得出规律,即可得出答案;(2)先变形,再根据规律得出答案即可;(3)先变形,再根据算式得出即可.详解:(1)(a﹣1)(a2018+a2017+a2016+…+a2+a+1)=a2019﹣1.故答案为:a2019﹣1;(2)22018+22017+22016+…+22+2+1=(2﹣1)×(22018+22017+22016+…+22+2+1)=22019﹣1故答案为:22019﹣1;(3)∵()()∴∴.点睛:本题考查了整式的混合运算的应用,能根据题目中的算式得出规律是解答此题的关键,难度适中.25.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【答案】(1)|a|=a,|b|=﹣b,|c|=﹣c;(2)﹣a<a<﹣c;(3)﹣2a.【解析】【分析】(1)根据图示可知c<b<0<a,由此根据绝对值的性质即可得答案;(2)根据数轴上点的位置以及绝对值进行比较即可得;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,由此进行化简即可得结果.【详解】(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|﹣|a﹣b|+|a+c|﹣|b﹣c|=0﹣a+b﹣a﹣c﹣b+c=﹣2a.【点睛】本题考查了数轴、绝对值的化简、有理数大小比较等,读懂数轴、熟练应用相关知识是解题的关键.26.如图,一个点从数轴上的原点开始,先向左移动2 cm到达点A再向左移动3 cm 到达点B,然后向右移动9 cm到达点C.(1)用1个单位长度表示1 cm,请你在数轴上表示出A、B、C三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =____cm ;(3)若点B 以每秒2 cm 的速度向左移动,同时A 、C 点分别以每秒1 cm 、4 cm 的速度向右移动,设移动时间为t 秒,试探索: CA -AB 的值是否会随着t 的变化而改变?请说明理由.【答案】(1)见解析;(2) 6cm;(3)不会.理由见解析. 【解析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断. 解:⑴如图所示:⑵CA=6cm⑶不变,理由如下: 当移动时间为 秒时,点A 、B 、C 分别表示的数为 、 、 则CA= , AB= ∵CA -AB= =3 ∴CA -AB 的值不会随着 的变化而改变“点睛”此题考查了整式的加减,熟练掌握运算法则是解题的关键.27.阅读材料:对于任何数,我们规定符号| a c的意义是| a c﹣bc例如: 1| 3=1×4﹣2×3=﹣2(1)按照这个规定,请你计算5| 2-(2)按照这个规定,请你计算当|x +y -4|+(xy+1)2=0时, 1| 1-【答案】(1) 52;(2)6【解析】试题分析:(1)由题意得,新运算是求对角线位置数积的差. (2)先求出x+y,xy 的值,再利用新运算,化简代入求值.解:(1)5|2- (-2)×6=52. (2)由|x+y -4|+(xy +1)2=0得x+y -4=0,∴xy +1=0. x+y =4,∴xy =-1.∴1|1-x +1+3xy +2y =2(x+y )+3xy +1=2×4+3×(-1)+1=6.28.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0. 求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值. 【答案】239【解析】试题分析:由同类项的定义可得m 的值,由非负数之和为0,非负数分别为0可得出x 、y 的值,代入所求式子中计算即可得到结果. 试题解析:∵﹣2ab m 与4ab 3是同类项,(x ﹣5)2+|y ﹣23|=0, ∴m=3,x=5,y=23, 则原式=2x 2﹣6y 2﹣2x 2+3y 2+3m=﹣3y 2+3m=﹣43+9=239.29.(1)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b )其中b=(2)已知代数式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣1的值与x 的取值无关,请求出代数式a 3﹣2b 22+3b 2的值.【答案】(1)原式=﹣8ab 2=(2)原式=﹣9. 【解析】试题分析:(1)去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)合并同类项得到最简结果,由结果与x 的值无关确定出a 与b 的值,代入原式计算即可得到结果.试题解析:解:(1)原式=15a 2b ﹣5ab 2﹣3ab 2﹣15a 2b =﹣8ab 2当a b == (2)原式=(2﹣2b )x 2+(a +3)x ﹣6y +5, 由结果与x 的值无关,得到:2﹣2b =0,a +3=0 解得:a =﹣3,b =1. 则原式=﹣9﹣2﹣1+3=﹣9.点睛:本题考查了整式的加减-化简求值,熟练掌握运算法则是解答本题的关键.30.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求多项式2m2n+10m-4n+2-2m2n-4m+2n的值.【答案】4【解析】【分析】已知多项式合并后,根据结果不含二次项求出m与n的值,原式合并得到最简结果,将m与n的值代入计算即可求出值.【详解】6mx2+4nxy+2x+2xy-x2+y+4=(6m-1)x2+(4n+2)xy+2x+y+4,∵该多项式不含二次项,∴6m-1=0,4n+2=0,解得:m=,n=,∴2m2n+10m-4n+2-2m2n-4m+2n=6m-2n+2=6×-2×(-)+2=4.【点睛】本题考查了整式的加减-化简求值以及多项式的知识,熟练掌握运算法则是解本题的关键.31.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)【答案】(1),,(2)【解析】试题分析:(1)经过观察、分析可得:;(2)由(1)中所得规律将(2)中每个形如“”的式子分解为“”的形式,再利用乘法的结合律把“互为倒数的两个数结合在一起先乘”就可计算出结果了.试题解析:(1)∵,,∴;(2)原式====.点睛:求解本题有两个关键点:(1)观察、分析所给的式子,找到规律,能把化成的形式;(2)由(1)中所得规律把原式改写为:的形式后,能够发现除了第一个因数“”和最后一个因数“”外,从第二个因数开始,依次每两个因数都是互为倒数的,这样就可利用乘法的结合律简便的算出结果了.32.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)⑵当b=1时,求窗户能射进阳光的面积是多少?(取π≈3)⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?【答案】(1(2(3)更大了,【解析】试题分析:(122;射进阳光的面积=长方形面积-装饰物面积;将a b=1代入ab2,化简即可;(3)先求出图2中能射进阳光的面积,再减去ab2即可.试题解析:(122, ab2.(2)ab2(3)更大了,窗帘的面积:π2,(ab2)-22故答案为:2(3). 更大了,2.33.化简与求值:(1) 有理数a,b,c在数轴上的位置如图所示,求的値.(2) 已知:,若,求的值.【答案】(1);(2) 20【解析】试题分析:(1)根据a、b、c在数轴的位置,先去绝对值,然后合并求解;(2)原式去括号合并得到最简结果,代入x与y的值,计算即可求出值.试题解析:(1)解:由图可知,c<a<b,|b|<|a|<|c|,原式=(a﹣c)+(a﹣b)=a-c+a-b=2a-b-c.(2)A-2B===.当a=2,b=-1时,则原式==4+16=20.点睛:本题考查了整式的加减和绝对值的性质,解答本题的关键是掌握绝对值的化简和合并同类项法则.34.已知,,求的值,其中,.【答案】-4.【解析】分析:先把式子化为最简,再把,代入后,去括号合并同类项化为最简,最后把x=2,y=-1代入求值即可.详解:,,,,原式 , ,把 , 代入得: .点睛:本题考查了整式的加减-化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.35.若,求多项式.【答案】4a 2b+2ab 2,原式=0【解析】试题分析:根据非负数的性质得出a 、b 的值,整式化简后,代入a 、b 的值即可得出结论.试题解析:解:由非负数的性质得:2a -4=0,b +4=0,解得:a =2,b =-4. 原式= 222222234236a b ab a b ab ab a b +-+-+=2242a b ab +当a =2,b =-4时,原式=()()22424224⨯⨯-+⨯⨯-=-64+64=0.36.学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.图1 图2(1)如图1是由边长分别为a ,b 的正方形和长为a 、宽为b 的长方形拼成的大长方形,由图1,可得等式:(a +2b)(a +b)= ;(2)①如图2是由几个小正方形和小长方形拼成的一个边长为a +b +c 的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为 ;②已知a +b +c =11,ab +bc +ac =38,利用①中所得到的等式,求代数式a 2+b 2+c 2的值.【答案】(1)a 2+3ab +2b 2;(2)① (a +b +c)2=a 2+b 2+c 2+2ab +2bc +2ac ;②45 【解析】试题分析:(1)图1是由一个边长为a 的正方形、一个边长为b 的正方形和三个长为a ,宽为b 的长方形组成,所以面积为a 2+3ab +2b 2; (2)①试题解析:图2是由三个边长分别为a 、b 、c 的正方形、两个边长分别为a 、b 的长方形,两个边长分别为a、c的长方形,两个边长分别为b、c的长方形组成,所以等式为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②将①的等式变形为(a+b+c)2=a2+b2+c2+2(ab+bc+ac),代入数值即可.(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②解:由①,得(a+b+c)2=a2+b2+c2+2(ab+bc+ac).因为a+b+c=11,ab+bc+ac=38.所以112=a2+b2+c2+2×38.所以a2+b2+c2=45.故答案为:(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②45.37.已知x1,x2,x3,…x2016都是不等于0的有理数,若y1y1的值.当x1>0时,y1;当x1<0时,y1﹣1,所以y1=±1(1)若y2y2的值(2)若y3y3的值为;(3)由以上探究猜想,y2016共有个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于.【答案】(1) ±2或0;(2) ±1或±3;(3)最大值与最小值的差为4032.【解析】(1,,讨论计算即可.(2)方法同上.(3)探究规律后,利用规律解决问题即可.解:(1,=±1,∴y2或0.(2,,=±1,∴y3=±1或±3.故答案为±1或±3,(3)由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.点睛:本题主要考查找规律.解决此类问题的关键要通过观察分析得出其反映的规律,然后进行归纳即可.38.已知实数a,b满足:,且,求(2017a+++【答案】2018.【解析】试题分析:利用二次根式的定义,求出a,b的值,再利用裂项法求和计算.试题解析:∵20a-≥,2a-≥,∴2a=,21b=,∴0b>,∴1b=,2a=,(2017a+++12018++⨯112018++-点睛:列项法的使用注意:推广:39.已知分式 (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除. 详解:(1)A (2)变小了,理由如下:.∵a >2 ∴a -2>0,a+1>00,即A >B(3) 根据题意, 21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 , 即:符合条件的所有a 值的和为11. 点睛:比较大小的方法:(1)作差比较法: 0a b a b ->>; 0a b a b -<⇒< (a b ,可以是数,也可以是(2)作商比较法:若a>0,b>0a>b;若a<0,b<0a<b.40.有一道题目,是一个多项式减去,小强误当成了加法计算,结果得到,正确的结果应该是多少?【答案】.【解析】分析:根据题意求出原来的多项式,列出正确的算式,计算即可得到结果.详解:这个多项式为:所以正确的结果为:.点睛:本题考查了整式的加减运算,熟练掌握运算法则是解本题的关键.41.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.【答案】a﹣c.【解析】试题分析:先根据题意得出a、b、c的取值范围,再得出a+b,a﹣b<,a+c 的正负性,根据绝对值的性质求出各式的绝对值,化简合并即可.试题解析:解:根据题意得:﹣2<c<0,0<a<1,2<b<3,∴a+b>0,a﹣b<0,a+c<0,∴原式=a+b﹣[﹣(a﹣b)]+[﹣(a+c)]=a+b+a﹣b﹣a﹣c=a﹣c.点睛:本题考查了数轴、绝对值以及整式的加减;熟练掌握绝对值的性质得出各式的绝对值是解决问题的关键.42.如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q 运动时间为t 秒.请用含t 的代数式表示:点P 到点A 的距离PA= ,点Q 到点B 的距离QB= ;点P 与点Q 之间的距离 PQ= .【答案】(1)﹣3, 9;(2)1;(3)()()304{ 1248t t t ≤≤<≤ ;8﹣t (0≤t≤8); ()()()4202{2424 848t t t t t t -≤≤-<≤-<≤ .【解析】试题分析:(1)由|2a+6|+|b ﹣9|=0结合“任何一个代数式的绝对值都是非负数”和“两个非负数的和为0,则这两个数都为0”即可求出a 、b 的值;(2)由(1)中的结果可知,AB=12,结合BC=2AC 即可解得BC=8,再结合OB=9即可得到OC=1,且点C 在原点的右边,由此即可得到点C 表示的数为1;(3)由题意结合AB=12,BC=8可知,点P 的运动时间为4秒,点Q 的运动时间为8秒;由此可得点P 到A 的距离需分04t ≤≤和48t <≤两种情况讨论:点Q 到B 的距离为:8-t ;由于在第2秒时,点P 与点Q 重合,第4秒时,点P 得到达终点,因此点P 到点Q 的距离需分02t ≤≤, 24t <≤及48t <≤三种情况讨论. 试题解析:(1)∵|2a+6|+|b ﹣9|=0∴2a+6=0,b ﹣9=0,解得a=﹣3,b=9, ∴点A 表示的数为﹣3,点B 表示的数为9; (2)AB=9﹣(﹣3)=12, ∵BC=2AC , ∴BC=8,AC=4, ∴OC=1,∴C 点表示的数为1;(3)由题意可得:①点P 到点A 的距离PA =()()304{ 1248t t t ≤≤<≤;②点Q 到点B 的距离QB=8﹣t (0≤t≤8);③当0≤t≤ 时,点P 与点Q 之间的距离 PQ=t+4﹣3t=4﹣2t , 当2<t≤4时,点P 与点Q 之间的距离 PQ=3t ﹣t ﹣4=2t ﹣4, 当4<t≤8时,点P 与点Q 之间的距离 PQ=8﹣t.即PQ =()()()4202{2424 848t t t t t t -≤≤-<≤-<≤.点睛:(1)任何代数式的绝对值都是非负数;(2)两个非负数的和为0,则这两个数都为0;(3)在本题第3小题用含“t ”的式子表达P 、Q 间的距离PQ 时,需注意两个动点运动的最长时间为8秒,而点P 在第2秒时追上点Q ,在第4秒时点P 到达终点B 停止运动,点Q 在第8秒时到达终点B ,因此需分三个时间段,即:022448t t t ≤≤<≤<≤,,分别进行讨论.43.先化简,再求值:,其中(2x +4)2+|4﹣6y |=0.【答案】x+y 2,.【解析】试题分析:先去括号,然后再合并同类项,再根据非负数的性质求出x 、y 的值代入进行计算即可.试题解析:原式=x ﹣2x+4x+y 2﹣x+y 2=x+y 2, ∵(2x+4)2+|4﹣6y|=0, ∴x=﹣2,y=, 则原式=﹣1 .【点睛】本题考查了整式的加减运算、非负数的性质等,熟练掌握运算法则是解题的关键.44.已知:关于x 、y 的多项式2x ax y b +-+ 与多项式2363bx x y -+-的和的值与字母x 的取值无关,求代数式.【答案】12【解析】试题分析:关于x 、y 的多项式2x ax y b +-+ 与多项式2363bx x y -+-的和的值与字母x 的取值无关,则将两个代数式相加,合并同类项含有x 的单项式的系数为0,所以得到b 10+=, a-30=, b -1=, a 3=.先将代数式再将a ,b 的值代入即可求得值为12.、由题知: 22x 363ax y b bx x y +-++-+-=()2(b 1)x 353a x y b ++-++-……2分其和的值与字母x 无关 则b 10+=, a-30= 则b -1=, a 3=……2分原式=()222223a 63423ab b a a ab b ⎡⎤-+--+-⎣⎦=222223a 63423ab b a a ab b ⎡⎤-+---+⎣⎦ =()22223a 63323ab b a ab b -+--+=22223a 63323ab b a ab b -+-+- =-4ab当a 3=, b -1= 时,原式=-43(-1)12⨯⨯=45.初一年级学生在 名教师的带领下去公园秋游,公园的门票为每人 元.现有两种优惠方案,甲方案:带队教师免费,学生按 折收费;乙方案:师生都 折收费. 若有 名学生,用代数式表示两种优惠方案各需多少元? 当 时,采用哪种方案优惠? 当 时,采用哪种方案优惠?【答案】(1) 甲16m, 乙: ;(2) 甲方案优惠,理由见解析;(3) 乙方案优惠,理由见解析 【解析】 【分析】根据题意确定两种优惠方案所需的钱数; 把 代入计算,比较即可;把 代入计算,比较即可得到答案. 【详解】解: 甲方案需要的钱数为: , 乙方案需要的钱数为: ; 当 时,乙方案: (元), 甲方案: (元), ∵ , ∴甲方案优惠;。

整式加减法练习题的解答详解

整式加减法练习题的解答详解

整式加减法练习题的解答详解整式加减法是数学中基础的运算方法之一,它在代数表达式的计算中扮演着重要的角色。

本文将详细解答一系列整式加减法的练习题,并对每一步解答进行详细的解释和讲解。

首先,我们来解答第一题。

题目:计算下列整式的和:2a - 3b + 4c - 5d + 6e + 7f - 8g解答:按照整式加法的规则,我们将同类项相加即可。

同类项指的是具有相同字母部分和相同指数部分的项。

将2a和6e相加,得到2a + 6e;将-3b和7f相加,得到-3b + 7f;将4c和-8g相加,得到4c - 8g;将-5d保持不改变。

最终,将得到的各个结果相加,得到最终的答案为:2a + 6e - 3b + 7f + 4c - 8g - 5d。

接下来,我们解答第二题。

题目:计算下列整式的差:5x - 3y + 7z - 2x + 4y - 6z解答:对于整式的减法,我们可以将减法转化为加法,即将被减的整式取负数,然后按照整式加法的规则进行计算。

将5x - 3y + 7z转化为5x + (-3y) + 7z;将2x - 4y + 6z转化为2x + (-4y) + 6z。

然后,按照整式加法的规则进行相加,得到:(5x + (-2x)) + ((-3y) + (-4y)) + (7z + 6z);化简得到:3x - 7y + 13z;所以,原题的差为3x - 7y + 13z。

接下来,我们解答第三题。

题目:计算下列整式的和:3x - 2y + 4z + 5x - 6y + 7z解答:同样按照整式加法的规则,将同类项相加。

将3x和5x相加,得到3x + 5x;将-2y和-6y相加,得到-2y - 6y;将4z和7z相加,得到4z + 7z。

最终,将得到的各个结果相加,得到最终的答案为:3x + 5x - 2y -6y + 4z + 7z。

通过以上解答可知,对于整式加减法练习题,我们只需按照整式加法的规则将同类项相加即可求解。

初中数学同步 7年级上册 第二章《整式的加减》单元测试卷(120分制)(教师版含解析)

初中数学同步 7年级上册 第二章《整式的加减》单元测试卷(120分制)(教师版含解析)

人教版七年级上册第2章《整式的加减》单元测试卷满分120分建议时间90分钟一.选择题(共10小题,满分30分,每小题3分)1.下列代数式书写正确的是()A.a4B.m÷n C.D.x(b+c)【解答】解:A.a4的正确写法是4a,故不符合题意;B.m÷n的正确写法是,故不符合题意;C.1x的正确写法是x,故不符合题意;D.x(b+c)书写正确,符合题意.故选:D.2.在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有() A.4个B.5个C.6个D.7个【解答】解:x2,3ab,x+5,﹣4,,a2b﹣a是整式,故选:C.3.若单项式2xy3﹣b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3【解答】解:因为单项式2xy3﹣b是三次单项式,所以3﹣b=2,所以b=1.故选:B.4.下列各组整式中,是同类项的有()A.3m3n2与﹣n3m2B.yx与3xyC.53与a3D.2xy与3yz2【解答】解:A、相同字母的指数不同,不是同类项,故此选项不符合题意;B、符合同类项的定义,是同类项,故此选项符合题意;C、所含字母不同,不是同类项,故此选项不符合题意;D、所含字母不同,不是同类项,故此选项不符合题意.5.下列运算中,正确的是()A.2a+3b=5ab B.2a2+3a2=5a2C.3a2﹣2a2=1D.2a2b﹣2ab2=0【解答】解:A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项符合题意;C.3a2﹣2a2=a2,故本选项不合题意;D.2a2b与﹣2ab2不是同类项,所以不能合并,故本选项不合题意.故选:B.6.下列说法中,正确的是()A.单项式xy2的系数是3B.单项式﹣5x2的次数为﹣5C.多项式x2+2x+18是二次三项式D.多项式x2+y2﹣1的常数项是1【解答】解:A、单项式xy2的系数是,故本选项说法错误;B、单项式﹣5x2的次数是2,故本选项说法错误;C、多项式x2+2x+18是二次三项式,故本选项正确;D、多项式x2+y2﹣1的常数项是﹣1,故本选项说法错误;故选:C.7.将(a+1)﹣(﹣b+c)去括号,应该等于()A.a+1﹣b﹣c B.a+1﹣b+c C.a+1+b+c D.a+1+b﹣c 【解答】解:(a+1)﹣(﹣b+c)=a+1+b﹣c,故选:D.8.若与是同类项,则a+b=()A.5B.1C.﹣5D.4【解答】解:∵x a y3与x2y b是同类项,∴a=2,b=3,∴a+b=2+3=5.9.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式【解答】解:A、B都为五次多项式,则它们的和的最高次项必定不高于5.故选:C.10.长方形的一边为2a﹣3b,另一边比它小a﹣b,则此长方形的另一边为() A.3a﹣4b B.3a﹣2b C.a﹣2b D.a﹣4b【解答】解:∵长方形的一边为2a﹣3b,另一边比它小a﹣b,∴此长方形的另一边为:2a﹣3b﹣(a﹣b)=2a﹣3b﹣a+b=a﹣2b.故选:C.二.填空题(共7小题,满分28分,每小题4分)11.﹣的系数是,次数是3.【解答】解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.12.“比x的2倍小3的数”用式子表示是2x﹣3.【解答】解:根据题意列得:2x﹣3.故答案为:2x﹣3.13.多项式x+7是关于x的二次三项式,则m=2.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.14.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.15.把多项式3x﹣2+x2+4x3按x的降幂排列:4x3+x2+3x﹣2.【解答】解:把多项式3x﹣2+x2+4x3按x的降幂排列是4x3+x2+3x﹣2,故答案为:4x3+x2+3x﹣2.16.当k=3时,代数式x2﹣(k﹣3)xy﹣8不含xy项.【解答】解:∵代数式x2﹣(k﹣3)xy﹣8不含xy项,∴k﹣3=0,解得:k=3.故答案为:3.17.观察下列单项式:0,3x2,8x3,15x4,24x5…,按此规律写出第10个单项式是99x10.【解答】解:所给单项式分别是0,3x2,8x3,15x4,24x5…,则第n个单项式为:(n2﹣1)x n.故第10个单项式为:(102﹣1)x10=99x10.故答案为:99x10.三.解答题(共7小题,满分62分)18.(8分)化简(1)x﹣(6x﹣2y)+(2x﹣6y)(2)4(﹣a2+2a﹣3)﹣2(4a﹣1)﹣1.【解答】解:(1)原式=x﹣6x+2y+2x﹣6y=﹣3x﹣4y;(2)原式=﹣4a2+8a﹣12﹣8a+2﹣1=﹣4a2﹣11.19.(8分)已知k=﹣,求代数式2(k2﹣k﹣1)﹣(k2﹣k﹣1)+3(k2﹣k﹣1)的值.【解答】解:2(k2﹣k﹣1)﹣(k2﹣k﹣1)+3(k2﹣k﹣1)=2k2﹣2k﹣2﹣k2+k+1+3k2﹣3k﹣3.=4k2﹣4k﹣4.∵k=﹣,∴原式==﹣1.20.(8分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.21.(8分)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.【解答】解:(1)2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=9xy﹣9y2+5x2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,则x=1或3,y=2,当x=1,y=2时,2B﹣A=18﹣36+5=﹣13,当x=3,y=2时,2B﹣A=54﹣36+45=63.22.(10分)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简2A﹣3B;(2)当x+y=,xy=﹣1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,∴2A﹣3B=2(3x2﹣x+2y﹣4xy)﹣3(2x2﹣3x﹣y+xy)=6x2﹣2x+4y﹣8xy﹣6x2+9x+3y﹣3xy=7x+7y﹣11xy;(2)当x+y=,xy=﹣1时,2A﹣3B=7x+7y﹣11xy=7(x+y)﹣11xy=7×﹣11×(﹣1)=6+11=17;(3)∵2A﹣3B=7x+7y﹣11xy=7x+(7﹣11x)y,∴若2A﹣3B的值与y的取值无关,则7﹣11x=0,∴x=,∴2A﹣3B=7×+0=.23.(10分)老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x2﹣3x﹣1,则甲同学给出a、b的值分别是a=6,b=0;(2)乙同学给出了a=5,b=﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.【解答】解:(1)(ax2+bx﹣1)﹣(4x2+3x)=ax2+bx﹣1﹣4x2﹣3x=(a﹣4)x2+(b﹣3)x﹣1,∵甲同学给出了一组数据,最后计算的结果为2x2﹣3x﹣1,∴a﹣4=2,b﹣3=﹣3,解得a=6,b=0,故答案为:6,0;(2)由(1)(ax2+bx﹣1)﹣(4x2+3x)化简的结果是(a﹣4)x2+(b﹣3)x﹣1,∴当a=5,b=﹣1时,原式=(5﹣4)x2+(﹣1﹣3)x﹣1=x2﹣4x﹣1,即按照乙同学给出的数值化简整式结果是x2﹣4x﹣1;(3)由(1)(ax2+bx﹣1)﹣(4x2+3x)化简的结果是(a﹣4)x2+(b﹣3)x﹣1,∵丙同学给出一组数,计算的最后结果与x的取值无关,∴原式=﹣1,即丙同学的计算结果是﹣1.24.(10分)一个多位数整数,a代表这个整数分出来的左边数,b代表这个整数分出来的右边数.其中a,b 两部分数位相同,若正好为剩下的中间数,则这个多位数就叫平衡数,例如:357满足=5,233241满足.(1)判断:468是平衡数;314567不是平衡数(填“是”或“不是”);(2)证明任意一个三位平衡数一定能被3整除;(3)若一个三位平衡数后两位数减去百位数字之差为9的倍数,且这个平衡数为偶数,求这个三位数.【解答】解:(1)∵=6,∴468是平衡数;∵=49≠45,∴314567不是平衡数;故答案为:是;不是;(2)证明:设这个三位平衡数为:100a+10•+b,∵100a+10•+b=100a+5(a+b)+b=100a+5a+5b+b=105a+6b=3(35a+2b),∴100a+10•+b一定能被3整除,即任意一个三位平衡数一定能被3整除;(3)设这个三位平衡数为100x+10()+y,∴10()+y﹣x=9k,∴6y+4x=9k,∴6y+4x满足被9整除,又∵是整数,∴x+y是2的倍数,∵三位数是偶数,∴y是偶数,∵0<x≤9,0≤y≤9,由于y为偶数,则y可以取0,2,4,6,8,y=0时,x无满足条件值;y=2时,x=6满足;y=4时,x无满足条件值;y=6时,x无满足条件值;y=8时,x=6满足,综上所述,三位数为642,678.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学《整式的加减》同步练习题及答题思路
解析
初一数学《整式的加减》同步练习题及答题思路解析
一.选择
1.化简(-2x+y)+3(x-2y)等于()
A.-5x+5y
B.-5x-y
C.x-5y
D.-x-y
2.多项式-a2-1与3a2-2a+1的和为()
A.2a2-2a
B.4a2-2a+2
C.4a2-2a-2
D.2a2+2a
3.在5a+(________)=5a-2a2-b中,括号内应填()A.2a2+bB.2a2-bC.-2a2+bD.-2a2-b
4.已知长方形的长为(2b-a),宽比长少b,则这个长方形的周长是()
A、3b-2a
B、3b+2a
C、6b-4a
D、6b+4a
5.A=x2-2x-3,b=2x2-3x+4,则A-B等于()
A.x2-x-1
B.-x2+x+1
C.3x2-5x-7
D.-x2+x-7
二.填空
1.a2+7-2(10a-a2)=____________
2.一个多项式减去a2-b2等于a2+b2+c2,则原多项式是.
3.已知某三角形的一条边长为m+n,另一条边长比这条边长大m-3,第三条边长等于2n-m,求这个三角形的周长为________
5.粗心的周华在做多项式a3+2a+3加一个单项式时,误做成了减法,得到结果为a3+3,则要加的'单项式为_______,正确的结果应是_________.
三.计算
1.求多项式3x2+y2-5xy与-4xy-y2+7x2的和
2.计算:
⑴(3a2+2a+1)-(2a2+3a-5)
⑵已知A=x2-5x,B=x2-10x+5,求A+2B的值
3.先化简,再求值
(1)4(y+1)+4(1-x)-4(x+y),其中,x=,y=。

(2)4a2b-[3ab2-2(3a2b-1)],其中a=-0.1,b=1。

4.小红家一月份用电(2a-b)度,二月份比一月份多用(a+b)度,三月份比一月份的2倍少b度,则小家第一季度共用多少度电?当a=30,b=2时,小红家第一季度一共用了多少度电?
参考答案
一.选择
1.C
2.A
3.D
4.C
5.D
二.填空
1.3a2-20a+7
2.2a2+c2
3.2m+4n-3
4.x+y
5.2a;a3+4a+3
三.解答:
1.(3x2+y2-5xy)+(-4xy-y2+7x2)=10x2-9xy
2.⑴a2-a+6⑵(x2-5x)+2(x2-10x+5)=3x2-25x+10
3.(1)8-8x,6(2)10a2b-3ab2-2,-1.6
4.(2a-b)+〔(2a-b)+(a+b)〕+〔2(2a-b)-b〕=9a-4b
当a=30,b=2时,9a-4b=262。

相关文档
最新文档