Action potentials:动作电位 28页PPT
合集下载
Action potentials:动作电位28页PPT
Diffusional forces acting on an ion
Given a mass of gas in thermal equilibrium we may measure its pressure (p) temperature (T) and volume (V). Boyle demonstrated that pV/T is a constant Volume occupied is proportional to the mass of gas, we can write the above constant as µR where µ is the mass in moles and R is a constant. R = 8.134 joule/mole K
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #4
At a constant temperature this may be written as Equation #5
Given a mass of gas in thermal equilibrium we may measure its pressure (p) temperature (T) and volume (V). Boyle demonstrated that pV/T is a constant Volume occupied is proportional to the mass of gas, we can write the above constant as µR where µ is the mass in moles and R is a constant. R = 8.134 joule/mole K
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #4
At a constant temperature this may be written as Equation #5
生理动作电位.PPT
29
组织兴奋后兴奋性的变化:
1. 绝 对 不 应 期 (absolute refractory period,ARP) 细胞 膜上的Na+通道处于失活状态 ,兴奋性降低到零。 2.相对不应期(relative refractory period),RRP)Na+通道开始逐 渐复活:但处于静息状态的 Na+ 通 道 数 目 及 其 开 放 能 力 尚未恢复到正常水平,兴奋 性低于正常。
膜内负电位增大——超极化
4
去极化: 细胞受刺激时,膜内电
位 短 时 内 由 -90mV 上 升 到 + 30mV,构成动作电位曲线的
+30mv 上升支。其中,超过零电位
至去极相顶端的电位数值称
0mv 为超射值。
-90mv
5
动作电位的形成机制
去极化
细胞受到有效刺激→Na+通道开 放→Na+顺电-化学梯度内流→膜外 电位↓、膜内电位↑(去极化) → 阈电 位→内负外正变成内正外负→电位差 成 为 Na+ 内 流 阻 力 →对 抗 Na+ 内 流 →Na+内流的动力 (浓度差)与阻力 (电位差)相等→Na+的平衡电位。
1 在正常海水中 2 在低Na+海水中 3 正常海水冲洗后
14
证实动作电位产生机制的依据
➢采用Na+通道特异性阻断剂河豚毒等后,动作电 位不再产生。 ➢用可膜片钳观察到动作电位与Na+通道开放高度 相关。
15
利用电压钳技术记录的枪乌 贼大神经轴突的膜电流及其
离子成分的分析
A:钳制电压 B:记录的内向电流和外向电流 C:河豚毒(TTX)阻断了Na+内向电 流 D:四乙铵(TEA)阻断了K+外向电流 (引自Kuffler等,1984)
组织兴奋后兴奋性的变化:
1. 绝 对 不 应 期 (absolute refractory period,ARP) 细胞 膜上的Na+通道处于失活状态 ,兴奋性降低到零。 2.相对不应期(relative refractory period),RRP)Na+通道开始逐 渐复活:但处于静息状态的 Na+ 通 道 数 目 及 其 开 放 能 力 尚未恢复到正常水平,兴奋 性低于正常。
膜内负电位增大——超极化
4
去极化: 细胞受刺激时,膜内电
位 短 时 内 由 -90mV 上 升 到 + 30mV,构成动作电位曲线的
+30mv 上升支。其中,超过零电位
至去极相顶端的电位数值称
0mv 为超射值。
-90mv
5
动作电位的形成机制
去极化
细胞受到有效刺激→Na+通道开 放→Na+顺电-化学梯度内流→膜外 电位↓、膜内电位↑(去极化) → 阈电 位→内负外正变成内正外负→电位差 成 为 Na+ 内 流 阻 力 →对 抗 Na+ 内 流 →Na+内流的动力 (浓度差)与阻力 (电位差)相等→Na+的平衡电位。
1 在正常海水中 2 在低Na+海水中 3 正常海水冲洗后
14
证实动作电位产生机制的依据
➢采用Na+通道特异性阻断剂河豚毒等后,动作电 位不再产生。 ➢用可膜片钳观察到动作电位与Na+通道开放高度 相关。
15
利用电压钳技术记录的枪乌 贼大神经轴突的膜电流及其
离子成分的分析
A:钳制电压 B:记录的内向电流和外向电流 C:河豚毒(TTX)阻断了Na+内向电 流 D:四乙铵(TEA)阻断了K+外向电流 (引自Kuffler等,1984)
action potential 动作电位
电鳗为什么能放电? 电鳗为什么能放电?
为了吃美味不要命!
河豚毒素( 河豚毒素(tetrodotoxin,TTX)
• 参考文献
• • Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates Biswa Sengupta, Martin Stemmler, Simon B. Laughlin, and Jeremy E. Niven Sodium entry during action potentials of mammalian central neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons Brett C. Carter and Bruce P. Bean Action potential initiation and propagation: upstream influences on neurotransmission Geraldine J. Kress and Steven Mennerick Simulation of developmental changes in action potentials with ventricular cell models Hitomi Itoh, Yasuhiro Naito, and Masaru Tomita Neuronal Competition for Action Potential Initiation Sites in a Circuit Controlling Simple Learning Georgina E. Cruz, Christie L. Sahley, and Kenneth J. Muller Action potential throughput in aged rat hippocampal neurons: regulation by selective forms of hyperpolarization John C. Gant and Olivier Thibault Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels Michael R Kasten, Bernardo Rudy, and Matthew P Anderson
Action potentials:动作电位
Equation #7 G = Gdiff + Gelect = RTln(c) + zFE
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
-t/v
deltaVm(t) = Im.R(1-e )
20
When we consider the passive electrical environment of axons or dendrites it is useful to
think of them as composite structures
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
-t/v
deltaVm(t) = Im.R(1-e )
20
When we consider the passive electrical environment of axons or dendrites it is useful to
think of them as composite structures
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
动作电位Actionpotential
发放动作电位的速率是有限的,最大发放频率为?
动作电位Actionpotential
5
5
二、动作电位产生的理论模型 (AP in theory)
欧姆定律 I=V/R=gV
I电流与流过通道 的粒子数目和驱 动力有关。
g电导 与细胞膜上开放 的通道数目有关
动作电位Actionpotential
6
6
1、膜电流和膜电导
Iion = gion(Vm-Eion)
动作电位Actionpotential
9
9
2. 动作电位过程中的离子进出 (Ins and Outs of AP)
静息状态下,钠离子具有很大的驱动力 Vm-ENa=-80 -62=-142mV。 膜对离子的通透性由钾离子变为钠离子,膜电位可以在 极短的时间内逆转。
A、10mV去极化
B、60mV去极化,分别诱导出的漏电流Ileak 和电容电流Ic,内向电流,外向电流 C、去掉漏电流和电容电流后,在TTX和
TEA分别作用下,得到钾电流和钠电流。
动作电位Actionpotential
15 15
电压门控钠通道
(Voltage-gated sodium channel)
动作电位的下降相:
假如钠通道快速关闭,钾通道处于开放状态,膜对离子通透由钠离子 变为钾离子。钾离子流出胞外,膜内变负,直至钾离子平衡电位。
如果钾离子通道在动作电位下降相中钾电导增大,则动作电位的时程 就会缩短。
动作电位Actionpotential
12 12
综上所述,动作电位理论上可以认为:
膜电位去极化到阈值,gNa瞬时增大,钠离子进入膜内,神经元去极化; gNa增加时间短暂,在下降相中gK瞬时增加,钾离子快速外流,膜电位复 极化。
Action potentials:动作电位
Equation #6
Gdiff = RTln(c)
7
Electrical forces acting on an ion
According to Faraday the charge on a mole of material is 96483 z Coulombs where z is the charge of each atom or ion (the valency of an ion). This is the Faraday constant or F.
23
26
27
Diffusional forces acting on an ion
Given a mass of gas in thermal equilibrium we may measure its pressure (p) temperature (T) and volume (V). Boyle demonstrated that pV/T is a constant Volume occupied is proportional to the mass of gas, we can write the above constant as µR where µ is the mass in moles and R is a constant. R = 8.134 joule/mole K
Equation #4
At a constant temperature this may be written as Equation #5
We can use this result to describe the free energy of diffusion of a particular ion in our cell or outside of the cell as follows:
2.4-2.5 动作电位及产生机制-PPT
离子的电化学驱动力
电化学驱动力=Em-Ex
华中科技大学同济医学院生理学系
1
电压钳(voltage clamp)实验装置
细胞膜对离子通透性的定量研究和测量
细胞膜对离子通透性的定量研究和测量
内向电流是Na离子所介导
华中科技大学同济医学院生理学系
细胞膜对离子通透性的定量研究和测量
外向电流是由钾离子所介导
2
钠电导的电压和时间依赖性特点
钠通道的功能状态
钾电导的电压和时间依赖性特点
动作电位期间钠电导与钾电导的变化情况
华中科技大学同济医学院生理学系
3
动作电位与产生机制: 离子电化学驱动力的变化 离子通道电导的变化特点
动作电位(action potential)
概念: 细胞在静息电位基础上受到有效刺激后产 生的迅速的可向远处传播的膜电位波动。
动作电位(action potential)
动作电位
动作电位
锋电位(spike potential)
+30 超
射
mV)
位
升
降
支
支
-55
后去极化电位 阈电位
-70
时间(ms)
后电位 后超级化电位 (after potential)
动作电位的产生机制
动作电位期间的膜电位波动是由离子的跨膜移动形成的。 I= ⇒I=U×G 离子跨细胞膜流动的两个必要条件:
存在离子跨细胞膜移动的电化学驱动力 细胞膜对离子有通透性,即电导特性
动作电位
2011-2-28
J.Yang Dept.of Physiology YAUMC
4
2011-2-28
J.Yang Dept.of Physiology YAUMC
5
4.动作电位的特点 .
(1)全或无 ) 阈值: 阈值:最小刺激强度 (2)不衰减性传播 )
2011-2-28
J.Yang Dept.of Physiology YAUMC
25
(三)动作电位的传导
局部电流学说( 局部电流学说(local circuit theory) ) 跳跃式传导( 跳跃式传导(saltatory conduction) ) 所谓动作电位的传导, 所谓动作电位的传导,实际上是已兴奋的膜 部分通过局部电流“刺激” 部分通过局部电流“刺激”了相邻的未兴奋 的膜部分,使之出现动作电位,这样的过程 的膜部分,使之出现动作电位, 在膜表面连续进行下去, 在膜表面连续进行下去,就表现为兴奋在整 个细胞的传导。 个细胞的传导。 动作电位的传导速度是可以的测定的。 动作电位的传导速度是可以的测定的
三、动作电位(action potential,AP) 动作电位 ,
(一)细胞的动作电位 一 细胞的动作电位 1.动作电位的概念 指可兴奋细胞在受到 .动作电位的概念:指可兴奋细胞在受到 一定强度的刺激后, 一定强度的刺激后,膜两侧的电位在原 有静息电位的基础上发生的一次快速的 倒转和复原。 倒转和复原。 这种变化在受刺激部位产生后沿着细胞 膜向周围传播, 膜向周围传播 , 直至整个细胞膜都依次 经历这样一次膜电位的波动。 经历这样一次膜电位的波动。
J.Yang Dept.of Physiology YAUMC
15
2011-2-28
J.Yang Dept.of Physiology YAUMC
神经生物学课件3、动作电位-最新课件
membrane capacitance e. Distance that the current spreads down the inside of the
axon and causes an AP is enhanced by myelin
Produced by glia
a. Schwann cells in the periphery b. Oligodendrocytes in the CNS
Spike Generation: Iapp ↑ → V ↑ → m ↑ (quickly) while n ↑ and h ↓ (slowly)
Thus V goes up quickly toward ENa until h shuts off Na channels and K inhibition dominates
动作电位产生过程中钠通道的开放
Patch Clamp Technique(膜片钳技术)
Erwin Neher and Bert Sakmann
钠通道的开放与关闭
动作电位的单通道分析
动作电位的传导
传导(conduction):同一细胞上动作电位的传播
传递(transmission):动作电位在两个细胞之间 的传播
Propagation of AP in a passive axon
Propagation of AP in an active axon
动作电位传导的过程
动作电位传导的过程
产生的动作电位能沿神经元轴突进行传导。
局部去极化,使邻近的电压门控钠通道开放,钠离 子内流,邻近局部去极化,去极化又引起邻近的电 压门控钠通道开放,钠离子内流。就这样依次向前 推进。平均速度一般10米/秒。
axon and causes an AP is enhanced by myelin
Produced by glia
a. Schwann cells in the periphery b. Oligodendrocytes in the CNS
Spike Generation: Iapp ↑ → V ↑ → m ↑ (quickly) while n ↑ and h ↓ (slowly)
Thus V goes up quickly toward ENa until h shuts off Na channels and K inhibition dominates
动作电位产生过程中钠通道的开放
Patch Clamp Technique(膜片钳技术)
Erwin Neher and Bert Sakmann
钠通道的开放与关闭
动作电位的单通道分析
动作电位的传导
传导(conduction):同一细胞上动作电位的传播
传递(transmission):动作电位在两个细胞之间 的传播
Propagation of AP in a passive axon
Propagation of AP in an active axon
动作电位传导的过程
动作电位传导的过程
产生的动作电位能沿神经元轴突进行传导。
局部去极化,使邻近的电压门控钠通道开放,钠离 子内流,邻近局部去极化,去极化又引起邻近的电 压门控钠通道开放,钠离子内流。就这样依次向前 推进。平均速度一般10米/秒。
静息电位与动作电位ppt课件
相对不应期-绝对不应期之后,如果给 予可兴奋组织或细胞一个较正常时更强 的刺激才能引起新的兴奋。这一时期称 为相对不应期。
兴奋的引起和传导
阈电位 能够造成膜对Na+通透性突然增大,
诱发动作电位产生的临界膜电位的数值,称为 阈电位(threshold membrane potential)。 阈强度与阈下刺激
兴奋在神经纤维上的传导,称为神经冲动。
有髓纤维上的兴奋传导比较特殊,因为在有髓纤维的 轴突外面包裹着一层很厚的髓鞘,髓鞘的主要成分是 脂质,而脂质是不导电或不允许带电离子通过的。只 有在髓鞘暂时中断的朗飞结处,轴突膜才能和细胞外 液接触,使跨膜离子移动得以进行。因此,当有髓纤 维受到外来刺激时,动作电位只能在邻近刺激点的朗 飞结处产生,而局部电流也就在相邻的朗飞结之间形 成(图2-12)。这一局部电流对邻近的朗飞结起着刺激 作用,使之兴奋;然后又以同样的方式使下一个朗飞 结兴奋。这样,兴奋就以跳跃的方式 ,从一个朗飞结 传至另一个朗飞结而不断向前传导。这种传导方式称 为跳跃式传导(saltatory conduction)。跳跃式传导 使冲动的传导速度大为加快,因此,有髓纤维的传导 速度远比无髓纤维为快。另外,跳跃式传导时,单位 长度内每传导一次兴奋所涉及的跨膜离子运动的总数 要少得多,因此它还是一种更“节能”的传导方式。
动作电位的产生机制
电压钳和膜片钳
电压钳 I=VG 用电压钳技术可记录细胞兴奋过程中的跨膜离
子电流曲线,进而计算出膜电导的变化曲线。实验证明,在细胞 兴奋时Na+电导和K+电导的变化过程与动作电位的变化过程是一致 的。电压钳技术的应用,进一步证明了动作电位产生机制的正确 性。
膜片钳 20世纪70年代建立起来的膜片钳实验技术,可以用直接
兴奋的引起和传导
阈电位 能够造成膜对Na+通透性突然增大,
诱发动作电位产生的临界膜电位的数值,称为 阈电位(threshold membrane potential)。 阈强度与阈下刺激
兴奋在神经纤维上的传导,称为神经冲动。
有髓纤维上的兴奋传导比较特殊,因为在有髓纤维的 轴突外面包裹着一层很厚的髓鞘,髓鞘的主要成分是 脂质,而脂质是不导电或不允许带电离子通过的。只 有在髓鞘暂时中断的朗飞结处,轴突膜才能和细胞外 液接触,使跨膜离子移动得以进行。因此,当有髓纤 维受到外来刺激时,动作电位只能在邻近刺激点的朗 飞结处产生,而局部电流也就在相邻的朗飞结之间形 成(图2-12)。这一局部电流对邻近的朗飞结起着刺激 作用,使之兴奋;然后又以同样的方式使下一个朗飞 结兴奋。这样,兴奋就以跳跃的方式 ,从一个朗飞结 传至另一个朗飞结而不断向前传导。这种传导方式称 为跳跃式传导(saltatory conduction)。跳跃式传导 使冲动的传导速度大为加快,因此,有髓纤维的传导 速度远比无髓纤维为快。另外,跳跃式传导时,单位 长度内每传导一次兴奋所涉及的跨膜离子运动的总数 要少得多,因此它还是一种更“节能”的传导方式。
动作电位的产生机制
电压钳和膜片钳
电压钳 I=VG 用电压钳技术可记录细胞兴奋过程中的跨膜离
子电流曲线,进而计算出膜电导的变化曲线。实验证明,在细胞 兴奋时Na+电导和K+电导的变化过程与动作电位的变化过程是一致 的。电压钳技术的应用,进一步证明了动作电位产生机制的正确 性。
膜片钳 20世纪70年代建立起来的膜片钳实验技术,可以用直接
细胞的物质转运功能—动作电位(正常人体功能课件)
细胞的生物电------动作电位
(一)动作电位的概念 (action potential ,AP) 是指细胞受刺激而兴奋时, 在静息电位基础上发生的迅速的可扩布性电位变化。
动作电位是可兴奋细胞兴奋的标志。
• 动作电位的变化过程
产生机制
细胞受刺激时,细胞膜对Na+的通透性增大 细胞膜上少量Na+通道激活而开放 Na+顺浓度差少量内流,引起膜轻度去极化
当膜电位达到阈电位时,Na+通道大量开 放,顺着浓度差和电位差,膜外Na+大量、 迅速内流,直致形成电位膜内、膜外(内 正外负)的反极化(上升支)
Na+通道关→Na+内流停, 同时K+通道激活而开放→K+迅速 外流,膜内电位迅速下降,恢复 到RP水平(下降支)
[Na+]i↑、[K+]O↑→激活Na+-K+ 泵,Na+泵出、K+泵回,离子恢 复到兴奋前水平→后电位
动作电位的引起
动作电位的引起与传导-------动作电位的传导
1)在受刺激的局部细胞膜产生的动作电位(即兴奋),将沿细胞膜自动 向邻近未兴奋的部位传导。
动作电位传导的机制用局部电流学说来解释。
2)动作电位在无髓神经纤维的传导是从兴奋点依次传遍整个细胞的, 因此传导速度较慢。在有髓神经纤维,呈现一种跳跃式的传导。 (因为髓鞘具有绝缘性)
无髓神经纤维
有髓神经纤维
神经纤维上的传导
பைடு நூலகம்
跳跃式传导
动作电位的特点
①全或无现象 ②脉冲式 ③不衰减性传导
动作电位的引起与传导-------动作电位的引起
1.动作电位的引起 1)能使膜上Na+通道突然开放,触发动作电位的临界膜电位值称为 阈电位(threshold potential,TP)。 不是任何刺激都能引起动作电位,只有达到阈刺激或阈上刺激时, 才可以。 静息电位去极化达到阈电位是产生动作电位的必要条件。 2)细胞兴奋性的高低与细胞的静息电位和阈电位的差值呈反变关系。
(一)动作电位的概念 (action potential ,AP) 是指细胞受刺激而兴奋时, 在静息电位基础上发生的迅速的可扩布性电位变化。
动作电位是可兴奋细胞兴奋的标志。
• 动作电位的变化过程
产生机制
细胞受刺激时,细胞膜对Na+的通透性增大 细胞膜上少量Na+通道激活而开放 Na+顺浓度差少量内流,引起膜轻度去极化
当膜电位达到阈电位时,Na+通道大量开 放,顺着浓度差和电位差,膜外Na+大量、 迅速内流,直致形成电位膜内、膜外(内 正外负)的反极化(上升支)
Na+通道关→Na+内流停, 同时K+通道激活而开放→K+迅速 外流,膜内电位迅速下降,恢复 到RP水平(下降支)
[Na+]i↑、[K+]O↑→激活Na+-K+ 泵,Na+泵出、K+泵回,离子恢 复到兴奋前水平→后电位
动作电位的引起
动作电位的引起与传导-------动作电位的传导
1)在受刺激的局部细胞膜产生的动作电位(即兴奋),将沿细胞膜自动 向邻近未兴奋的部位传导。
动作电位传导的机制用局部电流学说来解释。
2)动作电位在无髓神经纤维的传导是从兴奋点依次传遍整个细胞的, 因此传导速度较慢。在有髓神经纤维,呈现一种跳跃式的传导。 (因为髓鞘具有绝缘性)
无髓神经纤维
有髓神经纤维
神经纤维上的传导
பைடு நூலகம்
跳跃式传导
动作电位的特点
①全或无现象 ②脉冲式 ③不衰减性传导
动作电位的引起与传导-------动作电位的引起
1.动作电位的引起 1)能使膜上Na+通道突然开放,触发动作电位的临界膜电位值称为 阈电位(threshold potential,TP)。 不是任何刺激都能引起动作电位,只有达到阈刺激或阈上刺激时, 才可以。 静息电位去极化达到阈电位是产生动作电位的必要条件。 2)细胞兴奋性的高低与细胞的静息电位和阈电位的差值呈反变关系。
动作电位
• The critical level of depolarization that must be crossed in order to trigger an action potential is called threshold (阈电位).
• Action potential are caused by depolarization of the membrane beyond threshold.
超射
上升支 (去极化)
下降支 (复极化)
- 65 mV
后超极化电位 回射
2 ms
45
Generation of an action potential
• The perception of sharp pain when a thumbtack enters your foot is caused by the generation of action potentials in certain nerve fibers in the skin: – The thumbtack enters the skin (图钉扎入皮肤)
Neuronal Electric Activities Include:
• Rest Potential (Chapter 3) • Action Potential (Chapter 4)
Chapter 4 The Action Potential
• PROPERTIES OF THE ACTION POTENTIAL – The Ups and Downs of an Action Potentials – Generation of an Action Potential – The Generation of Multiple Action Potentials
• Action potential are caused by depolarization of the membrane beyond threshold.
超射
上升支 (去极化)
下降支 (复极化)
- 65 mV
后超极化电位 回射
2 ms
45
Generation of an action potential
• The perception of sharp pain when a thumbtack enters your foot is caused by the generation of action potentials in certain nerve fibers in the skin: – The thumbtack enters the skin (图钉扎入皮肤)
Neuronal Electric Activities Include:
• Rest Potential (Chapter 3) • Action Potential (Chapter 4)
Chapter 4 The Action Potential
• PROPERTIES OF THE ACTION POTENTIAL – The Ups and Downs of an Action Potentials – Generation of an Action Potential – The Generation of Multiple Action Potentials
生理学 动作电位 肌肉收缩原理PPT课件
静息电位产生机制 1
37
完整版课件
静息电位产生机制 2
38
完整版课件
(二)动 作 电 位
概念:动作电位(action potential,AP)是指细胞受刺激 时在静息电位基础上产生的可扩布的电位变化。
意义:是细胞处于兴奋状态的标志。 阈电位:能触发动作电位的膜电位临界值 。阈电位大约比
正常静息电位的绝对值小10~20mV 。
动作电位的产生条件:静息电位去极化达到阈电位水平。
39
神经纤维AP
心肌细胞AP 40
完整版课件
完整版课件
动作电位的特点
⑴动作电位呈“全或无”现象:动作电位一旦产生 就达到它的最大值,其变化幅度不会因刺激的加 强而增大;
⑵不衰减性传导:动作电位一旦在细胞膜的某一部 位产生,就会立即向整个细胞膜传布,而它的幅 度不会因为传布距离的增加而减小,可迅速扩布 到整个细胞膜;
③钠泵活动能使钠钾离子逆浓度差和电位差进行转运,因 而建立起一种势能贮备。这种势能是细胞内外Na+和K+ 等顺着浓度差和电位差移动的能量来源。
17
主动转运与被动转运的区别
完整版课件
主动转运
被动转运
需由细胞提供能量 逆电-化学势差
使膜两侧浓度差更大
不需外部能量
顺电-化学势差 使膜两侧浓度差更小
18
完整版课件
2、门控通道:由跨膜电位大小控制通道的开关。 例:钠通道, 跨膜电位控制
3、机械门控通道: 例:听觉毛细胞
21
完整版课件
(二) G蛋白耦联受体介导的信号转导
22
完整版课件
由膜受体-G-蛋白-膜效应器酶组成的 跨膜信号传递系统和第二信使类物质的生成
《动作电位》幻灯片
一.离子电导
➢ 分出离子电流后将测定离子通透性或通道开放的 ➢ 数目。Hodgkin和Huxley使枪乌贼大纤维长时间去 ➢ 极化,使一些离子通道开放,然后让电压突升到第 ➢ 二数值,这个时间很短,新通道来不及翻开,已开 ➢ 放的通道来不及关闭,在膜通透性不变时测量电压 ➢ -电流关系。第一次测钠通道开放,第二次测钾通 ➢ 道开放。
两个参数m和h分别描述钠电导的增加和减少过程,根据实验曲线
得到拟合方程为:
dm
dh
gNa=ğNa·m3h—— =αm(1– m) –βmm —— = αh(1–h)–βhh
dt
dt
四.Hodgkin-Huxley模型
①根据每种离子电导方程, 在大纤维和电压钳位条
件下每种离子的电流方程为:
INa =gNa(V-ENa) gNa = ğNam3h
此时离子电导为:gNa=INa/(E-ENa) g K=IK/(E-EK) 此为弦电导,适于线性关系;而 G=I/E 为斜率电 导(不论电压与电流呈什么关系均成立)。
二.钾 电 导
钾离子电导gK是时间t和膜电位Vm的函数:
gK=ƒ(t,Vm) V在m下动,作去电极位化期时间g,K实(t)验沿结S型果曲得线到上gK升(t;)曲在线复,极在一定 化时gK(t)呈指数曲线下降。
产生一个不衰减的“全或无〞式 的沿神经纤维传导
的神经冲动时。
息电位 的绝对值。后发现它不能解释动作电位的超射 现象。用 毛细管微电极测量枪乌贼大神经纤维兴奋时电
位变3化.1发动作电位产生的离子机制
现动作电位大于膜静息电位。当改变细胞外 Na+浓度时动 作电位的时程和大小均发生变化〔如图〕:
①Na+ 浓度稍减,动作电位上升缓慢,超射 减少传导速度变
Action potentials:动作电位 28页
Equation #10 δ(E) = RT/ZF ln(cin/cout)
This is the Nernst-EinsLeabharlann ein equation.9
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #7 G = Gdiff + Gelect = RTln(c) + zFE
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
Equation #4
At a constant temperature this may be written as Equation #5
We can use this result to describe the free energy of diffusion of a particular ion in our cell or outside of the cell as follows:
This is the Nernst-EinsLeabharlann ein equation.9
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #7 G = Gdiff + Gelect = RTln(c) + zFE
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
Equation #4
At a constant temperature this may be written as Equation #5
We can use this result to describe the free energy of diffusion of a particular ion in our cell or outside of the cell as follows:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Equation #4
At a constant temperature this may be written as Equation #5
We can use this result to describe the free energy of diffusion of a particular ion in our cell or outside of the cell as follows:
Equation #8
(G)= (RTln(cout) +zFEout) —(RTln(cin) + zFEin)
Which simplifies to:
Equation #9)
(G) = R.T.ln(cout/cin) + z.F.δ(E)
By definition at equilibrium DG = 0 thus the equilibrium potential for any given ion is given by:
23
26
27
谢谢!
Diffusional forces acting on an ion
Given a mass of gas in thermal equilibrium we may measure its pressure (p) temperature (T) and volume (V). Boyle demonstrated that pV/T is a constant Volume occupied is proportional to the mass of gas, we can write the above constant as µR where µ is the mass in moles and R is a constant. R = 8.134 joule/mole K
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #7 G = Gdiff + Gelect = RTln(c) + zFE
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
-t/v
deltaVm(t) = Im.R(1-e )
20
When we consider the passive electrical environment of axons or dendrites it is useful to
think of them as composite structures
Gelect = zFE or outside of the cell is the sum of these forces
So the free energy (G) inside or outside of the cell may be expressed as
21
We may usefully consider the path of current flow to determine the effect of neurite geometry on electrical characteristics
22
Models for channel gating
Equation #6
Gdiff = RTln(c)
7
Electrical forces acting on an ion
According to Faraday the charge on a mole of material is 96483 z Coulombs where z is the charge of each atom or ion (the valency of an ion). This is the Faraday constant or F.
If z =valency of ion E = electrical potential across the delimiting membrane.
Thus the electrical energy in a mole of an ion may be expressed as
Equation #1
Thus Equation #2
pV=µRT
Now the work done by an expanding gas can be calculated as follows: Equation #3
Where the gase expands from an initial volume Vi to a final volume Vf. Using equation #2, we can see that the work done per mole is
Equation #10 δ(E) = RT/ZF ln(cin/cout)
This is the Nernst-Einstein equation.
9
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
At a constant temperature this may be written as Equation #5
We can use this result to describe the free energy of diffusion of a particular ion in our cell or outside of the cell as follows:
Equation #8
(G)= (RTln(cout) +zFEout) —(RTln(cin) + zFEin)
Which simplifies to:
Equation #9)
(G) = R.T.ln(cout/cin) + z.F.δ(E)
By definition at equilibrium DG = 0 thus the equilibrium potential for any given ion is given by:
23
26
27
谢谢!
Diffusional forces acting on an ion
Given a mass of gas in thermal equilibrium we may measure its pressure (p) temperature (T) and volume (V). Boyle demonstrated that pV/T is a constant Volume occupied is proportional to the mass of gas, we can write the above constant as µR where µ is the mass in moles and R is a constant. R = 8.134 joule/mole K
15
16
17
Voltage clamp activated currents in axons
18
Na and K conductances that make the action potential
19
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.
Equation #7 G = Gdiff + Gelect = RTln(c) + zFE
(from #1 and #2)
The difference between free energy inside the cell and outside defines the free energy driving movement of the ion across the cell membrane which may be expressed as follows:
-t/v
deltaVm(t) = Im.R(1-e )
20
When we consider the passive electrical environment of axons or dendrites it is useful to
think of them as composite structures
Gelect = zFE or outside of the cell is the sum of these forces
So the free energy (G) inside or outside of the cell may be expressed as
21
We may usefully consider the path of current flow to determine the effect of neurite geometry on electrical characteristics
22
Models for channel gating
Equation #6
Gdiff = RTln(c)
7
Electrical forces acting on an ion
According to Faraday the charge on a mole of material is 96483 z Coulombs where z is the charge of each atom or ion (the valency of an ion). This is the Faraday constant or F.
If z =valency of ion E = electrical potential across the delimiting membrane.
Thus the electrical energy in a mole of an ion may be expressed as
Equation #1
Thus Equation #2
pV=µRT
Now the work done by an expanding gas can be calculated as follows: Equation #3
Where the gase expands from an initial volume Vi to a final volume Vf. Using equation #2, we can see that the work done per mole is
Equation #10 δ(E) = RT/ZF ln(cin/cout)
This is the Nernst-Einstein equation.
9
Current flowing across the giant axon membrane may be represented by the sum of conductive components (What we now identify as ion channels) and capacitance (the cell membrane). The currents are described in the following circuit diagram.