初一下册实数复习

合集下载

实数(全章复习与巩固)(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(全章复习与巩固)(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.10 实数(全章复习与巩固)(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【要点梳理】要点一:平方根和立方根类型 项目 平方根 立方根 被开方数 非负数任意实数符号表示性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论要点二:实数有理数和无理数统称为实数. 1.实数的分类按定义分:实数按与0的大小关系分: 实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数特别说明:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小a ±3a ⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa a a aa -=-==⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即≥0;(3 (). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 【典型例题】类型一、实数➽➼平方根✬✬立方根1.(1)计算:3256412-+-.(2)求x 的值:2(1)225x -=.【答案】(1)2; (2)16x =或14x =-【分析】(1)根据算术平方根,立方根,化简绝对值进行计算即可求解;2a 0a ≥0a ≥(2)根据平方根的定义解方程即可求解. 解:(1)32564|12|-+-;5421=-+-2=;(2)开平方得115x -=±,解得16x =或14x =-.【点拨】本题考查了求一个数的算术平方根,立方根,根据平方根的定义解方程,正确的计算是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.举一反三:【变式1】求下列各式中的x .(1) 29160x -=; (2)()3164x +=-. 【答案】(1) 43x =±(2) 5x =-【分析】(1)利用求平方根的方法解方程即可; (2)利用求立方根的方法解方程即可. (1)解:∵29160x -=,∵2916x =, ∵2169x =, 解得43x =±;(2)解;∵()3164x +=-,∵14x +=-, ∵5x =-.【点拨】本题主要考查了求平方根和求立方根的方法解方程,熟知求平方根和求立方根的方法是解题的关键.【变式2】“2=3”就是一个著名的数学“诡辩”,有人用下述方法“说明”这一结果是“正确”的.因为410=915--,所以2525410=91544-+-+, 22225555222=3232222⎛⎫⎛⎫-⨯⨯+-⨯⨯+ ⎪ ⎪⎝⎭⎝⎭,22552=322⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,552=322--,所以2=3. “2=3”这个结果显然是不正确的,但问题出现在哪里呢?请你找一找,并与同学交流. 【答案】错在由22552=322⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭得552=322--这一步【分析】由22x y =可得出x y =,但不能得出x y =,所以错在由22552=322⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭得552=322--这一步. 解:错在由22552=322⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭得552=322--这一步,显然52<02-,5302->,所以5523022-≠->. 【点拨】此题主要考查了利用平方根、平方运算法则解决阅读题目的问题,特别注意22x y =可得出x y =,但不能得出x y =,这是学生开平方时常犯的错误.2.已知21a -的平方根是3±,31a b -+的立方根是2. (1) 求a ,b 的值; (2) 求a b +的算术平方根. 【答案】(1) 5a =,8b =;(2) a b +的算术平方根为13.【分析】(1)由平方根的定义和列方程的定义可求得219a -=,318a b -+=,从而可求得a 、b 的值;(2)把a 、b 的值代入求得代数式a b +的值,最后再求其算术平方根即可. (1)解:∵21a -的平方根是3±,31a b -+的立方根是2,∵219a -=,318a b -+=, 解得:5a =,8b =;(2)解:∵5a =,8b =,∵5813a b +=+=,∵a b +的算术平方根为13.【点拨】本题主要考查的是平方根、算术平方根和立方根的定义,掌握平方根和立方根的定义是解题的关键.举一反三:【变式1】已知1a -的算术平方根为3,31b +的一个平方根为5-,求44a b -的立方根.【答案】44a b -的立方根为2【分析】分别根据1a -的算术平方根为3,31b +的一个平方根为5-,求出a b 、的值,再求出44a b -的值,最后求出其立方根即可.解:1a -的算术平方根为3,∴19a -=,即10a =,31b +的一个平方根为5-,∴3125b +=,即8b =, ∴4440328a b -=-=, ∴44a b -的立方根为382=.故答案为:44a b -的立方根为2.【点拨】本题考查了立方根、平方根、算术平方根的定义,根据题意求出a b 、的值是解题的关键.【变式2】已知某正数的两个平方根分别是3a -和215a +,b 的立方根是2-,求 (1) 该正数是多少? (2) 2a b --的算术平方根. 【答案】(1) 49(2) 4【分析】(1)根据正数的两个平方根互为相反数,求出a 的值,进而求出这个正数即可;(1)先求出,a b ,代入代数式求出2a b --,再求出算术平方根即可. (1)解:由题意,得:32150a a -++=,解得:4a =-;∵()()2234349a -=--=; ∵该正数是:49;(2)解:∵b 的立方根是2-,∵()328b =-=-;∵()()22488816a b --=-⨯---=+=, ∵2164a b --==.【点拨】本题考查平方根的性质,以及算术平方根和立方根的定义.熟练掌握正数的两个平方根互为相反数,是解题的关键.类型二、实数➽➼性质➽➼相关概念✬✬化简3.把下列各数填入相应的集合中:-3.1415926,07,4π,38227,36 1.414320.2121121112-(每两个2之间依次多一个1)(1)有理数集合:{ }; (2)无理数集合:{ }; (3)负实数集合:{ }.【答案】(1)3223.1415926,0,8,,36,1.414,7---;(2)37,,2,0.21211211124π-(每两个2之间依次多一个1);(3)33.1415926,8,36,0.2121121112----(每两个2之间依次多一个1)【分析】实数包括有理数和无理数,根据概念逐一进行填空即可. 解:有理数集合:3223.1415926,0,8,,36,1.414,7⎧⎫---⎨⎬⎩⎭; 无理数集合:{37,,2,0.21211211124π-(每两个2之间依次多一个1)};负实数集合:{33.1415926,8,36,0.2121121112----(每两个2之间依次多一个1)};故答案为:3223.1415926,0,8,,36,1.4147---;37,,2,0.21211211124π-(每两个2之间依次多一个1);33.1415926,8,36,0.2121121112----(每两个2之间依次多一个1).【点拨】本题主要考查了实数的定义,要求掌握实数的范围以及分类方法.举一反三:【变式12,2,22,32,52,82___,_____. (1) 两条横线上的实数分别____; (2) 第11、12个实数分别是_____. 【答案】(1) 132;212(2) 892; 1442【分析】(1)观察实数发现2的系数分别为1,1,2,3,5,8……,从第三个数起,后一个数等于前面两个数的和,据此即可求解;(2)按照(1)中的方法即可求解.解:(1)观察实数发现2的系数分别为1,1,2,3,5,8……,从第三个数起,后一个数等于前面两个数的和,∵横线上的实数,2的系数为5+8=13,8+13=21, 所以横线上的实数分别为132212,, (2)由(1)可知第8个数为212,∵第9个数为342, 第10个数为552, 第11个数为892, 第12个数为1442, 故答案为:892,1442.【点拨】本题考查了实数的规律问题,观察数字中2的系数,找到规律是解题的关键. 【变式2】已知:a ,b 均为有理数,且满足722322332a b -=|2|||x a b x ---.【答案】当x <-2时,5x --;当-2≤x ≤1时,33x +;当x >1时,5x +【分析】根据已知等式可得关于a 和b 的方程,求出a ,b 的值,再代入,根据x 的范围分类讨论,去绝对值化简即可.解:722322332a b ++-=,a ,b 均为有理数,∵()()7222332a b ++-=, ∵73a +=,220b -=, ∵a =-4,b =1,∵|2|||x a b x ---=|24||1|x x +--,当x <-2时,|24||1|x x +--=()241x x ----=5x --; 当-2≤x ≤1时,|24||1|x x +--=()241x x +--=33x +; 当x >1时,|24||1|x x +--=()241x x ++-=5x +.【点拨】本题考查了实数的运算,化简绝对值,解题的关键是根据实数的对应形式得到a 和b 的值.4.如图,已知BC ∵OA ,BC =3,点A 在数轴上,OA =OB .(1) 求出数轴上点A 所表示的数; (2) 比较点A 所表示的数与﹣3.5的大小. 【答案】(1) 13-(2) 点A 所表示的数小于﹣3.5【分析】(1)用勾股定理求出OB 的长,进而得到 OA 的长度,即可写出数轴上点A 所表示的数;(2)先计算两数的绝对值,再得到13>3.5,再根据两个负数比较大小,绝对值越大的负数反而小,即可得到答案.(1)解:∵BC ∵OA ,∵∵BCO =90°, ∵BC =3,OC =2, ∵2213OB BC OC =+=, ∵OA =OB , ∵OA =13,∵点A 在数轴上原点O 的左侧, ∵数轴上点A 所表示的数是﹣13.(2)解:|﹣13|=13,|﹣3.5|=3.5,∵()21313=,23.512.25=,∵13>3.5,∵﹣13<﹣3.5,∵点A所表示的数小于﹣3.5.【点拨】此题考查了勾股定理、比较实数的大小、利用数轴表示无理数等知识,熟练掌握勾股定理是解题的关键.举一反三:【变式15x,小数部分是y.(1)求x与y的值;(2)求|5-的值.x y【答案】(1) 2,52==-(2) 0x y【分析】(1)先确定5的取值范围,再求x、y;(2)把x与y的值代入|5|--,化简绝对值,再加减.x y(1)解:∵459<<,<<,即253∵2,52==-;x y(2)∵2,52==-,x y∵|5|--x y()=---|25|52=---52(52)=--+5252=.【点拨】此题考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.【变式2】观察下列等式,并回答问题: ∵1221=; 2332= 3443= 4554= ……(1) 请写出第∵个等式:______356=______; (2) 写出你猜想的第n 个等式:______;(用含n 的式子表示) (3) 241-1的大小. 【答案】(1)5665-=-;635- (2) 11n n n n -+=+-(3)24114-< 【分析】(1)根据已知等式的规律可以得到第∵个等式,由于3563536-=-,可以根据规律得到结果;(2)由前4个等式可以猜想第n 个等式为11n n n n -+=+-; (3)利用作差法比较大小.(1)解:根据前4个式子可得第∵个等式为:5665-=-,35635363635635-=-=-=-,故答案为:5665-=-;635-.(2)解:由前4个等式可以猜想第n 个等式为11n n n n -+=+-, 故答案为:11n n n n -+=+-.(3)解:∵241241424524251044444-----=-==<,∵24114-<. 【点拨】本题属于探究规律类试题,主要考查绝对值的性质、实数大小比较,熟练掌握相关知识并灵活运用是解题的关键.类型四、实数➽➼实数的混合运算➼运算✬✬化简5.实数的计算:(1)2316(3)27-(2) 233313(3)-. 【答案】(1) 10 (2) 4-【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;(1)解:2316(3)27+-+433=++10=(2)233313(3)-+---333313=-+--4=-.【点拨】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.举一反三:【变式1】计算下列各题(1)4822; (2(203271272π342-⎛⎫-- ⎪⎝⎭ 【答案】(1) 2- (2) 33-【分析】(1)先化简二次根式和绝对值,再合并同类二次根式,即可得到答案;(2)先根据立方根,二次根式,负整数指数幂和零指数幂进行化简,再进行乘法运算,最后合并同类项,即可得到答案.(1)解:4822---=()22222---=22222--+=2-(2)解:()203271272π342-⎛⎫--⨯+-- ⎪⎝⎭ =3332412--⨯+- =33341--+-=33-【点拨】此题主要考查了实数的运算,正确化简各数是解题关键.【变式2】已知611a ,611b ,(1) 求a b +的值; (2) 求a b -的值. 【答案】(1) 1311- (2) 511+ 【分析】(1)先估算出3114<<,进而得到961110<+<,26113<-<由此求出a 、b 的值即可得到答案; (2)根据(1)所求进行求解即可.(1)解:∵91116<<,∵3114<<,∵961110<+<,11-4<-<-3,∵26113<-<,∵96112411a b ==--=-,,∵94111311a b +=+-=-;(2)解:由(1)得()9411511a b -=--=+.【点拨】本题主要考查了无理数的估算,实数的混合计算,代数式求值,正确求出a 、b 的值是解题的关键.6.计算:(1)233336481125(3)4(2)--(2) 2231|53|168))(5(2-+--【答案】(1) 3 (2) 4 【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.(1)解:233336481125(3)4(2)-++----495322=-++-+3=,故答案为:3.(2)解:2231|53|168))(5(2-++-----+1354245=-+--+++4=,故答案为:4.【点拨】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.举一反三:【变式1】计算(1) 20223113274-+- (2) 223(3)(3)1664---【答案】(1) 33+ (2) 8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+-++33=+;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.【变式2】计算(1)22110036()(5)4--; (2)已知38270x +=,求x 的值. 【答案】(1) 134 (2) 32x =- 【分析】(1)先逐项化简,再算加减即可;(2)先移项,再两边都除以8,然后根据立方根的定义求解即可.解:(1)22110036()(5)4-+-- 1854=+- 134=. (2)38270x +=,3827x =-,3278x =-, 32x =-. 【点拨】本题考查了实数的混合运算,利用立方根的定义解方程,熟练掌握算术平方根的定义和立方根的定义是解答本题的关键.类型五、实数➽➼实数的运算✬✬应用7.已知135a b -=+,其中a 是整数,01b <<,求a b -的值.【答案】75+试题分析:可以先估算出整数部分10a =,再计算出b 的值,最后作差.解:10a =,()1351035b =--=-, a b -=()103575--=+.举一反三:【变式1】若整数m 的两个平方根为63a -,22a -,b 11(1) 由题意得,=a ,m = ,b = .(2) 求31m a ++的平方根;(3) 现规定一种新运算∵,满足x ∵y xy =-,求b ∵()4-的值.【答案】(1)4,36,3 (2)31m a ++的平方根为7± (3)b ∵()4-的值为12【分析】(1)根据平方根的概念列出方程求出a 和m 的值,根据无理数估算的方法求出b 的值;(2)将m 和a 的值代入31m a ++求解即可;(3)根据新定义的运算法则求解即可.解:(1)由题意得:63220a a -+-=,4a ∴=, 22(22)(82)36m a ∴=-=-=,91116<<,3114∴<<, ∴11的整数部分为3,3b ∴=,4a ∴=,36m =,3b =,故答案为:4,36,3;(2)当36m =,4a =时,3136121m a ++=++49=,31m a ∴++的平方根为7±;(3)当3b =时,b ∵(4)(4)b -=-⋅-4b = 43=⨯12=,b ∴∵()4-的值为12.【点拨】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.【变式2】探究题:(1) 计算下列各式,完成填空:49649⨯= ,12549= ,12549⨯= (2) 通过上面的计算,比较左右两边的等式,你发现了什么?请用字母表示你发现的规律是 ;请用这一规律计算:2271320⨯. 【答案】(1)6,57,57 (2)a b a b ⋅=⋅(a ≥0,b ≥0),227313202⨯= 【分析】(1)根据算术平方根的定义进行计算;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根,根据此规律得到2275271320320⨯=⨯,然后约分后根据算术平方根定义计算.解:(1)49366⨯==,11525=5=4977⨯⨯,125525==49497⨯;故答案为:6,57,57;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根.用字母表示为:a b a b⋅=⋅(a≥0,b≥0).22752793132032042⨯=⨯==故答案为:a b a b•=•(a≥0,b≥0),3 2【点拨】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.。

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型
摘要:
I.实数的分类
A.整数
B.有理数
C.无理数
II.实数的性质
A.实数的运算
B.实数的比较
C.实数的绝对值
III.经典题型解析
A.整数和有理数的运算
B.无理数的求解
C.实数的比较和排序
IV.实数的应用
A.生活中的实数应用
B.科学中的实数应用
C.实数与其他领域的联系
正文:
实数是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。

在七年级下册人教版数学中,第六章主要介绍了实数的相关知识要点和经典题
型。

首先,实数可以分为整数、有理数和无理数三类。

整数包括正整数、负整数和零;有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数);无理数则是不能表示为两个整数之比的数,如圆周率π等。

其次,实数具有许多性质。

在实数的运算中,我们需要遵循交换律、结合律和分配律;在实数的比较中,我们可以根据它们的大小关系来进行排列;实数的绝对值是一个非负数,表示距离原点的距离。

接下来,本章通过解析经典题型,帮助学生更好地理解实数的知识要点。

例如,在整数和有理数的运算题目中,我们需要熟练掌握加法、减法、乘法和除法的运算规则;在无理数的求解题目中,我们需要运用一些特殊方法,如平方根、立方根等;在实数的比较和排序题目中,我们需要灵活运用实数的性质来进行比较。

最后,实数在我们的生活中有着广泛的应用。

例如,在购物时,我们需要计算价格;在科学研究中,实数在物理、化学等领域发挥着重要作用;在艺术领域,实数与音乐、绘画等也有着密切的联系。

人教版七年级数学下册第六章:实数的复习

人教版七年级数学下册第六章:实数的复习

人教版七年级数学下册第六章:实数的复习知识要点回顾:一、算术平方根1.算术平方根:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,记作a 。

0的算术平方根为0;2.平方根:如果一个数x 的平方等于a ,即x 2=a ,那么数x 就叫做a 的平方根(或二次方根)。

3.开平方:求一个数a 的平方根的运算(与平方互为逆运算)4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。

二、立方根1.立方根:如果一个数x 的立方等于a ,即x 3=a ,那么数x 就叫做a 的立方根(或三次方根)。

2.开立方:求一个数a 的立方根的运算(与立方互为逆运算)。

3.立方根性质:正数的立方根是正数;负数的立方根是负数。

0的立方根是0;三、实数1.无理数:无限不循环小数。

如:π、2、3...2.实数:有理数和无理数统称实数。

实数都可以用数轴上的点表示。

综合巩固:一、选择题。

1、 9 的平方根是( )A .3 B.-3 C.±3 D.±812、在2.141,722,••51.0,364,π,2这六个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个3、估算227-的值( )A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间4、在下列式子中,正确的是( )A .=﹣B .﹣=﹣0.6C .=﹣13D .=±65、一个数的立方根是-3,则这个数是( )A .9B .27C .-27D .-96、已知一个正数 的两个平方根是3a-5 和1-2a ,则正数x 的平方根是( )A. 4B. 4C. 7D. 77、下列说法错误..的是( ) A .9的算术平方根是3 B .64的立方根是8±B .5-没有平方根 D .平方根是本身的数只有08、如图,数轴上的A 、B 两点表示的数分别为-1和3,点O 为原点,AB =AC ,则点C 所表示的数为( ) A. -2-3 B. -1-3C. -2+3D. 1+39、若620x y +++=,则xy =( )A .22B .23C .22-D .23-10、若一个正方形的面积是18,则它的边长是( )A .9B .4.5C .32D .23二、填空题。

七年级下册实数全章知识点

七年级下册实数全章知识点

七年级下册实数全章知识点实数是指包括有理数和无理数在内的所有数的集合,是数学中一个重要的基础概念。

在七年级下册中,学生将接触到实数的相关知识点。

本文将对全章的实数知识进行详细介绍。

一、有理数在数轴上,有理数可以表示为有限小数或无限循环小数。

有理数包括正整数、负整数、正分数、负分数等。

下面是有理数的一些基本运算法则。

1、加减法:对于有理数a、b、c,有如下加减法法则:a +b = b + a(a + b) + c = a + (b + c)a + 0 = aa + (-a) = 0a -b = a + (-b)2、乘法:对于有理数a、b、c,有如下乘法法则:a · b = b · a(a · b) · c = a · (b · c)a · 1 = a0 · a = a · 0 = 0a · (-b) = (-a) ·b = -(a · b)3、除法:对于有理数a、b(c≠0),有如下除法法则:a/b = (a·c)/(b·c)当b=a时,有1/b=1/a二、无理数无理数是指不是有理数的数,无法表示成有限小数或无限循环小数。

常见的无理数有π、e、√2、√3等等。

下面是无理数的一些基本概念和性质。

1、无理数的加减法:无理数的加减法只能通过近似的方法来计算,即先将近似值带入计算,再将结果近似到足够的精度。

2、无理数的乘法:无理数的乘法可以进行近似计算,但无论多少次近似,都无法得到精确的结果。

因此,无理数的乘法可以用根式表示。

3、无理数的除法:无理数的除法同样需要用到根式表示。

三、实数运算实数运算包括加、减、乘、除等操作。

实数的基本性质如下:1、加法性质:对于任意实数a、b、c,有如下加法性质:a +b = b + a(a + b) + c = a + (b + c)存在“零元素”,即0+a=a对于任意实数a,存在一个元素-b,使得a+b=02、乘法性质:对于任意实数a、b、c,有如下乘法性质:a ·b = b · a(a · b) · c = a · (b · c)存在“单位元素”,即1 · a = a对于任意实数a(a≠0),存在一个元素1/a,使得a · 1/a = 1 3、分配律:对于任意实数a、b、c,有如下分配律:a · (b + c) = a · b + a · c(b + c) · a = b · a + c · a四、实数的大小比较实数的大小比较有以下三种情况:1、对于任意整数a、b,有a<b,当且仅当b-a是正整数;2、对于任意有理数a、b,有a<b,当且仅当a+b<0;3、对于任意实数a、b,有a<b,当且仅当a-b<0。

七年级下册实数知识点复习

七年级下册实数知识点复习

七年级下册实数知识点复习本文主要对七年级下册实数知识点进行复习总结,旨在帮助同学们更好地掌握这部分知识,取得更好的学习成果。

一、实数的概念及表示方法实数指在数轴上能够表示的所有数,包括整数、分数以及无理数等。

我们可以用数轴或者数线来表示实数,也可以用分数形式表示。

二、实数的比较对于任意两个实数a、b(a≠b),我们可以用大小关系符号("<"、">"、"≤"、"≥")进行比较。

具体规则如下:1. 如果a<b,则称a小于b;2. 如果a>b,则称a大于b;3. 如果a≤b,则称a小于等于b;4. 如果a≥b,则称a大于等于b。

三、有理数的概念及性质有理数指可以写成两个整数之比(其中分母不为零)的数,包括正整数、负整数、零和分数等。

有理数有以下性质:1. 有理数可以用分数形式表示;2. 有理数的加、减、乘、除运算仍是有理数;3. 有理数的大小关系可以通过分数的通分和比较分子的大小得出。

四、无理数的概念及性质无理数指不能写成两个整数之比的数,例如根号2、圆周率等。

无理数没有精确的表示方法,通常采用近似值来表示。

五、实数的运算实数的加、减、乘、除运算是我们常见的数学运算。

对于任意两个实数a、b,有以下计算公式:1. a+b=b+a2. a-b≠b-a3. ab=ba4. 如果b≠0,则a÷b≠b÷a六、实数的绝对值实数a的绝对值定义为:|a|=a(a≥0)或者|a|=-a(a<0)。

实数的绝对值具有以下性质:1. |a|≥0,|a|=0当且仅当a=0;2. |ab|=|a|×|b|;3. |a+b|≤|a|+|b|。

七、实数的乘方和开方运算实数的乘方运算指将一个数a乘以若干个a的积,例如a³表示a乘以a的平方。

实数的开方运算指求一个数的n次方根,例如√a 表示a的平方根。

实数的乘方和开方运算具有以下性质:1. 如果a>0,则a的乘方仍然是正数,如果a<0,则a的乘方是负数或者复数;2. 如果a≥0,则a的平方根存在且唯一,如果a<0,则a的平方根不存在;3. 满足a≥0,b>0,且n为正整数,则√(ab)=√a×√b,(a+b)²=a²+2ab+b²。

人教版七年级数学下册第六章《实数》小结与复习说课稿

人教版七年级数学下册第六章《实数》小结与复习说课稿
3.数学游戏:设计实数运算相关的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣;
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;

(word完整版)七年级下册实数知识点总结及常见题,推荐文档

(word完整版)七年级下册实数知识点总结及常见题,推荐文档

实数1•算术平方根:正数a的正的平方根叫做a的算术平方根,记作“ .a”。

2. 如果x2a,则x叫做a的平方根,记作“ 土,a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个且为正。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“储”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 实数:有理数和无理数统称为实数有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数)无理数:无限不循环小数(常见无理数有-2,,等)10. 数轴上的点和实数—对应。

题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和土1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3- a 本身为非负数,有非负性,即卩Va >0;有意义的条件是a> 0。

4、公式:⑴(j a)2=a (a>0);⑵(a 取任何数)。

5、区分a )2=a (a > 0),与a2=a6、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 (此性质应用很广,务必掌握)。

【典型例题】1. 下列语句中,正确的是()A •一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个2. 下列说法正确的是()2A. -2是(2)的算术平方根B. 3是-9的算术平方根C. 16的平方根是土4D. 27的立方根是土33. 已知实数x , y 满足 X 2+(y+1) 2=0,则x-y 等于 _________________4. 求下列各式的值(1) 、81 ;( 2) 16 ;( 3)、9 ;( 4) ... ( 4)2\25 '4、 3 4= ____________5、 若m 、n 互为相反数,则 m J5 n = ________________26、 若a a ,贝 V a ___ 03、已知一个正数的两个平方根分别是2a - 2和a - 4,贝U a 的值是 _______5. 已知实数x , y 满足x 2+(y+1) 2=0,则 x-y 等于6. (1) 64的立方根是 4(2) 下列说法中:① 3都是27的立方根,②3 y 3 y ,③.64的立方根是2, ④ -8 2 4。

七年级下册数学实数重点总结

七年级下册数学实数重点总结

七年级下册数学实数重点总结一、整数与正数整数是由0及其后的负整数组成,用正负号表示。

正数是指大于零的数。

二、实数的分类实数包括有理数和无理数。

1. 有理数有理数是可以表示为两个整数的比例的数,可以是整数、分数和循环小数。

例如:1,-3,2/3,0.25。

2. 无理数无理数是不能表示为两个整数的比例的数,无限不循环小数,不能化为分数形式。

例如:π,√2。

三、实数的运算1. 加法和减法实数的加法和减法满足交换律、结合律和分配律。

2. 乘法和除法实数的乘法和除法满足交换律、结合律和分配律。

3. 幂运算实数的幂运算满足指数运算法则。

四、实数的大小比较实数的大小比较可以通过大小关系符号进行判断。

1. 大于(>)大于符号表示左边的数大于右边的数。

2. 小于(<)小于符号表示左边的数小于右边的数。

3. 大于等于(≥)大于等于符号表示左边的数大于或等于右边的数。

4. 小于等于(≤)小于等于符号表示左边的数小于或等于右边的数。

五、实数的绝对值实数的绝对值是该实数到原点的距离,如果实数为正数,则绝对值等于本身;如果实数为负数,则绝对值等于相反数。

六、实数的相反数和倒数1. 相反数两个数互为相反数,它们的和为0。

例如:5和-5是互为相反数。

2. 倒数一个非零数的倒数是指其与1的商。

例如:5的倒数是1/5。

七、区间区间是指由两个实数构成的数的集合。

例如:(a, b),表示大于a且小于b的所有实数。

以上是七年级下册数学实数的重点总结,希望能对同学们的学习有所帮助。

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

七年级下第六章《实数》复习

七年级下第六章《实数》复习

八.实数与数轴上的点是一一对应的 已知实数a,b,c在数轴上的位置如图所示,
化简 a 2 a c
c b
2
b
解: 由图可知,a 0, c 0, b o,
且c b, a c 0, c b 0, 即 a ac =-a+a+c+b-c-b =0
解:原方程可化为
解:原方程可化为 4 2 (3 y ) 9
1 2 x 1 y 2 或y 3 3 3 当方程中出现平方时,若有解,一般都有两个解
2 2 4 ( ) 3 9 2 2 3 y 或3 - y 3 3
5 3 125 ( ) 3 9 2 5 x - 3 3
3 4.若 3 (4 x) =4-x成立,则x的取值范围是( D ) A.x≤4 B. x≥4 C. 0 ≤x ≤ 4 D.任意实数
5、a、b互为相反数,c与d互为倒数,则a+1+b+ cd= 2 。
6、已知Biblioteka a - 2 b 3 0,
2
则 (a b)
7、 计算: 1- x
把下列各数分别填入相应的集合内:
3
2,
20 , 3
5 , 7
4 , 9
7,
,
0,
5 , 2
5,
2,
3 8,
0.3737737773
(相邻两个3之间的7的个数逐次加1)

有理数集合 无理数集合

一、比较大小 1、作差法 2、有理化法(平方、立方) 3、近似值法
(1) 5 > 2 6
2 3 125 (x ) 3 27
当方程中出现立方时,一般都有一个解

七年级下册《第六章 实数》单元复习

七年级下册《第六章 实数》单元复习

七年级下册《第六章实数》单元复习
二、知识要点
(一)“三根”的概念
1.一个正数a有两个平方根±a,其中a是正数a的算术平方根,-a是正数a的负的平方根。

2.一个正数有两个平方根,这两个平方根互为相反数,但只有一个算术平方根。

0只有一个平方根和算术平方根,它们都是0。

负数没有平方根,也没有算术平方根。

3.任何实数a都有立方根,为3a。

正数有一个正的立方根。

负数有一个负的立方根。

0的立方根是0.若来公司互为相反数,则它们的立方根互为相反数。

续表:
1.有理数与无理数的区别:有理数总可以用有限小数或无限循环小数来表示;而无理数是无限不循环小数。

2.实数的概念:有理数和无理数统称为实数。

3.实数的分类:
① 按意义分类:
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数正整数整数有理数实数0 ② 按正负分类: ⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正有理数正有理数正实数实数0
4.常见的无理数类型:
(1)一般的无限不循环小数,如1.41422357...
(2)看似循环而实际不循环的小数,如:0.1010010001...(相邻两个1之间 0的个数逐次加1)
(3)有特定意义的数,如:π=3.14159265...
(4)带有根号且开方开不尽的数,如3,53,。

5.实数的相反数、绝对值、倒数、运算性质、运算律、大小比较与有理数一样。

6.实数和数轴上的点是一一对应的关系。

七年级下册第六章《实数》复习课件

七年级下册第六章《实数》复习课件
学习重点
(1)平方根、算术平方根、立方根、无理数和实数的概念; (2)实数的简单四则运算。 学习难点
(1)平方根和立方根的概念; (2)实数的简单四则运算。
知识梳理,把握重点
算术平方根的概念是什么?
平方根的概念是什么?这两个概 念的区别与联系是什么?
什么叫做开平方?
平方根的性质是什么?
一般地,如果一个正数 x 的平方等于 a(x2 = a),那么这个正数 x 就叫做
答案:(1)8,8 ;(2)0.5,0.5 求下列各数的立方根:
(1)
1 64

(2) 36 .
答案:(1) 1 ;(2)32 .
4
典型分析,强调方法
例3 下列各数分别介于哪两个相邻 的整数之间: (1) 26 ; (2)3 88 .
答案:(1) 26 介于5和6之间; (2)3 88 介于4和5之间.
3 2,
1, 4
7,
,
5, 2
2,
20 ,
3
4 ,
9
0,
5, 3 8,
0.3737737773 (相邻两个3之间的7的个数逐次加1)
有理数集合
无理数集合
练习
1.如果一个数的平方根为a+1和2a-7, 求这个数
2.已知等腰三角形两边长a,b满足
2a 3b 5 (2a 3b 13)2 0
一般有三种情况 2.开不尽方的数
3.有一定的规律,但不循环的无限小数
重 要
a
a2 a = 0
a 0 a 0

a (a 0)

a 2 a a 0
3 a3 a a为任何数
3 a 3 a a为任何数
典型分析,强调方法

第6章 实数(复习课件)七年级数学下册(人教版)

第6章 实数(复习课件)七年级数学下册(人教版)
①②⑤⑥
③④⑦
随堂检测
人教版数学七年级下册
7.如图所示,数轴上与1,
对应的点分别是为A、B,点B关
于点A的对称点为C,设点C表示的数为x,则 x 2 = 2 2 2 .
0
C A B
1
2
随堂检测
人教版数学七年级下册
8.计算

(1) × × ;
=60

(2)− −( − ) .
-a (a<0)
随堂检测
1.在-7.5,
个数是(
A.1个
人教版数学七年级下册
, 4,
,
,
,中,无理数的
B )
B.2个
C.3个
D.4个
随堂检测
人教版数学七年级下册
2.实数a,b在数轴上的对应点的位置如图6-J-1所示,则正
确的结论是 (
D)
A. a>-2
B. a<-3
C. a>-b
D. a<-b
随堂检测
− =

;


所以这个数为 .


人教版数学七年级下册
谢谢聆听
,
随堂检测
人教版数学七年级下册
12.一个数的算术平方根为2-6,它的平方根为±( − ),
求这个数.
解:因为一个数的算术平方根为2-6,它的平方根为
± ( − )
① − = − ;解得 = ,
− = −(舍去);

② − = − + ;解得 = ,
B. − >
C. >
D. + >
随堂检测
5.下列说法中,不正确的有( B )

深圳市翠茵学校七年级数学下册第六单元《实数》知识点复习(含答案解析)

深圳市翠茵学校七年级数学下册第六单元《实数》知识点复习(含答案解析)

一、选择题1.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.在实数,-3.14,0,π中,无理数有()A.1个B.2个C.3个D.4个B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.3.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4;)A.1 B.2 C.3 D.4A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;5不符合命题定义,所以⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.4.如图,数轴上表示实数5的点可能是()A.点P B.点Q C.点R D.点S B解析:B【分析】5【详解】∵253<<,∴5Q.故选:B.【点睛】55.3409215中,是无理数的是()A34B.0 C9D.21 5A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】34,0921534,故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.681)A.3 B.﹣3 C.±3 D.6A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】.7.在下列各数中是无理数的有()0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.9.下列实数是无理数的是()A. 5.1-B.0C.1D.πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、 5.1-是分数,是有理数,故选项不符合题意;B 、0是整数,是有理数,故选项不符合题意;C 、1是整数,是有理数,故选项不符合题意;D 、π是无理数,故选项符合题意.故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227分数,是有理数,选项不符合题意; B 、1.2012001是有理数,选项不符合题意; C 、2π是无理数,选项符合题意;D ,9是整数是有理数,,选项不符合题意.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+; (4)311()()(2)424-⨯-÷-.(1)4;(2)-11;(3);(4)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律直接提取公因数-进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(解析:(1)4;(2)-11;(3;(4)16-. 【分析】 (1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律,直接提取公因数-115,进而计算得出答案; (3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【详解】解:(1)(23)(41)---- 15=-+4=;(2)原式11()(5133)5=-⨯-+- 1155=-⨯ 11=-;(3)原式413=+-=(4)原式314429=-⨯⨯ 16=-. 【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭ =33231(8)()()()44343-⨯-+-⨯+-⨯- =11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3)311256273⎛⎫+-+- ⎪ ⎪⎝⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,2(1)21BC =-=,∴21AB BC ==, ∵1AB a =--, ∴121a --=,∴22a =-∴2222a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.15.27-的立方根是______________________;| 3.14|π-的绝对值是___________.-3±3π-314【分析】直接利用立方根以及平方根绝对值的性质分别分析得出答案【详解】解:∵∴-27的立方根是:-3;∵9的平方根是:±3;∴的平方根是:±3;∵|π-314|=π-314π-314解析:-3 ±3 π-3.14.【分析】直接利用立方根以及平方根、绝对值的性质分别分析得出答案.【详解】解:∵3(3)27-=-∴-27的立方根是:-3; ∵9的平方根是:±3; ∴±3;∵|π-3.14|=π-3.14,π-3.14的绝对值是:π-3.14∴|π-3.14|的绝对值是:π-3.14.故答案为:-3;±3;π-3.14.【点睛】此题主要考查了实数的性质,正确掌握相关定义是解题关键.16.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.30﹣|﹣12|﹣(﹣5)10﹣100101001000…3010﹣(﹣5)0【分析】按照有理数的分类填写【详解】解:整数集合:(30﹣|﹣12|﹣(﹣5)…);分数集合:(10﹣10);无理数集合解析:3,0,﹣|﹣12|,﹣(﹣5) 10%,﹣112,0.6⋅,127 2π,0.101001000… 3,0,10%,﹣(﹣5),0.6⋅,127【分析】按照有理数的分类填写.【详解】解:整数集合:( 3,0,﹣|﹣12|,﹣(﹣5)…);分数集合:( 10%,﹣112,0.6⋅,127); 无理数集合:( 2π,0.101001000…); 非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127).故答案为:3,0,﹣|﹣12|,﹣(﹣5);10%,﹣112,0.6⋅,127;2π,0.101001000;3,0,10%,﹣(﹣5),0.6⋅,127. 【点睛】 本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.17.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

人教版七年级数学下册——第6章实数单元复习

人教版七年级数学下册——第6章实数单元复习
A.
0<m<1
B.
1<m<2
C.
2<m<3
D.
3<m<4
7.求下列各式的值:
(1) + + (2)﹣| ﹣3|﹣( ﹣1)
8.比较大小: (填“>”“<”“=”).
9.实数a、b在数轴上对应点如图所示,化简:( )2+ ﹣|a|=.
10.已知、均为实数,若 ,则 的值为_______
11.若、都是实数,且 ,则+3-18的平方根是
8.如图,在数轴上A、B两点表示的数分别为 和5.1,则A、B两点之间表示整数பைடு நூலகம்点共有
个.
9.在实数 , ,0.1414, , ,﹣ ,0.1010010001…, ,0,1﹣ , , 中,其中无理数有.
10.实数的计算(时代 期中)
(1)计算: (2)
(3) (4)
11.(外国语期中)(1) (2)
针对练习:
1. =;- =;- =; =
2. =; =;- =; =
3.若x3=﹣216,则x=;若 =﹣3,则x=.
4.已知 =4.098, =1.902,则 =.
5.已知一个立方体的体积为125cm3,它的表面积为cm2.
6.若 =3,则x+1的立方根是.
7. 的立方根是( )
A.
﹣1
B.
0
C.
区别:⑴定义不同:如果 ,那么 叫做 的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,是0本身;负数没有平方根。
如果 ,并且 ,那么 叫做 的算术平方根。一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数。
⑵表示方法不同:正数 的平方根表示为 ;正数 的算术平方根为 。

七年级下实数复习与考点总结

七年级下实数复习与考点总结

实数复习与考点总结考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数一:平方根概念引入:我们现已学过的运算有加、减、乘、除、乘方五种,加法与减法这两种运算之间互为逆运算,乘法与除法之间互为逆运算,那么乘方有没有逆运算? 1.一个数的平方是9,这个数是什么数? 2.一个数的平方是254,这个数是多少? 3.填空:①( )2= 16 ②( )2=41 ③( )2= 0 ④( )2= 0.49(一)定义一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根,也叫做a 的二次方根。

例如:∵()22.1±=1.44 ∴ ±1.2叫做1.44的平方根∵ ()22±=4 ∴ ±2叫做4的平方根∵ 2x = a ∴ x 叫做a 的平方根 练习:(口答)请分别说出49,251,0的平方根 (二)表示方法: x=a ±,(a ≥0) 对于 { 正的平方根用“a ”来表示,(读做“根号a ”) 非负数a{负的平方根用 “ -a ”表示,(读做“负根号a ”){0的平方根用“0”表示,(读做“根号0”)即:正数a 的平方根表示为a ±(读做“正、负根号a ” ),其中a 叫做被开方数。

一个正数有正、负两个平方根,他们互为相反数。

因此知道一个正数的正平方根,就知道它的负平方根。

例如一个正数的一个平方根是 3,那么,它的另一个平方根是 –3,而 零的平方根就是零。

例如:49的平方根表示为49±,即 49±= ± 7 (三)平方根的性质:1、①一个正数有两个平方根,这两个平方根互为相反数; ②0只有一个平方根,它就是0本身; ③负数没有平方根。

例1、一个正数的平方根是3-a 和2a+3,求这个正数。

例2、若数m 的平方根是5a+1和a-19,求m 的值。

例3、已知b=3a +2c ,其中b 的算术平方根是19,c 的平方根是3±,求a 的值。

2、==a a 2_______________()2a =_______________练习:①()25=________②()25-=________ ③()2a =________ ④2a=________(四)开平方求一个数的平方根的运算叫做开平方。

开平方是平方的逆运算。

例1 、求下列各数的平方根: (1)9 (2)41 (3)0.36 (4)916 例2 、判断正误,并把错的改正:1)100的平方根是10;2)非负数(正数和零统称非负数)一定有平方根; 3)412的平方根是 23 ; 4)2 的平方根是 2±; 5)16的平方根是4±;6)6-表示6的算术平方根的相反数; 7)任何数都有平方根; 8)2a -一定没有平方根;9)一个数的算术平方根一定是正数; 10)()214.3-π的算术平方根是14.3-π;11)416=±; 12)4有一个平方根; 13)2a 的算术平方根是a ;14)若 a >0,a 有两个平方根,它们互为相反数; 15)若()2a -=5,那么a=-5 ;16)-6是()26-的平方根; 17)a 一定是正数; 18)只有正数有平方根。

练习:下列各数是否有平方根,请说明理由①(-3)2② 0. 2 ③ -0.01 2二、算术平方根 (一)定义正数的正平方根和零的平方根,统称算术平方根。

(一般地,如果一个正数的平方等于a,那么这个正数叫做a 的算数平方根) (二)表示方法: x=a ,(a ≥0,a ≥0)→双重非负性例如: 711,004的算术平方根是的算术平方根是2如何求一个数a 的算术平方根? 关键:还是把求算术平方根转化为平方运算 例1、求下列各数的平方根及算术平方根:(1)121 (2)()225- (3)814 (4)416(5)()23- (6)2243+解:(1)∵(±11)2=121;∴121的平方根是±11,算术平方根为11,即±121=±11,121 =11例2、X 为何值时,下列各式有意义?(1)x - (2)12+x (3)12-x (4)x x +-1练习:解下列方程1、12822=x 2、()04122=-+x 3、()4392=-y4、025692=-x 5、()0251242=--x 6.()81322=-x7.()1632=-x 8.()0512=+-x 9. ()12533=-y8.10.()043213=+-x 11. ()12513=-x 12.012532273=+⎪⎭⎫ ⎝⎛-x练习:1、一个数的平方根是-7,则它的另一个平方根是________,这个数是 ________ 。

2、“9的平方根是3±”的表达式是_______________3、16.0-=_________。

4、-8是_________的平方根,64的算术平方根是________,64=________,64的平 方根是_________ ,64的立根是_________。

5、41的平方是_________,41的平方根是_________。

6、9的算术平方根的平方根是_________。

7、917-的算术平方根_________。

8、()23π-的算术平方根_________。

9、()22-的平方根是_________,算术平方根是_________。

10、若22-=-x x ,则x=_________。

(三)被开方数的小数点的移位规律 利用计算器计算:0625.0=0.25 625.0=0.791 25.6=2.5 5.62=7.91625=256250=79.1规律:被开方数的小数点每向右(或左)移动两位,则它的算术平方根的小数点向右(或左)移动一位.练习:1.若5.12≈3.535,25.1≈1.118,那么125=________,125.0_________。

2.若已知45.7=2.729,y =272.9,那么y =__________。

3.若311.17201.1=,147.4201.17=,那么0.007201的平方根是__________。

4.若536.136.2=,858.46.23=,则x=__________。

(四)估算1.试比较下列各组数的大小(1)154与(2)672与(3)326与3 (4)63-与-8 (5)4110-与0.5 2.20的整数部分是________,小数部分是__________。

3.178+的整数部分________,小数部分是__________。

4.79-的整数部分________,小数部分是__________。

5.已知a ,b 为两个连续整数,且b a 〈〈7,则a+b__________。

6.115+的小数部分是m ,115-的小数部分是n ,则m+n=__________。

7.大于17-小于11的所有整数有__________________。

算术平方根与平方根之间关系:算术平方根是平方根里非负的那一个。

(五)非负数我们现已学过的非负数有a ,a ,2a 以及a 中的a 。

规律:若几个非负数的和为零,那么这几个非负数分别为零。

例1、已知a ,b 满足等式52++-b a =0,求b a 122-的算术平方根。

例2、已知a ,b ,c 都是实数,且满足()22a -+c b a ++2+8+c =0,c bx ax ++2=0,求1632++x x 的值。

例3、若()021232=-+-++m b a ,求()mb a +。

例4、若()132--b a 与互为相反数,求ba -2的值。

例5、当x=_________,且y=_________时,044=++-y x 。

三:立方根 (一)定义如果一个数的立方等于a ,那么这个数就叫做a 的立方根。

也叫作a 的三次方根。

(二)表示方法3a x =(a 为任意实数)(三)性质1、一个正数有一个正的立方根;2、一个负数有一个负的立方根;3、0的立方根是0。

4、3a -=3a -(a 为任意实数) ()()为任意实数a a a =33()为任意实数a a a =33练习:1、364=_______2、308751-=_______3、312564-=_______ 4、327102-=_______ 5、327174+ =_______ 6、3216--=_______ 7、若3387=-a ,则a=_______ 。

8、若423=-x ,则x=_______ 。

9、若033=+n m ,则m 与n 的关系一定为( )A 、m=n=0B 、m=nC 、m=-nD 、mn=110、一个自然数的平方是b,那么比这个自然数大1的数是___________11、一个自然数的算术平方根是a,则下一个自然数的算术平方根是___________ 12、一个自然数 a 的算术平方根是k ,那么a+1的立方根是_____________(四)算术平方根,平方根,立方根之间关系(五)相关重要性质练习:例1、已知a <0,求332a a +的值。

例2、已知m <n ,求()()332m n n m -+-的值。

例3、已知a =3,b a 24-=4,求a-b 的值。

例4 、若A=323+-+b a b a 是a+3b 的算术平方根,B=1221---b a a 是21a -d 的立方根,求 A+B 的平方根。

四、实数(一)定义:有理数和无理数统称实数。

(二)分类:例1、(三)实数与数轴上的点是一一对应的数轴三要素:原点,正方向和单位长度。

(四)实数的性质在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

1、相反数⑴相反数:只有符号不同的两个数叫做互为相反数,0的相反数是零。

⑵实数 a 的相反数是-a ;在数轴上表示相反数的两点以原点对称。

⑶ a 、b 互为相反数 <==> a + b = 0⑴ a 、b 互为倒数 <==> ab = 1 ⑵ 0没有倒数. 3、绝对值(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。

(2)一个数的绝对值表示这个数的点离开原点的距离。

(3) 0≥a 练习:⑴2-5的相反数是________ ⑵-1.25的倒数是________ (3) 3的相反数的倒数是________ (4) 3663---=________ (5)绝对值等于5的数是________(6)若a ,b 互为相反数,c ,d 互为倒数,则3cd b a ++=___________________ (7)若3,252==b a ,则a+b=__________ (8)若(),5,25332-==y x 则x+y=_________5、4、科学记数法把一个数记成n a 10⨯的形式,其中101〈≤a ,n 为整数。

相关文档
最新文档