无锡市江南中学2018-2019学年八年级上期中考试数学试题
江苏省无锡市 八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在以下四个银行标志中,属于轴对称图形的是()A. B. C. D.2.二次根式有意义,则x的取值范围是()A. B. C. D.3.下列几组数中不能作为直角三角形三边长度的是()A. ,,B. ,,C. D. ,,4.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A. 7cmB. 3cmC. 7cm或3cmD. 8cm5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A. B. C. D.6.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=12,DF=2,AC=3,则AB的长是()A. 2B. 4C. 7D. 97.如图,王大伯家屋后有一块长12m、宽8m的长方形空地,他在以较长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过()A. 3mB. 4mC. 5mD. 6m8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是()A. B. C. D.二、填空题(本大题共10小题,共20.0分)9.16的平方根是______.10.用四舍五入法对162520取近似数,162520(精确到千位)≈ ______ .11.若Rt△ABC中,∠C=90°,AC=3,AB=4,则BC= ______ .12.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是______.13.若+(b+2)2=0,则a+b= ______ .14.如图,在△ABC中,AB=AC=9cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.若BC=6cm,则△BCE的周长是______ cm.15.如图,在△ABC中,AB=AC,点D在BC上,且AD=BD,∠ADB=100°,则∠DAC的度数为______ .16.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE= ______ °.17.我国古代数学中有一道数学题:如图,有一棵枯树直立在地上,树高20尺,粗3尺,有一根藤条从树根处缠绕而上,缠绕5周到达树顶,则这条树藤有______尺.(注:枯树可以看成圆柱;树粗3尺,指的是圆柱底面周长为3尺)18.如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为______.三、计算题(本大题共1小题,共8.0分)19.(1)计算:+|1-|-(π-1)0;(2)解方程:3x2-75=0.四、解答题(本大题共7小题,共48.0分)20.已知3x+1的平方根为±2,2y-1的立方根为3,求2x+y的平方根.21.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.23.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.24.小王剪了两张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.(2)如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长.25.(1)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=5,BC=.(2)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.①△ABC的面积为:______.②若△DEF三边的长分别为、、,请在图3的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为______.26.如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ABC的形状,说明理由.(2)当t=______时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t 为何值时,P、Q两点之间的距离为?答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:由题意得2-x≥0,解得,x≤2,故选:D.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.【答案】C【解析】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.根据勾股定理的逆定理对各个选项进行分析,从而得到答案.本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4.【答案】B【解析】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.已知的边可能是腰,也可能是底边,应分两种情况进行讨论.本题从边的方面考查三角形,涉及分类讨论的思想方法.5.【答案】B【解析】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【答案】D【解析】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.求出DE的值,代入面积公式得出关于AB的方程,求出即可.本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.7.【答案】B【解析】解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6m,BA=8m,所以OA==10m;又因为OE=OB=6m,所以AE=OA-OE=4m.因此拴羊的绳长最长不超过4m.故选:B.为了不让羊吃到菜,必须≤点A到圆的最小距离.要确定最小距离,连接OA 交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6m,BA=8m,所以根据勾股定理得OA=10m.那么AE的长即可解答.此题考查了点与圆的位置关系,此题确定点到半圆的最短距离是难点.熟练运用勾股定理.8.【答案】D【解析】解:由题意,①-②可得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴x+y=,∴①②③正确,④错误.故选D.由题意,①-②可得2xy=45记为③,①+③得到(x+y)2=94由此即可判断.本题考查勾股定理,二元二次方程组等知识,解题的关键学会利用方程的思想解决问题,学会整体恒等变形的思想,属于中考常考题型.9.【答案】±4【解析】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】1.63×105【解析】解:162520≈1.63×105(精确到千位).故答案为1.63×105.先利用科学记数法表示,然后把百位上的数子5进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.11.【答案】【解析】解:在直角△ABC中,∵∠C=90°,∴AB为斜边,则BC2+AC2=AB2,又∵AB=4,AC=3,则BC==.故答案为:.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合AC=3,AB=4,可求出另一条直角边BC的长度.本题考查了勾股定理的知识,属于基础题目,像这类直接考查定义的题目,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.12.【答案】30°或120°【解析】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°-30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.【答案】1【解析】解:∵+(b+2)2=0,∴a-3=0,b+2=0,解得a=3,b=-2,∴a+b=3-2=1,故答案为:1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【答案】15【解析】解:如图,∵MN⊥AB,且平分AB,∴EA=EB,EB+EC=AC;∴△BCE的周长=AC+BC=9+6=15;故答案为:15.证明EA=EB,EB+EC=AC,即可解决问题.该题主要考查了线段垂直平分线的性质及其应用问题;应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.15.【答案】60°【解析】解:∵AD=BD,∠ADB=100°,∴∠B=∠BAD=40°,∵AB=AC,∴∠B=∠C=40°,在△ABC中,∠DAC=180°-40°×3=60°.故答案为:60°.根据等边对等角可得∠B=∠BAD,∠B=∠C,再根据三角形的内角和等于180°列式计算即可得解.本题考查了等腰三角形的性质,三角形的内角和定理,主要利用了等边对等角的性质,熟记性质是解题的关键.16.【答案】120【解析】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°-∠ACB=180°-60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.17.【答案】25【解析】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.故答案为:25.根据题意画出图形,再根据勾股定理求解即可.本题考查的是平面展开-最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.18.【答案】16-4π【解析】解:根据题意得点M到正方形各顶点的距离都为2,点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.而正方形ABCD的面积为4×4=16,4个扇形的面积为4×=4π,∴点M所经过的路线围成的图形的面积为16-4π.故答案为16-4π根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M到正方形各顶点的距离都为2,故点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.本题考查轨迹问题,关键是根据直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算解答.19.【答案】解:(1)原式=3+-1-1=1+;(2)方程整理得:x2=25,解得:x=±5.【解析】(1)原式利用二次根式性质,绝对值的代数意义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:∵3x+1的平方根为±2,2y-1的立方根为3,∴3x+1=4,2y-1=27,∴x=1,y=14,∴2x+y=16,∴2x+y的平方根为±4.【解析】首先依据平方根和立方根的定义求得x、y的值,从而可求得代数式2x+y的值.本题主要考查的是平方根和立方根的定义,熟练掌握相关定义是解题的关键.21.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.22.【答案】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEF中,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF===2.【解析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.23.【答案】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45-x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.【解析】(1)由题意得,我渔政船与不明船只行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)利用第(1)题中的BC=AC设BC=x海里,则AC=x海里.在直角三角形BOC中,BC=x海里、OC=(45-x)海里,利用勾股定理列出方程152+(45-x)2=x2,解得即可.本题考查了线段的垂直平分线的性质以及勾股定理的应用,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.24.【答案】解:(1)由折叠可知,AD=BD,设CD=x,则AD=BD=8-x,∵∠C=90°,AC=6,∴62+x2=(8-x)2,∴x=,∴CD=;(2)在Rt△ABC中,AC=6,BC=8,∴AB==10,由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10-6=4,设CD=x,则DE=x,BD=8-x,∴x2+42=(8-x)2,∴x=3,∴CD=3.【解析】(1)利用对称找准相等的量:BD=AD,∠BAD=∠B,然后利用周长求得答案;(2)利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案.本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.25.【答案】3.5;3【解析】解:(1)如图1所示,△ABC即为所求;(2)①S△ABC=3×3-×2×1-×3×1-×2×3=9-1--3=3.5;②如图,△DEF即为所求,S△DEF═2×4-×1×2-×2×2-×1×4,=8-1-2-2,=8-5,=3.(1)根据勾股定理画出图形即可;(2)①利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;②根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解本题考查的是作图-应用与设计作图,勾股定理,构图法求三角形的面积,读懂题目信息,理解构图法的操作方法是解题的关键.26.【答案】1.5或2.7或3【解析】解:(1)△ABC是直角三角形.∵AB=5,BC=3,AC=4,∴AC2+BC2=25=AB2,∴△ABC是直角三角形;(2)如图,当点P在AC上时,CP=CB=3,则t=3÷2=1.5秒;如图,当点P在AB上时,分两种情况:若BP=BC=3,则AP=2,故t=(4+2)÷2=3秒;若CP=CB=3,作CM⊥AB于M,则×AB×MC=×BC×AC,×5×MC=×3×4,解得CM=2.4,∴由勾股定理可得PM=BM=1.8,即BP=3.6,∴AP=1.4,故t=(4+1.4)÷2=2.7秒.综上所述,当t=1.5、3或2.7 时,△BCP是以BC为腰的等腰三角形.故答案为:t=1.5或2.7或3;(3)①如图,当点P在AC上,点Q在BC上运动时(0≤t≤2),由勾股定理可得:(2t)2+t2=5,解得t=1;②如图,当点P、Q均在AB上运动,且点P在点Q的左侧时(3≤t<4),由题可得:12-2t-t=,解得t=;③当点P、Q均在AB上运动,且点P在点Q的右侧时(4<t≤4.5),由题可得:2t+t-12=,解得t=,∵t=>4.5,∴不成立,舍去.综上所述,当t为1秒或秒时,P、Q两点之间的距离为.(1)直接利用勾股定的逆定理得出△ABC是直角三角形;(2)由于动点P从点C开始,按C→A→B的路径运动,故应分点P在AC上与AB上两种情况进行讨论;(3)当P、Q两点之间的距离为时,分三种情况讨论:点P在AC上,点Q在BC上;点P、Q均在AB上运动,且点P在点Q的左侧;点P、Q均在AB上运动,且点P在点Q的右侧,分别求得t的值并检验即可.本题属于三角形综合题,主要考查了勾股定理及其逆定理的应用以及等腰三角形的判定与性质的运用,在解答此题时要注意进行分类讨论,不要漏解.。
2018-2019学年第一学期11月无锡市滨湖区初二数学期中试卷(含答案)
2018年秋学期期中考试试题初二数学2018.11命题人:鞠金海(无锡市太湖格致中学)审核人:严艳(无锡市南湖中学)王华民(滨湖区教研中心)(1)本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.(2)考试时间为100分钟,试卷满分120分.一、选择题(本大题共10题,每小题3分,满分30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔在答题卡上相应的选项标号涂黑.............)1.在下列图形中,对称轴的数量小于3的是--------------------------------------------------------------( )2.在下列各式中,正确的是----------------------------------------------------------------------------------()A.(2=9 B=-2 C.±3 D.=-33.在实数:-3.14,π,4.3333,227中,无理数的个数为--------------------------------- ( )A.0个B.1个C.2个D.3个4.把0.356按四舍五入法精确到0.01的近似值是-------------------------------------------------------- ( ) A.0.3 B.0.36 C.0.35D.0.3505.如图,已知∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是-----------------------( ) A.HL B.SAS C.ASA D.AAS6.下列数组作为三角形的三条边长,其中能构成直角三角形的是----------------------------------- ( )A.1,3,4B.1.5,2,2.5 C.2,3,5 D.16,18,1107.如图,在△ABC 中,AC 的垂直平分线分别交AB 、AC 于点D 、E ,EC =5 , △ABC 的周长为26, 则△BDC 的周长为---------------------------------------------------------------------------------------------- ( ) A. 14 B. 16 C. 18 D. 198.如图,在2×3的正方形网格中,有一个以格点为顶点的三角形.此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有--------------------------------------------------------------------------------------- ( ) A.1个 B.2 个 C. 3个 D. 4个9. 如图,在Rt △ABC 中,∠C =90°,沿过点A 的一条直线AE 折叠Rt △ABC ,使点C 恰好落在AB 边的中点D 处,则∠B 的度数是 -------------------------------------------------------------------------------------------------- ( ) A. 25° B.30° C. 40° D. 45°10. 如图,已知AB =2,BF =8,BC=AE =6,CE=C F=7,则△CDF 与四边形ABDE 的面积比值是( )A. 1 : 1B. 2 : 1C. 1 : 2D. 2 : 3二、填空题(本大题共8小题,每小题2分,共16分;只需把答案直接填写在答题卡上相应的位置.........) 11.-27的立方根是__________.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为________. 13.已知a ,b 为两个连续的整数,且b a <<34,则a +b =________.14.如图,点D 是BC 上的一点,若△ABC ≌△ADE ,且∠B =65°,则∠EAC =__________°.15.如图,已知AD//BC ,DE ,CE 分别平分∠ADC ,∠DCB ,AB 过点E ,且AB ⊥AD .若AB=8,则点E到CD 的距离为 .第5题第7题第8题第9题第10题DCAFEB 第10题 第14题第15题DA B CD E23)3(21)2018(21-+-+⎪⎭⎫ ⎝⎛---π20183)1(816--+16.如图,已知△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点.如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动.若使△BDM 与△CMN 全等,则点N 的运动速度应为 厘米/秒.17.如图,在△ABC 和△ADC 中,已知AB=8,∠ACB=105°, ∠B=45°,且∠ACB=∠BAD ,∠B=∠D ,则线段CD 的长是 .18.如图,在△ABC 中,∠ACB =90°,∠A =30°, AB =5,点P 是AC 上的动点,连接BP ,以BP 为边做等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是 . 三、解答题(本大题共9小题,共74分.) 19.(本题满分10分)计算: (1)(2)20.(本题满分10分)求下列各式中x 的值:(1)9x 2-4=0 ; (2)(3x -1)3+64=021.(本题满分6分)已知一个正数的平方根是2a —7和a +4,b —12的立方根为—2. (1)求a 、b 的值; (2)求a +b 的平方根.22.(本题满分6分)如图,点E 在线段AC 上,BC ∥DE ,AC =DE ,CB =CE ,求证:∠A =∠D .23.(本题满分6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.① 在图中画出与△ABC 关于直线MN 成轴对称的△A 1B 1C 1;(不写画法)② 请你判断△ABC 的形状,并求出AC 边上的高.24. (本题满分8分)在等腰△ABC 中,已知AB =AC ,BD ⊥AC 于D . (1)若∠A =48°,求∠CBD 的度数; (2)若BC =15, BD =12,求AB 的长.25. (本题满分8分)已知两个等腰直角△ABC 和△CDE ,它们的两个直角顶点B 、D 在直线MN 上,过点A 、E 分别作AG ⊥MN ,EF ⊥MN ,垂足分别为G 、F .(1)如图1,当△ABC 和△CDE 都在△BCD 的外部时,请你探索线段EF 、DB 、AG 之间的数量关系,其数量关系为 .(2)如图2,将图1中的△ABC 沿BC 翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明;若不成立,请探索它们的数量关系,并说明理由.26.(本题满分10分) 画图计算:(1)已知△ABC ,请用尺规在△ABC 内确定一个点P ,使得点P 到AB 和BC 的距离相等,且满足P到点B 和点C 的距离相等.(不写作法,保留作图痕迹).(2)如图,如果点P 是(1)中求作的点,点E 、F 分别在边AB 、BC 上,且 PE =PF .① 若∠ABC =60 º,求∠EPF 的度数; ② 若BE=2,BF =8,EP =5,求BP 的长.(3)如图,如果点P 是△ABC 内一点,且点P 到点B 的距离是7,若∠ABC =45 º ,请在AB 、BC 上BMND CB AG F E图1MNDCBAGF E图2求作两个点M 、N ,使得△PMN 的周长最小(不写作法,保留作图痕迹),则△PMN 周长的最小值为 .27.(本题满分10分)【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC 中,∠A =27º,∠C =72º,请你在这个三角形中画出它的“好线”,并标出 等腰三角形顶角..的度数. 如图②,已知△ABC 是一个顶角为45 º的等腰三角形,请你在这个三角形中画出它的“好好 线”,并标出所分得的等腰三角形底角..的度数. 【应用】(1)在△ABC 中,已知一个内角为42 º,若它只有“好线”,请你写出这个三角形最大内 角的所有可能值 ;(2)在△ABC 中,∠C =27º,AD 和DE 分别是△ABC 的“好好线”,点D 在BC 边上,点E 在AB 边上,且AD =DC ,BE =DE ,请你根据题意画出示意图,并求∠B 的度数.图(1)B图(3)B图(2)B图①72°27°CBA图②45°CBA20183)1(816--+23)3(21)2018(210-+-+⎪⎭⎫ ⎝⎛---π2018年秋学期期中考试参考答案及评分标准初二数学一、选择题(每题3分,共30分)1.D 2.C 3.B 4.B 5.A 6.B 7.B 8.C 9.B 10.A 二、填空题(每空2分,共16分)11.-3; 12.13;13.11; 14.50°; 15.4;16.2或3; 17.8 18.54. 三、解答题(本大题共9小题,共74分)19. (1) (2)=4+2—1 …… 3分 =1—2+3+2…… 3分=5 …… 5分 =4…… 5分 20.(1)9x 2-4=0 ; (2)(3x -1)3+64=0 249x =…… 3分 314x -=- …… 3分 23x =±…… 5分 1x =- …… 5分 (做出一种,得2分)21.a =1,b =4. …… 4分 (每正确求出一个,得2分)= …… 6分22 .证明:∠DEC =∠ACB …… 2分 △DEC ≌△ACB . …… 4分 ∠A=∠D . …… 6分23.(1) 作图(略) …… 2分 (2) △ABC 是等腰直角三角形 …… 4分AC 边上的高是2. ……6分24.(1) ∠C =66° …… 2分 ∠CBD =24° …… 4分(2) DC =9 ……5分 设AB =x , 22212(9)x x =+- …… 7分 AB =252…… 8分25.(1) BD =EF +AG …… 2分(2)仍然成立 …… 3分 △EFD ≌△DHC EF =DH …… 5分 △ABG ≌△BCH AG =BH …… 7分 BD =EF +AG …… 8分26.(1) 作图略 图作对 …… 1分 结论 …… 2分(只作对1条线给1分) (2)过点P 分别作PG ⊥BC ,PH ⊥AB ,垂足分别为G ,H ∵BP 平分∠ABC ,PG ⊥BC ,PH ⊥AB ,∴PG =PH又∵PE =PF ∴△PGF =△PHEA67.5°67.5°22.5°22.5°45°45°CBA 27°CBA 126°72°∴∠GPF =∠HPE …… 4分① ∵∠ABC =60°,PG ⊥BC ,PH ⊥AB ∴∠HPG =120°∴∠EPF =120° …… 5分② ∵PG =PH ,BP =BP ∴△BPG ≌△BPH ∴BG =BH设GF =x ,可得 82x x -=+ 解得x =3 …… 7分 又∵PF =5, ∴PG =4∴BP…… 8分 (3) 作图略 …… 9分周长最小值是 …… 10分27.(1)……1分(2) (画出其中一种即可) ……1分67.5°67.5°22.5°22.5°45°45°AB C(3)84°,90°,117°,124°,103.50 ,126° ……3分 (写出1~2个答案得1分,3~4个答案得2分,5-6个答案得3分) (4)画出示意图 …… 1分分情况讨论: …… 3分 (每种情况1分)45°45°45°A22.5°22.5°45°BC2x 2xx xE DCBA 2x2xx xEDCBA(1) DA =DE 则 27+27+2x +x =180 解得x =42 ∴∠B =42° (2) AD =AE 则3x =27+27 解得 x =18 ∴∠B =18° (3) EA =ED 不存在∴∠B =42°或18° ……1分。
2018-2019学年江苏省无锡市八年级数学上期中考试试题.doc7
第一学期期中考试初二数学试卷一、选择题:(本大题共10小题,每小题3分,共30分 ) 1………………………( )A .4±B .4-C .4D .162.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ……… ( ) A .1个 B .2个 C .3个 D .4个 3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是… ( )4.以下列数组作为三角形的三条边长,其中能构成直角三角形的是……… ( ) A .1,2,3 B .2,3,5 C .1.5,2,2.5 D .13,14,15 5.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是……………………………………………( )A .CB =CD B .∠BAC =∠DAC C .∠BCA =∠DCAD .∠B =∠D =90° 6.若等腰三角形的顶角为80°,则它的一个底角为……………… ( ) A .20°B .50°C .80°D .100°7.已知直角三角形两边长x 、y 满足0492=-+-y x ,则第三边长为… ( ) A.5 B.97 C. 5 或7 D. 97或658.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80º,∠BAE =26º,则∠EAD 的度数为…………………( ) A.36º B. 37º C.38º D.45º 9.如图,正方形ABCD 的边长为5,AG =CH =4,BG =DH =3,连接GH ,则线段GH 的长为…………………………( )A .534 B .22 C .57D . 2A .D .C .B .DCAB(第5题图)10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB=AC=4, O 为AC 中点,若点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,线段OE 的最小值是为…………( ) A .12 B . 22 C .1 D . 2二、填空题:(每小题2分,共16分 )11. 式子2-=x y 中,x 的取值范围是 . 12.9的平方根是 .13.据统计,2016年国庆期间,无锡灵山风景区某一天接待游客的人数为18800人次,将这个数字精确到千位,并用科学记数法表示为 . 14.若等腰三角形的两边长为2和5,则它的周长为 . 15. 已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别6cm 2和15cm 2,则正方形③的面积为 . 16.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =105º, 则∠ADC = º.17.如图,△ABC 中,∠C= 90º ,AC =12,AB =13,AB 的垂直平分线交AB 、AC 于点D 、E ,则CE = .18.如图,Rt △ABC 中,AB ⊥BC ,AB =2,BC =3,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为 . (第9题图)(第16题图)(第15题图)(第17题图)(第18题图)(第8题图)三、解答题(共54分)19.计算与化简(本题每小题3分,共9分)(1)已知2(1)25x +=,求式中x 的值; (2)计算:(2)2+3-27-(-2)2.(3)计算:32121221÷⋅20. (本题满分4分)如图,点B 、E 、C 、F 在同一条直线上,∠A =∠D ,∠B =∠DEF ,BE =CF . 求证:AC =DF .MEABD21. (本题满分5分)如图,已知:△ABC 中,AB =AC ,M 、D 、E 分别是BC 、AB 、AC 的中点. (1)求证:MD =ME ; (2)若MD =4,求AC 的长.22. (本题满分7分)已知在边长为1的正方形网格中线段AB =5. (1)请你在线段AB 的右侧找一格点C ,使得AC =5,BC =10;(2)请你在线段上求作一点M ,使得CM +DM 最小,并求得CM +DM 的最小值为 ;(3)连接AC 、BC 请你计算△ABC 中BC 边上的高.23.(本题满分7分)在△ABC 中,AB =12,AC =BC =10,将ABC 绕点A 按顺时针方向旋转60°,得到△ADE ,点B 的对应点为点D ,点C 的对应点为点E ,连接BD 、BE ,延长BE 交AD 于点F . (1)求证:△ABD 是等边三角形; (2)求证:BF ⊥AD ,AF =DF ; (3)求线段BE 的长.AB D24. (本题满分7分)如图,点A为线段BC外一动点,且BC=4,AB=3,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE. (1)请找出图中与BE相等的线段,并说明理由;(2)当∠ABC=30°时,求线段BE长;(3)直接写出线段BE长的最大值.25. (本题满分6分)如图,已知OC平分∠AOB,点E、F分别在边OA、OB上,且EC=FC. (1)若∠AOB=60 º,求∠ECF求的度数;(2)若OE=2,OF=8,EC=5,求OC的长.OAEFC26. (本题满分9分)如图,在边长为6的正方形ABCD中,动点P从A出发,以每秒1个单位长度的速度沿AD方向运动,点Q从点D同时出发,以相同的速度向AD方向运动,当点P运动到点D时,点Q也停止运动,过点Q作CD 的平行线l,连接BP,过点P作PF⊥PB,交直线l于点F,连接PF,设P点运动的时间为t.(1)求∠PBF的度数;(2)若△BPE为等腰三角形,直接写出符合条件的t的值;(3)当点P出发1秒时,求线段PE的长.备用图初二数学参考答案及评分标准一、选择题(每小题3分,共30分)1.C 2.B 3.A 4.C 5.C 6.B 7.C 8.B 9.D 10.D 二、填空题(每小题2分,共16分)11. 2≥x 12.3± 13.4109.1⨯ 14.12 15.21 16.50 17.2411918.1-10 三、解答题(共54分)19.计算与化简(本题每小题3分,共9分) (1)4=x 或6-=x ;(2)-3 ;(3)2 20. (本题满分4分) BC=EF …………(1分) △ABC ≌△DEF …………(2分) AC=DF …………(1分)21. (本题满分5分)(1)AM ⊥BC …………(1分) DM=21AB,EM=21AC …………(1分) MD=MC …………(1分) (2)AB=8…………(2分) 22. (本题满分7分)(1)找到格点C …………(2分)(2)找到点M …………(1分), 求得CM +DM 的最小值为13…………(2分)(3)25S ABC =∆…………(1分),BC 边上的高210…………(1分) 23.(本题满分7分) (1)略 …………(2分)(2)B 、E 在AD 的垂直平分线上 …………(1分),BE 垂直平分AD ………(1分),BF ⊥AD ,AF =DF ………(1分) (3)BE=8-36………(2分)24. (本题满分7分)(1)△ABE ≌△A DC …………(2分),CD=BE ………(1分) (2)BE=5………(2分)(3)BE 的最大值为7………(2分)25. (本题满分6分)(1)120 º………(3分), (2)41………(3分)26. 题满分9分)(1)∠PBF=45º………(2分) (2)2-266或=t ………(4分) (3)证明PE=AP+CP ………(2分),PE=737。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc
2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
江苏省无锡市八年级数学上学期期中试题
江苏省无锡市和桥学区、张渚学区2018年八年级数学上学期期中试题(考试时间120分钟,满分120分)一、选择题(本大题共8小题,每小题3分,共24分)1. 下列图形中,轴对称图形的个数为 ( B )A .1个B .2 个C .3个D .4个2..下列给出的三条线段的长,能组成直角三角形的是( D )A .1 、 2 、3B .2 、 3、 4C .5、 7 、 9D .5、 12、 133 如图,∠C=∠D=90°,AC=AD ,那么△ABC 与△ABD 全等的理由是( A )A .HLB .SASC .ASAD .AAS4.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=5,则点P 到AB 的距离是A .8B .10C .5D .65、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方A .13B .26C .47D .946、在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求A. 三边中线的交点B .三边中垂线的交点 C .三条角平分线的交点D .三边上高的交点7、如图,把长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处, 已知∠MPN =90°,且PM =3,PN =4,那么矩形纸片ABCD 的面积为( A .26 B .28.8 C .26.8D .28 8、在正方形ABCD 所在平面上找点P ,使得△PAB 、△PBC 、△PCD 、△P A .10 B .9 C . 5D .1 二、填空题(本大题共10小题,每空2分,共22分) 9、1691的平方根是 ±5/4 ,(-9)2的平方根是 ±9 .10、已知△ABC ≌△DEF ,若∠B=40°,∠D=30°,则∠F= 110 °.11、如图,已知,AC FE BC DE ==,点A 、D 、B 、F 在一条直线上,要使得ABC ∆≌FDE ∆,还要添加12、已知2a-1的平方根是±3,3a+b-1的平方根为±4,则a+2b 的平方根为 ±3 。
江苏省无锡市八年级(上)期中数学试卷
八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共 30.0 分)1.以下图形是几家电信企业的标记,此中是轴对称图形的是()A. B. C. D.2.在 2, -34 , 0.3?2?, 227 ,π3,( 2 -1)0, -9 ,等数中,无理数的个数为()A. 1B. 2C. 3D. 43. 3.0269 精准到百分位的近似值是()A. B. C. D.4. 以下四组线段中,能够构成直角三角形的是()A. 4cm、5cm、6cmB. 1cm、2cm、3cmC. 2cm、3cm、4cmD. 、2cm、5.要丈量河两岸相对的两点 A,B 的距离,先在 AB 的垂线 BF 上取两点 C,D ,使 CD=BC,再定出 BF 的垂线 DE ,使 A,C,E 在一条直线上(如下图),能够说明△EDC ≌△ABC,得ED=AB ,所以测得 ED 的长就是 AB 的长,判断△EDC ≌△ABC 最适合的原因是()A. 边角边B. 角边角C. 边边边D. 边边角6.等腰三角形的周长为 13cm,此中一边长为 3cm,则该等腰三角形的底边为()A. 7cmB. 3cmC. 7cm或3cmD. 8cm7.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家歇息,要使凉亭到草坪三条边的距离相等,凉亭的地点应选在()A. △ABC的三条中线的交点B. △ABC三边的中垂线的交点C. △ABC三条高所在直线的交点D. △ABC三条角均分线的交点8. 如图,将一张长方形纸片沿EF 折叠后,点A、B 分别落在 A′、B′的地点,假如∠1=56°,那么∠2 的度数是()A. 56°B.D. 68°9. 如图,正方形网格中,网格线的交点称为格点,已知A、 B 是两格点,假如 C 也是图中的格点,且使得△ABC 为等腰三角形,则点 C 的个数有()A.4个B.6个C.8个D.10个10.如图,将边长为3的正方形绕点 B 逆时针旋转30 °,那么图中暗影部分的面积为()A. 3B. 3C. 3-3D. 3-32二、填空题(本大题共8 小题,共16.0 分)11.16 的平方根是 ______.12.如下图,在△ABC 与△DEF 中,假如 AB=DE,BC=EF,只需再找出∠______=∠______或 ______=______,就能够证明这两个三角形全等.13.已知正方形① 、② 在直线上,正方形③ 如图搁置,若正方形① 、② 的面积分别6cm2和 15cm2,则正方形③的面积为 ______.14.若正数 a 的平方根为 x 和 2x-6,则 a=______.15.如图,△ABC 中,∠C=90 °,AC =12,AB=13, AB 的垂直均分线交 AB 、AC 于点 D、 E,则 CE=______ .16.如图, AB=AC,则数轴上点 C 所表示的数为 ______.17.如图,在△ABC 中,BC=AC,∠C=90 °,AD 均分∠CAB,DE⊥AB,垂足为点 E, AB=10cm.那么△BDE 的周长是 ______cm.18.如图,△ABC 中,∠A=90 °, AB=AC=2,点 P 为 BC 上一动点,以 PA 为腰作等腰直角△APQ,则 AQ+BQ 的最小值为 ______.三、计算题(本大题共 1 小题,共8.0 分)19.如图,点 F,G 分别在△ADE 的 AD ,DE 边上, C,B 挨次为 GF 延伸线上两点, AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证: BC=DE ;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.20.计算:(1) 494 - (3 )2-(π)0;(2) (-3)2 -3(-2)3 +|7-4|.21.解方程(1) 9x2-121=0 ;(2)( x-1)3+27=0 .22.如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行绘图:( 1)在图 1 中,画一个极点为格点、面积为 5 的正方形;(2)在图 2 中,已知线段 AB、CD ,画线段 EF ,使它与 AB、CD 构成轴对称图形;(要求画出全部切合题意的线段)(3)在图 3 中,找一格点 D,知足:①到 CB、 CA 的距离相等;②到点 A、C 的距离相等.23.如图,已知在四边形 ABCD 中,∠A=90 °,AB=2cm,AD =5 cm,CD =5cm,BC=4cm,求四边形 ABCD 的面积.24.25.如图,在四边形 ABCD 中,∠BAD =∠BCD =90 °, AC、 BD 订交于点 E,点 G、H 分别是 AC、 BD 的中点.(1)求证: HG ⊥AC;(2)当 AC=8 cm, BD =10cm 时,求 GH 的长.26.野营活动中,小明用一张等腰三角形的铁皮取代锅,烙一块与铁皮形状、大小同样的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有五张三角形的铁皮(如图 1 所示),她想选择此中的一张铁皮取代锅,烙一块与所选铁皮形状、大小同样的饼.中;(2)在余下的铁皮中选出只需要切一刀(沿直线切饼,下同),而后把两小块饼都翻身,它们正好也能落在“锅”中的铁皮,画出切割线,标上角的度数.(3)小明最后拿到的是一张如图2 图形的三角形铁皮,它既不是等腰三角形又不是直角三角形,也不知道各个角的度数,请在图 2 中画出刀痕的地点(不超出 3 刀),也能使饼翻身后正好落在“锅”中.(不要写画法,但要用适合的记号或文字作简要说明)27.如图,△ABC 中, AB=BC=AC=6cm,现有两点 M、N 分别从点 A、点 B 同时出发,沿三角形的边运动,已知点 M 的速度为 1cm/s,点 N 的速度为 2cm/s.当点N 第一次抵达 B 点时, M、 N 同时停止运动.( 1)当 M、 N 运动 ______秒时,点 N 追上点 M?( 2)点 M、N 运动几秒后,可获得等边三角形△AMN ?( 3)当点 M、 N 在 BC 边上运动时,可否获得以MN 为底边的等腰三角形△AMN?如存在,恳求出此时M、N 运动的时间.( 4)点 M、 N 运动 ______秒后,可获得直角三角形△AMN?28.如图,在矩形 ABCD 中, BC=8,点 P 是 BC 边上一点,且 BP=3,点 E 是线段 CD上的一个动点,把△PCE 沿 PE 折叠,点 C 的对应点为点 F,当点 E 与点 D 重合时,点 F 恰巧落在 AB 上.( 1)求 CD 的长;( 2)若点 F 恰巧落在线段AD 的垂直均分线上时,求线段CE 的长;( 3)请直接写出AF 的最小值 ______.答案和分析1.【答案】C【分析】解:A 、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.应选:C.依据轴对称图形与中心对称图形的观点求解.本题考察轴对称图形问题,掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合;中心对称图形是要找寻对称中心,旋转 180°后与原图重合.2.【答案】D【分析】解:无理数为:,-,,;应选:D.因为无理数就是无穷不循环小数,利用无理数的观点即可判断选择项.本题要熟记无理数的观点及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像,等有这样规律的数.3.【答案】D【分析】解:3.0269 ≈(精准到百分位),应选:D.依据题目中的数据能够获得 3.0269 精准到百分位后的近似值.本题考察近似数和有效数字,解答本 题的重点是明确近似数和有效数字的含义.4.【答案】 D【分析】2 2 2解:A 、5 +4 ≠6,不可以构成直角三角形,故不切合 题意;B 、1 222+( )≠3,不可以构成直角三角形,故不切合 题意;C 、2 22 2+3≠4,不可以构成直角三角形,故不切合 题意;222D 、1.5 +2 =2.5 ,能构成直角三角形,故切合题意.由勾股定理的逆定理,只需 考证两小边的平方和等于最 长边的平方即可.本题考察勾股定理的逆定理:假如三角形的三 边长 a ,b ,c 知足 a 2+b 2=c 2,那么这个三角形就是直角三角形.5.【答案】 B【分析】解:∵BF ⊥AB ,DE ⊥BD ∴∠ABC= ∠BDE又 ∵CD=BC ,∠ACB= ∠DCE ∴△EDC ≌△ABC (ASA )应选:B .由已知能够获得 ∠ABC= ∠BDE ,又 CD=BC ,∠ACB= ∠DCE ,由此依据角边角即可判断 △EDC ≌△ABC .本题考察了全等三角形的判断方法;需注意依据垂直定 义获得的条件,以及隐含的对顶角相等,察看图形,找着隐含条件是十分重要的.6.【答案】 B【分析】第9页,共 24页当底边是 3cm 时,另两边长是 5cm,5cm.则该等腰三角形的底边为 3cm.应选:B.已知的边可能是腰,也可能是底边,应分两种状况进行议论.本题从边的方面考查三角形,波及分类议论的思想方法.7.【答案】D【分析】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC 三条角均分线的交点.应选:D.因为凉亭到草坪三条边的距离相等,所以依据角均分线上的点到边的距离相等,可知是△ABC 三条角均分线的交点.由此即可确立凉亭地点.本题主要考察的是角的均分线的性质在实质生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直均分线上.8.【答案】D【分析】解:依据折叠可得∠1=∠EFB′,∵∠1=56 °,∴∠EFB′ =56,°∴∠B′ FC=180-56° °-56 °=68 °,∵AD ∥BC,∴∠2=∠B′ FC=68,°应选:D.第一依据依据折叠可得∠1=∠EFB′=56°,再求出∠B′FC的度数,而后依据平行线的性质可得∠2=∠B′FC=68°.本题主要考察了平行线的性质,重点是掌握两直线平行,同位角相等.9.【答案】C【分析】解:如图,AB==,∴当△ABC 为等腰三角形,则点 C 的个数有 8个,应选:C.依据 AB 的长度确立 C 点的不一样地点,由已知条件,利用勾股定理可知AB= ,而后即可确立 C 点的地点.本题考察了等腰三角形的判断,熟练掌握等腰三角形的判断定理是解题的重点.10.【答案】C【分析】解:连结 BM ,在△ABM 和△C′BM中,,∴△ABM ≌△C′ BM,∠2=∠3= =30 °,在△ABM 中,AM= ×tan30 =1°,S△ABM= = ,正方形的面积为:=3 ,暗影部分的面积为:3-2 ×=3- ,应选:C.连结 BM ,依据旋转的性质和四边形的性质,证明△ABM ≌△C′BM,获得∠2=∠3=30 °,利用三角函数和三角形面积公式求出△ABM 的面积,再利用阴影部分面积=正方形面积-2△ABM 的面积即可获得答案.本题考察旋转的性质和正方形的性质,利用旋转的性质和正方形的性质证明两三角形全等是解决本题的重点.11.【答案】 ±4【分析】2解:∵(±4)=16,∴16 的平方根是 ±4.故答案为:±4.依据平方根的定 义,求数a 的平方根,也就是求一个数 x ,使得x 2=a ,则 x 就是a 的平方根,由此即可解决 问题 .本题考察了平方根的定 义 .注意一个正数有两个平方根,它 们互为相反数;0的平方根是 0;负数没有平方根.12.【答案】 B DEF AC DF【分析】解:①∠B=∠DEF ,则可利用 SAS 判断两三角形全等; ② AC=DF ,可利用 SSS判断两三角形全等.故填 B ,DEF .AC ,DF .已知两对边相等,则能够增添两 边的夹角相等或增添此外一 对边相等,从而分别利用 SAS ,SSS 来判断其全等.本题考察三角形全等的判断方法;判断两个三角形全等的一般方法有: SSS 、SAS 、ASA 、AAS 、HL .增添时注意:AAA 、SSA 不可以判断两个三角形全等,不能增添,依据已知联合图形及判断方法 选择条件是正确解答本 题的重点. 213.【答案】 21cm【分析】解:如图,∵正方形 ① 、② 的面积分别 6cm 2 和 15cm 2,∴DE=cm ,GH= cm ,∵依据正方形的性 质得:DF=FG ,∠DEF=∠GHF=∠DFG=90°,∴∠EDF+∠DFE=90°,∠DFE+∠GFH=90°, ∴∠EDF=∠GFH , 在 △DEF 和 △FHG 中,∴△DEF ≌△FHG (AAS ), ∴DE=FH= , ∵GH= ,∴在 Rt △GHF 中,由勾股定理得:FG==,所以正方形 3 的面积为 21cm 2.故答案为 21cm 2.正方形 ① 、② 的面积分别 6cm 2 和 15cm 2,推出 DE= cm ,GH=cm ,由△DEF ≌△FHG (AAS ),推出DE=FH= ,在Rt △GHF 中,利用勾股定理得可求 FG .本题考察了正方形性 质,全等三角形的性质和判断,勾股定理的 应用,解此题的重点是利用全等三角形的性 质求出 FH 的长,属于中考常考题型.14.【答案】 4【分析】解:依据题意可知:x+2x-6=0,解得:x=2∵22=4,∴a=4.故答案为:4.依据正数有两个平方根,它 们互为相反数可知 x+2x-6=0 ,从而可求得 x=2,然后由平方根的定 义可知 a=4.本题主要考察的是平方根的定 义和性质,由平方根的性质获得 x+2x-6=0 是解题的重点.15.【答案】 11924【分析】解:连结 BE ,∵在△ABC 中,∠ACB=90°,AC=12 ,AB=13 ,由勾股定理得BC=5,设 CE 的长为 x,则 BE=AE=12-x ,在 Rt△BCE 中,由勾股定理得:x 2 2 ( 2),+5 = 12-x解得:x=,故答案为:.连结 BE,由垂直均分线的性质可得 AE=BE ,利用勾股定理可得 BC=5,设 CE 的长为 x,则 BE=12-x,在△BCE 中利用勾股定理可得x 的长,即得 CE 的长.本题主要考察了垂直均分线的性质和勾股定理,利用方程思想是解答此题的重点.16.【答案】5-1【分析】解:由勾股定理得,AB==,∴AC=,∵点 A 表示的数是 -1,∴点 C 表示的数是-1.故答案为:-1.依据勾股定理列式求出AB 的长,即为 AC 的长,再依据数轴上的点的表示解答.本题考察了勾股定理,实数与数轴,是基础题,熟记定理并求出 AB 的长是解题的重点.17.【答案】10【分析】解:∵∠C=90°,AD 均分∠CAB ,DE⊥AB ,∴CD=DE,∵BC=AC ,∴BC=AC=AE ,∴△BDE 的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB,∵AB=10cm ,故答案为:10.依据角均分线上的点到角的两边的距离相等可得CD=DE ,再依据角均分线的对称性可得 AC=AE ,而后求出△BDE 的周长 =AB ,即可得解.本题考察了角均分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并正确识图,最后求出△BDE 的周长=AB 是解题的重点.18.【答案】10【分析】解:如图,∵∠BAC= ∠PAQ=90°,∴∠BAP=∠CAQ ,∵AB=AC ,AP=AQ ,∴△BAP ≌△CAQ(SAS),∴∠ABP=∠ACQ=45°,∵∠ACB=45°,∴∠QCB=90°,∴点 Q 在直线 CQ 上运动(CQ⊥BC),作点 A 对于直线 CQ 的对称点 A′,连结 BA′交 CQ 于 Q,则 AQ+BQ 的值最小,作 BH ⊥AA′于 H.在 Rt△BHA′中 BH=1,HA′=3,∴BA′==.∴AQ+BQ 的最小值为,故答案为.由△BAP≌△CAQ (SAS),推出∠ABP=∠ACQ=45°,推出∠QCB=90°,推出点Q 在直线 CQ 上运动(CQ⊥BC),作点A 对于直线 CQ 的对称点 A′,连结 BA′交本题考察轴对称 -最短问题、等腰直角三角形的性质、勾股定理等知识,解题的重点是学会利用轴对称解决最短问题,属于中考常考题型.19.【答案】(1)证明:∵∠BAF=∠CAE,∴∠BAF -∠CAF =∠CAE-∠CAF,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∠B=∠ DAB=AD∠ BAC=∠ DAE,∴△ABC≌△ADE( ASA),∴BC=DE ;(2)解:∠DGB 的度数为 67°,原因为:∵∠B=∠D,∠AFB=∠GFD ,∴△ABF ∽△GDF ,∴∠DGB=∠BAD ,在△AFB 中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD =180 °-35 °-78 °=67 °.【分析】(1)由∠BAF= ∠CAE,等式两边同时减去∠CAF ,可得出∠BAC= ∠DAE ,再由AB=AD ,∠B=∠D,原因 ASA 得出△ABC ≌△ADE ,利用全等三角形的对应边相等可得证;(2)由∠B=∠D,以及一对对顶角相等,利用两对对应角相等的两三角形相像获得三角形 ABF 与三角形 DGF 相像,由相像三角形的对应角相等获得∠DGB= ∠BAD ,在三角形 AFB 中,由∠B 及∠AFB 的度数,利用三角形的内角和定理求出∠BAD 的度数,从而获得∠DGB 的度数.本题考察了全等三角形的判断与性质,相像三角形的判断与性质,以及三角形的内角和定理,熟练掌握全等三角形的判断与性质是解本题的重点.20.【答案】解:(1)原式=72 -3-1=-12 ;(2) =3- ( -2) +( 4-7)=9-7.【分析】(2)直接利用立方根的性质以及二次根式的性质分别化简得出答案.本题主要考察了实数运算,正确化简各数是解题重点.21.【答案】(1)9x2-121=029x =1212x =1219x=±113 .(2).( x-1)3+27=0(x-1)3=-27 ,x-1=-3 ,x=-2.【分析】依据平方根和立方根的定义,即可解答.本题考察了平方根和立方根,解决本题的重点是熟记平方根和立方根的定义.22.【答案】解:(1)如图1所示:正方形即为所求;(2)如图 2,红色线段有 2 条都是切合题意的答案;(3)如图 3,点 D 即为所求.【分析】(1)联合勾股定理以及正方形的性质得出答案;(2)利用轴对称图形的性质得出答案;(3)直接利用角均分线的性质和线段垂直均分线的性质得出答案.本题主要考察了利用轴对称设计图案以及线段垂直均分线的性质等知识,正确掌握轴对称图形的性质是解题重点.23.【答案】解:连结BD.又 ∵CD =5,BC =4,222∴△BCD 是直角三角形,∴∠CBD=90 °,2∴S 四边形 ABCD =S △ABD +S △BCD =12 AB?AD +12 BC?BD=12×2×5+12 ×4×3=5+6( cm ).本题考察勾股定理和勾股定理的逆定理的应用,协助线的作法是关 键.解题时注意:假如三角形的三边长 a ,b ,c 知足 a 2+b 2=c 2,那么这个三角形就是直角三角形.连结 BD ,依据勾股定理求得 BD 的长,再依据勾股定理的逆定理 证明△BCD是直角三角形,则四边形 ABCD 的面积是两个直角三角形的面积和.24.【答案】 解:( 1)如图,连结AH 、 CH ,∵∠BAD=∠BCD =90 °, H 为 BD 的中点,∴AH =CH =12 BD , ∵G 为 AC 的中点, ∴GH ⊥AC ; ( 2) ∵BD=10, ∴AH =12 BD =5, ∵AC=8 , ∴AG=12 AC=4,∵GH ⊥AC ,即 ∠HGA=90 °, ∴GH =AH2-AG2 =52-42 =3.【分析】连 边 上中 线 性 质 得出 AH=CH= BD ,根(1) 接 AH 和 CH ,依据直角三角形斜 据等腰三角形性 质求出 HG ⊥AC ;(2)依据直角三角形斜边上中线性质得出 AH 的长,再依据勾股定理,即可得到 GH 的长.本题考察了直角三角形斜 边上中线性质,等腰三角形的性质,三角形内角和定理的应用,能求出 HG ⊥AC 是解本题的重点 .25.【答案】 ②【分析】解:(1)五张铁皮中,用序号为②的铁皮烙饼,不用刀切即可翻身正好落在“锅”中;(2)如下图:故答案为:② ;(3)如图 3,作出随意两边的垂直均分线交于一点,分别连结交点与三个极点获得三个等腰三角形.(1)找到等腰三角形的铁皮借口求解;(2)烙好一面后把饼翻身,这块饼仍旧正好落在“锅”中,即饼翻折此后与本来的图形重合,则铁锅的形状翻折此后与本来的图形重合,是轴对称图形;(3)依据题意作出图形即可.本题主要考察了生活中的轴对称现象,作出图中等腰三角形,利用等腰三角形的轴对称性得出是解题重点.26.【答案】6 32,125,152,9【分析】解:(1)设点 M 、N 运动 x 秒后,M 、N 两点重合,x×1+6=2x,解得:x=6,即当 M、N 运动 6秒时,点N 追上点 M,(2)设点 M 、N 运动 t 秒后,可获得等边三角形△AMN ,如图 1,AM=t ,AN=12-2t ,∵∠A=60 °,当AM=AN 时,△AMN 是等边三角形∴t=6-2t,解得 t=2,∴点 M 、N 运动 2 秒后,可获得等边三角形△AMN .(3)当点M 、N 在 BC 边上运动时,能够获得以 MN 为底边的等腰三角形,由(1)知6 秒时 M 、N 两点重合,恰幸亏 C 处,如图 2,假定△AMN 是等腰三角形,∴AN=AM ,∴∠AMN= ∠ANM ,∴∠AMC= ∠ANB ,∵AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B,在△ACM 和△ABN 中,∵∠AMC= ∠ANB ,∠C=∠B,AC=AB∴△ACM ≌△ABN (AAS ),∴CM=BN ,∴t-6=18-2t,解得 t=8,切合题意.第20 页,共 24页所以假定建立,当 M 、N 运动 8 秒时,能获得以 MN 为底的等腰三角形.(4)当点N 在 AB 上运动时,如图 3,若∠AMN=90°,∵BN=2t,AM=t ,∴AN=6-2t ,∵∠A=60 °,∴2AM=AN ,即2t=6-2t,解得 t=;如图 4,若∠ANM=90°,由 2AN=AM 得 2(6-2t)=t,解得 t= ;当点 N 在 AC 上运动时,点M 也在 AC 上,此时 A ,M ,N 不可以构成三角形;当点 N在 BC上运动时,如图 5,第21 页,共 24页当点 N 位于 BC 中点处时,由△ABC 时等边三角形知 AN ⊥BC,即△AMN 是直角三角形,则 2t=6+6+3,解得 t= ;如图 6,当点 M 位于 BC 中点处时,由△ABC 时等边三角形知 AM ⊥BC,即△AMN 是直角三角形,则 t=6+3=9;综上,当 t=,,,9时,可获得直角三角形△AMN;故答案为:,,,9.(1)第一设点 M 、N 运动 x 秒后,M 、N 两点重合,表示出 M ,N 的运动行程,N 的运动行程比 M 的运动行程多 6cm,列出方程求解即可;(2)依据题意设点 M 、N 运动 t 秒后,可获得等边三角形△AMN ,而后表示出AM ,AN 的长,因为∠A 等于 60°,所以只需 AM=AN 三角形 ANM 就是等边三角形;(3)第一假定△AMN 是等腰三角形,可证出△ACM ≌△ABN ,可得 CM=BN ,设出运动时间,表示出 CM ,NB ,NM 的长,列出方程,可解出未知数的值.(4)分点N 在 AB ,AC ,BC 上运动的三种状况,再分别就∠AMN=90°和∠ANM=90°列方程求解可得.本题是三角形的综合问题,主要考察了等边三角形的性质及判断和直角三角形的定义与性质,重点是依据题意设出未知数,理清线段之间的数目关系.第22 页,共 24页27.【答案】 109 -5【分析】解:(1)当点E 与点 D 重合时,如图设 CD=x ,由折叠可知:DF=DC=x ,PC=PF=5,在 Rt △PBF 中,BF== =4,则 AF=x-4 ,在 Rt △AFD 中,∠A=90°,由 AD2 2 2得 8 2 ( 2 2 , +AF =DF) =x + x-4 解得:x=10,即CD=10.(2)当点F 落在 AD 得中垂 线 MN 上时,作 FG ⊥DC 于点 G ,则FG=4,在 Rt △PNF 中,FN== =2 ,设 CE=y ,∵CG=FN=2 ,∴GE=2 -y ,在 Rt △GEF 中,由 FG 2 22 得:42 ( 2 2, +GE =EF + 2 -y )=y 解得:y= ,即CE= ;(3)如图 3,第23 页,共 24页由题意知 PF=PC=5,则点 F 和点 C 在以点 P 为圆心,5 为半径的圆上,连结 AP,与⊙P交点即为所求点 F,∵AB=10 ,BP=3,∴AP= = =,则 AF=AP-PF= -5,故 AF 的最小值为-5,故答案为:-5 .(1)如图 1,设 CD=x ,依据折叠性质知 DF=DC=x ,PC=PF=5,由勾股定理可得BF=4,AF=x-4 ,Rt△AFD 中依据 AD 2+AF2=DF2求解可得答案;图2,作FG⊥DC,知FG=4,Rt△PNF中求得FN=2 设(2)如, CE=y,知GE=2-y,在 Rt△GEF 中,由 FG 2+GE2=EF2可得答案;(3)由PF=PC=5知点 F 和点 C 在以点 P 为圆心,5 为半径的圆上,连结 AP,与⊙ P 交点即为所求点 F,再依据勾股定理求解可得.本题是四边形的综合问题,解题的重点是掌握矩形的性质、勾股定理及两点之间线段最短的性质等知识点.第24 页,共 24页。
2018-2019学年江苏省无锡市南长、侨谊集团八年级第一学期期中数学【试卷+解析】
25.(11 分)如图,∆ABC 中,∠C = 90° , AB = 10cm , BC = 6cm ,若动点 P 从点 C 开始, 按 C → A → B → C 的路径运动,且速度为每秒1cm ,设出发的时间为 t 秒. (1)出发 2 秒后,求 ∆ABP 的周长. (2)当 t 为几秒时, BP 平分 ∠ABC ? (3)问 t 为何值时, ∆BCP 为等腰三角形? (4)另有一点 Q ,从点 C 开始,按 C → B → A → C 的路径运动,且速度为每秒 2cm ,若 P 、 Q 两点同时出发,当 P 、Q 中有一点到达终点时,另一点也停止运动.当 t 为何值时,直线 PQ 把 ∆ABC 的周长分成相等的两部分?
13.(2 分)如图,∠1 =∠2 ,要使 ∆ABE ≅ ∆ACE ,还需添加一个条件是 适当的一个条件即可).
(填上你认为
14.(2 分)如图,图中的三角形是直角三角形,所有四边形都是正方形,正方形 A 的边长 为 7,另外两个正方形中的数字 x ,y 分别表示该正方形面积,则 x 与 y 的数量关系是 .
角形的三边关系验证能否组成三角形.
【解答】解:(1)若 4 为腰长,9 为底边长,
由于 4 + 4 < 9 ,则三角形不存在;
(2)若 9 为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为 9 + 9 + 4 =22 .
故选: C .
5.(3 分)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形
7.(3 分)如图, ∆ABC 中, AB = 5 , AC = 8 , BD , CD 分别平分 ∠ABC , ∠ACB , 过点 D 作直线平行于 BC ,交 AB , AC 于 E , F ,则 ∆AEF 的周长为 ( )
无锡市锡北片2018-2019学年八年级上学期期中考试数学试题(含答案)
2018-2019初二数学期中试卷(2018.11)说明:本试卷满分120分,考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,是轴对称图形的个数是 ( ▲ )A .1个B .2个C .3个D .4个 2. 下列几组数中不能作为直角三角形三边长度的是( ▲ )A .7,24,25a b c ===B . 1.5,2, 2.5a b c ===C .25,2,34a b c === D .15,8,17a b c ===3.等腰三角形有一个角为50°,则它的顶角度数是 ( ▲ ) A .50° B . 65° C .80° D .50°或80°4.如图,下列条件中,不能证明△ABD ≌△ACD 的是 ( ▲ ) A .AB=AC ,BD=CD B .∠B=∠C ,BD=CD C .∠B=∠C ,∠BAD=∠CAD D .∠ADB=∠ADC ,DB=DC5.如图.射线OC 平分∠AOB ,点P 在OC 上,且PM ⊥OA 于M .PN ⊥OB 于N ,当PM =2cm 时,则PN 是 ( ▲ ) A .1cm B .2cm C .4cm D .不确定6.如图,等腰△ ABC 中,AB=AC ,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 ( ▲ )A .80°B . 70°C .60°D .50°第4题 第5题 第6题 第8题7.△ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②一个底角为60°的等腰三 角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角 形是等边三角形.上述结论中正确的有 ( ▲ ) A .1个B .2个C .3个D .4个8.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E 、D 分别落在E ′、 D ′,已知∠AFC=76°,则∠CFD ′等于 ( ▲ )A. 31°B.24° C .28° D.22°9.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E、F运动的过程中,EB+EF的最小值是( ▲)A.5 B.6 C.7 D.810.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC为一个等腰三角形.满足条件的点C有(▲)A.2个 B.4个 C.6个 D.8个第9题第10题二、填空(本大题8小题,每空2分,共18分)11. 已知直角三角形的两条直角边长分别是6和8,则斜边为▲.12.已知ΔABC≌ΔDEF,点A与点D.点B与点E分别是对应顶点,(1)若ΔABC的周长为32,AB=10,BC=14,则DF= ▲(2)∠A=48°,∠B =53°,则∠F= ▲.13.已知等腰三角形的两条边长分别为3和7,那么它的周长等于▲.14.如图,等边△ABC中,AD是中线,AD=AE,则∠EDC= ▲.15.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为▲.16.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是▲.17. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为▲.18.如图,在等腰Rt△ABC中,AC=BC=2,点D是BC的中点,P是射线AD上的一个动点,则当△BPC 为直角三角形时,AP的长为▲.第14题第15题第17 题第18题l2l1A B学校________________班级____________姓名____________…………………………密…………封…………线…………内…………不…………要…………答…………题………………………… 2018-2019初二数学期中试卷答题纸一、 选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、 填空题(每空2分,共18分)11. 12. 13. 14. 15. 16. 17. 18. 三、 解答题(共72分)19. (本题满分8分)如图,已知点B 、F 、C 、E 在一条直线上,BF=CE ,AB=DE ,∠B=∠E . 求证:AC ∥DF .20. (本题满分8分)已知等腰三角形的三边长a =5x -1,b =6-x ,c =4,求x 的值.21.(本题满分8分)小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt △ABC 沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE . (1)如果AC =6cm ,BC =8cm ,可求得△ACD 的周长为 ; (2)如果∠CAD:∠BAD=4:7,可求得∠B 的度数为 ;操作二:如图2,小王拿出另一张Rt △ABC 纸片,将直角边AC 沿直线AD 折叠,使它落 在斜边AB 上,且与AE 重合,若AC =9cm ,BC =12cm ,请求出CD 的长.22.(本题满分10分)画图或计算:(1)(4分)如图1,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在何处?请在图2中,用尺规作出猫所蹲守的位置点P.(不写作法,保留作图痕迹).(2)(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)线段CC′被直线l______;(3)在直线l上找一点P,使PB+PC的长最短.23.(本题满分8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.24.(本题满分8分)如图,△ABC 中,CF ⊥AB ,垂足为F ,M 为BC 的中点,E 为AC 上一点,且ME=MF . (1)求证:BE ⊥AC ;(2)若∠A=50°,求∠FME 的度数.25.(本题满分10分)一节数学课后,老师布置了一道课后练习题: 如图1,已知在Rt△ABC 中,AB=BC ,∠ABC=90°,O 为AC 中点.(1)如图1,若把三角板的直角顶点放置于点O ,两直角边分别与AB 、BC 交于点M 、N , 求证:BM=CN ;(2)若点P 是线段AC 上一动点,在射线BC 上找一点D ,使PD=PB ,再过点D 作BO 的平行线,交直线AC 于一点E ,试在备用图上探索线段ED 和O P 的关系,并说明理由. 并说明理由.图1备用图2OACB 备用图1NM OACBOACB ABCFME------------------------------------密…………封…………线…………内…………不…………要…………答…………题--------------------------------------------------------26.(本题满分12分)已知△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,CD 为AB 边上的高.动点P 从点A 出发,沿着△ABC 的三条边逆时针走一圈回到A 点,速度为2cm /s ,设运动时间为ts . (1)求CD 的长;(2)t 为何值时,△ACP 为等腰三角形?(3)若M 为BC 上一动点,N 为AB 上一动点,是否存在M ,N 使得AM+MN 的值最小?如果有请求出最小值,如果没有请说明理由.备用图初二数学期中考试答案及评分标准参考2018.11一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCDBBCDCBD二、填充题(每空2分,共18分)题号 11 1213 14 15 答案108 , 79°1415°15°题号 16 17 18 答案62°,118°185-1, 5+1 25三、解答题(共72分) 19.(8分)证明:∵BF=CE (已知), ∴BF+CF=CE+CF即BC=EF …………………………………………………2分 又∵AB=DE (已知)∠B=∠E∴△ABC ≌△DEF (ASA )……………………………………………2分 ∴∠ACB=∠EFD ……………………………………………2分 ∴AB ∥DE ……………………………………………2分20.(8分)若a =b ,则5x -1=6-x ,得x =76,(296,296,5)符合…………2分若a =c ,则5x -1=4,得x =1,(4,5,4)符合…………………2分 若b =c ,则6-x =4,得x =2,(9,4,4)不构成三角形…… …3分 综上所述,符合要求的x 值为76或2…………………………………… 1分21.(10分)(1) 解:如图所示:P 点为所求.……4分(2)(1)如图所示:……………………2分(2)垂直平分……2分(3)如图所示:………2分22.(8分)操作一(1)14cm…………2分(2)35°…………2分操作二由折叠知:AE=AC=9,DE⊥AB,设CD=DE=X,则BD=12-X,∵=81+144=225,∴AB=15∴BE=15-9=6,………………………………………………2分又,∴=+36,X=,即CD=4.5c m……………………………………………2分23.(8分)证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.…………………………………………………2分在△AEC和△BED中,∴△AEC≌△BED(ASA).…………………2分(2)∵△AEC≌△B ED,∴EC=ED ,∠C=∠BDE . …………………………………………………2分 在△EDC 中,∵EC=ED ,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°. ………………………………………………2分 24.(8分)(1)证明:∵CF ⊥AB ,垂足为F ,M 为BC 的中点,∴MF=BM=CM=21BC , ……………………………………………2分 ∵ME=MF , ∴ME=BM=CM=21BC ,∴MCE MEC MEB MBE ∠=∠∠=∠,……………………………1分 ∵o 180=∠+∠+∠+∠MCE MEC MEB MBE∴o 90=∠+∠MEC MEB ∴ BE ⊥AC ;…………………1分 (2) ∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,……………1分 ∵ME=MF=BM=CM ,∴∠BMF+∠CME=(180°﹣2∠ABC )+(180°﹣2∠ACB )=360°﹣2(∠ABC+∠ACB ) =360°﹣2×130° =100°,……………2分 ∴∠MEF=180°-100°=80°……………1分 25.(10分) (1)连结OB∵ AB=BC , O 为AC 中点 ∴∠ABO =∠CBO , BO ⊥AC∵∠ABC =90°∴∠ABO=∠CBO =45°;∠A=∠C =45° ∴∠ABO =∠C=∠CBO ∴ 0B=OC ∵∠MON =90°∴∠MOB +∠BON =∠CON +∠BON =90° ∴∠MOB =∠CON ∴△BOM ≌Rt △CON (ASA ) ∴BM=CN .…………………………3分(2)两张图形画对 … ………………………1分OP=DE, OP ⊥DE ………………………1分 理由:① 若点P 在线段AO 上∵BO ⊥AC ∴∠BOC =90°∵OB ∥DE ∴∠POB =∠PED =90°∴OP ⊥DE ,∵PB=PD ,∴∠PDB =∠PBD , ∵AB=BC ,∠ABC =90°,∴∠C =45°, ∵BO ⊥AC ,∴∠OBC =45°, ∴∠OBC =∠C =45°,备用DB∵∠ PBO =∠PBC —∠OBC ,∠DPC=∠PDB —∠C , ∴∠PBO =∠DPC ,∵BO ⊥AC ,DE ⊥AC , ∴∠BOP=∠PED=90°,∴△BPO ≌△PDE (AAS ); ∴OP=DE .……………………………3分② 若点P 在线段CO 上 同理可证OP ⊥DE ∵OB ∥DE∴∠OBC =∠BDE =45°∵PB=PD ,∴∠PDB =∠PBD ,又∵∠APB =∠PBD +∠ACB =∠PBD +45°∠PDE =∠PDC +∠BDE =∠PDC +45° ∴∠APB =∠PDE 又∵∠BOP=∠PED =90°∴△BPO ≌△PDE (AAS );∴OP=DE .…………………………………………2分综上所述:OP=DE ,OP ⊥DE . 26.(12分)解:(1)∵AC=6cm ,BC=8cm ,AB=10cm ,∴AC 2+BC 2=AB 2,∴∠ACB=90°,∵CD 为AB 边上的高, ∴AC•BC=AB•CD ,∴CD=4.8cm ; ………………………………2分 (2)①当点P 在BC 上时,∵∠ACB=90°, 若△ACP 为等腰三角形,只有AC=PC=6, ∴t==6s , …………………………………………………………2分②当点P 在AB 上时,∴分三种情况:当AC=AP 时,即10﹣(2t ﹣6﹣8)=6,解得:t=9, …2分 当AC=CP=6时,即 [10﹣(2t ﹣6﹣8)]=,解得:t=8.4, …1分当AP=CP=10﹣(2t ﹣6﹣8)时,即10﹣(2t ﹣6﹣8)=5,解得:t=9.5, ……1分 综上所述:t 为6,8.4,9,9.5时,△ACP 为等腰三角形; (3)如图作点A 关于BC 的对称点A′,过A′作A′N ⊥AB 于N , 交BC 于M ,则A′N 就是AM+MN 的最小值, ………………2分 ∵CD ⊥AB , ∴CD ∥A′N , ∵AC=CA′,_ E_ D_ P_ OA_ C备用图∴AD=DN,∴A′N=2CD=9.6,即AM+MN的最小值=9.6.………………………………………2分。
无锡市初二年级数学上册期中重点试卷(含答案解析)-最新教育文档
无锡市2019初二年级数学上册期中重点试卷(含答案解析)无锡市2019初二年级数学上册期中重点试卷(含答案解析)一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A. B. C. D.2.在下列各组条件中,不能说明△ABC≌△DEF的是( ) A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠D C.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF 3.下列四组线段中,可以构成直角三角形的是( ) A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 4.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( ) A.5cm B.6cm C.7cm D.8cm5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确 B.②正确 C.①②都正确 D.①②都不正确7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B. cm C. cm D. cm8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC 交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD= AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个 B.2个 C.3个 D.4个二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是__________.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=__________.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为__________cm.14.一个等腰三角形的一个角为80°,则它的顶角的度数是__________.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是__________cm2.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=__________.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N 分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是__________.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为__________.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为__________.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC 的长最短,这个最短长度的平方值是__________.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是__________,CF的对应线段是__________;(2)若AB=8,DE=10,求CF的长度.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a ∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)∴ b2+ ab= c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ 把△ABC的周长分成相等的两部分?无锡市2019初二年级数学上册期中重点试卷(含答案解析)参考答案及试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2.在下列各组条件中,不能说明△ABC≌△DEF的是( ) A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠D C.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF 【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS 定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列四组线段中,可以构成直角三角形的是( ) A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【专题】计算题.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( ) A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线的性质得到DC=DE,AC=AE,根据三角形的周长公式计算即可.【解答】解:∵A D是∠CAB的角平分线,DE⊥AB,∠C=90°,∴DC=DE,AC=AE,∴△DEB的周长=DE+BE+BD=BE+DC+BD=BE+BC=BE+AE=AB=6cm.故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直【考点】平移的性质;勾股定理.【专题】网格型.【分析】先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.【解答】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB= ,AO=OC=2 ,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.【点评】本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确 B.②正确 C.①②都正确 D.①②都不正确【考点】直角三角形斜边上的中线;等边三角形的判定.【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM= BC,PN= BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B. cm C. cm D. cm【考点】勾股定理;等腰三角形的性质.【分析】作AD⊥BC于D,作CE⊥AB于E,由等腰三角形的性质得出BD,由勾股定理求出AD,由三角形面积的计算方法即可求出腰上的高.【解答】解:如图所示:作AD⊥BC于D,作CE⊥AB于E,则∠ADB=90°,∵AB=AC,∴BD= BC=4cm,∴AD= = =3(cm),∵△ABC的面积= AB?CE= BC?AD,∴AB?CE=BC?AD,即5×CE=8×3,解得:CE= ,即腰上的高为;故选:C.【点评】本题考查了勾股定理、等腰三角形的性质三角形面积的计算;熟练掌握等腰三角形的性质,运用勾股定理求出AD是解决问题的关键.8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD= AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DF=DH,根据勾股定理求出AC=AQ,AF=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出③;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②①;证△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.【解答】解:如图,过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=A C+CE,∴③正确;作∠ACN=∠BCD,交AD于N,∵∠CAD= ∠CAB=22.5°=∠BAD,∴∠ABD=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,在△ACN和△BCD中,∴△ACN≌△BCD,∴CN=CD,AN=BD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN= AE,∵AN=BD,∴BD= AE,∴①正确,②正确;过D作DH⊥AB于H,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠FCD=∠DBA,∵AE平分∠CAB,DF⊥AC,DH⊥AB,∴DF=DH,在△DCF和△DBH中∴△DCF≌△DBH,∴BH=CF,由勾股定理得:AF=AH,∴ = = = =2,∴AC+AB=2AF,AC+AB=2AC+2CF,AB﹣AC=2CF,∵AC=CB,∴AB﹣CB=2CF,∴④正确.故选D【点评】本题主要考查了三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DA C=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE= AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD= = =8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD= cm.【考点】翻折变换(折叠问题).【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,则EB=2,设CD=EC=x,则BD=4﹣x,然后在Rt△DEB中利用勾股定理列方程求解即可.【解答】解:在Rt△ACB中,AB= =5,由翻折的性质可知:AE=AC=3,CD=DE,则BE=2.设CD=DE=x,则BD=4﹣x.Rt△DEB中,由勾股定理得:DB2=DE2+EB2,即(4﹣x)2=x2+22,解得:x= .∴CD= .故答案为:.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为10cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:(1)当三边是2cm,2cm,4cm时,2+2=4cm,不符合三角形的三边关系,应舍去;(2)当三边是2cm,4cm,4cm时,符合三角形的三边关系,此时周长是10cm;所以这个三角形的周长是10cm.故填10.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是30cm2.【考点】直角三角形斜边上的中线.【分析】由于直角三角形斜边上的中线是6cm,因而斜边是12cm,而高线已知,因而可以根据面积公式求出三角形的面积.【解答】解:∵直角三角形斜边上的中线是6cm,∴斜边是12cm,∴S△= ×5×12=30cm2∴它的面积是30cm2.故填:30cm2.【点评】本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=110°.【考点】角平分线的性质.【分析】根据O到三角形三边距离相等,得到O是内心,再利用三角形内角和定理和角平分线的概念即可求出∠BOC的度数.【解答】解:∵O到三角形三边距离相等,∴O是内心,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO= ∠ABC,∠BCO=∠ACO= ∠ACB,∠ABC+∠ACB=180°﹣40°=140°,∠OBC+∠OCB=70°,∠BOC=180°﹣70°=110°.故答案为:110°.【点评】本题考查的是角平分线的定义和三角形的内心的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N 分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB= ∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB= ∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为21.【考点】勾股定理.【专题】计算题.【分析】在直角三角形ACD中,利用勾股定理求出CD的长,在直角三角形ABD中,利用勾股定理求出BD的长,由CD+BD 求出BC的长即可.【解答】解:在Rt△ACD中,AC=10,AD=8,根据勾股定理得:CD= =6,在Rt△ABD中,AB=17,AD=8,根据勾股定理得:BD= =15,则BC=6+15=21,故答案为:21【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC 的长最短,这个最短长度的平方值是13.【考点】作图-轴对称变换.【分析】(1)分别找到各点的对称点,顺次连接可得△A′B′C′.(2)连接B'C,则B'C与l的交点即是点P的位置,求出PB+PC的值即可.【解答】解:(1)如图所示:(2)如图所示:PB+PC=PB'+PC=B'C= = .则这个最短长度的平方值是13.【点评】本题考查了轴对称作图及最短路线问题,解答本题的关键是掌握轴对称的性质,难度一般.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质;角平分线的性质.【专题】作图题.【分析】(1)先作∠BAC的平分线l,再过点C作CF⊥l交AB于F,则可得到点C和F点关于l对称,所以l为所作;(2)连结DF,如图,利用等腰三角形的判定方法得到AF=AC,则AD垂直平分CF,所以DF=DC,则∠DCF=∠DFC,再利用三角形外角性质得∠BDF=2∠DCF,接着证明∠B=2∠BCF,于是得到∠B=∠BDF,则FB=FD=CD,则易得AB=AF+FB=AC+CD.【解答】解:(1)如图,直线l为所作;(2)AB=AC+CD.理由如下:连结DF,如图,∵AD平分∠BAC,AD⊥CF,∴AF=AC,∴AD垂直平分CF,∴DF=DC,∴∠DCF=∠DFC,∴∠BDF=∠DCF+∠DFC=2∠DCF,∵∠AFC=∠ACF,∵∠AFC=∠B+∠BCF,∴∠ACF=∠B+∠BCF,∵∠ACB=2∠B,∴2∠B﹣∠BCF=∠B+∠BCF,∴∠B=2∠BCF,∴∠B=∠BDF,∴FB=FD,∴FB=CD,∴AB=AF+FB=AC+CD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C .在△ABF和△DCE中∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.【点评】本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.【解答】解:连结AC,如图所示:在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC= =10(米),∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴∠ACB=90°,∴该区域面积S=S△ACB﹣S△ADC= ×10×24﹣×6×8=96(平方米),∴铺满这块空地共需花费=96×100=9600元.【点评】本题考查了勾股定理,三角形面积,勾股定理的逆定理的应用;解此题的关键是求出区域的面积.24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是BC′,CF的对应线段是FC′;(2)若AB=8,DE=10,求CF的长度.【考点】翻折变换(折叠问题).【分析】(1)根据翻折后的对应点确定出对应线段即可;(2)在Rt△ABE中由勾股定理可求得AE=6,从而得到AD=16,然后证明BE=BF=10,从而可求得FC=16﹣10=6.【解答】解:(1)∵点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC′,CF的对应线段是FC′.故答案为:BC′;FC′.(2)由翻折的性质可知:DE=BE=10,∠2=∠BEF.∵AD∥BC,∴∠2=∠1.∴∠1=∠BEF.∴BE=BF=10.在Rt△A BE中,由勾股定理得:AE= = =6,∴AD=AE+ED=6+10=16.∴CF=CB﹣BF=16﹣10=6.【点评】本题主要考查的是翻折的性质、勾股定理的应用,证得BE=BF=10是解题的关键.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a ∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)∴ b2+ ab= c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【考点】勾股定理的证明.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b ﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE= ab+ b2+ ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE= ab+ c2+ a(b ﹣a),∴ ab+ b2+ ab= ab+ c2+ a(b﹣a),∴a2+b2=c2.【点评】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B →C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ 把△ABC的周长分成相等的两部分?【考点】等腰三角形的判定与性质.【专题】计算题;动点型.【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t ﹣3,t+2t﹣3=6;当P点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB= = ,∴△ABP的周长为:AP+PB+AB=2+5+ =7 .(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD = = =1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t ﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这。
2018-2019学年八年级上学期 期中考试数学试题(含答案)
2018-2019学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.455.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC 交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.109.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是°.12.(3分)五边形的内角和为.13.(3分)如图,△ABC的边BC的垂直平分线M N交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BED=.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.21.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为,则OA==;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm【解答】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.45【解答】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.5.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上【解答】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选D.7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△A BC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.10【解答】(1)证明:∵E是∠ABC,∠ACB平分线的交点,∴∠EBD=∠EBC,∠ECF=∠ECB,∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DE=BD,EF=CF,∴DF=DE+EF=BD+CF,即DE=BD+CF,∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,∵AB=4,AC=3,∴△ADF的周长=4+3=7,故选B.9.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是40°.【解答】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.12.(3分)五边形的内角和为540°.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.(3分)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是3.【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BE D=130°.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BDE=∠DBC,根据折叠的性质得:∠EBD=∠DBC,∴∠EBD=∠EDB=25°,∴∠BED=130°,故答案为:130°.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为10.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵E F是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【解答】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.【解答】证明:在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.【解答】已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°即∠ACB=90°∴△ABC为直角三角形22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:过A作AG=AD,交BD于G,∵AF⊥BD,∴DF=FG,∵∠ACD=∠ABC,BE平分∠ABC,∴∠ACD=∠ABD,∴A,B,C,D四点共圆,∴∠DAC=∠CBD,∠ADB=∠ACB=∠ABC=∠AGD,∵∠AGD=∠BAG+∠ABG,∠ABG=ABC=∠AGD,∴∠BAG=∠CAD,在△ABG与△ACD中,∴△ABG≌△ACD,∴BG=CD,∴BF=BG+DF,即BF=CD+DF.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为(2,﹣2),则OA==2;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.【解答】解:(1)∵(a﹣2)2+(b+2)2=0,∴a﹣2=0且b+2=0,则a=2,b=﹣2,故A(2,﹣2),OA==2.故答案是:(2,﹣2),2.(2)如图1所示,①当OA=OP=2时,符合条件的点P的坐标是P(0,﹣4),P′(0,2);②当OP=AP=2时,符合条件的点P的坐标是P″(0,﹣2);综上所述,符合条件的点的坐标是:P(0,﹣4)或P′(0,2)或P″(0,﹣2);(3)如图2,①当n≥2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=3对称,设N2(x,0),可得:=2,即x=4﹣n,∴N2(4+n,0),则NN2=4﹣n﹣(﹣n)=4.②如图3,当0<a<2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=2对称,设N2(x,0),可得:=2,即x=4﹣n,∴P2(4﹣n,0),则PP2=4﹣n+n=4.③综上所述,NN2的长是4.。
江苏省无锡市八年级(上)期中数学试卷
江苏省无锡市八年级(上)期中数学试卷八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下面的图形都是常见的安全标记,其中是轴对称图形的是()A. B. C. D.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A. 3、4、5B. 6、8、10C. 5、12、13D. 5、5、73.和三角形三条边距离相等的点是()A. 三条角平分线的交点B. 三边中线的交点C. 三边上高所在直线的交点D. 三边的垂直平分线的交点4.若等腰三角形中有两边长分别为2和5,则这个三角形的第三条边长为()A. 2或5B. 3C. 4D. 55.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A 和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm7.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A. ∠EDBB. ∠BEDC. 12∠AFBD. 2∠ABF8.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A. 28°B. 118°C. 62°D. 62°或118°9.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A. 9B. 10C. 11D. 1510.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A. 833cm2B. 8cm2C. 1633cm2D. 16cm2二、填空题(本大题共8小题,共24.0分)11.等边三角形是一个轴对称图形,它有______条对称轴.12.若等腰三角形的周长为20,且有一边长为6,则另外两边分别是______.13.等腰△ABC中,若∠A=30°,则∠B=______.14.如图,A,D,F,B在同一直线上,AE=BC,且AF=BD.添加一个条件______,使△AEF≌△BCD.15.△ABC中,∠A:∠B:∠C=1:3:2,且最长边为10cm,则最短边长为______cm.16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是______.17.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.18.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有______个(不含△ABC).19.已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B两边的距离相等(尺规作图,保留作图痕迹).20.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=21.EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?21.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于多少?22.如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是______;(2)若∠ABC=70°,求∠BPC的度数.23.在等腰直角三角形ABC左侧作直线AP,点B关于直线AP的对称点为D,连结BD、CD,其中CD交直线AP于点E.(1)依题意补全图形;(2)若∠PAB=28°,求∠ACD的度数;24.如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE,活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等,请你求出该位置与旗杆之间的距离.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.26.如图,在△ABC中,AB=3,BC=4,AC=5.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q 也同时停止.连结PQ,设运动时间为t (t>0)秒.(1)判断△ABC的形状,并说明理由;(2)记△CBQ的面积为S,请用含有t的代数式来表示S;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,求AQ的长;②直接写出这样t的值,使得直线l经过点B.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、42+32=52,能够成直角三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、122+52=132,能构成直角三角形,故此选项错误;D、52+52≠72,不能构成直角三角形,故此选项正确.故选:D.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.【答案】A【解析】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选:A.题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.4.【答案】D【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,这个三角形的第三条边长为5;题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.6.【答案】A【解析】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD-AB=2AD-AB=10-8=2cm;故橡皮筋被拉长了2cm.故选:A.根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.此题主要考查了等腰三角形的性质以及勾股定理的应用.7.【答案】C【解析】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°-28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选:D.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.9.【答案】B【解析】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选:B.由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.10.【答案】B【解析】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.11.【答案】3【解析】解:等边三角形是一个轴对称图形,它有3条对称轴.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.【答案】6,8或7,7【解析】解:(1)当6是腰长时,底边为20-6×2=8,此时能够组成三角形,∴另外两边分别是6,8;(2)当6是底边,此时腰为:=7,能构成三角形三条边,∴另外两边分别是7,7.故答案为6,8或7,7.题目给出等腰三角形有一条边长为6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【答案】30°,75°,120°【解析】解:分两种情况讨论:(1)当∠A=30°为顶角时,∠B==75°;(2)当∠A=30°为底角时,∠B为底角时∠B=∠A=30°;∠B为顶角时∠B=180°-∠A-∠B=180°-30°-30°=120°.故填30°或75°或120°.本题要分两种情况讨论:(1)当∠A=30°为顶角;(2)当∠A=30°为底角时,则∠B 为底角时或顶角.然后求出∠B.本题是考查等腰三角形的性质及三角形的内角和定理,在解答时一定要讨论已知角为顶角或底角两种情况不要漏解.14.【答案】EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90°)【解析】解:当EF=CD时,依据AE=BC,AF=BD,EF=CD,可得△AEF≌△BCD(SSS).当∠A=∠B或AE∥CB时,依据AE=BC,∠A=∠B,AF=BD,可得△AEF≌△BCD (SAS).当∠E=∠C=90°时,依据AE=BC,AF=BD,可得△AEF≌△BCD (HL).故答案为:EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90° ).根据AE=BC,且AF=BD,利用全等三角形的判定方法,得出所需的条件即可,答案不唯一.本题考查了平行线的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.【答案】5【解析】解:∵∠A:∠B:∠C=1:3:2,∴设∠A、∠B、∠C分别为k、3k、2k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=90°,∠C=60°,∴最短边长=×10=5cm.故答案为:5根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.16.【答案】4:3【解析】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.17.【答案】12013【解析】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C 作CN⊥AB 于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+E F=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF的最小值是,故答案为:.作E关于AD的对称点M,连接CM交AD于F,连接EF,过C 作CN⊥AB 于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.本题考查了平面展开-最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.18.【答案】7【解析】解:如图所示每个大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去△ABC外有七个与△ABC全等的三角形.故答案为:7.本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.19.【答案】解:如图所示:①作∠B的角平分线;②作DE中垂线;③两直线的交点就是所求作的点P.【解析】根据线段垂直平分线的性质和角平分线的性质可知点P为线段DE 的垂直平分线与∠B的角平分线的交点.本题主要考查的是线段垂直平分线的性质和角平分线的性质,掌握线段垂直平分线的性质和角平分线的性质是解题的关键.20.【答案】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中AB=DE∠B=∠EBC=EF,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.21.【答案】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.【解析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.22.【答案】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【解析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.23.【答案】解:(1)如图,(2)连接AD,由对称知,∠PAD=∠PAB=28°,AD=AB,∵AB=AC,∴AD=AC,∵∠BAC=90°,∴∠CAD=∠PAD+∠PAB+∠BAC=28°+28°+90°=146°,∴∠ACD=12(180°-∠CAD)=17°;【解析】(1)根据对称性即可画出图形;(2)由对称性得出AB=AD,进而求出∠CAD,即可得出结论;主要考查了轴对称的性质,等腰三角形的判定和性质,直角三角形的判定和性质,解本题的关键是判断出AD=AC.24.【答案】解:根据题意可得:AE=3m,AB=20m,BD=13m.如图,设该位置为点C,且AC=xm.由AC=xm得:BC=(20-x)m(1分)由题意得:CE=CD,则CE2=CD2,∴32+x2=(20-x)2+132,解得:x=14,∴CB=20-x=6,由0<14<20可知,该位置是存在的.答:该位置与旗杆之间的距离为6米.【解析】根据题意可得:AE=3m,AB=20m,BD=13m,由于CE2=CD2,根据勾股定理得到方程求解即可.考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:△BPN是锐角三角形,由三角形的内角和可得结论.本题是三角形和圆的综合题,主要考查了三角形全等的判定,利用其性质求角的度数,结合三角形外接圆的知识确定三角形的形状,进而求出角度,此题难度适中,但是第三问学生可能考虑不到三角形的形状问题,而出错.26.【答案】解:(1)△ABC是直角三角形,理由:∵AB2+BC2=32+42=25,AC2=25,∴AB2+BC2=AC2,∴∠ABC=90°,即△ABC是直角三角形.(2)如图1,当0<t≤3时,BQ=t,BC=4,∴S=12×4×t=2t;如图2,当3<t≤5时,,AQ=t-3,则BQ=3-(t-3)=6-t,(3)①如图3,∵QP的垂直平分线过A,∴AP=AQ,∴3-t=t,解得t=1.5;或t-3=t,显然不成立;∴AP=AQ=1.5;②(Ⅰ)如图4,当点Q从B向A运动时l经过点B,当点P运动到AC中点时,PA=BQ=BP,可得t=2.5.(Ⅱ)如图5,当点Q从A向B运动时l经过点B;BP=BQ=3-(t-3)=6-t,AP=t,PC=5-t,过点P作PG⊥CB于点G,则PG∥AB,∴△PGC∽△ABC,∴PCAC=PGAB=GCBC,∴PG=PCAC?AB=35(5-t),CG=PCAC?BC=45(5-t),∴BG=4-45(5-t)=45t,由勾股定理得:BP2=BG2+PG2,即(6-t)2=(45t)2+[35(5-t)]2,解得:t=4514;综上所述:存在t的值,使得直线l经过点B,t的值是2.5或4514.【解析】(1)由勾股定理逆定理可得;(2)分0<t≤3和3<t≤5两种情况,表示出BQ的长度,根据三角形的面积公式②分点Q从B向A运动时l经过点B和点Q从A向B运动时l经过点B两种情况分别求解可得.本题是三角形的综合问题,考查了等腰三角形性质,线段垂直平分线性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.。
2019学年江苏省无锡市八年级上学期期中数学试卷【含答案及解析】
2019学年江苏省无锡市八年级上学期期中数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列长度的各组线段,能组成直角三角形的是()A.12,15,18 B.12,35,36 C.0.3,0.4,0.5 D.2,3,42. 下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010010001…中,其中无理数共有()A.2个 B.3个 C.4个 D.5个3. 如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的()A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些4. 如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:025. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对6. 如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°7. 等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A.28° B.118° C.62° D.62°或118°8. 如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题9. 全球七大洲的总面积约为149 480 000km2,对这个数据精确到百万位可表示为km2.10. 的平方根是,﹣27的立方根是,当a2=64时,= .11. 如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3= .12. 一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.13. 如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.14. 如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.15. 如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.16. 如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A重合,折痕为DE,则CD的长为 cm.17. 如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .18. 如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.三、解答题19. 计算下列各式的值(1)+()2﹣23(2)求x的值:5(x﹣1)2﹣20=0.20. 已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B两边的距离相等(尺规作图,保留作图痕迹).21. 已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.22. “中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过60千米/时.这时一辆小汽车在一条城市街道直路上行驶,某一时刻刚好行驶到路对面车速检测仪A正前方50米C处,过了8秒后,测得小汽车位置B与车速检测仪A之间的距离为130米,这辆小汽车超速了吗?请说明理由.23. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.24. 如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且,点P、Q分别是边AD、AB上的动点.(1)求BD的长;(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.25. 已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C=120°.现有两动点P、Q分别从B、O两点同时出发,点P以每秒3个单位的速度沿BO向点O运动,点Q以每秒1个单位的速度沿OC向点C运动,当其中一个点到达终点时,另一个点也随即停止运动.请回答下列问题:(1)在运动过程中,△OPQ的面积记为S,请用含有时间t的式子表示S.(2)在等边△OAB的边上(点A除外),是否存在点D,使得△OCD为等腰三角形?如果存在,这样的点D共有个.(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着点C旋转,使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
无锡市锡东片2018-2019学年八年级上学期期中考试数学试题(含答案)
2018~2019学年第一学期期中考试八年级数学试卷(满分:120分,考试时间:100分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列手机软件图标中,是轴对称图形的是………………………( ▲ )A .B .C .D .2.在下列各数中,是无理数的是………………………………… ( ▲ ) A .4 B .722C .39-D . 3.14 3.下列各组数中的三个数作为三角形的边长,其中能构成直角三角形的是………………………………………………………………… ( ▲ ) A .1,2,3 B . 2, 3, 4 C .5,6,7 D .7,8,94.下列说法正确的是……………………………………………… ( ▲ ) A .144的平方根等于12 B .25的算术平方根等于5 C .的平方根等于±4 D .39 等于±35.若实数m 、n 满足等式|m ﹣2|+4-n =0,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是…………………………………… ( ▲ ) A .6 B .8 C .8或10D .106. 如图,E ,B ,F ,C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是 …………………………………… ( ▲ ) A .AB=DE B .DF ∥AC C .∠E=∠ABCD .AB ∥DE7.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =24,DE=4,AB=5,则AC 的长是 ………………………………………………………( ▲ ) A .4 B .5C .6D .78.如图,△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E ,AB 交EF 于D .给出下列结论:①AF=AC ;②DF=CF ;③∠AFC=∠C ;④∠BFD=∠CAF .其中正确的结论个数有.………………………………………… ( ▲ ) A .4个 B .3个 C .2个 D .1个第6题图 第7题图 第8题图9.如图,在等腰Rt △ABC 中,AC=BC=2,点D 是BC 的中点,P 是射线AD 上的一个动点,则当∠BPC=90°时,AP 的长为…………………… ( ▲ ) A .25B .15-C .15+D . 15- 或 15+第9题图 第10题图 第14题图 10.如图,正方形ABCD中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是…………………………………… ( ▲ )A .1B .1.5C .2D .2.5二、填空题(本大题共8小题,每空2分,共18分)11. 49的平方根是 ▲ , ▲ 的立方根是-4. 12.等腰三角形ABC 中,∠A=110°,则∠B= ▲ °. 13.近似数5.20×104精确到 ▲ 位.14.如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=28°,则∠CDB 的大小为 ▲ °.15.如图,已知CD=6m ,AD=8m ,∠ADC=90°,BC=24m ,AB=26m .图中阴影部分的面积= ▲ m 2.16.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是 ▲ .第15题图 第16题图 第17题图17.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的中线,CE ⊥AB 于E ,AC=8,BC=6,则DE= ▲ .18.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 ▲ cm (杯壁厚度不计).三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(每小题5分,共10分) ①23)2(2781-+-+ ② 2)3(-- |1﹣| +(7﹣1)020.求下列各式中x 的值(每小题5分,共10分) ① (x+2)2=4; ② 3+(x ﹣1)3=﹣5.21.(本题满分8分)如图,点 A ,F ,C ,D 在一条直线上, AB ∥DE ,AB=DE ,AF=DC . 求 证:BC ∥EF .22.(本题满分8分)在如图所示的网格中,线段AB和直线a如图所示,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在格点上.(1)在图中画出以线段AB为一边的正方形 ABCD,且点C和点D均在格点上,并直接写出正方形 ABCD 的面积为▲;(2)在图中以线段AB为一腰的等腰三角形ABE,点E在格点上,则满足条件的点E有▲个;(3)在图中的直线a上找一点Q,使得△QAB的周长最小.aAB23.(本题满分8分)对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:= ;[37]= .(2)若,写出满足题意的x的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对120连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.24.(本题满分8分)如图.在数学活动课中,小明剪了一张△ABC的纸片,其中∠A=60°,他将△ABC折叠压平使点A落在点B处,折痕DE,D在AB上,E在AC上.(1)请作出折痕DE;(要求:尺规作图,不写作法,保留作图痕迹)(2)判断△ABE的形状并说明;(3)若AE=5,△BCE的周长为12,求△ABC的周长.25. (本题满分10分)如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求△ADE的周长;(2)当t为何值时,△PAE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.26.(本题满分10分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求△PBQ的面积;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.2018~2019学年第一学期期中考试八年级数学答案(2018.11)一、选择题:(本大题共10小题,每题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABDADBDC二、填空题(本大题共8小题,每题2分,共16分)11、_ ±7, _-64__ 12、_____35____ 13、____百____ 14、___ _38______ 15、_____96____ 16、___1-_2_____ 17、_____1.4____ 18、______20_____ 三、解答题(本大题共7小题,共74分,写出必要的文字说明和推理过程.) 19、(每小题5分,共10分)①23)2(2781-+-+ ②2)3(-- |1﹣| +(7﹣1)0=9+(-3)+2 …………3分 =3+ 1﹣+1 …………3分=8 …………5分 =5- …………5分20、求下列各式中x 的值(每小题5分,共10分)① (x+2)2=4; ② 3+(x ﹣1)3=﹣5.解: x+2= ±4 …………1分 (x-1)3= -8 …………1分x+2=±2 …………3分 x-1=-2 …………3分1221、(本题满分8分)∵A B ∥DE ,∴∠A=∠D , ……………………1分 ∵AF=DC ,∴AC =DF . ……………………2分在△ABC 与△DEF 中,AB DEA D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△A ∴∠ACB=∠D FE , ……………………7分 ∴BC∥EF . ……………………8分22、(本题满分8分)(1)画出正方形ABCD ……2分 正方形ABCD 面积为 10 ……4分 (2)满足条件的点E 有 6 个……6分(3)画出A 或B 的对称点 …7分 画出Q 点 ……………8分23、(本题满分8分)(1) 2 ; ……………1分 6 ……………2分 (2) 1 ,2 ,3 ……………4分 (3) 3 ……………6分 (4) 255 ……………8分 24、(本题满分8分) 解:(1)根据题意得:作AB 的垂直平分线DE ,垂足为D ,交AC 于E ,DE 即为所求,如图1所示:----------- 2分 (2)△ABE 是等边三角形,理由如下: 如图2所示:∵DE 是AB 的垂直平分线,∴AE=BE , ……………3分 ∵∠A=60°,∴△ABE 是等边三角形; ……………4分 (3)∵△BCE 的周长为12, ∴BC+BE+CE=12, ∵AE=BE ,∴BC+AC=12, ……………5分A BCD QA a∵△ABE 是等边三角形,∴AB=AE=5, ……………6分 ∴△ABC 的周长=AB+BC+AC=5+12=17. ……………8分 25、(本题满分10分)(1)∵矩形ABCD 中,AB=9,AD=4, ∴CD=AB=9,∠D=90°, ∴DE=9﹣6=3, ∴AE===5; ------------------ 2分∴△A DE 的周长为3+4+5=12 ------------------ 3分(2)①若∠EPA=90°,t=6; ------------------ 5分 ②若∠PEA=90°,(6﹣t )2+42+52=(9﹣t )2,解得t=. ------------------ 7分 综上所述,当t=6或t=时,△PAE 为直角三角形; (3)假设存在.∵EA 平分∠PED ,∴∠PEA=∠DEA . ∵CD ∥AB , ∴∠DEA=∠EAP , ∴∠PEA=∠EAP ,∴PE=PA , ------------------ 8分 ∴(6﹣t )2+42=(9﹣t )2, ------------------ 9分 解得t=. ------------------ 10分∴满足条件的t 存在,此时t=.26. (本题满分10分)解:(1)∵BQ=2×2=4(cm ),BP=AB ﹣AP=16﹣2×1=14(cm ),--------------- 1分 ∵∠B=90°, ∴S △PBQ=2814421=⨯⨯; ------------------ 2分 (2)BQ=2t ,BP=16﹣t ,根据题意得:2t=16﹣t, ----------------- 3分解得:t=, ------------------ 4分即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ, ------------------ 5分∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.------------------ 6分②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.------------------ 7分③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,---- 8分∴CE=,---- 9分∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒. ------------------ 10分综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。
江南中学初二期中数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √4D. π2. 下列各数中,绝对值最大的是()A. -2B. 3C. -5D. 13. 若 a < b,那么下列不等式中正确的是()A. a - b < 0B. a + b < 0C. a - b > 0D. a + b > 04. 已知 a、b、c 是等差数列,且 a = 2,b = 5,则 c =()A. 8B. 9C. 10D. 115. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x²B. y = √(x - 1)C. y = log₂xD. y = 1/x6. 若sinα = 1/2,且α在第二象限,则cosα =()A. -√3/2B. √3/2C. 1/2D. -1/27. 在△ABC中,若a² + b² = c²,则△ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形8. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²9. 下列各函数中,图象是反比例函数的是()A. y = x²B. y = 2xC. y = 1/xD. y = 2x + 310. 若等比数列的首项为 a,公比为 q,则第n项 an =()A. a q^(n-1)B. a / q^(n-1)C. a q^(n+1)D. a / q^(n+1)二、填空题(每题5分,共50分)11. 若 |x| = 3,则 x = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡市江南中学2019—2019学年度 第一学期 期中考试
初二数学试卷 (2019.11)
审题人:王雅信 命题人:徐敏娜
一、选择题(本大题共8小题,每小题3分,共24分)
1. 4的平方根是 ( )
A .2
B .-2
C .±2
D .16
2. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ( )
3.若一个等腰三角形的一个内角为80°,则它的底角的度数是
( )
A .80°
B .80°或50°
C . 80°或 20°
D .20°
4.下列说法中,正确的是 ( )
A .实数可分为正实数和负实数
B .3、4、5都是无理数
C .绝对值最小的实数是0
D .无理数包括正无理数,零和负无理数
5.如图,AB ∥DE ,A C ∥DF ,AC =DF ,下列条件中不能判断△ABC ≌△DEF 的是 ( )
A. AB =DE B .∠B =∠E C .EF ∥BC D .EF=BC
6.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C 的度数为( )
A .30°
B .40°
C .45°
D .60°
第5题 第6题 第7题 第8题
7.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于 ( )
A .∠ED
B B .∠BED
C .2
1∠AFB D .2∠ABF 8.如图,由4个小正方形组成的田字格,△ABC 的顶点都是小正方形的顶点,在田字格上能画出与△ABC 成轴对称,且顶点都在小正方形顶点上的三角形的个数共有 ( )
A .3个
B .4个
C .5个
D .6个
二、填空题(本大题共10小题,每空2分,共22分)
9.(1)16的算术平方根是_______; (2)化简:4±=_______.
10.已知:m 、n 为两个连续的整数,且m <11 <n ,则m+n = .
11.已知等腰三角形的两边长分別为a 、b ,且a 、b 满足5)2(2-+-b a =0,则此等腰三角形的周长
为 .
12. 已知地球的表面积约等于5.1亿平方公里,其中水面面积约等于陆地面积的29
71 A. D. C.
B .
倍,则地球上陆地面积约等于 亿平方公里(精确到0.1亿平方公里).
13. 如图,△ABD ≌△CBD ,若∠A =80°,∠ABC =70°,则∠ADC 的度数为 .
14. 如图,点B 、E 、C 、F 在一条直线上,AB=DE ,BE=CF ,请添加一个条件 ,使△ABC
≌△DEF .
15. 如图,等腰△ABC 中,AB=AC ,∠DBC =15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数
是 .
16. 如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长
是 .
17.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ
时,连PQ 交AC 边于D ,则DE 的长为 .
第13题 第14题 第15题 第16题 第17题
18.将自然数按以下规律排列:
第一列 第二列 第三列 第四列 第五列
第一行 1 4 5 16 17
第二行 2 3 6 15 …
第三行 9 8 7 14 …
第四行 10 11 12 13 …
第五行 …
表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应,根据这一规律,数2019对应的有序数对为 .
三、解答题(本大题共8小题,共54分.解答需写出必要的文字说明或演算步骤)
19.(本题6分)求下列各式中的x :
(1) 8x 3=27 (2) (x+2)2=16
20. (本题6分)计算:
(1)
3)2(19-+-+ (2) 23)5(27+- 21.(本题6分)如图,在边长为1个单位长度的小正方形
组成的网格中,按要求作图.
(1)利用尺规作图在AC 边上找一点D ,使点D 到AB 、BC
的距离相等;(不写作法,保留作图痕迹)
(2)在网格中,△ABC 的下方,直接画出所有满足条件的
△EBC ,使△EBC 与△ABC 全等.
22. (本题6分)如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠D =∠B ,AD ∥BC .求证:AD=BC .
23.(本题6分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,
且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若C是DF的中点,DF=4,求DE的长.
24.(本题8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,
且BD=CE.
(1)求证:MD=ME.
(2)若连接MA、DE, 请判断AM和DE的关系,并说明理由.
25.(本题8分)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,AC=10,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.
(1)当t=2时,CD= ;
(2)求当t为何值时,△CBD是以BC为底的等腰三角形?
并说明理由;
(3)是否存在某一时刻,使得BD恰好把Rt△ABC的周长和面积同时平分?
若存在,求出此时t的值;若不存在,说明理由.
26.(本题8分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法.
定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注
..每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.。