2019_2020学年高中数学第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征课时作业(含解析)新人教A版

合集下载

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

1.1。

1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.如长方体形的盒子外表面是长方体.(×)2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8想一想1。

如何判断一个几何体是否为棱柱?提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.下面四个几何体中,是棱台的是( )答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1。

2019-2020学年高中数学人教A版(浙江专版)必修2讲学案:第一章 1.1 空间几何体的结构

2019-2020学年高中数学人教A版(浙江专版)必修2讲学案:第一章 1.1 空间几何体的结构

第一课时棱柱、棱锥、棱台的结构特征预习课本P2~4,思考并完成以下问题1.空间几何体2.空间几何体的分类3.棱柱、棱锥、棱台的结构特征[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)棱柱的侧面都是平行四边形( )(2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥( )(3)用一个平面去截棱锥,底面和截面之间的部分叫棱台( )答案:(1)√(2)×(3)×2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的有________(填序号).(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱;(2)棱柱的侧棱长相等,侧面都是平行四边形;(3)各侧面都是正方形的四棱柱一定是正方体.解析:(1)不正确,反例如图所示.(2)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.答案:(2)[典例]下列关于棱柱的说法中,错误的是( )A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形[解析] 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,所以C错误;D正确,所以选C.[答案] C[活学活用]下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④棱柱的侧棱总与底面垂直.其中正确说法的序号是________.解析:①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④错误,棱柱的侧棱可能与底面垂直,也可能不与底面垂直.所以说法正确的序号是③.答案:③[典例](1)①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥.②正棱锥的侧面是等边三角形.③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.[解析](1)本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.(2)①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.[答案] (1)A (2)0[活学活用]用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).[典例] 如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.[活学活用]下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是( )解析:选C将四个选项中的平面图形折叠,看哪一个可以围成正方体.层级一学业水平达标1.下面的几何体中是棱柱的有( )A.3个B.4个C.5个D.6个解析:选C棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是( )A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.下列图形中,是棱台的是( )解析:选C由棱台的定义知,A、D的侧棱延长线不交于一点,所以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定义,故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5 6 98.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:129.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)层级二应试能力达标1.关于空间几何体的结构特征,下列说法不正确的是( )A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:选B根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.2.下列说法正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.3.下列图形经过折叠可以围成一个棱柱的是( )解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.4.棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都相交于一点解析:选C只有正棱台才具有侧棱都相等的性质.5.一个无盖的正方体盒子的平面展开图如图,A ,B ,C 是展开图上的三点,则在正方体盒子中,∠ABC =________.解析:将平面图形翻折,折成空间图形, 可得∠ABC =60°. 答案:60°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,故填①③④⑤.答案:①③④⑤7.如图在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少? 解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2.8.如图,已知长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF 把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.第二课时圆柱、圆锥、圆台、球及简单组合体的结构特征预习课本P5~7,思考并完成以下问题1.圆柱、圆锥、圆台、球[点睛] 球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.2.简单组合体(1)概念:由简单几何体组合而成的几何体叫做简单组合体.(2)构成形式:有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[点睛]要描述简单几何体的结构特征,关键是仔细观察组合体的组成,结合柱、锥、台、球的结构特征,对原组合体进行分割.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥( )(2)夹在圆柱的两个平行截面间的几何体是一圆柱( )(3)圆锥截去一个小圆锥后剩余部分是圆台( )(4)半圆绕其直径所在直线旋转一周形成球( )答案:(1)×(2)×(3)√(4)×2.圆锥的母线有( )A.1条B.2条C.3条D.无数条答案:D3.右图是由哪个平面图形旋转得到的( )解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.[典例]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.[解析](1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.[答案](1)(2)[活学活用]给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面是矩形.其中正确说法的序号是________.解析:根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆;④正确.答案:①④[典例]将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥[解析]图1是一个等腰梯形,CD为较长的底边.以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图2包括一个圆柱、两个圆锥.[答案] D1.如图所示的简单组合体的组成是( ) A .棱柱、棱台 B .棱柱、棱锥 C .棱锥、棱台D .棱柱、棱柱解析:选B 由图知,简单组合体是由棱锥、棱柱组合而成.2.如图,AB 为圆弧BC 所在圆的直径,∠BAC =45°.将这个平面图形绕直线AB 旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[典例cm ,轴截面上有P ,Q 两点,且PA =40cm ,B 1Q =30cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm), QS =A 1B 1=10π(cm). ∴PQ =PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.如图,一只蚂蚁沿着长AB=7,宽BC=5,高CD=5的长方体木箱表面的A点爬到D点,则它爬过的最短路程为________.解:蚂蚁去过的路程可按两种情形计算,其相应展开图有2种情形如图,在图1中AD=AC2+CD2=122+52=13,在图2中AD=AB2+BD2=72+102=149,∵149<13,∴蚂蚁爬过的最短路程为149.层级一学业水平达标1.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.2.下列命题中正确的是( )A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线解析:选C将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.3.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球D.圆台解析:选C由球的定义知选C.4.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的底面周长是( )A.4πB.8πC.2πD.π解析:选C边长为1的正方形以其一边所在的直线为旋转轴旋转一周,得到的几何体是底面半径为1的圆,其周长为2π·1=2π.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体7.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,截去小圆锥的母线长为3 cm,则圆台的母线长为________ cm.解析:如图所示,设圆台的母线长为x cm,截得的圆台的上、下底半径分别为r cm,4r cm,根据三角形相似的性质,得33+x=r4r,解得x=9.答案:98.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱9.如图,在△ABC中,∠ABC=120°,它绕AB边所在直线旋转一周后形成的几何体结构如何?解:旋转后的几何体结构如下:是一个大圆锥挖去了一个同底面的小圆锥.10.指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.(2)几何体由一个六棱柱和一个圆柱拼接而成.(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B 错误;正六棱锥的侧棱长必然要大于底面边长,故C 错误.故选D.2.如图所示的几何体,关于其结构特征,下列说法不正确的是( ) A .该几何体是由2个同底的四棱锥组成的几何体B .该几何体有12条棱、6个顶点C .该几何体有8个面,并且各面均为三角形D .该几何体有9个面,其中一个面是四边形,其余各面均为三角形解析:选D 该几何体用平面ABCD 可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD 是它的一个截面而不是一个面.故D 说法不正确.3.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( ) A .2 B .2π C.2π或4π D.π2或π4解析:选C 如图所示,设底面半径为r ,若矩形的长8恰好为卷成圆柱底面的周长,则2πr =8,所以r =4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr =4,所以r =2π.所以选C.4.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面、下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A .①②B .①③C .①④D .①⑤解析:选D 一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分,故选D.5.用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是下面哪几种:________(填序号).①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球. 解析:可能是棱柱、棱锥、棱台与圆锥. 答案:①②③⑤6.某地球仪上北纬30°纬线圈的长度为12π cm ,如图所示,则该地球仪的半径是________cm.解析:如图所示,由题意知,北纬30°所在小圆的周长为12π,则该小圆的半径r=6,其中∠ABO =30°,所以该地球仪的半径R =6cos 30°=43 cm.答案:437.圆台的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.解:设圆台上底面半径为r ,则下底面半径为2r .将圆台还原为圆锥,如图,则有∠ABO =30°. 在Rt △BO ′A ′中,rBA′=sin 30°,∴BA ′=2r . 在Rt △BOA 中,2rBA =sin 30°,∴BA =4r . 又BA -BA ′=AA ′,即4r -2r =2a ,∴r =a .∴S =πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.8.圆锥底面半径为1 cm ,高为2 cm ,其中有一个内接正方体,求这个内接正方体的棱长.解:圆锥的轴截面SEF 、正方体对角面ACC 1A 1如图.设正方体的棱长为x cm ,则AA 1=x cm ,A 1C 1=2x cm.作SO ⊥EF 于点O ,则SO =2 cm ,OE =1 cm.∵△EAA 1∽△ESO ,∴AA1SO=EA1EO,即x2=1-22x1.∴x=22,即该内接正方体的棱长为22cm.。

2019-2020学年高中数学 第一章 空间几何体 1.1.1-1.1.2 柱、锥、台、球的结构特征 简单组合体的结构特征情

2019-2020学年高中数学 第一章 空间几何体 1.1.1-1.1.2 柱、锥、台、球的结构特征 简单组合体的结构特征情

1 1.1.1-1.1.
2 柱、锥、台、球的结构特征 简单组合体的结构特征
【情境导学】
小学和初中我们学过平面上的一些几何图形,如直线,三角形,长方形,圆等.现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么它们有很多相同的特征
.
观察下面两组物体,你能说出各组内物体的共同点吗? (1) (2)
(第(1)组中每个物体都是由多个平面多边形围成,第(2)组中每个物体都是由平面图形旋转得到)。

1.1.1 棱柱、棱锥、棱台的结构特征2

1.1.1 棱柱、棱锥、棱台的结构特征2

③有关概念:
平行 的面. 底面:两个互相_____
侧面:其余各面; 公共边 侧棱:相邻侧面的_______;
侧面 与底面的公共顶点. 顶点:_____
三棱柱 ④分类:依据底面多边形的边数.如:底面是三角形的叫_______.
(2)棱锥:
多边形 其余各面 ①定义:有一个面是_______,
一个公共顶点 的三角形,由这 都是有_____________ 些面所围成的多面体叫做棱锥.
【规律总结】解答空间几何体概念辨析题的关注点 (1)认清概念的本质及棱柱、棱锥、棱台的结构特征 ,采用举反 例法排除错误的选项. (2)从底面多边形的形状,侧面形状以及它们之间的位置关系等 角度紧扣几何体的结构特征进行判断. 提醒:判断说法正误问题,要紧扣几何体的结构特征,理解棱柱、 棱锥、棱台的概念.
【变式训练】
用两个平面将如图所示的三棱柱ABC-A′B′C′分为三个三棱
锥.
【解析】如图,三棱柱ABC-A′B′C′可分为三棱锥C′-ABC、
三棱锥B-A′B′C′和三棱锥C′-ABA′.
类型三
多面体的展开图
1.如图代表未折叠的正方体的展开图,将其折叠起来,变成正方 体后,图形是 ( )
2.(2014·济宁高一检测)如图是一个正方体纸盒,在其中的三个 面上各画一条线段构成△ABC,且A,B,C分别是各棱上的中点,现 将纸盒剪开展成平面图,则不可能的展开图是 ( )
【自主解答】1.选B.由图可知,折叠后三条线段在相邻的三个 平面内,并且互相平行,故排除A,C.又由原平面图知,只有两个 平面是空白的,排除D,故选B. 2.选B.B选项折叠后两个画一条线段的三角形与另一个画一条 线段的三角形不交于一个顶点,与正方体三个画一条线段的三 角形交于一个顶点不符.

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开


底面:两个互相平行的面

侧面:底面以外的其余各面

侧棱:相邻侧面的公共边

顶点:侧面与底面的公共顶



记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,

2019_2020学年高中数学第一章立体几何初步1.1.2棱柱、棱锥和棱台的结构特征课件新人教B版必修2

2019_2020学年高中数学第一章立体几何初步1.1.2棱柱、棱锥和棱台的结构特征课件新人教B版必修2

对于命题④,棱台的侧棱所在的直线就是被截原棱锥的侧棱 所在的直线,而棱锥的侧棱都有一个公共的点,它便是棱锥 的顶点,于是棱台的侧棱所在的直线均相交于同一点,故命 题④为真命题. 【答案】 A
只有理解并掌握好各种简单多面体的概念以及相应的结构特 征,才能不至于被各个命题的表面假象所迷惑,从而对问题 做出正确的判断.

_平__行__平__面__间__ 的每相邻两个
各面都是 __有__一__个__公__共__顶__点___
的三角形
面的交线都
__互__相__平__行___
棱台
棱锥被 __平__行__于___底面 的平面所截, __截__面___和 _底___面___间的部 分
名 棱柱

图 形
三棱柱

四棱柱

五棱柱
多面体的几何特征 (1)棱柱的几何特征 侧棱都相等,侧面都是平行四边形,两个底面相互平行; (2)棱锥的几何特征 有一个面是多边形,其余各面都是有一个公共顶点的三角形; (3)棱台的几何特征 上、下底面相互平行,各侧棱的延长线交于同一点.
①棱柱的侧面都是平行四边形;
②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;
③多面体至少有四个面;
④棱台的侧棱所在直线均相交于同一点.
其中,假命题的个数是( )
A.析】 显然命题①、②均是真命题. 对于命题③,显然一个图形要成为空间几何体,则它至少需 要有四个顶点,因为三个顶点只围成一个平面图形是三角形, 当有四个顶点时,易知它可围成四个面,因而一个多面体至 少应有四个面,而且这样的面必是三角形,故命题③是真命 题.
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征
1.了解多面体的有关概念.2.理解棱柱、棱锥、棱 台的结构特征.3.会进行与棱柱、棱锥、棱台有关的计算.

1.1.1棱柱、棱锥、棱台的结构特征

1.1.1棱柱、棱锥、棱台的结构特征

2. 棱柱的有关概念 棱柱的底面(底): 两个互相平行的面; 棱柱的侧面: 其余各面; 棱柱的侧棱: 相邻侧面的公共边;
棱柱的顶点: 侧面与底面的公共顶点.
顶点 侧面 侧棱 底面
3. 棱柱的分类
(1)以底面多边形的边数作为分 类的标准分为三棱柱、四棱 柱、五棱柱等. (2)按侧棱与底面的是否垂直作为分类 标准分为直棱柱、斜棱柱等 ①侧棱不垂直于底的棱柱叫做斜棱柱 ②侧棱垂直于底的棱柱叫做直棱柱 ③底面是正多边形的直棱柱叫做正棱柱
图(2)(5)(7)(9)(13)(14)(15) (16)有何共同特点?这些几何体可以统一叫什 么名称?
多面体
特点:每个面 都是平面图形, 并且都是平面 多边形(包括它 的内部的平面 部分)。
多面体 :由若干个平面多边形围成的几何体
围成多面体的各个多 边形叫做多面体的面;
相邻两个面的公共边 叫做多面体的棱;
④底面是平行四边形的棱柱叫做平行六面体
4. 棱柱的表示 用表示底面的各顶点的字母来表示 如:棱柱ABCD-A1B1C1D1 A D B C1 B1 C
D1 A1
练习1:以下图形有多少对平行平面?能作 为棱柱底面的有多少对? E D
D
C
A
D
B
C
F
C
A
B
E
D
B
A
F
C
A
B
问题1:有两个面互相平行,其余各面都是四边 形的几何体是棱柱吗?
特征1:有一个面是多边形 (边数不定—任意平面多边形)
特征2:其余各面都是有一个公共顶点的 三角形
2. 棱锥的有关概念 棱锥的侧面: 有公共顶点的各三角形; 棱锥的底面(底):余下的那个多边形; 棱椎的侧棱: 两个相邻侧面的公共边; 棱锥的顶点: 各侧面的公共顶点. 棱锥的顶点 棱锥的侧棱

1.1.1 棱柱、棱锥、棱台的结构特征

1.1.1 棱柱、棱锥、棱台的结构特征

思考3:如果将这些几何体进行适当分类,你认为
可以分成那几种类型?
发现:图(2)(5)(7)(9)(13)(14) (15)(16)有何共同特点?这些几何体可以统 一叫什么名称?
多面体
发现:图(1)(3)(4)(6)(8)(10) (11)(12)有何共同特点?这些几何体可以 统一叫什么名称? 旋转体
用平行的两底面多边形的字母表示棱 柱,如:棱柱ABCDE- A1B1C1D1E1 。 字母对应
二、棱锥的结构特征
观察下列几何体,有什么相同点?有 什么共同名称?
定义:有一个面是多边形,其余各面都是有一个 公共顶点的三角形,由这些面围成的多面体叫做 棱锥.
类比:参照棱柱的说法,棱锥的底面、侧面、 侧棱、顶点分别是什么含义?
1.1 空间几何体的结构
zxxkw
知识探究(一):空间几何体的类型
思考1:在我们周围存在着各种各样的物体,它们 都占据着空间的一部分.如果我们只考虑这些物体 的形状和大小,而不考虑其他因素,那么由这些 抽象出来的空间图形就叫做空间几何体.
你能列举那些空间几何体的实例?
思考2:观察下列图片,你知道这图片在几何中分 别叫什么名称吗?
思考4:一般地,怎样定义多面体?围成多面体的 各个多边形,相邻两个多边形的公共边,以及这 些公共边的公共顶点分别叫什么名称?
如顶点A, D.
顶点
如:平面BCC'B',平面BC′

定义:由若干 个平面多边形 围成的几何体 叫做多面体 .

如棱AB, 棱AA.
思考5:一般地,怎样定义旋转体?

定义:由一个平面图形绕它所在平面内 的一条定直线旋转所形成的封闭几何体 叫做旋转体 ,把这条定直线叫轴.

2018-2019学年高中数学 第一章 空间几何体 1.1 空间几何体的结构 1.1.1 棱柱、棱锥、棱台的结构特征优质新

2018-2019学年高中数学 第一章 空间几何体 1.1 空间几何体的结构 1.1.1 棱柱、棱锥、棱台的结构特征优质新
分别为三棱台、四棱台、五棱台… 温馨提示 棱台中各侧棱延长后必相交于一点,否则 不是棱台.
1.思考判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面可以不是平行四边形.( ) (2)各面都是三角形的多面体是三棱锥.( ) (3)棱台的上下底面互相平行,且各侧棱延长线相交 于一点.( ) 解析:由棱柱、棱锥、棱台的定义和几何特征,(1)、
EF,B′C′,BC 是侧棱, 截面 BCFE 左侧部分也是棱柱.
它是四棱柱 ABEA′­DCFD′. 其中四边形 ABEA′和四边形 DCFD′是底面. A′D′,EF,BC,AD 为侧棱.
归纳升华 1.解答本题的关键是要紧扣棱柱的定义.解答时, 首先看是否有两个面平行,再看是否满足其他特征(其余 各面都是四边形,且相邻平行四边形的公共边互相平行). 2.多注意观察一些实物模型和图片,便于直观认识 棱柱的结构特征.
类型 3 空间几何体的平面展开图(互动探究) [典例 3] 如图是三个几何体的侧面展开图,请问各 是什么几何体?
解:由几何体的侧面展开图的特点,结合棱柱、棱锥、 棱台的定义,可把侧面展开图还原为原几何体,如图所示:
所以①为五棱柱,②为五棱锥,③为三棱台.
归纳升华 1.(1)绘制多面体的表面展开图要结合多面体的几何 特征,发挥空间想象能力或者是亲手制作多面体模型. (2)在解题过程中,常常给多面体的顶点标上字母, 先把多面体的底面画出来,然后依次画出各侧面,便可得 到其表面展开图.
[变式训练] 下列图形中,棱柱的个数是( )
A.0
B.1
C.2
D.3
解析:中间两个几何体是棱柱,共有 2 个.
答案:C
类型 2 棱锥、棱台的结构特征
[典例 2] 下列关于棱锥、棱台的说法: (1)用一个平面去截棱锥,底面和截面之间的部分组 成的几何体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)棱锥的侧面只能是三角形; (4)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是________.

高中数学第一章空间几何体1.1.1棱柱、棱锥、棱台的结

高中数学第一章空间几何体1.1.1棱柱、棱锥、棱台的结

【解析】因为正方体容器中盛有一半容积的水,无论怎样转动,
其水面总是过正方体的中心.三角形截面不过正方体的中心, 故(1)不正确; 过正方体的一对棱和中心可作一截面,截面形状为长方形,故 (2)正确; 过正方体四条互相平行的棱的中点得截面形状为正方形,该截 面过正方体的中心,故(3)正确; 过正方体一面上相邻两边的中点以及正方体的中心得截面形状 为正六边形,故(4)正确.
第一章 空间几何体 1.1 空间几何体的结构
1.1.1 棱柱、棱锥、棱台的结构特征
举世闻名的天坛和古老的金字塔是由哪些几何体组成的呢?
现代城市的建筑都是由各种各样的漂亮的几何体组成的.
我们的生活中离不开各种美妙的几何体
1.能根据几何结构特征对空间物体进行分类.
2.理解空间几何体、多面体和旋转体的概念.
【提升总结】
特殊的棱锥:
如果棱锥的底面为正多边形,且各侧面是全等的等腰 三角形,那么这样的棱锥称为正棱锥. 正棱锥各侧面底边上的高均相等,叫做正棱锥的斜 高; 侧棱长等于底面边长的正三棱锥又称为正四面体.
探究点4
棱台的结构特征
棱台:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分,这样的多面体叫做棱台.
以下说法正确的是 ( D )
A.棱柱
C.棱台
B.棱锥
D.一定不是棱柱、棱锥
4.如图,选项中的长方体中由如图的平面图形(其中,若
干矩形被涂黑)围成的是
( D )
5.下面属于多面体的是
①②
(将正确答案的序号填
在横线上).
①建筑用的方砖;②埃及的金字塔;③茶杯;④球.
6.一个透明密闭的正方体容器中,恰好盛有该容器一 半容积的水,任意转动这个正方体,则水面在容器中的 形状可以是:(1)三角形;(2)长方形;(3)正方形;(4)正 六边形.其中正确的结论是_______.(把你认为正确的 序号都填上)

2020高中数学 第1章 空间几何体 1.1.1 棱柱、棱锥、棱台的结构特征(含解析)2

2020高中数学 第1章 空间几何体 1.1.1 棱柱、棱锥、棱台的结构特征(含解析)2

1。

1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下面多面体中,是棱柱的共有( D )A.1个B.2个C.3个D.4个[解析] 根据棱柱的定义进行判定知,这4个图都满足.2.下列说法正确的是( D )A.多面体至少有3个面B.有2个面平行,其余各面都是梯形的几何体是棱台C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形[解析]一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项A错误;选项B错误,反例如图1;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.3.下列说法中正确的是( B )A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条[解析] 棱柱有两个底面,所以A项不正确;棱柱底面的边数至少是3,则在棱柱中,三棱柱的顶点数至少是6,三棱柱的侧棱数至少是3,三棱柱的棱数至少是9,所以C、D项不正确,B项正确.4.下列图形经过折叠可以围成一个棱柱的是( D )[解析]A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.5.观察如图所示的四个几何体,其中判断不正确的是( B )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台[解析] ①是棱柱,②是棱锥,③不是棱锥,④是棱台,故选B。

6.用一个平面去截一个三棱锥,截面形状是( C )A.四边形B.三角形C.三角形或四边形 D.不可能为四边形[解析] 按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.二、填空题7.四棱锥的侧面个数是_4__.[解析]四棱锥有4个侧面.8.下列说法正确的是_①④__.①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[解析]①正确.②不正确,四棱锥的底面是正方形,它的侧棱可以相等.也可以不等.③不正确,五棱锥除了五条侧棱外,还有五条底边,故共10条棱.④正确.三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析] 这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.B级素养提升一、选择题1.下面说法正确的是( C )A.棱锥的侧面不一定是三角形B.棱柱的各侧棱长不一定相等C.棱台的各侧棱延长必交于一点D.用一个平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台[解析] 棱台的各侧棱延长后必交于一点,故选C。

2019-2020高中数学 第一章 空间几何体 1.1 空间几何体的结构 第1课时 棱柱、棱锥、

2019-2020高中数学 第一章 空间几何体 1.1 空间几何体的结构 第1课时 棱柱、棱锥、

第1课时棱柱、棱锥、棱台的结构特征学习目标 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征(重点).2.能运用棱柱、棱锥、棱台的结构特征来判断、描述现实生活中的实物模型(重、难点).知识点1 空间几何体1.概念:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.2.多面体与旋转体类别定义图示多面体由若干个平面多边形围成的几何体旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体,其中定直线叫做旋转体的轴【预习评价】(正确的打“√”,错误的打“×”)(1)多面体是由平面多边形和圆面围成的.(×)(2)旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)知识点2 棱柱、棱锥、棱台的结构特征多面体定义图形及表示相关概念分类棱柱有两个面互相平行,其余各面都是四边形,并底面(底):两个相互平行的面.按底面多边形的边数分:三棱柱、且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCDEF-A′B′C′D′E′F′侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与底面的公共顶点四棱柱、……棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S-ABCD底面(底):多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点按底面多边形的边数分:三棱锥、四棱锥、……棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……【预习评价】1.下列棱锥有6个面的是( )A.三棱锥 B.四棱锥C.五棱锥D.六棱锥答案 C2.下面属于多面体的是________(将正确答案的序号填在横线上).①建筑用的方砖;②埃及的金字塔;③茶杯;④球.答案①②题型一棱柱的结构特征【例1】下列说法正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形解析选项A、B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.答案 D规律方法 1.判断一个几何体是否为棱柱的方法(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.棱柱概念的推广(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.【训练1】下列命题中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析A选项不符合棱柱的侧棱平行的特点;对于B选项,如下图(1),构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知面ABB1A1∥面DCC1D1,但这两个面不能作为棱柱的底面;选项C中,如下图(2),底面ABCD可以是平行四边形;D选项说明了棱柱的特点,故选D.答案 D题型二棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.答案①②规律方法判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点【训练2】下列说法中,正确的是( )①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为三棱锥的底面;④棱锥的各侧棱长相等.A.①② B.①③ C.②③ D.②④解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.答案 B考查题型三空间几何体的平面展开图方向方向1 绘制展开图【例3-1】画出如图所示的几何体的表面展开图.解表面展开图如图所示:方向2 由展开图复原几何体【例3-2】如图是三个几何体的侧面展开图,请问各是什么几何体?解①为五棱柱;②为五棱锥;③为三棱台.方向3 求几何体表面上两点间的距离【例3-3】长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.解沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=42+(5+3)2=80=4 5.(2)若将AD剪开,使面AC与面BC1共面,可求得AC1=32+(5+4)2=90=310.(3)若将CC1剪开,使面BC1与面AB1共面,可求得AC1=(4+3)2+52=74.相比较可得蚂蚁爬行的最短路线长为74.规律方法(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.(3)求几何体表面上两点间的距离的方法:求从几何体的表面上一点,将几何体表面运动到另一点,所走过的最短距离,常将几何体沿某条棱剪开,使两点展在一个平面上,转化为求平面上两点间的最短距离问题.课堂达标1.下列说法错误的是( )A.多面体至少有四个面B.六棱柱有6条侧棱,6个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析由于三棱柱的侧面为平行四边形,故选项D错.答案 D2.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中任意两个侧面都不可能互相平行C.棱柱的侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形解析棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B 错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.答案 A3.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).解析结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.答案①③④⑥⑤4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形;②所有的棱长都相等;③棱柱中至少有两个面的形状完全相同;④相邻两个面的交线叫做侧棱.解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.答案①③课堂小结1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.棱柱、棱台、棱锥关系图基础过关1.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点 B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点解析四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).答案 C2.观察如图所示的四个几何体,其中判断不正确的是( )A.①是棱柱 B.②不是棱锥C.③不是棱锥 D.④是棱台解析结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案 B3.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱 D.组合体解析余下部分是四棱锥A′-BCC′B′.答案 B4.下列三个命题,其中正确的有________个.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余各面都是等腰梯形的六面体是棱台.解析①截面不一定与底面平行,不正确;②侧棱不一定相交于一点,不正确;③侧棱不一定相交于一点,不正确.答案05.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.解析由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案136.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点? (3)每个面的三角形面积为多少? 解 (1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形. (3)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2.7.如图所示,长方体ABCD -A 1B 1C 1D 1(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM 把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解 (1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义. (2)截面BCNM 的上方部分是三棱柱BB 1M -CC 1N ,下方部分是四棱柱ABMA 1-DCND 1.能力提升8.下列命题中,真命题是( )A.顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示,△ABC为正三角形,若PA=PB=AB=BC=AC≠PC,△PAB,△PBC,△PAC都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题是假命题;对于选项D,顶点在底面上的投影是底面三角形的外心,又因为底面三角形为正三角形,所以外心即为中心,故该命题是真命题.答案 D9.如图,往透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的部分始终呈棱柱状;②水面四边形EFGH的面积不改变;③当E在AA1上时,AE+BF是定值.其中,正确的说法是( )A.①② B.① C.①②③ D.①③解析显然水的部分呈三棱柱或四棱柱状,故①正确;容器倾斜度越大,水面四边形EFGH的面积越大,故②不正确;由于水的体积不变,四棱柱ABFE -DCGH 的高不变,所以梯形ABFE 的面积不变,所以AE +BF 是定值,故③正确.所以四个命题中①③正确.故选D. 答案 D10.从正方体ABCD -A 1B 1C 1D 1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确结论的个数为________.解析 如图所示:四边形ABCD 为矩形,故(1)满足条件;四面体D -A 1BC 1为每个面均为等边三角形的四面体,故(2)满足条件;四面体D -B 1C 1D 1为每个面都是直角三角形的四面体,故(3)满足条件;四面体C -B 1C 1D 1为有三个面是等腰直角三角形,有一个面是等边三角形的四面体,故(4)满足条件;故正确的结论有4个.故答案为4.答案 411.长方体的同一顶点处的相邻三个面的面积分别为12,6,8,则长方体的体对角线长为________.解析 设长方体的长、宽、高分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =12,bc =6,ac =8,∴abc =24.分别除以bc ,ac ,ab ,得a =4,b =3,c =2. ∴体对角线长为42+32+22=29.答案 29 12.如图,在三棱锥V -ABC 中,VA =VB =VC =4,∠AVB =∠AVC =∠BVC =30°,过点A 作截面△AEF ,求△AEF 周长的最小值.解 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图,线段AA 1的长为所求△AEF 周长的最小值.∵∠AVB =∠A 1VC =∠BVC =30°,∴∠AVA 1=90°.又VA =VA 1=4,∴AA 1=4 2.∴△AEF 周长的最小值为4 2.13.(选做题)给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解 如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.。

高中数学第一章空间几何体1.1空间几何体的结构(第1课时)棱柱、棱锥、棱台的结构特征aa高一数学

高中数学第一章空间几何体1.1空间几何体的结构(第1课时)棱柱、棱锥、棱台的结构特征aa高一数学
(3)侧棱、高构成直角三角形,如图1中Rt△POC.
图1
12/13/2021
探究一
探究二
探究三
思维辨析
2.正棱台中的直角梯形的应用
已知正棱台如图2(以正四棱台为例),O1,O分别为上、下底面中心,
作O1E1⊥B1C1于E1,OE⊥BC于E,则E1E为斜高,
(1)斜高、侧棱构成直角梯形,如图2中梯形E1ECC1.
2
∠OAD=30°,
3
2
故 AO= cos∠ = 3.
在 Rt△SAO 中,SA=2 3,AO= 3,
故 SO= 2 -2 =3,其高为 3.
12/13/2021
探究一
探究二
探究三
思维辨析
延伸探究将本例中“侧棱长为 2 3”,改为“斜高为 2 3”,则结论如
何?
1
3
解:在 Rt△SDO 中,SD=2 3,DO=2AO= 2 ,故 SO= 2 - 2 =
思维辨析
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,
如图,线段AA1的长为所求△AEF周长的最小值.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.
又VA=VA1=4,
∴AA1=4 2,
∴△AEF 周长的最小值为 4 2.
12/13/2021
探究一
探究二
探究三
思维辨析
锥,底面与截面之间的部分,这样的多面
体叫做棱台
上底面:原棱锥的截面;
下底面:原棱锥的底面;
侧面:其余各面;
侧棱:相邻侧面的公共边;
如图棱台可记作:棱
顶点:侧面与上(下)底面的公共顶点

①依据:由几棱锥截得;

2019_2020学年高中数学第1章立体几何初步1.1.1棱柱、棱锥和棱台讲义苏教版必修2

2019_2020学年高中数学第1章立体几何初步1.1.1棱柱、棱锥和棱台讲义苏教版必修2

1.1.1 棱柱、棱锥和棱台1.棱柱的相关概念及特点(1)棱柱的相关概念一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面,相邻侧面的公共边叫做侧棱.(2)棱柱的特点棱柱的两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形.2.棱锥的概念及特点(1)棱锥的概念当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)棱锥的特点棱锥的底面是多边形,侧面是有一个公共顶点的三角形.3.棱台的概念及特点(1)棱台的概念用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称之为棱台.即棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.(2)棱台的特点棱台的两个底面是相似的多边形,侧面都是梯形,侧棱延长后都相交于一点.4.多面体的概念棱柱、棱锥和棱台都是由一些平面多边形围成的几何体.由若干个平面多边形围成的几何体叫做多面体.1.思考辨析(1)棱柱的侧面是平行四边形.( )(2)棱台的侧棱延长后不一定交于一点.( )(3)棱台的侧面是梯形.( )(4)面数最少的多面体是四面体.( )[答案](1)√(2)×(3)√(4)√2.如图所示的几何体中,________是棱柱,________是棱锥,________是棱台.①③④⑥⑤[由棱柱、棱锥和棱台的定义知,①③④符合棱柱的定义,⑥符合棱锥的定义,②是一个三棱柱被截去了一段,⑤符合棱台的定义.故①③④是棱柱,⑥是棱锥,⑤是棱台.]3.下列叙述是棱台性质的是________.(填所有正确的序号)①两底面相似;②侧面都是梯形;③侧棱都平行;④侧棱延长后交于一点.[答案]①②④4.三棱锥是________面体.四[因为三棱锥有四个面,故三棱锥是四面体.]①五棱柱中五条侧棱长度相同;②三棱柱中底面三条边长度都相同;③三棱锥的四个面可以都是钝角三角形;④棱台的上底面的面积与下底面的面积之比一定小于1.(2)下列说法正确的是__________.①棱锥的侧面不一定是三角形;②棱锥的各侧棱长一定相等;③棱台的各侧棱的延长线交于一点;④有两个面互相平行,其余各面都是梯形,则此几何体是棱台.(3)下列三个命题,其中不正确的是__________.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.思路探究:判断几何体结构特征的主要依据是棱柱、棱锥、棱台的概念.(1)①③④(2)③(3)①②③[(1)由棱柱的特点知命题①正确;三棱柱的底面不一定为等边三角形,所以命题②不正确;如图所示,取以点O为端点的三条线段OA,OB,OC,使得∠AOB=∠BOC=∠COA=100°,且OA=OB=OC,这时△AOB,△BOC,△COA都是钝角三角形,只有△ABC为等边三角形,可让点C沿OC无限靠近点O,则∠ACB就可趋近于100°,所以每个面都可以是钝角三角形,故命题③正确;由棱台的定义知,棱台是由棱锥截得的,截面是棱台的上底面,故上底面的面积一定小于下底面的面积,所以命题④正确.综上所述,可知①③④正确.(2)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故①②不正确;棱台是由平行于棱锥底面的平面截棱锥得到的,故各个侧棱的延长线一定交于一点,③正确;棱台的各条侧棱必须交于一点,故④错误.(3)必须用一个平行底面的平面去截棱锥,棱锥底面和截面之间的部分才是棱台,故①不正确;两个底面平行且相似,其余各面都是梯形的多面体并不能说明各条侧棱是否交于一点,故不能判定②正确;有两个面互相平行,其余四个面都是等腰梯形的六面体不一定是棱台,③不正确.]对于判定关于棱柱、棱锥、棱台的命题真假的问题,求解的关键是抓住棱柱、棱锥、棱台的概念与特征.除此之外,还可以利用举例或找反例的方法来判断.1.给出下列几个命题:①棱柱的侧面不可能是三角形;②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;③多面体至少有4个面;④将一个正方形沿不同方向平移得到的几何体都是正方体.其中真命题是________.①②③[①②均为真命题;对于③,一个图形要成为空间几何体,则它至少需有4个顶点,3个顶点只能构成平面图形,当有4个顶点时,可围成4个面,所以一个多面体至少应有4个面,而且这样的面必是三角形,故③也是真命题;对于④,当正方形沿与其所在平面垂直的方向平移,且平移的长度恰好等于正方形的边长时,得到的几何体才是正方体,故④不正确.故填①②③.]1111111判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.思路探究:依据棱柱的定义进行判断.[解](1)因为这个几何体的所有面中没有两个互相平行的面,所以这个几何体不是棱柱.(2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连结C1E,EF,C1F,则过C1,E,F的截面将几何体分成两部分,其中一部分是三棱柱ABC­EFC1,其侧棱长为2;截去部分是一个四棱锥C1­EA1B1F.认识一个几何体,需要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.2.如图所示,已知长方体ABCD­A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体是棱柱吗?如果是,是几棱柱?并指出底面.如果不是,请说明理由.[解](1)是棱柱,并且是四棱柱.因为它可以看成由四边形ADD1A1沿AB方向平移至四边形BCC1B1形成的几何体,符合棱柱的定义.(2)截面BCFE右边的部分是三棱柱BEB1­CFC1,其中△BEB1与△CFC1是底面.截面BCFE左边的部分是四棱柱ABEA1­DCFD1,其中四边形ABEA1和四边形DCFD1是底面.1.观察下面四个几何体,这些几何体都是多面体吗?怎样定义多面体?(1) (2) (3) (4)[提示]这四个几何体都是多面体,多面体是由若干个平面多边形围成的几何体.2.多面体集合的哪些性质可以作为它的特征性质?[提示]多面体的每一个面都是多边形.3.根据图(1)(2)所给的几何体的表面展开图,画出立体图形.(1) (2)[提示]将各平面图折起来的空间图形如图所示.(1) (2)【例3】画出如图所示的几何体的表面展开图.(1) (2)思路探究:作出模型,将模型剪开,观察展开图.[解]表面展开图如图所示:(1) (2)多面体表面展开图问题的解题策略(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.3.给出如图所示的正三角形纸片,要求剪拼成一个正三棱柱模型,使它的表面积与原三角形的面积相等,请设计一种剪拼方法,用虚线标在图中,并写出简要说明.[解] 如图,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边长为三角形边长的14,有一组对角为直角,余下的部分沿虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好可以拼成这个正三棱柱的上底.1.本节课的重点是理解并掌握棱柱、棱锥、棱台的定义和结构特征,难点是在描述和判断几何体结构特征的过程中培养观察能力和空间想象能力.2.本节课要重点掌握的规律方法(1)有关棱柱结构特征的解题策略.(2)判断棱锥、棱台形状的方法.(3)绘制展开图和由展开图还原几何体的方法.3.本节课的易错点是理解棱柱、棱锥、棱台的结构特征及其关系中出现偏差而致错.1.下列四个命题中正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱D[A中棱柱的底面可以是任何平面多边形,B中棱锥的底面可以是任何平面多边形,C 中棱锥被经过顶点和底面的平面分成的两部分都是棱锥,D中棱柱被平行于底面的平面分成两个棱柱.]2.棱柱的侧棱最少有________条,棱柱的侧棱长之间的大小关系是________.[答案] 3 相等3.如图所示,不是正四面体的展开图的是________.①②③④③④[可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.]4.画一个六面体:(1)使它是一个四棱柱;(2)使它由两个三棱锥组成;(3)使它是五棱锥.[解]如图所示.(1)是一个四棱柱;(2)是一个由两个三棱锥组成的几何体;(3)是一个五棱锥.(1) (2) (3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 棱柱、棱锥、棱台的结构特征
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.下面的几何体中是棱柱的有( )
A.3个B.4个
C.5个 D.6个
解析:棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.
答案:C
2.下列关于棱锥、棱台的说法,其中不正确的是( )
A.棱台的侧面一定不会是平行四边形
B.棱锥的侧面只能是三角形
C.由四个面围成的封闭图形只能是三棱锥
D.棱锥被平面截成的两部分不可能都是棱锥
解析:
选项A正确,棱台的侧面一定是梯形,而不是平行四边形;选项B正确,由棱锥的定义知棱锥的侧面只能是三角形;选项C正确,由四个面围成的封闭图形只能是三棱锥;选项D 错误,如图所示四棱锥被平面截成的两部分都是棱锥.
答案:D
3.下列实物不能近似看成多面体的是( )
A.钻石 B.粉笔盒
C.篮球 D.金字塔
解析:钻石、粉笔盒、金字塔的表面都可以近似看成平面多边形,所以它们都能近似看成多面体.篮球的表面不是平面多边形,故不能近似看成多面体.
答案:C
4.下列三种叙述,正确的有( )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.0个 B.1个
C.2个 D.3个
解析:本题考查棱台的结构特征,①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.
答案:A
5.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )
A.三棱锥 B.四棱锥
C.五棱锥 D.六棱锥
解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.
答案:D
二、填空题(每小题5分,共15分)
6.四棱柱有________条侧棱,________个顶点.
解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).
答案:4 8
7.下列几个命题:
①棱柱的底面一定是平行四边形;
②棱锥的底面一定是三角形;
③棱柱被平面分成的两部分可以都是棱柱.
其中正确的是________.(填序号)
解析:①棱柱的底面可以为任意多边形.②棱锥的底面可以为四边形、五边形等.
答案:③
8.下列说法正确的有________.
①棱锥的侧面为三角形,且所有侧面都有一个公共点;
②棱台的侧面有的是平行四边形,有的是梯形;
③棱台的侧棱所在直线均相交于同一点;
④多面体至少有四个面.
解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.④显然正确.因而正确的有①③④.
答案:①③④
三、解答题(每小题10分,共20分)
9.根据下列关于空间几何体的描述,说出几何体的名称:
(1)由6个平行四边形围成的几何体;
(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;
(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.
解析:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.
(2)这是一个六棱锥.
(3)这是一个三棱台.
10.
如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.
解析:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)
[能力提升](20分钟,40分)
11.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平得到如图所示的平面图形,则标“△”的面的方位是( )
A.南 B.北
C.西 D.下
解析:将所给图形还原为正方体,并将已知面“上”、“东”分别指向上面、东面,则标记“△”的为北面.
答案:B
12.侧棱垂直于底面的棱柱叫做直棱柱.
侧棱不垂直于底面的棱柱叫作斜棱柱.
底面是正多边形的直棱柱叫作正棱柱.
底面是平行四边形的四棱柱叫作平行六面体.
侧棱与底面垂直的平行六面体叫作直平行六面体.
底面是矩形的直平行六面体叫作长方体.
棱长都相等的长方体叫作正方体.
请根据上述定义,回答下面的问题(填“一定”、“不一定”“一定不”):
(1)直四棱柱________是长方体;
(2)正四棱柱________是正方体.
解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.
答案:(1)不一定(2)不一定
13.画一个三棱台,再把它分成:
(1)一个三棱柱和另一个多面体;
(2)三个三棱锥,并用字母表示.
解析:画三棱台一定要利用三棱锥.
(1)如图①所示,三棱柱是棱柱A′B′C′-AB″C″,另一个多面体是B′C′BCC″B″.
(2)如图②所示,三个三棱锥分别是A′-ABC,B′-A′BC,C′-A′B′C.
14.如图所示,长方体的长、宽、高分别为5 cm,4 cm,3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?
解析:依题意,长方体ABCD-A1B1C1D1
的表面可有如图所示的三种展开图.
展开后,A,C1两点间的距离分别为:+2+52=74 (cm),+2+42=4 5 (cm),+2+32=310 (cm),三者比较得74 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.。

相关文档
最新文档