平面镶嵌(密铺)-初中数学习题集含答案

合集下载

最新人教版中考数学专题复习多边形与平面图形的镶嵌讲义与习题练习(含答案)

最新人教版中考数学专题复习多边形与平面图形的镶嵌讲义与习题练习(含答案)

多边形与平面图形的镶嵌◆课前热身1.一个多边形的内角和与它的外角和相等,则这个多边形的边数是2.若正六边形的外接圆半径为4,则此正六边形的边长为.3.若一个正n边形的一个外角为36°,则n等于()A、4B、6C、8D、104.若正多边形的中心角为200,那么它的边数是__________.5.从多边形一个顶点可作17条对角线,则这个多边形内角和为度.【参考答案】1.4 2.4 3.D 4.18 5.3240◆考点聚焦知识点多边形多边形的内角和和外角和平面图形的镶嵌大纲要求1.了解多边形的内角和与外角和公式和正多边形的概念2.了解平面图形的镶嵌,掌握简单的镶嵌设计考查重点和常考题型求多边形的边数、内角和、外角和及正多边形的角、边长及半径、边心距,以正五边形、正六边形为常见,多见于填空题和选择题,◆备考兵法多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.◆考点链接1. 四边形有关知识⑴ n边形的内角和为.外角和为.⑵如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.⑶ n边形过每一个顶点的对角线有条,n边形的对角线有条.2. 平面图形的镶嵌⑴当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.⑵ 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.◆ 典例精析例1(浙江宁波)如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( )A .110°B .108°C .105°D .100° 【分析】知识点:多边形的内角和(n -2)×180°,外角的和是360°。

【答案】D例2(山东烟台)现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种【分析】知识点:两个正多边形的内角中各取一个内角的和是360°。

八年级数学上册第十一章数学活动平面镶嵌课时测试(含解析)

八年级数学上册第十一章数学活动平面镶嵌课时测试(含解析)

数学活动平面镶嵌·时间 40分钟总分 100分;一、选择题(每题8分)1、李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是()A.①②④B.②③④C.①③④D.①②③【答案】A;【解析】试题分析:根据正多边形的每个内角的度数进行解答.解:正三角形的每个内角是60°,60°能整除360°,所以正三角形能单独进行平面镶嵌;正方形的每个内角是90°,90°能整除360°,所以正方形能单独进行平面镶嵌;正五边形的每个内角是108°,108°不能整除360°,所以正五边形不能单独进行平面镶嵌;正六边形的每个内角是120°,120°能整除360°,所以正六边形能单独进行平面镶嵌.所以用一种瓷砖可以密铺平面的是①②④.故应选A.考点:平面镶嵌2、下列正多边形的组合中,能够铺满地面(即平面镶嵌)的是()A.正三角形和正四边形B.正四边形和正五边形C.正五边形和正六边形D.正六边形和正八边形【答案】A;【解析】试题分析:根据拼接点处的几个角的和是360°进行解答.解:A选项、正三角形的一个内角是60°,正四边形的一个内角是90°,在拼接点放2个正方形、3个正三角形可以进行平面镶嵌;B选项、正四边形的一个内角是90°,正五边形的一个内角是108°,所以正四边形和正五边形不能进行平面镶嵌;C选项:正五边形的一个内角是108°,正六边形的一个内角是120°,所以正五边形和正六边形不能进行平面镶嵌;D选项:正六边形的一个内角是120°,正八边形的一个内角是135°,所以正六边形和正八边形不能进行平面镶嵌.故应选A.;;考点:平面镶嵌;3、小明家准备选用两种形状的地板砖铺地,现在家中已有正六边形地板砖,下列形状的地板砖能与正六边形的地板砖共同使用的是()A.正三角形B.正四边形C.正五边形D.正八边形【答案】A【解析】试题分析:根据正六边形的内角度数和拼接点处几个角的和是360°进行解答.解:正六边形的一个内角是120°,当拼接点处放一个正六边形时,还剩下240°,当拼接点处放两个正六边形时,还剩下120°,正三角形的一个内角是60°,60°既能整除120°也能整除240°,所以应使用正三角形与正六边形共同进行平面镶嵌.故应选A.考点:平面镶嵌4、某装修公司到科维商场买同样一种多边形的地砖平铺地面,在以下四种地砖中,你认为该公司不能买()A.正三角形地砖 B.正方形地砖 C.正五边形地砖D.正六边形地砖【答案】C【解析】试题分析:根据正多边形的每个内角的度数进行解答.解:A选项、正三角形的每个内角是60°,60°能整除360°,所以正三角形能单独进行平面镶嵌;B选项、正方形的每个内角是90°,90°能整除360°,所以正方形能单独进行平面镶嵌;C选项、正五边形的每个内角是108°,108°不能整除360°,所以正五边形不能单独进行平面镶嵌;D选项、正六边形的每个内角是120°,120°能整除360°,所以正六边形能单独进行平面镶嵌.所以不能购买正五边形.故应选C.考点:平面镶嵌5、某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( )A 正方形 B正六边形 C 正八边形 D 正十二边形【答案】C【解析】试题分析:根据正多边形的每个内角的度数进行解答.解:A选项、正三角形的一个内角是60°,正方形的每个内角是90°,可以在拼接点放2个正方形、3个正三角形,所以正方形可以购买;B选项、正六边形的每个内角是120°,可以在拼接点放1个正六边形、4个正三角形或2个正六边形、2个正三角形,所以正六边形可以购买;C选项、正八边形的每个内角是135°,135°和60°不能拼成360°,所以不能购买正八边形;D选项、正十二边形的每个内角是150°,可以在拼接点放2个正十二边形、1个正三角形,所以能购买正十二边形.故应选C.考点:平面镶嵌6、下图是一块正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明家的地面是由这样的地板砖镶嵌而成的,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少( )块A 8块B 9块C 11块D 12块【答案】A【解析】试题分析:根据平面镶嵌在拼接点处的各角的和是360°进行解答.解:如下图所示,因为一个正方形的内角是90°,所以同一顶点处的等腰梯形的一个内角是(360-90)÷2=135°,而八边形的内角为180°-360÷8=135°,地板上有两个正八边形,最少需要8块地板砖.故应选A考点:平面镶嵌7、如果仅用一种多边形进行镶嵌,那么下列正多边形不能够...将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形【答案】D【解析】试题分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.解:A.正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B.正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C.正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D.正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意。

初中数学《八上》 第十一章 三角形-(补充)平面镶嵌 考试练习题

初中数学《八上》 第十一章 三角形-(补充)平面镶嵌 考试练习题

初中数学《八上》第十一章三角形-(补充)平面镶嵌考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、我们知道形状为正五边形的地砖不能铺满地面,但某公园的一段路面是用型号相同的特殊的五边形地砖铺成的.如图,是拼铺图案的一部分,其中每个五边形有3个内角相等,那么这三个内角都等于度.知识点:(补充)平面镶嵌【答案】1202、那根管我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留一丝空白,又不互相重叠,这在几何里叫做平面密铺(镶嵌)。

我们知道,当围绕一点拼在一起的几个多边形的内角的和为360°时,就能够拼成一个平面图形。

某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法:如果用x个正三角形、y个正六边形进行平面密铺,可得60°・x+120°・y=360°,化简得x+2y=6。

因为x、y都是正整数,所以只有当x=2,y=2或x=4,y=1时上式才成立,即2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图(1)、(2)、(3)。

(1)请你仿照上面的方法研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,并按图(4)中给出的正方形和正三角形的大小大致画出密铺后图形的示意图(只要画出一种图形即可):(2)如果用形状、大小相同的如图(5)方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图。

知识点:(补充)平面镶嵌【答案】(1)解:据题意,可有化简得∴当x=3,y=2时,有图:(2)略。

3、用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖­­­__________块,第个图形中需要黑色瓷砖__________块(用含的代数式表示).知识点:(补充)平面镶嵌【答案】15 ,.4、如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形个.知识点:(补充)平面镶嵌【答案】1005、计算:(-2 011)0+-1+-2cos60°.知识点:(补充)平面镶嵌【答案】解:原式=1++2--1=26、一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是A.3B.4C.5D.6知识点:(补充)平面镶嵌【答案】C7、用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图,用个全等的正六边形按这种方式拼接,如图,若围成一圈后中间也形成一个正多边形,则的值为.知识点:(补充)平面镶嵌【答案】68、如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为多少(结果保留二位小数)知识点:(补充)平面镶嵌【答案】解:(1)∵图案中正三角形的边长为2,∴高为.(1分)∴正三角形的面积为×2×=. (2分)(2)∵图中共有11个正方形,∴图中正方形的面积和为11×(2×2)=44.(3分)∵图中共有2个正六边形,∴图中正六边形的面积和为2×(6××2×)=12.(4分)∵图中共有10个正三角形,∴图中正三角形的面积和为10.∵镶嵌图形的总面积为44+10+12=44+22(5分)≈81.4,∴点O落在镶嵌图案中正方形区域的概率为 (7分)≈0.54.(8分)答:点O落在镶嵌图案中正方形区域的概率为0.54.(“≈”写为“=”不扣分)9、用黑、白两l (3)402;′(4)402.10、图6是三个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是正_____边形知识点:(补充)平面镶嵌【答案】6;11、如图,下面四种正多边形中,用同一种图形不能无缝隙铺满地面的是()知识点:(补充)平面镶嵌【答案】C12、在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”. 如图,若正方形ABCD由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n个有“公共部分”,则n的最大值为( )A. 4B. 5C.6 D. 7知识点:(补充)平面镶嵌【答案】C13、用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖_____________块。

镶嵌(数学八年级上P26)

镶嵌(数学八年级上P26)

镶嵌(八年级上P26)1.平面图形的镶嵌(密铺)概念:用形状、大小完全相同的一种或几种平面图形实行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌(密铺)。

2.理解平面图形的密铺:(1)要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°。

(2)单一多边形密铺:任意三角形(6个)、四边形(4个)、正六边形(3个)能够密铺;(3)单一正n边形密铺的条件:假设360°除以正n边形的一个内角等于整数,则能够单独用它密铺;就是说:正多边形的一个内角度数能整除360°。

(4)多种正多边形组合起来镶嵌成一个平面的条件:a. n个正多边形中的一个内角的倍数的和是360°;b. n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍。

典型例题为了美化校园环境,在学校广场用两种边长相等的正多边形地砖镶地面,现已有一种正方形,则另一种正多边形能够是()A.正三角形B.正五边形C.正六角形D.正三角形或正八边形答案:D解析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴正三角形能够;正五边形每个内角是180°-360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4-4/3n,显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正八边形的每个内角为:180°-360°÷8=135°,∵90°+2×135°=360°,∴正八边形能够.应选D.。

中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题

中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题

多边形与平面镶嵌一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.正十边形的每个外角等于()A.18° B.36° C.45° D.60°4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°二、填空题14.正n边形的一个外角的度数为60°,则n的值为.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.多边形与平面镶嵌参考答案与试题解析一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【专题】计算题.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.正十边形的每个外角等于()A.18° B.36° C.45° D.60°【考点】多边形内角与外角.【专题】常规题型.【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.【解答】解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选:B.【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°【考点】多边形内角与外角.【专题】常规题型.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选D.【点评】本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n﹣2)=360,解此方程即可求得答案.【解答】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n﹣2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n﹣2).6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:360÷36=10.故选C.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【解答】解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【点评】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【考点】多边形内角与外角.【专题】压轴题.【分析】首先计算截取一个角后多边形的边数,然后分三种情况讨论.因为截取一个角可能会多出一个角,也可能角的个数不变,也可能少一个角,从而得出结果.【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.【点评】本题主要考查了多边形的内角和定理及多边形截去一个角有三种情况.11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【点评】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180° (n≥3)且n为整数.12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】平行四边形的判定.【分析】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.【解答】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.【点评】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE 的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE==120°,∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.二、填空题14.正n边形的一个外角的度数为60°,则n的值为 6 .【考点】多边形内角与外角.【专题】探究型.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= 300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9 .【考点】正多边形和圆.【分析】分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.【解答】解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.【点评】此题主要考查正多边形的计算问题,属于常规题.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 6 .【考点】平面镶嵌(密铺).【专题】应用题;压轴题.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【考点】多边形内角与外角.【专题】压轴题;数形结合.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15 .【考点】等腰梯形的性质;多边形内角与外角;平行四边形的性质.【专题】计算题.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40 cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2.【考点】正多边形和圆.【专题】压轴题.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.【考点】正多边形和圆;弧长的计算;旋转的性质.【分析】每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.【解答】解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm故答案为:4π.【点评】本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60 度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.。

初一数学课题学习 镶嵌试题

初一数学课题学习 镶嵌试题

初一数学课题学习镶嵌试题1.形状、大小完全相同的任意三角形、四边形能否单独作镶嵌_______(填“能”或“不能”)【答案】能【解析】本题考查了平面镶嵌的条件由镶嵌的条件知,在一个顶点处各个内角的和为360°时,就能镶嵌.任意三角形内角和为180°,用6个同一种三角形就可以在同一顶点镶嵌.而任意四边形的内角和是360°,只要放在同一顶点的4个内角和为360°,故能密铺.因为任意三角形的内角和为180°,所以,即拼接点处有6个角,能镶嵌;任意四边形的内角和是360°,只要放在同一顶点的4个内角和为360°,能镶嵌。

2.只用同一种正多边形铺满地面,请你写出一种这样的正多边形;___________.【答案】正边三角形(或正四边形,正六边形)【解析】本题考查了平面镶嵌的条件求出正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.正三角形的每个内角是60°,能整除360°,6个能密铺;正方形的每个内角是90°,能整除360°,4个能密铺;正六边形每个内角为120度,能整除360度,3个能密铺.3.图中几个图形都是由同一个长方形变化而来的,只用其中一种图形来铺地板,不能选用的个数为________ .【答案】【解析】本题考查了平面镶嵌的条件根据每个图形的特征即可判断得到结果。

观察图形可知每一个图形的缺口部分均恰好可以由本图上的部分补足,故不能选用的个数为4.某生产厂家因工作失误,使一批正方形瓷砖的一个角都受到了同样的损坏如图所示,在有人决定将这批瓷砖全部报废时,一位技术员设计了一个合理的方案,使这批瓷砖经过简单加工后又能铺地用了,请画图表示这位技术员的设计方案.【答案】如图所示:【解析】本题考查了平面镶嵌的条件可截去一部分变成一个有规律得图形,且边长正好能相互补足即可。

如图所示(提供两种设计方案):5.不能镶嵌成平面图案的正多边形组合为( )A.正八边形和正方形B.正五边形和正十边形C.正六边形和正三角形D.正六边形和正八边形【答案】D【解析】本题考查了平面镶嵌的条件正多边形的组合能否构成平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能镶嵌;反之,则说明不能镶嵌.A、正方形和正八边形内角分别为90°、135°,由于90°+135°×2=360°,故能镶嵌;B、B、正五边形和正十边形内角分别为108°、144°,由于108°×2+144°=360°,故能镶嵌.C、C、正六边形和正三角形内角分别为120°、60°,由于60°×2+120°×2=360°,故能镶嵌;D、D、正六边形和正八边形内角分别为120°、135°,由于120m+135n=360,得,显然n取任何正整数时,m均不能取得正整数,故不能镶嵌.E、故选D.6.用正三角形和正六边形镶嵌,若每一个顶点周围有个正三角形、个正六边形,则满足的关系式是( )A.B.C.D.【答案】D【解析】本题考查了平面镶嵌的条件正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.正多边形的平面镶嵌,每一个顶点处的几个角之和应为,而正三角形和正六边形的每一个内角分别为、,根据题意可知,化简得到.故选D.7.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形.【答案】2,2;4,1【解析】本题考查了平面镶嵌的条件正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.∵正三边形和正六边形内角分别为、,又∵,或,∴在每个顶点处有2个正三角形和2个正六边形,或在每个顶点处有4个正三角形和1个正六边形.8.用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.(1)第四个图案中有白色地砖_______块;(2)第个图案中有白色地砖_______块.【答案】(1);(2)【解析】本题考查了图形的规律性问题易得第一个图形中有6块白色地砖,找到其余图形中白色地砖的块数是在6的基础上增加几个4即可.第一个图形中有6块白色地砖;第二个图形中有块白色地砖;第三个图形中有块白色地砖;第4个图形中有块白色地砖;…第n个图形中有块白色地砖.9.为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【解析】本题主要考查了平面镶嵌(密铺).一种正多边形的镶嵌应符合一个内角度数能整除360°解:A、正三角形的每个内角是60°,能整除360°,能镶嵌;B、正方形的每个内角是90°,4个能镶嵌;C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌;D、正六边形的每个内角是120°,能整除360°,能镶嵌.故选C.10.列举几个你所见到的能够密铺的“基本单位”:_____、_____、_____.(至少写出三种)【答案】正三角形,正方形,正六边形【解析】本题主要考查了平面镶嵌(密铺).用一种正多边形镶嵌,只有正三角形,正方形,正六边形三种正多边形能镶嵌成一个平面图案.。

2022年全国中考试卷解析版分类汇编-图形的镶嵌与图形的设计

2022年全国中考试卷解析版分类汇编-图形的镶嵌与图形的设计

2022年全国中考试卷解析版分类汇编-图形的镶嵌与图形的设计1.下列多边形中,不能够单独铺满地面的是()A、正三角形B、正方形C、正五边形D、正六边形【答案】B【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正方形,正六边形三种正多边形能镶嵌成一个平面图案.∴不能铺满地面的是正五边形.故选C.【点评】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.2.(2011湖北十堰,8,3分)现有边长相同的正三角、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形考点:平面镶嵌(密铺)。

专题:几何图形问题。

分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,明显n取任何正整数时,m不能得正整数,故不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故能铺满.故选A.点评:考查了平面镶嵌(密铺),解决此类题,能够记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.3.(2011湖南岳阳,6,3)小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老总告诉她,只用一种八边形地砖是不能密铺地面的,便向她举荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是()A、 B、 C、 D、【答案】B【考点】平面镶嵌(密铺).【专题】几何图形问题.【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判定,看其所有内角和是否为360°,并以此为依据进行求解.【解答】解:A、正八边形、正三角形内角分别为135°、60°,明显不能构成360°的周角,故不能铺满正;B、正方形、八边形内角分别为90°、135°,,由于135×2+90=360,故能铺满;C、正六边形和正八角形内角分别为120°、135°,明显不能构成360°的周角,故不能铺满;D、正八边形、正五边形内角分别为135°、108°,明显不能构成360°的周角,故不能铺满.故选B.【点评】本题考查平面镶嵌(密铺),解决此类题,能够记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.4.(2010福建泉州,6,3分)下列正多边形中,不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正七边形考点平面镶嵌(密铺)分析分别求出所给图形的内角,依照密铺的性质进行判定即可.解答解:A、∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面,故本选项正确;B、∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面,故本选项正确;C、∵正六边形的内角是120°,3×120°=360°,∴正六形能铺满地面,故本选项正确;D、∵正七形的内角是,,同任何一个正整数相乘都不等于360°,∴正,七边形不能铺满地面,故本选项错误.故选D.点评本题考查的是平面镶嵌的性质,解这类题目时要依照组成平面镶嵌的条件,逐个排除求解.5.(2011•贵阳9,3分)有下列五种正多边形地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形,现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到此之间不留间隙、不重叠地铺设的地砖有()A、4种B、3种C、2种D、1种考点:平面镶嵌(密铺)。

【七年级数学几何培优竞赛专题】专题12 平面镶嵌【含答案】

【七年级数学几何培优竞赛专题】专题12 平面镶嵌【含答案】

专题12平面镶嵌知识解读1.用同一种形状、大小完全相同的多边形镶嵌(1)用同一种形状、大小完全相同的正多边形镶嵌(2)用同一种形状、大小完全相同的非正多边形镶嵌2.用边长相等的多种正多边形镶嵌典例示范1.用同一种形状、大小完全相同的多边形镶嵌例1下列正多边形中,不能铺满地面的是()A.正三角形B.正方形C.正六边形D..正七边形提示:能不能铺满地面的本质是正多边形的每一个内角度数能否被360°整除.【技巧点评】平面镶嵌的原则是不重叠,又无空隙,因此每个顶点处所有内角的和为360°.跟踪训练1.用正六边形进行平面镶嵌时,一个顶点处要放_______个正六边形.例2形状、大小都相同的四边形可以平面镶嵌吗?如果能的话,一个顶点处要放几个这样的四边形?提示:四边形的内角和等于360°.【技巧点评】如果一个多边形的内角和能被360整除,那么用完全相同的这种多边形,经过恰当的摆放,可使得每个顶点处所有内角的和为360°.跟踪训练2.形状、大小都相同的三角形可以平面镶嵌吗?如果能的话,一个顶点处要放几个这样的三角形?形状大小都相同的五边形呢?2.用边长相等的多种正多边形镶嵌例3(1)如果用正三角形和正方形进行平面镶嵌,那么每个顶点处需要正三角形和正方形各多少个?(2)在同一顶点处已经摆了一个正方形和一个正六边形,还可以再加上________或加上________进行平面镶嵌.提示:(1)设需要正三角形x个,正方形y个,则列方程60x+90y=360;(2)360-90-120=150,正十二边形的每一个内角是150°,或者一个正三角形的内角与一个正方形的内角的和是150°.点评:设未知数,根据每个顶点处所有内角的和为360°列出方程,将问题转化为求二元或三元一次方程正整数解的问题.跟踪训练3.(1)在同一个顶点处可以用_____个正方形和______个正八边形进行镶嵌;(2)在同一个顶点处可以用______个正三角形和_____个正六边形进行镶嵌,或者用______个正三角形和______个正六边形进行镶嵌.培优训练直击中考1.只用下列哪一种正多边形,可以进行平面镶嵌()A.正五边形B.正六边形C.正八边形D.正十边形2.下面平面图形中,不能镶嵌平面的图形是( )A.任意一个三角形B.任意一个四边形C.任意一个正五边形D.任意一个正六边形3.有下列五种正多边形地砖:①正三角形,②正方形,③正五边形,④正六边形,⑤正八边形.现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到彼此不留空隙、不重叠地铺设的地砖有 ( )A.4种B.3种C.2种D.1种4.现有边长相同的正三角、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形5.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密辅地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是 (6.一个边长为16m 的正方形展厅,准备用边长分别为1m 和0.5m 的两种正方形地板砖铺设其地面。

平面图形的镶嵌问题

平面图形的镶嵌问题
a a b
图 5
点评 : 本题 可先从 多项 式 2 +56 b 的 0 +2 因式 分解人手 ,由于 22 a +2 2 +b a+5b b=(a )
图3
I一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 I
l I


( +2 ) 口 ,因此要拼成 面积为 22 a +2 a+5b b 的 矩形 , 形的长为 n 6 宽为 2 +6至此易 该矩 +2 , n .
故选 D .
兰 一
图1 图2
点评 : 本题要结合多边形内角和 、 外角和的
知识进行解答.
’例 2 用两种正多边形镶嵌 ,不能与正三 角形匹配 的正 多边形 是 ( ) .
A B c ・ 寺 ・ { 。 寻
解 析 : 接从 “ 天鹅 ” 手较 难 , 意到 直 小 入 注
纸片 ( 每种 至少用 一次 ) 图 4的虚线 方框 中 在
a b b
拼成一个矩形 ( 每两个 纸片之 间既不重叠 , 也
无缝隙 , 出的图 中必须保 留拼图 的痕迹 )使 拼 ,
拼 出的矩形 面积 为 22 Ⅱ +2 z并标 出此矩 口+56 b,
形的长和宽.

[ 6 [] =口 ]
略举几 例解析 如下 , 同学们 学 习 供 局部求解 , 往往无法解决 ; 而从 全局着眼 , 体 角度 问题 , 整
板 中的梯形 A C B D。易知梯形 A C B D的面积是 解 析 :要 确 保矩 形 的面 积 为 22 a + a+5b 正方形 纸片 2 。x 块 a b的正方形纸片 5 , 块 通过

同一 种 地 面 砖 ,则 下 列 多 边 形 中不 能 选 用

2017年中考数学热身 多边形与平面图形的镶嵌(含解析)

2017年中考数学热身 多边形与平面图形的镶嵌(含解析)

多边形与平面图形的镶嵌一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形 D.正六边形2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形 D.十二边形3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.85.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是度.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8二、填空题9.四边形的内角和等于度.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.11.一个内角和为1440°的正多边形的外角和为.12.一个多边形的每个外角都等于72°,则这个多边形的边数为.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.27.求下图中x的值.多边形与平面图形的镶嵌参考答案与试题解析一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】任意三角形的内角和是180°,放在同一顶点处6个即能组成镶嵌.同理四边形的内角和是360°,也能组成镶嵌.正六边形的每个内角是120°,正五边形每个内角是180°﹣360°÷5=108°,其中180°,360°,120°能整除360°,所以不适用的是正五边形.【解答】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能密铺;B、任意四边形的内角和是360°,放在同一顶点处4个即能密铺;C、正五边形的每一个内角是180°﹣360°÷5=108°,不能整除360°,所以不能密铺;D、正六边形每个内角是120度,能整除360°,可以密铺.故选C.【点评】本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形 D.十二边形【考点】多边形内角与外角.【分析】首先根据内角的度数计算出外角度数,再用360°÷外角的度数即可得到边数.【解答】解:∵n边形的每个内角为150°,∴它的外角是180°﹣150°=30°,∴n=360°÷30°=12,故选:D.【点评】此题主要考查了多边形的内角和外角的关系,关键是掌握多边形的内角与相邻的外角互补.3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】压轴题.【分析】利用多边形的内角和公式即可求解.【解答】解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选:B.【点评】本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.5.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【解答】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选B.【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是36 度.【考点】正多边形和圆.【分析】根据正五边形的性质和内角和为540°,得到△ABC≌△AED,AC=AD,AB=BC=AE=ED,先求出∠BAC和∠DAE的度数,再求∠CAD就很容易了.【解答】解:根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和是180度的倍数,由此即可找出答案.【解答】解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,在这四个选项中是180的倍数的只有4320度.故选:C.【点评】本题主要考查了多边形的内角和定理,是需要识记的内容.8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】方程思想.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.【解答】解法1:设边数为n,这个外角为x度,则0<x<180°根据题意,得(n﹣2)•180°+x=570°解之,得n=.∵n为正整数,∴930﹣x必为180的倍数,又∵0<x<180,∴n=5.解法2:∵0<x<180.∴570﹣180<570﹣x<570,即390<570﹣x<570.又∵(n﹣2)•180°=570﹣x,∴390<(n﹣2)•180°<570,解之得4.2<n<5.2.∵边数n为正整数,∴n=5.故选A.【点评】此题较难,考查比较新颖,涉及到整式方程,不等式的应用.二、填空题9.四边形的内角和等于360 度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)•180°=360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.11.一个内角和为1440°的正多边形的外角和为360°.【考点】多边形内角与外角.【专题】计算题.【分析】根据了多边形的外角和定理即可得到答案.【解答】解:∵一个多边形的外角和为360°,∴一个内角和为1440°的正多边形的外角和为360°.故答案为360°.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.12.一个多边形的每个外角都等于72°,则这个多边形的边数为 5 .【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:多边形的边数是:360÷72=5.故答案为:5.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.【考点】多边形内角与外角.【专题】计算题;方程思想.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的5倍列方程求解.【解答】解:设这个多边形是n边形.则(n﹣2)×180°=5×360°,n=12.5×360°=1800°.答:这个多边形内角和是1800°,是6边形.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.【考点】多边形的对角线.【专题】探究型.【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.【解答】解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n﹣3)条;∵n边形共有n个顶点,∴能引n(n﹣3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是: =20.【点评】能够从特殊中找到规律进行计算.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.【考点】平面镶嵌(密铺).【分析】根据多边形镶嵌成平面图形的条件,因为正三角形的内角和为60°,而正方形、正六边形的内角分别为90°、120°,由于60+90×2+120=360,故能进行平面镶嵌,进而得出即可.【解答】解:因为三种瓷砖都必须用到,所以在每一个顶点处正三角形1个,正方形2个,正六边形1个即可.如图:【点评】此题主要考查了平面镶嵌,解这类题,需要掌握多边形镶嵌成平面图形的条件,即围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.【考点】多边形内角与外角.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:(1)∵2300°÷180°=12…140°,则边数是:12+1+2=15;(2)该内角应是180°﹣140°=40°.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.17.求下图中x的值.【考点】多边形内角与外角.【分析】根据五边形的内角和定理即可列方程求解.【解答】解:根据五边形的内角和是(5﹣2)•180=540°得到:2x+120+150+x+90=540解得:x=60.【点评】此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.百度文库是百度发布的供网友在线分享文档的平台。

人教版八年级上镶嵌(含答案)

人教版八年级上镶嵌(含答案)

7.4 课题学习镶嵌一、同步练习1.下面的正多边形组合能进行平面镶嵌的是.(1)正三角形与正四边形;(2)正三角形与正六边形;(3)正三角形与正八边形;(4)正三角形与正十边形;(5)正三角形、正四边形、正六边形;(6)正八边形与正四边形.2.如图7.4-1是三个完全相同的正多边形拼成的无缝隙,不重叠的图形的一部分,这种多边形是正边形,它的内角和等于.3.用两个全等的直角三角形一定可以拼成的图形有.(1)平行四边形;(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形;(6)等边三角形.4.用正五边形地砖进行镶嵌,空隙处是图形,它的内角度数分别是度. 5.(2008恩施)为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是()A.正三角形B.正方形C.正五边形D.正六边形6.下列四种边长均为1的正多边形中,能与边长为1的正三角形作平面镶嵌的是()正四边形正五边形正六边形正八边形A.4种B.3种C.2种D.1种7.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形8.如图7.4-2,8块相同的长方形地砖拼成了一个矩形(缝隙忽略不计)求每块地砖的长和宽?二、拓展创新9.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺成美丽的图案.1)请根据图7.4-3填写表格(2)如限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形.10.小明家买了新房,平面结构如图7.4-4,他们准备把卧室以外的地方铺上地砖(规格是客厅用0.8m×0.8m,每块地砖75元,卫生间和厨房用0.3m×0.3m,每块5元)问买地砖至少要多少钱?11. (2008甘肃)某地板厂要制作一批正六边形形状的地板砖如图7.4-5,为了适应市场多样化需求,要求在地板砖上设计的图案能够把正六边形6等份,请你帮助他们设计等分图案.(至少设计两种)图7.4-5。

最新精选初中数学八年级上册数学活动 镶嵌人教版课后辅导练习七十六

最新精选初中数学八年级上册数学活动 镶嵌人教版课后辅导练习七十六

最新精选初中数学八年级上册数学活动镶嵌人教版课后辅导练习七十六第1题【单选题】只用下列图形不能镶嵌的是( )A、正三角形B、长方形C、正五边形D、正六边形【答案】:【解析】:第2题【单选题】用正三角形和正六边形密铺成平面,共有( )种拼法.A、1B、2C、3D、无数【答案】:【解析】:第3题【单选题】周末,李红帮父亲到瓷砖店去购买一种多边形形状的瓷砖,用镶地板,她购买的瓷砖形状不可以是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第4题【单选题】有下列图形:①直角三角形;②梯形;③任意四边形;④五边形;⑤正七边形;⑥正九边形,其中能够铺满地面的图形有( )A、2个B、3个C、4个D、6个【答案】:【解析】:第5题【单选题】能够铺满地面的正多边形组合是( )A、正六边形和正方形B、正五边形和正八边形C、正方形和正八边形D、正三角形和正十边形【答案】:【解析】:第6题【单选题】下列正多边形不能镶嵌为平面图形的是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第7题【单选题】用同一种正多边形地砖不能镶嵌成平整的地面的是( )A、正三角形地砖B、正方形地砖C、正五边形地砖D、正六边形地砖【答案】:【解析】:第8题【填空题】用正方形和正方形组合能够铺满地面,每个顶点周围有m个正三角形和n个正方形,则m+n=______.【答案】:【解析】:第9题【填空题】用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是______.(写出一种即可)【答案】:【解析】:第10题【填空题】用正三角形作平面镶嵌,同一顶点周围,正三角形的个数为______个.【答案】:【解析】:第11题【填空题】如图是以正八边形为“基本单位”铺成的图案的一部分,(其中有4×3个“基本单位”),其间存有若干个小正方形空隙,以及图案的4个角处有更小的三角形空隙,若密铺5×4个“基本单位”的图案,并填满空隙,则需要______个小正方形,______小三角形.(不含图案的4个角)【答案】:【解析】:第12题【解答题】用若干块边长为20cm的正三角形瓷砖和一块边长为20cm正六边形的瓷砖铺成一边长为1.2m的正六边形的地面,则需要这样的正三角形瓷砖多少块?【答案】:【解析】:第13题【解答题】如图,周长为68cm 的长方形ABCD是由七个相同的小长方形组合而成,请问这是平面图形的密铺吗? 并求出长方形ABCD的面积.【答案】:【解析】:第14题【作图题】请你利用平移或镶嵌的方法,在下面的网格中设计一个精美的图案.【答案】:【解析】:第15题【综合题】已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数的有误.试分别确定A、B是什么正多边形?画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可);判断你所画图形的对称性(直接写出结果).【答案】:无【解析】:。

最新图形镶嵌的试题及答案

最新图形镶嵌的试题及答案

最新图形镶嵌的试题及答案最新图形镶嵌的试题及答案图形镶嵌一、填空题2、当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就拼成一个平面图形。

3、用一种正多边形铺满整个地面的正多边形只有三种。

二、选择题4、某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的`正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是A正方形B正六边形C正八边形D正十二边形5、某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是A正方形B矩形C正八边形D正六边形6、右图是一块正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明家的地面是由这样的地板砖镶嵌而成的,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少A8块B9块C11块D12块7、下列边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是A、正三角形B、正五边形C、正六边形D、正八边形8在综合时间活动课上,小红准备用两种不同颜色的布料缝制一个正方形坐垫,坐垫的图案如图所示,应该选下图中的哪一块布料才能使其与图(1)拼接符合原来的图案模式?()(图1)A.B.C.D.三、解答下列问题9、请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案。

10、试着用两种不同的正多边形设计一个密铺的方案,你能想出几种方法?答案1、16、4n+42、周角3、正三角形、正四边形、正六边形4、C5、C6、A7、B,8、C9、10、12、方法如图所示:(还有很多)。

平面图形的密铺同步练习及参考答案

平面图形的密铺同步练习及参考答案

平面图形的密铺同步练习及参考答案平面图形的密铺同步练习及参考答案以下是查字典数学网为您推荐的平面图形的密铺同步练习及参考答案,希望本篇文章对您学习有所帮助。

平面图形的密铺同步练习及参考答案一、选择题:1.一个六边形最少可以分割为三角形的个数是( )A.3B.4C.5D.62.如果一个正多边形的一个内角是135,则这个正多边形是( )A.正五边形B.正六边形C.正八边形D.正十边形3.如果一个多边形的每个内角都相等,且内角和为1440,则这个多边形的外角是( )A.30B.36C.40D.454.四边形的四个内角可以都是( )A.锐角B.直角C.钝角D.不能确定5.在下面给出的同一种平面图形中,不能进行密铺的是( )A.三角形B.四边形C.正五边形D.正六边形二、填空题:6.若一个角的两边与另一个角的两边分别垂直,则这两个角大小关系是_______.7.一个多边形的内角和等于它的外角和的4倍,那么这个多边形是______边形.形)的材料进行密铺的方案,如果能,请把你想到的方案画成草图.(3)请你再画出一个用两种不同的正多边形材料进行密铺的草图.参考答案一、1.B 2.C 3.B 4.B 5.C二、6.相等或互补 7.十 8. 24 9.大180或小180或相等 10.一种或几种镶嵌三、11. 8 12. 613.能进行密铺(图略) 同一拼接点处有两个正方形和三个正三角形.14.能进行密铺(图略) 同一拼接点处有两个正八边形和一个正方形.15.(1)不能全用正五边形的材料进行密铺 (2)略 (3)略。

初中数学多边形与平面镶嵌

初中数学多边形与平面镶嵌

初中数学——多边形与平面镶嵌一、选择题。

1.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.一个四边形截去一个角后内角个数是()A.3个B.4个C.5个D.3个或4个或5个3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.64.如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2√3,AD=2,则四边形ABCD的面积是()A.4√2B.4√3C.4D.65.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线相等且相互平分6.如果一个多边形的每一个内角都等于相邻外角的2倍,那么这个多边形的边数为()A.4B.5C.6D.87.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A. 4B. 5C. 6D. 78.一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数为 ( )A. 19B. 10C. 11D. 129.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是( )A. 5B. 6C. 7D. 810.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,50ABG ∠=︒,则FAE ∠的度数是( )A.22︒B.32︒C.50︒D.130︒11.若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于( )A. 30B. 120C. 135D. 10812.已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )A.9B.10C.11D.12二、填空题。

13.若将多边形边数增加1倍,则它的外角和是__________度.14.一个多边形的每一个内角都是108°,你们这个多边形的边数是 .15.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .一个多边形的每个内角都等于150°,则这个多边形是 边形.B .用计算器计算:sin15°32' (精确到0.01)16.若一个多边形的每个外角都是 72° ,则这个多边形是 边形.三、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面镶嵌(密铺)(北京习题集)(教师版)
一.选择题(共3小题)
1.(2015•北京校级一模)用三块正多边形的木块铺地,拼在一起后,相交于一点的各边完全吻合,设其边数为4,6,,则的值是
A .3
B .5
C .8
D .12
2.(2013春•海淀区校级期末)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是
A .正三角形
B .正四边形
C .正五边形
D .正六边形
3.(2010春•海淀区校级期中)商店出售下列形状的瓷砖:正三角形、梯形、矩形、正五边形、正六边形.若只选购其中一种瓷砖密铺地面,可供选择的瓷砖共有 种.
A .1
B .2
C .3
D .4
二.填空题(共1小题)
4.(2010春•朝阳区期末)用正三角形进行平面镶嵌,则围绕在同一顶点的正三角形组成的多边形的内角和为 .
三.解答题(共1小题)
5.(2010春•北京期中)如图1,四边形是一位师傅用地板砖铺设地板尚未完工的地板图形,为了节省材料,他准备在剩余的六块砖中如图2所示①②③④⑤⑥、挑选若干块进行铺设,请你在下列网格纸上帮他设计3种不同的铺法示意图.在图上画出分割线,标上地砖序号即可.
m m ()()()ABCD
平面镶嵌(密铺)(北京习题集)(教师版)
参考答案与试题解析
一.选择题(共3小题)
1.(2015•北京校级一模)用三块正多边形的木块铺地,拼在一起后,相交于一点的各边完全吻合,设其边数为4,6,,则的值是
A .3
B .5
C .8
D .12
【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.
【解答】解:正方形的内角为,正六边形的内角为,
设第个正多边形内角为,根据题意可得:

解得:,

则.
故选:.
【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.
2.(2013春•海淀区校级期末)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是
A .正三角形
B .正四边形
C .正五边形
D .正六边形
【分析】看哪个正多边形的位于同一顶点处的几个内角之和不能为即可.
【解答】解:、正三角形的每个内角为,6个能镶嵌平面,不符合题意;
、正四边形的每个内角为,4个能镶嵌平面,不符合题意;
、正五边形的每个内角为,不能镶嵌平面,符合题意;
、正六边形的每个内角为,3个能镶嵌平面,不符合题意;
故选:.
【点评】考查一种图形的平面镶嵌问题;用到的知识点为:一种正多边形镶嵌平面,正多边形一个内角的度数能整除.
3.(2010春•海淀区校级期中)商店出售下列形状的瓷砖:正三角形、梯形、矩形、正五边形、正六边形.若只选购其中一种瓷砖密铺地面,可供选择的瓷砖共有 种.
A .1
B .2
C .3
D .4
m m ()Q 90︒120︒x ︒90120360x ∴︒+︒+=︒150x =︒360(180150)12︒÷︒-︒=12m =D ()360︒A 60︒B 90︒C 108︒D 120︒C 360︒()
【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
【解答】解:正三角形的每个内角是,6个能密铺;
梯形的内角和是,放在同一顶点处4个即能密铺;
矩形的内角和是,放在同一顶点处4个即能密铺;
正五边形每个内角是,不能整除,不能密铺;
正六边形的每个内角是,能整除,能密铺.
故选:.
【点评】本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除.任意一种多边形能进行镶嵌,说明它的内角和应能整除.
二.填空题(共1小题)
4.(2010春•朝阳区期末)用正三角形进行平面镶嵌,则围绕在同一顶点的正三角形组成的多边形的内角和为 .
【分析】先分析围绕在同一顶点的正三角形组成的多边形由多少个正三角形组成,再得出多边形的内角和.
【解答】
解:三角形个数为:; 多边形内角和为:.
【点评】本题涉及多边形的内角和和平面镶嵌知识,难度一般.
三.解答题(共1小题)
5.(2010春•北京期中)如图1,四边形是一位师傅用地板砖铺设地板尚未完工的地板图形,为了节省材料,他准备在剩余的六块砖中如图2所示①②③④⑤⑥、挑选若干块进行铺设,请你在下列网格纸上帮他设计3种不同的铺法示意图.在图上画出分割线,标上地砖序号即可.
【分析】根据四边形的面积为7,结合剩余的六块砖①②③④⑤⑥的面积情况设计不同的铺法.
【解答】解:如图所示:
60︒360︒360︒1803605108︒-︒÷=︒360︒120︒360︒D 360︒360︒720︒360660︒=︒
6(6060)720⨯︒+︒=︒ABCD ABCD
注正确画出以上四个图形中的任意三个,每个得(3分).没有标出砖块的序号,不扣分.
【点评】本题首先计算四边形的面积和剩余的六块砖①②③④⑤⑥的面积是解决问题的关键.
[]ABCD。

相关文档
最新文档