离散时间信号与系统分析

合集下载

信号与系统-离散时间域分析

信号与系统-离散时间域分析

滤波器性能评估
分析滤波器的幅频响应、 相频响应、群延迟等性能 指标,以评估滤波器的性 能。
数字调制与解调技术
ASK调制与解调
通过改变载波的振幅来 传递数字信息,实现 ASK调制,并通过相干 或非相干解调方法恢复 原始信号。
FSK调制与解调
利用不同频率的载波表 示不同的数字信息,实 现FSK调制,通过鉴频 器或锁相环等实现FSK 信号的解调。
分类
根据信号的性质和特征,离散时间信 号可分为周期信号和非周期信号、确 定信号和随机信号等。
离散时间系统定义及性质
定义
离散时间系统是一种对离散时间输入 信号进行变换或处理的系统,其输出 也是离散时间信号。
性质
离散时间系统具有线性、时不变性、 因果性、稳定性等性质,这些性质对 于系统的分析和设计具有重要意义。
离散时间信号处理重要性
数字信号处理基础
理论分析基础
离散时间信号处理是数字信号处理的 基础,对于数字通信、音频视频处理、 雷达声呐等领域具有重要意义。
离散时间信号和系统分析的理论和方法 可以推广到连续时间信号和系统,为信 号处理和分析提供统一的理论框架。
计算机处理方便
离散时间信号适合计算机处理,可以 通过算法实现各种复杂的信号处理和 变换。
06 实验:离散时间信号处理 实践
实验目的和要求
理解和掌握离散时间 信号的基本概念和性 质
培养实验操作能力和 分析解决问题的能力
熟悉离散时间信号的 处理方法和实现过程
实验内容和步骤
01
实验内容
02
生成离散时间信号
对信号进行基本运算(如加减、乘除、平移、翻转等)
03
实验内容和步骤
01
对信号进行频谱分析,观察信号 的频谱特性

信号与系统第五章 离散系统分析

信号与系统第五章 离散系统分析
图5-11 序列的尺度变换
可以看出,不管是移位变换,还是反褶和尺度变换,都是对序 列自变量k进行的变换。
例5-5 已知序列ƒ(k)的波形如图5-12(a)所示,试 画出ƒ(-0.5k+3)的波形。
解:ƒ(-0.5k+3)是将ƒ(k)经反褶、移位、尺度展缩三种变换后得到的,但三
种变换的次序是可以任意的,下面介绍移位→反褶→尺度变换这种方法(见图 5-12),其它的请读者自行完成。
当a>1时,序列ƒ(ak)是由序列ƒ(k)每隔a点抽取一点形成 的。从波形效果来看,是将序列ƒ(k)的时间轴k压缩到了原来 的1/a倍,图5-11(b)是将ƒ(k)变换成ƒ(2k)的波形。
图5-11 序列的尺度变换
当0<a<1时,序列ƒ(ak)是由序列ƒ(k)在每两个相邻的序 列数值间插入个零值点形成的。从波形效果来看,是将序列 ƒ(k)的时间轴k扩展到了原来的1/a倍,图5-11(c)是将ƒ(k) 变换成ƒ(0.5k)的波形。
图5-2 单位样值序列波形
延时k0个单位的单位样值序列可表示为
(k

k
0
)

1, k 0, k

k0 k0
单位样值序列 与单位冲激函数 类似,具有取样 特性,即有
f (k)(k) f (0)(k)
f (k)(k k0 ) f (k0 )(k k0 )

f (k)(k) f (0)
f (k) 左移3个单位 f (k 3) 反褶 f (k 3) 展宽2倍 f ( 1 k 3) 2
(2)反转
序列ƒ(-k)是将序列ƒ(k)以纵轴为对称轴进行反折而得到的序 列,在形式上只要将序列ƒ(k)的自变量k换成-k即可,如图5-10 所示。

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。

离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。

离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。

离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。

最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。

其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。

每个离散时间信号都有其特定的频谱和幅度特性。

离散时间系统是对离散时间信号进行处理和操作的载体。

离散时间系统可以是线性系统或非线性系统。

线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。

LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。

非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。

离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。

线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。

离散时间信号和系统的分析方法包括时域分析和频域分析。

时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。

离散时间信号和系统在实际应用中有广泛的应用。

例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。

在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。

总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。

第3章离散时间信号与系统的频域分析

第3章离散时间信号与系统的频域分析

结论: 结论:序列共轭对称分量 的傅里叶变换是序列傅里 叶变换的实数部分; 叶变换的实数部分; 序列共轭反对称分量的傅 里叶变换是序列傅里叶变 换的虚数部分。 换的虚数部分。
第3章 离散时间信号与系统的频域分析
5.时域卷积定理 时域卷积定理 如果 FT [ x( n)] = X (e jω ), FT [h( n)] = H (e jω ) 且有
第3章 离散时间信号与系统的频域分析
(1)有限长序列: 有限长序列:
序列x(n)只在有限区间 1≤n≤n2之内才具有非零的有限值,在此 只在有限区间n 之内才具有非零的有限值, 序列 只在有限区间 区间外,序列值皆为零。 区间外,序列值皆为零。 其Z变换为 变换为
X (z) =
n = n1
x ( n) z − n ∑
第3章 离散时间信号与系统的频域分析
常用的Z变换是一个有理函数,用两个多项式之比表示: 常用的 变换是一个有理函数,用两个多项式之比表示: 变换是一个有理函数
P(z) X (z) = Q( z )
分子多项式P 的根是X 的零点,分母多项式Q 分子多项式P(z)的根是X(z)的零点,分母多项式Q(z) 的根是X 的极点。在极点处Z变换不存在, 的根是X(z)的极点。在极点处Z变换不存在,因此收 敛域中没有极点, 收敛域总是用极点限定其边界。 敛域中没有极点, 收敛域总是用极点限定其边界。
X (z) =
n = −∞
RN ( n ) z − n = ∑ z − n ∑
n=0

N −1
= 1 + z −1 + z − 2 + L + z − ( N −1 )
这是一个有限项几何级数之和。 这是一个有限项几何级数之和。因此

信号与系统-离散信号与系统

信号与系统-离散信号与系统

(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)

四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l

K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2

信号与系统:第七章 离散信号与系统时域分析

信号与系统:第七章  离散信号与系统时域分析

k 0 k 0
推广: 1)
U (k
j)
0, k 1, k
j j
2) AU (k), AU (k j)
性质:
f
(k)U
(k)
f
(k) 0
k 0 k 0
可见,U(k)作用类似于U(t),
但二者有较大差别:
U(t) :奇异信号,数学抽象函数; U(k):非奇异信号,可实现信号。
(k)与U(k)关系: (k) U(k) U(k 1)
y(k+1)Ey(k)
y(k-N)E-N y(k) y(k+N)EN y(k)
E-1 : 单位延迟算子
17
(2)算子形式的差分方程
1) uk 2 2a 1uk 1 u(k) 0 (E2 2a 1 E 1)u(k) 0
a
a
2) y(k)-(1+a)y(k-1)=f(k)
[1-(1+a)E-1 ]y(k)=f(k)
周期:N 20 无周期
13
7-2 离散时间系统基本概念
一、定义: 二、分类:
激励、响应均为离散时间信号的系统。
线性系统 非线性系统
时不变系统 时变系统
因果系统 非因果系统
线性系统: f1(k) y1(k) f2 (k) y2 (k) af1(k) bf2(k) ay1(k) by2(k)
k
y(k) f (i) i
y(k)
k
f1(i)
i
0 k 0
1.5 2.5
k 0 k 1
2 k 2
5
5.差分: 序列与其移序序列的差而得到一个新序列。
y(k)=f(k)-f(k-1)
(后向差分)

数字信号处理简明教程 第2章 离散时间信号与系统的变换域分析方法

数字信号处理简明教程 第2章 离散时间信号与系统的变换域分析方法
2.2 离散时间傅里叶变换的性质
类似于连续时间的傅里叶变换,离散时间傅里叶变换也 存在如下性质。
1. 周期性 离散时间傅里叶变换 X(ejω)是 ω 的周期函数,周期为 2π。
X (e j ) x(e j2 )
第2章离散时间信号与系统的变换域分析方法
2. 对称性 对于实值x(n),X(ejω)是共轭对称的,即
频谱和相位频谱,以及X(ejω) 的实部和虚部。 解 序列x(n)是绝对可加的,因此其离散时间傅里叶变
换存在。 根据定义,有
x(n)的幅度频谱和相位频谱以及 X (ejω)的实部和虚部 如图2-1所示。
第2章离散时间信号与系统的变换域分析方法
图2-1例2-1 的结果(ω 的单位是 π)
第2章离散时间信号与系统的变换域分析方法
第2章离散时间信号与系统的变换域分析方法
图2-7 双边序列的收敛域
第2章离散时间信号与系统的变换域分析方法
综合以上讨论,关于Z变换的收敛域有以下结论: (1) 对于右边(因果)序列的Z变换,其收敛域为Z平 面上以原点为圆心的一个圆外区域,圆的半径与序列x(n) 有关。 (2) 对于左边(非因果)序列的Z变换,其收敛域为Z 平面上以原点为圆心的圆内区域,圆的半径取决于序列x (n)。 (3) 对于双边序列的Z变换,其收敛域为Z平面上以原 点为圆心的圆环区域,内外半径同样取决于序列x(n)。 最后,为便于查阅,将常用序列的Z变换列于表2-2中。
这里,H(ejω)是复变量,一般用|H(ejω)|表示幅度频 谱,arg[H(ejω)]表示相位频谱。
第2章离散时间信号与系统的变换域分析方法 例2-3 已知系统的单位脉冲响应h(n)= RN(n),求该
系统的频率响应,并画出幅度频谱与相位频谱曲线。 解

6.离散时间信号与系统的时域分析

6.离散时间信号与系统的时域分析

0, n 1 1 z ( n) x ( n) y ( n) , n 1 2 1 n 1 ( 2 )( n 1)( 2 ) , n 0
6 线性时不变离散系统的时域分析
5. 累加 设某一序列为x(n),则x(n)的累加序列 y(n)定义为
y ( n)
k
x(k ) x(n) * u(n)
n
根据上述性质可以推得以下结论:
f (n n1 ) * (n n2 ) f (n n1 n2 )
6 线性时不变离散系统的时域分析
例 已知 x1 (n) (n) 3 (n 1) 2 (n 2) x2 (n) u(n) u(n 3) 试求信号 x (n) ,它满足 x(n) x1 (n) x2 (n) 解:可利用上面讲述的性质求解。
1 1/ 2 1/4 -2 -1 0 1 1/8 ... 2
n
x(-n) 1 1/2 1/8 1/4 ... -2 -1 0
1
2
n
6 线性时不变离散系统的时域分析
3.序列的加减 两序列的加、减是指同序号(n)的序列值逐项对 应相加得一新序列。
6 线性时不变离散系统的时域分析
例:
x(n) 1 1/2 1/4 -2 -1 0 y(n) 2 1 1/4 1/2 1 2 n …
6 线性时不变离散系统的时域分析
2.单位阶跃序列
u(n)
1, u ( n) 0,
n0 n0
u(n)
...
-1 0 1 2 3 n
(n) u (n) u (n) u (n 1)
m 0
u (n) (n m) (n) (n 1) (n 2)

信号与系统第3章,甘俊英

信号与系统第3章,甘俊英

(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)

0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍离散时间信号和系统是数字信号处理领域中的重要分支,其研究对象是以离散时间为变量的信号和系统。

在离散时间信号和系统理论中,信号的变量只在离散时间点上取值,而系统对信号的处理也是在离散时间点上进行的。

离散时间信号和系统的研究为数字信号处理提供了理论基础和工具。

离散时间信号可以表示为x(n),其中n是一个整数,代表信号的时间变量。

离散时间信号可以是有限长度的序列,也可以是无限长度的序列。

离散时间信号的幅度可以是实数或复数,表示信号在不同时间点上的取值。

离散时间信号可以用图形表示,横轴表示时间变量n,纵轴表示信号的幅度。

离散时间信号有几个重要的性质。

1. 周期性:如果对于某个正整数N,有x(n) = x(n+N),那么离散时间信号是周期性的,其最小周期是N。

2. 偶对称性:如果对于任意的n,有x(n) = x(-n),那么离散时间信号是偶对称的。

3. 奇对称性:如果对于任意的n,有x(n) = -x(-n),那么离散时间信号是奇对称的。

4. 单位冲激响应:单位冲激响应是一个离散时间信号h(n),在n=0时为1,其他时间点为0。

单位冲激响应在离散时间系统中起着重要的作用,可以用来表示系统对单位冲激信号的响应。

离散时间系统是对离散时间信号进行处理的数学模型。

离散时间系统可以是线性系统或非线性系统。

线性系统具有叠加性和比例性质,即对于系统的输入信号x1(n)和x2(n),系统的输出信号y1(n)和y2(n),有以下关系:1. 叠加性:系统对输入信号的响应是可叠加的,即y(n) = y1(n) + y2(n)。

2. 比例性:系统对输入信号的响应是可比例的,即y(n) =k1y1(n) = k2y2(n),其中k1和k2是常数。

离散时间系统可以用差分方程表示:y(n) = a0x(n) + a1x(n-1) + ... + an-1x(1) + anx(0),其中ai是系统的系数。

离散时间系统的输入和输出信号也可以用离散时间卷积进行描述:y(n) = x(n) * h(n),其中*表示离散时间卷积运算,h(n)是系统的单位冲激响应。

实验四 离散时间信号与系统分析

实验四 离散时间信号与系统分析

实验四离散时间信号与系统分析实验四离散时间信号与系统分析一、实验目的1、理解离散信号及系统的时频域分析方法2、掌握Matlab进行信号的卷积、z变换及逆z变换的方法。

3、掌握Matlab进行离散系统时频域的分析方法二、实验时数:2学时三、实验相关知识(一)离散信号的卷积利用函数(,)可以计算离散信号的卷积和,c conv a b即c(n)=a(n)*b(n),向量c长度是a,b长度之和减1。

若a(n)对应的n的取值范围为:[n1, n2];b(n)对应的n的取值范围为:[n3, n4],则c(n)=a(n)*b(n)对应的n的取值范围为:[n1+n3, n2+n4]。

例4-1:已知两序列:x(k)={1,2,3,4,5;k=-1,0,1,2,3},y(k)={1,1,1;k=-1,0,1},计算x(k)*y(k),并画出卷积结果。

解:利用conv()函数进行离散信号的卷积,注意卷积信号的k 值范围k_x = -1:3;x=[1,2,3,4,5];k_y = -1:1;y=[1,1,1];z=conv(x,y);k_z= k_x(1)+k_y(1):k_x(end)+k_y(end); stem(k_z,z);(二)离散信号的逆z 变换离散序列的z 变换通常是z 的有理函数,可表示为有理分式的形式,因此可以现将X(z)展开成一些简单而常用的部分分式之和,然后分别求出各部分分式的逆变换,把各逆变换相加即可得到X(z)的逆变换x(n)。

设离散信号的z 变换式如下,120121212()()1()m m n n b b z b z b z num z X z a z a z a z den z ------++++==++++在Matlab 中进行部分分式展开的函数为residuez (),其调用形式如下:[r,p,k] = residuez(num,den)其中num=[b0, b1, …, bm]表示X(z)有理分式的分子多项式为12012m m b b z b z b z ---++++;den=[a0, a1, …, am]表示X(z)有理分式的分母多项式为12012m m b b z b z b z ---++++,注意分子分母多项式均为按z -1的降幂排列的多项式,缺项应补零。

离散时间信号和系统的频域分析

离散时间信号和系统的频域分析

离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。

频域分析是对信号与系统在频率域上的特性进行研究和分析。

对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。

在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。

频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。

离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。

DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。

DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。

频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。

除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。

DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。

DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。

DFT的结果是一个离散的频域信号,也称为频谱。

DFT通常使用快速傅里叶变换(FFT)算法来快速计算。

离散时间系统的频域分析主要是通过系统的频率响应函数来实现。

频率响应函数是系统在不同频率上对信号的响应情况的描述。

对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。

频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。

频域分析在离散时间信号与系统中有着广泛的应用。

首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。

其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。

此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。

888第二章离散时间信号与系统的变换域分析

888第二章离散时间信号与系统的变换域分析

第二章离散时间信号与系统的变换域分析 2.1 序列的Z变换 Z变换的定义 Z变换的收敛域逆Z 变换 Z变换的性质与定理 Z变换与拉氏变换的关系 Z变换的定义抽样信号进行拉氏变换得: Z变换的定义 Z变换的定义例1:求序列 x (n)= an u(n) 的Z变换。

解:为保证收敛,则若 a = 1, 则 Z变换的定义例2:求序列x(n)= -an u(-n-1)的Z变换。

解: Z变换的定义例3:求序列 x (n)= (1/3)|n| 的Z变换。

解: Z变换的收敛域 Z 变换的收敛域对于任意给定的序列x(n) ,使其Z变换收敛的所有z值的集合称为X(z)的收敛域。

其收敛的充要条件是满足绝对可和条件,即:根据级数收敛的阿贝尔定理 Z变换的收敛域 1.有限长序列 x(n)仅在有限长的时间间隔n1≤n ≤ n2内,序列值不全为零,其它时间全为零,即 Z变换的收敛域2.右边序列 x(n)在n ≥n1时,序列值不全为零,在n n1时序列值全为零,此时有收敛域为如为因果序列,其收敛域为 Z变换的收敛域 3.左边序列 x(n)在n n2以外序列值全为零,仅在n ≤ n2时有非零值,其z变换为Z变换的收敛域 4.双边序列双边序列的序列值n可取任何整数值,其z变换为 Z变换的收敛域如果序列Z变换可表达成有理分式的形式:称分子多项式的零点为X(z)的零点,分母多项式的零点为X(z)的极点,因为极点z变换不存在,因此在收敛域内应没有极点,故可通过取X(z)的极点为边界来确定其收敛半径。

Z变换的收敛域例求单位阶跃序列 u(n) 的z变换,并确定其收敛域。

解:由于u(n)为因果序列,其Z变换收敛域为,因函数在z=1处有一极点,极点应在收敛域外,因此可取,求得u(n)的z变换收敛域为。

Z变换的收敛域例求序列逆Z变换逆Z变换从给定的Z变换表达式(包括收敛域)求原序列的过程称为逆z变换。

其实质是求X(z)的幂级数展开式各项的系数。

信号与系统第五章 离散信号与系统的时域分析

信号与系统第五章 离散信号与系统的时域分析

f1(k) f (n)
6
n
3 2
1
1 1 2 3 k
3
1
1 1 2 3 4 k
《信号与系统》SIGNALS AND SYSTEMS
返回
ZB
5.1.3 常用的离散信号
(k)
1. 单位函数 (k)
(k)
1 0
k0 k0
1
1 1 2 3 k
(k n)
(k
n)
1 0
k n kn
1
1 0 1 2 n k
整理,得 y(k 2) 3y(k 1)+2y(k)=0
《信号与系统》SIGNALS AND SYSTEMS ZB
例:每月存入银行 A 元,设月息为 ,试确定第 k 次存
款后应有的存款额 y(k) 的方程。
解:第 k+1 次存入后应有的存款额为
A y(k) y(k)
即 y(k 1) y(k) y(k) A
(1) 筛选特性 f (k) (k n) f (n)
k
(2) 加权特性 f (k) (k n) f (n) (k n)
应用此性质,可以把任意离散信号 f (k) 表示为一系 列延时单位函数的加权和,即
f (k) f (2) (k 2) f (1) (k 1)
返回《信号f与(0)系 (统k) 》fS(1IG) N(kAL1)SANDSnYSTfE(Mn)S
一阶后向差分
f (k) f (k) f (k 1)
二阶后向差分
f (k) 2 f (k) f (k) f (k 1)
《信号与系统》SIGf (Nk)AL2SfA(kND1)SYfS(TkEM2)S
返回
ZB
6. 序列的求和(累加) (对应于连续信号的积分)

离散时间信号与系统

离散时间信号与系统

离散时间信号与系统离散时间信号与系统是数字信号处理领域中的重要概念。

离散时间信号是在离散时间点上取值的信号,而离散时间系统则是对离散时间信号进行处理或操作的系统。

在本文中,我们将详细探讨离散时间信号与系统的基本概念、特性和应用。

一、离散时间信号的定义和表示离散时间信号是在离散时间点上取值的信号,通常用序列表示。

离散时间序列可以用数学公式或图形方式表示。

其中,数学公式表示常用的形式是$x[n]$,而图形表示则可以通过绘制离散时间序列的点来展示。

离散时间信号可以分为有限长序列和无限长序列。

有限长序列在某一区间上有值,而在其他区间有值或为零。

无限长序列在整个时间轴上有值,通常会满足某些性质,如周期性或衰减性。

二、离散时间系统的定义和分类离散时间系统是对离散时间信号进行处理或操作的系统。

离散时间系统可以通过输入输出关系来定义。

输入为离散时间信号,输出为对输入信号进行处理或操作后得到的信号。

离散时间系统可以分为线性系统和非线性系统、时不变系统和时变系统、因果系统和非因果系统、稳定系统和非稳定系统等不同类别。

不同类别的系统具有不同的特性和性质,对信号的处理方式也会有所不同。

三、离散时间信号与系统的特性离散时间信号与系统具有许多特性。

其中一些重要的特性包括时域特性、频域特性和稳定性。

时域特性描述了信号或系统在时间上的行为,频域特性描述了信号或系统在频率上的行为,而稳定性则描述了系统的输出是否受到输入的限制。

离散时间信号的时域特性可以通过序列的幅值、相位和频率来描述。

离散时间系统的时域特性可以通过系统的冲激响应、单位样值响应和单位阶跃响应来描述。

频域特性则可以通过离散时间信号和系统的傅里叶变换来描述。

四、离散时间信号与系统的应用离散时间信号与系统在数字信号处理中有广泛的应用。

其中一些常见的应用包括音频处理、图像处理、通信系统和控制系统等。

在音频处理中,离散时间信号与系统用于音频信号的录制、编码和解码。

它可以通过滤波和均衡等方式改善音频信号的质量。

第2章 离散时间信号与系统的变换域分析

第2章  离散时间信号与系统的变换域分析
i 1
bi z i
M
因此,X(z)可以展成以下部分分式形式
r Ak Ck n X ( z ) Bn z 1 1 zk z (1 zi z 1 ) k n 0 k 1 k 1 M N N r
其中,M≥N时,才存在Bn;Zk为X(z)的各单极点, Zi为X(z)的一个r阶极点。而系数Ak,Ck 分别为: A Re s[ X ( z ) ] z z zk k 1 d r k r x( z ) Ck r k [( z zi ) (r k )! dz z zz ,
X ( z)
0

n
0
n2 n
n
x ( n) z
n
n2
n
x ( n) z
x ( n) z
n 1
n2
n
14
第二项为有限长序列,其收敛域 0 z ; 第一项为z的正幂次级数,根据阿贝尔定理, 其收敛域为 0 z Rx ; R x 为最大收敛半径 .
i
k 1, 2r 29
分别求出各部分分式的z反变换(可查 P39 表2-1-1),然后相加即得X(z)的z反变换。
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , z 2 的z反变换。 解:
1 z X ( z) 1 1 (1 2 z )(1 0.5 z ) ( z 2)( z 0.5) X ( z) z A1 A2 z ( z 2)( z 0.5) z 2 z 0.5
对采样信号 进行拉普拉斯变换
x a (t )

n
x (nT ) (t nT )

第2章 时域离散信号和系统的频域分析

第2章 时域离散信号和系统的频域分析
1
X (z)
n

x ( n) z n x ( n) z n
n0
n
x ( n) z n
因而其收敛域应该是右边序列与左边序列收敛域的重叠部分。 等式右边第一项为右边序列,其收敛域为|z|>Rx-; 第二项为左边序 列,其收敛域为|z|<Rx+。如果Rx-<Rx+,则存在公共收敛区域,X(z)
n 0
n n
1 (az ) 1 az 1 n 0
1 n
|z|>|a|
这是一个无穷项的等比级数求和,只有在 |az-1|<1即|z|>|a|处收敛如图所示。故得到以上
1 z 闭合形式的表达式,由于 ,故 1 az 1 z a
jIm[z]
|a|
a
o
在z=a处有一极点(用“×”表示),在z=0处有
4
第2章
时域离散信号和系统的频域分析
2.5 序列的Z 变换
2.5.1

ˇ
Z变换的定义 一个离散序列x(n)的Z变换定义为
X (z)
‵ 式中,z是一个复变量,它所在的复平面称为Z平 面。我们常用Z[x(n)]表示对序列x(n)进行Z 变换,也即
n
x ( n) z

n
(2.5.1)
Z[ x(n)] X ( z )
Re[z]
一个零点(用“○”表示),收敛域为极点所
在圆|z|=|a|的外部。
18
第2章
时域离散信号和系统的频域分析
收敛域上函数必须是解析的,因此收敛域内不允许有极点存在。 所以,右边序列的Z变换如果有N个有限极点{z1,z2,…,zN}存在,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散时间信号与系统分析离散时间信号与系统分析5-1 下列系统中,表示激励,表示响应。

试判断每个激励与响应的关系是否线性的,是否具有非移变性。

(1)(2)解:(1)线性性则所以系统是线性的。

移变性则所以系统是移变系统。

(2)线性性,则所以系统是线性的。

移变性()x n ()y n 2()()cos()510n y n x n ππ=+()()n m y n x m =-∞=∑112()()cos()510n y n x n ππ=+222()()cos()510n y n x n ππ=+1122112211222()()[()()]cos()()()510n k x n k x n k x n k x n k y n k y n ππ+→++=+2()()cos()510n y n x n ππ=+2()'()()cos()()510n x n m y n x n m y n m ππ-→=-+≠-11()()nm y n x n =-∞=∑22()()nm y n x n =-∞=∑11221122[()()]()()nm k x n k x n k y n ky n =-∞+=+∑设则所以系统是非移变的。

5-2求下列信号的卷积。

(1)(2)解:(1)由卷积的性质可知(2)5-3 已知差分方程,激励,初始值,,试用零输入、零状态法求全响应。

()()nm y n x n =-∞=∑()'()()()()()nn kn km p m x n k y n x n k m k p x p x m y n k --=-∞=-∞=-∞-→=--===-∑∑∑而故[()(4)][()(4)]u n u n u n u n --*--sin()()2()2nn u n u n π*[()(4)][()(4)][()(1)(2)(3)][()(1)(2)(3)]()2(1)3(2)4(3)3(4)2(5)(6)u n u n u n u n n n n n n n n n n n n n n n n δδδδδδδδδδδδδδδ--*--=+-+-+-*+-+-+-=+-+-+-+-+-+-2211115510510Z[sin()()*2()]2122n i in z z u n u n z z z z i z iπ+-+=⋅=-++---+1211115510510sin()()2()Z []2221111[2()()()]()5510510n n n n i in u n u n Z Z i Z ii i i i u n π-+-+*=-+--+=⋅-++-+-()3(1)2(2)()y n y n y n f n +-+-=()2()nf n u n =(0)0y =(1)2y =()y n解:①求零输入响应。

系统的特征方程为,故特征根为,,故零输入响应的通解。

待定系数,必须根据系统的起始条件来求,而不能根据初始值,来求。

又因为激励是在时刻作用于系统。

故起始条件应为,。

下面求,。

取代入原差分方程有即故得取代入原差分方程有即故得。

将所求得的,值代入通解中,有联立求解,得,,故零输入响应为②差分方程的转移算子为()ziry n 2320p p ++=11p =-22p =-12()(1)(2)kkzrsy n A A =-+-1A 2A (0)0y =(1)2y =()f n 0n =(1)y -(2)y -(1)y -(2)y -1n =(1)3(0)2(1)2y y y ++-=202(1)2y ++-=(1)0y -=0n =(0)3(1)2(2)1y y y +-+-=002(2)1y ++-=1(2)2y -=(1)y -(2)y -12121(1)0211(2)42zir zir y A A y A A -=--=-=+=11A =22A =-()(1)2(2)(0)kkziry n k =---≥故单位取样响应为③零状态响应为④全响应为,即5-4用经典法求解差分方程的全响应。

(1),,;(2),,。

解:(1) 初始条件:由方程知,即,。

齐次解为21221()13232(1)(2)122()1212P PH P PP P P P P P P P P P P P P --===++++++--=+=+++++()[(1)2(2)]()n n h n u n =--+-()()()2[(1)2(2)]2[(1)]22(2)11(1)2(2)(0)33n n n zsr n n n n n n ny n f n h n n =*=*--+-=*--+*-=--++-≥()()()zirzsr y n yn y n =+21()(1)2(2)(0)33n n ny n n =-+--≥()5(1)6(2)()y n y n y n u n --+-=(1)3y -=(2)5y -=()3(1)2(2)()3(1)y n y n y n u n u n --+-=+-(0)1y =(1)1y =(0)5(1)6(2)11530114y y y =---+=-+=-(1)5(0)6(1)17018187y y y =--+=--+=-2560αα-+=12α=23α=将初始条件代入,得,即,所以,。

(2)齐次解: 由方程可得,计算得,。

则齐次解为特解为因为是特征单根,所以。

可得解此方程可得,得。

所以完全解为将初始条件12()23n np y n k k =+(0)14(1)87y y =-⎧⎨=-⎩1212114212382k k k k ⎧++=-⎪⎪⎨⎪++=-⎪⎩12441172k k =⎧⎪⎨=-⎪⎩1117()442322n ny n =+⋅-0n ≥2320αα-+=11α=22α=12()2ny n k k=+()3(1)2(2)4y n y n y n --+-=11α=()py n An =3(1)2(2)4An A n A n --+-=344A A -=4A =12()24ny n k k n =+-(0)1(1)1y y =⎧⎨=⎩代入,得,即,所以 ,。

5-5 利用变换性质求下列序列的变换。

(1)(2) (3)(4)(5)解: (1) 方法一:设,则,。

因为,故根据域微分性,有方法二:设,则。

因为,根据域尺度变换性,有(2) 设,则根据移位性,有。

12121241k k k k +=⎧⎨+-=⎩1243k k =⎧⎨=-⎩2()234n y n n +=--0n ≥z z (1)()nnu n -2(1)(1)n u n --()1n a u n n +0(1)nii =-∑(1)[()(3)][()(4)]n u n u n u n u n +--*--1()(1)()nf n u n =-1()1zF z z =+||1z >1()()f n nf n =z 12d ()()(||1)d (1)zF z zF z z z z -=-=>+1()()f n nu n =12d ()()d 1(1)z zF z z z z z =-=--1()(1)()nf n f n =-z 12()()(||1)1(1)z zF z F z z -==>-+1()(1)(1)f n n u n =--11221()(1)(1)z F z z z z -==--因为,故由线性性和域微分性,得或,根据线性性,域微分性以及时域序列移位性,有(3)设,则。

根据域积分性,有(4)设,则。

因为,故根据时域部分求和性质,有(5)设,。

则根据卷积定理,得1()(1)()f n n f n =-z 113d 1()()()(||1)d (1)z F z zF z F z z z z +=--=>-2()(21)(1)f n n n u n =-+-z 323d d 1d 11()[()]2[2()]d d 1d 11(1)21(1)(1)(1)1(||1)(1)F z zz z z z z z z z z z z z z z z z =----+---+=-+---+=>-1()()n f n a u n =1()(||)zF z z a z a=>-z 12()1()d d ln (||)()zz F x z z F z z x x z a x x x a a z a∞∞===>--⎰⎰1()(1)()nf n u n =-1()(||1)1zF z z z =>+10()()ni f n f i ==∑212()()(||1)11z z F z F z z z z ==>--1()(1)[()(3)]f n n u n u n =+--2()()(4)f n u n u n =--3212222223422333211()(1)(1)(1)(1)(1)1(1)(1)()1(1)z z z z z F z z z z z z z z z z z z z z F z z z z z -+-=+--=------+-++===--232123(1)(1)(1)()()()(1)z z z z F z F z F z z z +++-==-(1)[()(3)][()(4)]n u n u n u n u n +--*--5-6 已知因果序列的变换,求序列的初值和终值。

(1) (2)解: (1)根据初值定理,有,因为存在极点,不满足终值定理的条件,不存在。

(2)根据初值定理,有,因为的极点都在单位圆内,满足终值定理条件,所以。

5-7 已知,,求。

解:因为,可知为右边序列。

幂级数展开法。

采用长除法可以将展开成幂级数,即故()x n z ()X z (0)x ()x ∞12111()(12)(1)z zX z z z ----++=--111()(10.5)(10.5)X z zz --=-+(0)lim ()1z x X z →∞==X z ()2z =()x ∞(0)lim ()1z x X z →∞==X z ()1()lim(1)()0z x z X z →∞=-=323221() 1.50.5z z F z z z z++=-+||1z >()f n ()2(1)6()[813(0.5)]()n f n n n u n δδ=-++-||1z >()f n ()F z 123()1 3.5 4.75 6.375F z z z z ---=++++L (){13.5,4.75,6.375,}f n =L ,5-8 用单边变换求解下列方程,并指出其中的零状态响应分量与零输入响应分量,稳态响应分量与瞬态响应分量。

相关文档
最新文档