FDH3595中文资料

合集下载

邵d硬度计

邵d硬度计

邵d硬度计
产品名称:LX-A型邵氏硬度计
∙产地:中国销售:沧州欧谱
∙简介:LX-A型橡胶硬度计广泛应用于中低硬度塑料、各类橡
胶、多元脂、皮革、蜡等的硬度测试。


一、橡胶硬度计功能:
A型适用于一般橡胶、合成橡胶、软橡胶,多元脂、皮革、蜡等
C型适用于橡塑并用、塑料中含有发泡剂制成的微孔材料
D型适用于一般硬橡胶、树脂、压克力、玻璃、热塑性橡胶、印刷板、纤维等。

符合标准:DIN 53505,ASTM D2240 ISO/R868,JIS R7215;
执行标准:GB/T531-99,GB2411-80,HG/T2489-93,JJG304-2003
二、选型指南:
LX-A型硬度计,适用于普通硬度范围,低于20HA时,选用LX-AO型硬度计,高于90HA时,选用LX-D型硬度计;
LX-D型硬度计,适用于高硬度范围,低于20HD时,选用LX-A型硬度计;
LX-AO型硬度计,适用于低硬度橡胶和海绵;
LX-AM型硬度计,适用于普通硬度范围的薄样品,适用于厚度在1.5mm-6mm之间的样品;
HLX-A 、C 型橡胶硬度计测试机架。

74HC595完整中文资料

74HC595完整中文资料
74HC595
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有 咼阻、关、断状态。
三态。特点8位串行输入8位串行或并行输出 存储状态寄存 器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能 力 并行输出,总线驱动 串行输出;
标准 中等规模集成电路应用 串行到并行的数据转换Remote c ontrol holding register.描述595是告诉的硅结构的CMO器件,
CPD决 定动态的能耗,PD=CPD< VCC< f1 +刀(CLXVCC2< f0) F 1=输入频率,。1=输出电容f0=输出频率(MHZ Vcc=电源电压 引脚说明符号引脚描述
内部结构
结合引脚说明就能很快理解595的工作情况
功能表:
管脚编号
管脚名
管脚定义功能
1、2、3、4、5、6、
7、15
QA—QH
2)74595的主要优点是具有数据存储寄存器,在移位的过程中,输出 端的数据可以保持不变。这在串行速度慢的场合很有用处,数码管没 有闪烁感。
与164只有数据清零端相比,595还多有输出端时能/禁止控制 端,可以使输出为高阻态。
3)595是串入并出带有锁存功能移位寄存器,它的使用方法很简单, 在正常使用时SCLR为高电平,G为低电平。从SER每输入一位数据, 串行输595是串入并出带有锁存功能移位寄存器,它的使用方法很简 单,如下面的真值表,在正常使用时SCLF为高电平,G为低电平。 从SER每输入一位数据,串行输入时钟SCK上升沿有效一次,直到八 位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被
送到了输出端。入时钟SCK上升沿有效一次,直到八位数据输入完毕, 输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。

P89LPC935FA,129,P89LPC936FDH系列,P89LPC935FDH,529,P89LPC933FDH系列规格书,Datasheet 资料

P89LPC935FA,129,P89LPC936FDH系列,P89LPC935FDH,529,P89LPC933FDH系列规格书,Datasheet 资料

1. General descriptionThe P89LPC933/934/935/936 is a single-chip microcontroller, available in low costpackages, based on a high performance processor architecture that executes instructions in two to four clocks, six times the rate of standard 80C51 devices. Many system-level functions have been incorporated into the P89LPC933/934/935/936 in order to reduce component count, board space, and system cost.2. Features and benefits2.1Principal features4kB/8kB/16kB byte-erasable flash code memory organized into 1kB/2 kB sectorsand 64-byte pages. Single-byte erasing allows any byte(s) to be used as non-volatile data storage.256-byte RAM data memory. Both the P89LPC935 and P89LPC936 also include a512-byte auxiliary on-chip RAM.512-byte customer data EEPROM on chip allows serialization of devices, storage ofsetup parameters, etc. (P89LPC935/936).Dual 4-input multiplexed 8-bit A/D converters/DAC outputs (P89LPC935/936, singleA/D on P89LPC933/934).Two analog comparators with selectable inputs and reference source.Two 16-bit counter/timers (each may be configured to toggle a port output upon timeroverflow or to become a PWM output) and a 23-bit system timer that can also be used as an RTC.Enhanced UART with fractional baud rate generator, break detect, framing errordetection, and automatic address detection; 400kHz byte-wide I 2C-bus communication port and SPI communication port.Capture/Compare Unit (CCU) provides PWM, input capture, and output comparefunctions (P89LPC935/936).High-accuracy internal RC oscillator option allows operation without external oscillatorcomponents. The RC oscillator option is selectable and fine tunable.2.4V to3.6V V DD operating range. I/O pins are 5V tolerant (may be pulled up ordriven to 5.5V).28-pin TSSOP , PLCC, and HVQFN packages with 23 I/O pins minimum and up to 26I/O pins while using on-chip oscillator and reset options.P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB/16 kB 3 V byte-erasable flash with 8-bit ADCsRev. 8 — 12 January 2011Product data sheet2.2Additional featuresA high performance 80C51 CPU provides instruction cycle times of 111ns to 222nsfor all instructions except multiply and divide when executing at 18MHz. This is sixtimes the performance of the standard 80C51 running at the same clock frequency. Alower clock frequency for the same performance results in power savings and reduced EMI.Serial flash In-Circuit Programming (ICP) allows simple production coding with commercial EPROM programmers. Flash security bits prevent reading of sensitiveapplication programs.Serial flash In-System Programming (ISP) allows coding while the device is mounted in the end application.In-Application Programming (IAP) of the flash code memory. This allows changing the code in a running application.Watchdog timer with separate on-chip oscillator, requiring no external components.The watchdog prescaler is selectable from eight values.Low voltage reset (brownout detect) allows a graceful system shutdown when power fails. May optionally be configured as an interrupt.Idle and two different power-down reduced power modes. Improved wake-up from Power-down mode (a LOW interrupt input starts execution). Typical power-downcurrent is 1μA (total power-down with voltage comparators disabled).Active-LOW reset. On-chip power-on reset allows operation without external reset components. A reset counter and reset glitch suppression circuitry prevent spuriousand incomplete resets. A software reset function is also available.Configurable on-chip oscillator with frequency range options selected by user programmed flash configuration bits. Oscillator options support frequencies from20kHz to the maximum operating frequency of 18MHz.Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator allowing it to perform an oscillator fail detect function.Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.Port ‘input pattern match’ detect. Port0 may generate an interrupt when the value of the pins match or do not match a programmable pattern.LED drive capability (20mA) on all port pins. A maximum limit is specified for the entire chip.Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10ns minimum ramp times.Only power and ground connections are required to operate theP89LPC933/934/935/936 when internal reset option is selected.Four interrupt priority levels.Eight keypad interrupt inputs, plus two additional external interrupt inputs.Schmitt trigger port inputs.Second data pointer.Emulation support.3. Product comparison overviewTable 1 highlights the differences between the four devices. For a complete list of device features please see Section 2 “Features and benefits”.4. Ordering information4.1Ordering optionsTable 1.Product comparison overviewDeviceFlash memory Sector size ADC1ADC0CCU Data EEPROM P89LPC933 4 kB 1 kB X ---P89LPC9348 kB 1 kB X ---P89LPC9358 kB 1 kB X X X X P89LPC93616 kB2 kBXXXXTable 2.Ordering informationType number Package NameDescriptionVersion P89LPC935FA PLCC28plastic leaded chip carrier; 28 leads SOT261-2P89LPC933HDH TSSOP28plastic thin shrink small outlinepackage; 28leads; body width 4.4mmSOT361-1P89LPC933FDH P89LPC934FDH P89LPC935FDH P89LPC936FDH P89LPC935FHNHVQFN28plastic thermal enhanced very thin quad flat package; no leads;28terminals; body 6×6×0.85mmSOT788-1Table 3.Ordering optionsType number Flash memory Temperature range Frequency P89LPC933HDH 4 kB −40°C to +125°C 0MHz to 18MHzP89LPC933FDH 4kB −40°C to +85°CP89LPC935FA 8kBP89LPC934FDH P89LPC935FDH P89LPC935FHN P89LPC936FDH16kB5. Block diagram6. Pinning information6.1Pinning6.2Pin descriptionTable 4.Pin descriptionSymbol Pin Type DescriptionTSSOP28,PLCC28HVQFN28P0.0 to P0.7I/O Port0: Port0 is an 8-bit I/O port with a user-configurable output type.During reset Port0 latches are configured in the input only mode with theinternal pull-up disabled. The operation of Port0 pins as inputs andoutputs depends upon the port configuration selected. Each port pin isconfigured independently. Refer to Section 8.13.1 “Port configurations”and Table 11 “Static characteristics” for details.The Keypad Interrupt feature operates with Port0 pins.All pins have Schmitt trigger inputs.Port0 also provides various special functions as described below:P0.0/CMP2/ KBI0/AD01327I/O P0.0 — Port0 bit0.O CMP2 — Comparator2 output.I KBI0 — Keyboard input0.I AD01 — ADC0 channel 1 analog input. (P89LPC935/936)P0.1/CIN2B/ KBI1/AD102622I/O P0.1 — Port0 bit1.I CIN2B — Comparator2 positive input B.I KBI1 — Keyboard input1.I AD10 — ADC1 channel 0 analog input.P0.2/CIN2A/ KBI2/AD112521I/O P0.2 — Port0 bit2.I CIN2A — Comparator2 positive input A.I KBI2 — Keyboard input2.I AD11 — ADC1 channel 1 analog input.P0.3/CIN1B/ KBI3/AD122420I/O P0.3 — Port0 bit3.I CIN1B — Comparator1 positive input B.I KBI3 — Keyboard input3.I AD12 — ADC1 channel 2 analog input.P0.4/CIN1A/ KBI4/DAC1/ AD132319I/O P0.4 — Port0 bit4.I CIN1A — Comparator1 positive input A.I KBI4 — Keyboard input4.O DAC1 — Digital-to-analog converter output 1.I AD13 — ADC1 channel 3 analog input.P0.5/ CMPREF/ KBI52218I/O P0.5 — Port0 bit5.I CMPREF — Comparator reference (negative) input.I KBI5 — Keyboard input5.P0.6/CMP1/ KBI62016I/O P0.6 — Port0 bit6.O CMP1 — Comparator1 output.I KBI6 — Keyboard input6.P0.7/T1/ KBI71915I/O P0.7 — Port0 bit7.I/O T1 — Timer/counter1 external count input or overflow output.I KBI7 — Keyboard input7.P1.0 to P1.7I/O, I [1]Port1: Port1 is an 8-bit I/O port with a user-configurable output type,except for three pins as noted below. During reset Port1 latches areconfigured in the input only mode with the internal pull-up disabled. Theoperation of the configurable Port1 pins as inputs and outputs dependsupon the port configuration selected. Each of the configurable port pinsare programmed independently. Refer to Section 8.13.1 “Portconfigurations” and Table 11 “Static characteristics” for details. P1.2 andP1.3 are open drain when used as outputs. P1.5 is input only.All pins have Schmitt trigger inputs.Port1 also provides various special functions as described below:P1.0/TXD1814I/O P1.0 — Port1 bit0.O TXD — Transmitter output for the serial port.P1.1/RXD1713I/O P1.1 — Port1 bit1.I RXD — Receiver input for the serial port.P1.2/T0/SCL128I/O P1.2 — Port1 bit2 (open-drain when used as output).I/O T0 — Timer/counter0 external count input or overflow output (open-drainwhen used as output).I/O SCL — I2C serial clock input/output.P1.3/INT0/ SDA 117I/O P1.3 — Port1 bit3 (open-drain when used as output).I INT0 — External interrupt0 input.I/O SDA — I2C serial data input/output.P1.4/INT1106I P1.4 — Port1 bit4.I INT1 — External interrupt1 input.P1.5/RST62I P1.5 — Port1 bit5 (input only).I RST — External reset input during power-on or if selected via UCFG1.When functioning as a reset input, a LOW on this pin resets themicrocontroller, causing I/O ports and peripherals to take on their defaultstates, and the processor begins execution at address0. Also used duringa power-on sequence to force ISP mode. When using an oscillatorfrequency above 12MHz, the reset input function of P1.5 must beenabled. An external circuit is required to hold the device in reset atpower-up until VDD has reached its specified level. When systempower is removed VDD will fall below the minimum specifiedoperating voltage. When using an oscillator frequency above12MHz, in some applications, an external brownout detect circuitmay be required to hold the device in reset when VDD falls below theminimum specified operating voltage.P1.6/OCB51I/O P1.6 — Port1 bit6.O OCB — Output Compare B. (P89LPC935/936)P1.7/OCC/ AD00428I/O P1.7 — Port1 bit7.O OCC — Output Compare C. (P89LPC935/936)I AD00 — ADC0 channel 0 analog input. (P89LPC935/936)Table 4.Pin description …continuedSymbol Pin Type Description TSSOP28,PLCC28HVQFN28P2.0 to P2.7I/OPort 2: Port 2 is an 8-bit I/O port with a user-configurable output type. During reset Port 2 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 2 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to Section 8.13.1 “Port configurations” and Table 11 “Static characteristics” for details.All pins have Schmitt trigger inputs.Port 2 also provides various special functions as described below:P2.0/ICB/ DAC0/AD03125I/O P2.0 — Port 2 bit 0.I ICB — Input Capture B. (P89LPC935/936)I DAC0 — Digital-to-analog converter output.IAD03 — ADC0 channel 3 analog input. (P89LPC935/936)P2.1/OCD/ AD02226I/O P2.1 — Port 2 bit 1.O OCD — Output Compare D. (P89LPC935/936)IAD02 — ADC0 channel 2 analog input. (P89LPC935/936)P2.2/MOSI 139I/O P2.2 — Port 2 bit 2.I/OMOSI — SPI master out slave in. When configured as master, this pin is output; when configured as slave, this pin is input.P2.3/MISO 1410I/O P2.3 — Port 2 bit 3.I/OMISO — When configured as master, this pin is input, when configured as slave, this pin is output.P2.4/SS 1511I/O P2.4 — Port 2 bit 4.I SS — SPI Slave select.P2.5/ SPICLK 1612I/O P2.5 — Port 2 bit 5.I/OSPICLK — SPI clock. When configured as master, this pin is output; when configured as slave, this pin is input. P2.6/OCA 2723I/O P2.6 — Port 2 bit 6.O OCA — Output Compare A. (P89LPC935/936)P2.7/ICA2824I/O P2.7 — Port 2 bit 7.IICA — Input Capture A. (P89LPC935/936)Table 4.Pin description …continuedSymbolPinTypeDescriptionTSSOP28, PLCC28HVQFN28[1]Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.P3.0 to P3.1I/OPort 3: Port 3 is a 2-bit I/O port with a user-configurable output type.During reset Port 3 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 3 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to Section 8.13.1 “Port configurations” and Table 11 “Static characteristics” for details.All pins have Schmitt trigger inputs.Port 3 also provides various special functions as described below:P3.0/XTAL2/ CLKOUT95I/O P3.0 — Port 3 bit 0.O XTAL2 — Output from the oscillator amplifier (when a crystal oscillator option is selected via the flash configuration.OCLKOUT — CPU clock divided by 2 when enabled via SFR bit (ENCLK - TRIM.6). It can be used if the CPU clock is the internal RC oscillator, watchdog oscillator or external clock input, except when XTAL1/XTAL2 are used to generate clock source for the RTC/system timer.P3.1/XTAL184I/O P3.1 — Port 3 bit 1.IXTAL1 — Input to the oscillator circuit and internal clock generator circuits (when selected via the flash configuration). It can be a port pin if internal RC oscillator or watchdog oscillator is used as the CPU clock source, and if XTAL1/XTAL2 are not used to generate the clock for the RTC/system timer.V SS 73I Ground: 0V reference.V DD2117IPower supply: This is the power supply voltage for normal operation as well as Idle and Power-down modes.Table 4.Pin description …continuedSymbolPinTypeDescriptionTSSOP28, PLCC28HVQFN287. Logic symbols8. Functional descriptionRemark: Please refer to the P89LPC933/934/935/936 User manual for a more detailedfunctional description.8.1Special function registersRemark: SFR accesses are restricted in the following ways:•User must not attempt to access any SFR locations not defined.•Accesses to any defined SFR locations must be strictly for the functions for the SFRs.•SFR bits labeled ‘-’, logic 0 or logic 1 can only be written and read as follows:–‘-’ Unless otherwise specified, must be written with logic 0, but can return anyvalue when read (even if it was written with logic 0). It is a reserved bit and may beused in future derivatives.–Logic 0 must be written with logic 0, and will return a logic 0 when read.–Logic 1 must be written with logic 1, and will return a logic 1 when read.P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 13 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 coreTable 5.Special function registers - P89LPC933/934* indicates SFRs that are bit addressable. Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary Bit address E7E6E5E4E3E2E1E0ACC*Accumulator E0H 0000000000ADCON0A/D control register 08EH -----ENADC0--0000000000ADCON1A/D control register 197H ENBI1ENADCI 1TMM1EDGE1ADCI1ENADC1ADCS11ADCS100000000000ADINS A/D input select A3H ADI13ADI12ADI11ADI10----0000000000ADMODA A/D mode register A C0H BNDI1BURST1SCC1SCAN1----0000000000ADMODB A/D mode register B A1H CLK2CLK1CLK0-ENDAC1ENDAC0BSA1-00000x 0000AD0DAT3A/D_0 data register 3F4H 0000000000AD1BH A/D_1 boundary high register C4H FF 11111111AD1BL A/D_1 boundary low register BCH 0000000000AD1DAT0A/D_1 data register 0D5H 0000000000AD1DAT1A/D_1 data register 1D6H 0000000000AD1DAT2A/D_1 data register 2D7H 0000000000AD1DAT3A/D_1 data register 3F5H 0000000000AUXR1Auxiliary function register A2H CLKLP EBRR ENT1ENT0SRST 0-DPS 00[1]000000x0Bit address F7F6F5F4F3F2F1F0B* B register F0H 0000000000BRGR0Baud rate generator rate low BEH 00[2]00000000BRGR1Baud rate generator rate high BFH 00[1][2]00000000BRGCON Baudrate generator control BDH ------SBRGS BRGEN 00[2]xxxx xx00CMP1Comparator 1 control register ACH --CE1CP1CN1OE1CO1CMF100[1]xx000000CMP2Comparator 2 control register ADH --CE2CP2CN2OE2CO2CMF200[1]xx000000DIVM CPU clock divide-by-M control95H 0000000000DPTR Data pointer (2bytes)DPH Data pointer high 83H 0000000000DPL Data pointer low 82H 0000000000FMADRH Program flash address high E7H 0000000000芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 14 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core FMADRL Program flash address low E6H 0000000000FMCON Program flash control (Read)E4H BUSY ---HVA HVE SV OI 7001110000Program flash control (Write)E4H FMCMD.7FMCMD.6FMCMD.5FMCMD.4FMCMD.3FMCMD.2FMCMD.1FMCMD.FMDATA Program flash data E5H 0000000000I2ADR I 2C slave address register DBH I2ADR.6I2ADR.5I2ADR.4I2ADR.3I2ADR.2I2ADR.1I2ADR.0GC 0000000000Bit address DF DE DD DC DB DA D9D8I2CON*I 2C control register D8H -I2EN STA STO SI AA -CRSEL 00x00000x0I2DAT I 2C data register DAHI2SCLH Serial clock generator/SCL duty cycle register highDDH 0000000000I2SCLL Serial clock generator/SCL duty cycle register lowDCH 0000000000I2STAT I 2C status register D9H STA.4STA.3STA.2STA.1STA.0000F811111000ICRAH Input capture A register high ABH 0000000000ICRAL Input capture A register low AAH 0000000000ICRBH Input capture B register high AFH 0000000000ICRBL Input capture B register low AEH 0000000000Bit address AF AE AD AC AB AA A9A8IEN0*Interrupt enable 0A8H EA EWDRT EBO ES/ESR ET1EX1ET0EX00000000000Bit address EF EE ED EC EB EA E9E8IEN1*Interrupt enable 1E8H EAD EST --ESPI EC EKBI EI2C 00[3]00x00000Bit address BF BE BD BC BB BA B9B8IP0*Interrupt priority 0B8H -PWDRT PBO PS/PSR PT1PX1PT0PX000[3]x0000000IP0H Interrupt priority 0 high B7H -PWDRT H PBOH PSH/ PSRHPT1H PX1H PT0H PX0H 00[3]x0000000Bit address FF FE FD FC FB FA F9F8IP1*Interrupt priority 1F8H PAD PST --PSPI PC PKBI PI2C 00[3]00x00000IP1H Interrupt priority 1 high F7H PADH PSTH --PSPIH PCH PKBIH PI2CH 00[3]00x00000Table 5.Special function registers - P89LPC933/934 …continued* indicates SFRs that are bit addressable.Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 15 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core KBCON Keypad control register 94H ------PATN _SELKBIF 00[3]xxxx xx00KBMASK Keypad interrupt mask register 86H 0000000000KBPATN Keypad pattern register 93H FF 11111111Bit address 8786858483828180P0*Port 080H T1/KB7CMP1/KB6CMPREF /KB5CIN1A /KB4CIN1B /KB3CIN2A /KB2CIN2B /KB1CMP2/KB0[3]Bit address 9796959493929190P1*Port 190H --RST INT1INT0/ SDAT0/SCL RXD TXD [3]Bit address A7A6A5A4A3A2A1A0P2*Port 2A0H --SPICLK SS MISO MOSI --[3]Bit address B7B6B5B4B3B2B1B0P3*Port 3B0H ------XTAL1XTAL2[3]P0M1Port 0 output mode 184H (P0M1.7)(P0M1.6)(P0M1.5)(P0M1.4)(P0M1.3)(P0M1.2)(P0M1.1)(P0M1.0)FF [3]11111111P0M2Port 0 output mode 285H (P0M2.7)(P0M2.6)(P0M2.5)(P0M2.4)(P0M2.3)(P0M2.2)(P0M2.1)(P0M2.0)00[3]00000000P1M1Port 1 output mode 191H (P1M1.7)(P1M1.6)-(P1M1.4)(P1M1.3)(P1M1.2)(P1M1.1)(P1M1.0)D3[3]11x1xx11P1M2Port 1 output mode 292H (P1M2.7)(P1M2.6)-(P1M2.4)(P1M2.3)(P1M2.2)(P1M2.1)(P1M2.0)00[3]00x0xx00P2M1Port 2 output mode 1A4H (P2M1.7)(P2M1.6)(P2M1.5)(P2M1.4)(P2M1.3)(P2M1.2)(P2M1.1)(P2M1.0)FF [3]11111111P2M2Port 2 output mode 2A5H (P2M2.7)(P2M2.6)(P2M2.5)(P2M2.4)(P2M2.3)(P2M2.2)(P2M2.1)(P2M2.0)00[3]00000000P3M1Port 3output mode 1B1H ------(P3M1.1)(P3M1.0)03[3]xxxx xx11P3M2Port 3 output mode 2B2H ------(P3M2.1)(P3M2.0)00[3]xxxx xx00PCON Power control register 87H SMOD1SMOD0BOPD BOI GF1GF0PMOD1PMOD00000000000PCONA Power control register A B5H RTCPD -VCPD ADPD I2PD SPPD SPD -00[3]00000000Bitaddress D7D6D5D4D3D2D1D0PSW*Program status word D0H CY AC F0RS1RS0OV F1P 0000000000PT0AD Port 0 digital input disable F6H --PT0AD.5PT0AD.4PT0AD.3PT0AD.2PT0AD.1-00xx00000x RSTSRC Reset source register DFH --BOF POF R_BK R_WD R_SF R_EX [4]RTCCON Real-time clock control D1H RTCF RTCS1RTCS0---ERTC RTCEN 60[3][5]011x xx00Table 5.Special function registers - P89LPC933/934 …continued* indicates SFRs that are bit addressable.Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 16 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core RTCH Real-time clock register high D2H 00[5]00000000RTCL Real-time clock register low D3H 00[5]00000000SADDR Serial port address register A9H 0000000000SADEN Serial port address enable B9H 0000000000SBUF Serial Port data buffer register 99H xx xxxx xxxxBit address 9F 9E 9D 9C 9B 9A 9998SCON*Serial port control 98H SM0/FE SM1SM2REN TB8RB8TI RI 0000000000SSTAT Serial port extended status registerBAH DBMOD INTLO CIDIS DBISEL FE BR OE STINT 0000000000SP Stack pointer 81H 0700000111SPCTL SPI control register E2H SSIG SPEN DORD MSTR CPOL CPHA SPR1SPR00400000100SPSTAT SPI status register E1H SPIF WCOL ------0000xx xxxx SPDAT SPI data register E3H 0000000000TAMOD Timer 0 and 1 auxiliary mode 8FH ---T1M2---T0M200xxx0xxx0Bit address 8F 8E 8D 8C 8B 8A 8988TCON*Timer 0 and 1 control 88H TF1TR1TF0TR0IE1IT1IE0IT00000000000TH0Timer 0 high 8CH 0000000000TH1Timer 1 high 8DH 0000000000TL0Timer 0 low 8AH 0000000000TL1Timer 1 low 8BH 0000000000TMOD Timer 0 and 1 mode 89H T1GATE T1C/T T1M1T1M0T0GATE T0C/T T0M1T0M00000000000TRIM Internal oscillator trim register 96H RCCLK ENCLK TRIM.5TRIM.4TRIM.3TRIM.2TRIM.1TRIM.0[6] [5]WDCON Watchdog control register A7H PRE2PRE1PRE0--WDRUN WDTOF WDCLK [7] [5]Table 5.Special function registers - P89LPC933/934 …continued* indicates SFRs that are bit addressable.Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 17 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core[1]Unimplemented bits in SFRs (labeled ’-’) are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they may be used for otherpurposes in future derivatives. The reset values shown for these bits are logic 0s although they are unknown when read.[2]BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN =1, the result is unpredictable.[3]All ports are in input only (high-impedance) state after power-up.[4]The RSTSRC register reflects the cause of the P89LPC933/934/935/936 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on resetvalue is xx110000.[5]The only reset source that affects these SFRs is power-on reset.[6]On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.[7]After reset, the value is 111001x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN =1 and WDCLK =1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.Other resets will not affect WDTOF.WDL Watchdog load C1H FF 11111111WFEED1Watchdog feed 1C2HWFEED2Watchdog feed 2C3HTable 5.Special function registers - P89LPC933/934 …continued* indicates SFRs that are bit addressable.Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 18 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 coreTable 6.Special function registers - P89LPC935/936* indicates SFRs that are bit addressable. Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex BinaryBit address E7E6E5E4E3E2E1E0ACC*Accumulator E0H 0000000000ADCON0A/D control register 08EH ENBI0ENADCI 0TMM0EDGE0ADCI0ENADC0ADCS01ADCS000000000000ADCON1A/D control register 197H ENBI1ENADCI 1TMM1EDGE1ADCI1ENADC1ADCS11ADCS100000000000ADINS A/D input select A3H ADI13ADI12ADI11ADI10ADI03ADI02ADI01ADI000000000000ADMODA A/D mode register A C0H BNDI1BURST1SCC1SCAN1BNDI0BURST0SCC0SCAN00000000000ADMODB A/D mode register B A1H CLK2CLK1CLK0-ENDAC1ENDAC0BSA1BSA000000x 0000AD0BH A/D_0 boundary high register BBH FF 11111111AD0BL A/D_0 boundary low register A6H 0000000000AD0DAT0A/D_0 data register 0C5H 0000000000AD0DAT1A/D_0 data register 1C6H 0000000000AD0DAT2A/D_0 data register 2C7H 0000000000AD0DAT3A/D_0 data register 3F4H 0000000000AD1BH A/D_1 boundary high register C4H FF 11111111AD1BL A/D_1 boundary low register BCH 0000000000AD1DAT0A/D_1 data register 0D5H 0000000000AD1DAT1A/D_1 data register 1D6H 0000000000AD1DAT2A/D_1 data register 2D7H 0000000000AD1DAT3A/D_1 data register 3F5H 0000000000AUXR1Auxiliary function register A2H CLKLP EBRR ENT1ENT0SRST 0-DPS 00000000x0Bit address F7F6F5F4F3F2F1F0B* B register F0H 0000000000BRGR0[2]Baud rate generator rate low BEH 0000000000BRGR1[2]Baud rate generator rate high BFH 0000000000BRGCON Baudrate generator control BDH ------SBRGS BRGEN 00[2]xxxx xx00CCCRA Capture compare A control registerEAH ICECA2ICECA1ICECA0ICESA ICNFA FCOA OCMA1OCMA00000000000芯天下--/P89LPC933_934_935_936All information provided in this document is subject to legal disclaimers.© NXP B.V. 2011. All rights reserved.Product data sheet Rev. 8 — 12 January 2011 19 of 77NXP Semiconductors P89LPC933/934/935/9368-bit microcontroller with accelerated two-clock 80C51 core CCCRB Capture compare B control registerEBH ICECB2ICECB1ICECB0ICESB ICNFB FCOB OCMB1OCMB00000000000CCCRC Capture compare C control register ECH -----FCOC OCMC1OCMC000xxxx x000CCCRD Capture compare D control registerEDH -----FCOD OCMD1OCMD000xxxx x000CMP1Comparator 1 control register ACH --CE1CP1CN1OE1CO1CMF100[3]xx000000CMP2Comparator 2 control register ADH --CE2CP2CN2OE2CO2CMF200[3]xx000000DEECON Data EEPROM control registerF1H EEIF HVERR ECTL1ECTL0---EADR80E 00001110DEEDAT Data EEPROM data register F2H 0000000000DEEADR Data EEPROM address registerF3H 0000000000DIVM CPU clock divide-by-M control95H 0000000000DPTR Data pointer (2bytes)DPH Data pointer high 83H 0000000000DPL Data pointer low 82H 0000000000FMADRH Program flash address high E7H 0000000000FMADRL Program flash address low E6H 0000000000FMCON Program flash control (Read)E4H BUSY ---HVA HVE SV OI 7001110000Program flash control (Write)E4H FMCMD.7FMCMD.6FMCMD.5FMCMD.4FMCMD.3FMCMD.2FMCMD.1FMCMD.FMDATA Program flash data E5H 0000000000I2ADR I 2C slave address register DBH I2ADR.6I2ADR.5I2ADR.4I2ADR.3I2ADR.2I2ADR.1I2ADR.0GC 0000000000Bitaddress DF DE DD DC DB DA D9D8I2CON*I 2C control register D8H -I2EN STA STO SI AA -CRSEL 00x00000x0I2DAT I 2C data register DAHI2SCLH Serial clock generator/SCL duty cycle register highDDH 0000000000Table 6.Special function registers - P89LPC935/936 …continued* indicates SFRs that are bit addressable.Name Description SFR addr.Bit functions and addresses Reset valueMSB LSB Hex Binary芯天下--/。

XXXX年第37期(总第170期)节能-中国质量认证中心

XXXX年第37期(总第170期)节能-中国质量认证中心

节能、环保、节水产品认证企业获证信息公告二〇一〇年第三十七期(总第170期)节能产品认证获证企业信息:计算机制造商:Dell Inc.获证规格型号:PP37L, Vostro 1015, Vostro 1530:19.5VDC 3.34A (电源适配器:LA65NS2-01,LA65NE1-01)证书编号:CQC10701050928生效日期:2010-10-08有效期至:2013-10-08品牌:Dell制造商:Dell Inc.获证规格型号:P03S: 19.5VDC, 3.34A(电源适配器:65NE1-01 输入: 100-240VAC, 50-60Hz, 1.5A, 输出: 19.5VDC, 3.34A; 2.DA65NS3-00 输入:100-240VAC, 50-60Hz, 1.5A or 11-16VDC, 8.0A; 输出: 19.5VDC/3.34A; 3.HA65NE1-00 输入:100-240VAC,50-60Hz,1.5A 输出:19.5VDC,3.34A)证书编号:CQC09701032452生效日期:2010-10-08有效期至:2010-10-14品牌:Dell制造商:宏碁股份有限公司获证规格型号:PEW51 19VDC,4.74A or 3.42A(电源适配器:1.PA-1900-34;2.HP-A0652R3B;3.HP-A0904A3;4.PA-1650-22;5.ADP-65JH DB;6.ADP-65JH BB;7.ADP-90CD DB;8.ADP-65VH B;9.PA-1650-69;10.CPA09-A065N1)证书编号:CQC10701050907生效日期:2010-10-08有效期至:2013-10-08品牌:Acer制造商:苏州海尔信息科技有限公司获证规格型号:HDP-9021: 220VAC 50Hz 3A/4A证书编号:CQC10701050918生效日期:2010-10-09有效期至:2013-10-09品牌:海尔 Haier制造商:苏州海尔信息科技有限公司获证规格型号:HDP-9218: 220VAC 50Hz 3A证书编号:CQC10701050919生效日期:2010-10-09有效期至:2013-10-09品牌:海尔 Haier单路输出式交流-直流和交流-交流外部电源制造商:亚源科技股份有限公司获证规格型号:DA-36P12 输入:100-240VAC,50-60Hz,1.0A输出:12VDC,3A证书编号:CQC10701050838生效日期:2010-10-09有效期至:2013-10-09品牌:/显示器制造商:Dell Inc.获证规格型号:IN2020f, IN2020Mf:100-240V~, 50/60Hz, 1.5A 证书编号:CQC10701050926生效日期:2010-10-08有效期至:2013-10-08品牌:DELL制造商:Dell Inc.获证规格型号:IN1920f :100-240V~, 50-60Hz, 1.5A证书编号:CQC10701050920生效日期:2010-10-08有效期至:2013-10-08品牌:DELL制造商:Dell Inc.获证规格型号:E190Sf: 100-240VAC 50/60Hz 1.5A证书编号:CQC10701050921生效日期:2010-10-08有效期至:2013-10-08品牌:DELL制造商:Dell Inc.获证规格型号:P170Sf: 100-240VAC 1.5A 50/60Hz证书编号:CQC10701050913生效日期:2010-10-08品牌:DELL制造商:Dell Inc.获证规格型号:P190Sf: 100-240VAC 50/60Hz 1.5A证书编号:CQC10701050912生效日期:2010-10-08有效期至:2013-10-08品牌:DELL制造商:Hewlett-Packard Company获证规格型号:LA2306x输入: 100-240VAC 50/60Hz 1.0A证书编号:CQC10701050909生效日期:2010-10-08有效期至:2013-10-08品牌:HP制造商:Hewlett-Packard Company获证规格型号:LA2006x输入: 100-240VAC 50/60Hz 1.0A证书编号:CQC10701050922生效日期:2010-10-08有效期至:2013-10-08品牌:HP制造商:Hewlett-Packard Company获证规格型号:LA1951gl:AC 100-240V~ 50/60Hz 1.0A(1,0A) 证书编号:CQC10701050924生效日期:2010-10-08有效期至:2013-10-08品牌:HP制造商:Hewlett-Packard Company获证规格型号:LA1951gl:AC 100-240V~ 50/60Hz 1.0A证书编号:CQC10701050923生效日期:2010-10-08有效期至:2013-10-08品牌:HP制造商:Hewlett-Packard Company获证规格型号:LA2006x输入: 100-240VAC 50/60Hz 1.0A证书编号:CQC10701050925有效期至:2013-10-08品牌:HP制造商:Hewlett-Packard Company获证规格型号: LA1751g: 100-240VAC, 50/60Hz, 1.5A证书编号:CQC10701050910生效日期:2010-10-08有效期至:2013-10-08品牌:hp制造商:Hewlett-Packard Company获证规格型号:HSTND-3041-F, HSTND-3061-F: 100-240VAC 50/60Hz 1.2A证书编号:CQC10701050911生效日期:2010-10-08有效期至:2013-10-08品牌:Hp,Compaq制造商:Hewlett-Packard Company获证规格型号:LA2306x输入: 100-240VAC 50/60Hz 1.0A证书编号:CQC10701050927生效日期:2010-10-08有效期至:2013-10-08品牌:HP制造商:NEC Display Solutions,Ltd.获证规格型号:L468TQ,X461HB-2-G1(C)-T,X461HB-3-G1(C)-T 100-240VAC; 50/60Hz;5.6A-2.5A证书编号:CQC10701050888生效日期:2010-10-08有效期至:2013-10-08品牌:NEC制造商:惠普公司获证规格型号:LA2206x 100-240VAC 50/60Hz 1.6A证书编号:CQC10701050893生效日期:2010-10-08有效期至:2013-10-08品牌:HP,Compaq制造商:联想(北京)有限公司获证规格型号:L2363dwA: 100-240VAC 50/60Hz 1.5A证书编号:CQC10701050908有效期至:2013-10-08品牌:lenovo, lenovo联想中小型三相异步电动机制造商:无锡华达电机有限公司证书编号:CQC09701032159 生效日期:2010-10-09有效期至:2012-05-27品牌:华达/马拉松多联式空调(热泵)机组制造商:三菱重工海尔(青岛)空调机有限公司获证规格型号:外机:RFC335KX6-K 内机:RFTS22KX6, RFTS25KX6, RFTS28KX6, RFTS32KX6, RFTS36KX6, RFTS40KX6, RFTS45KX6, RFTS50KX6, RFTS56KX6, RFTSD22KX6, RFTSD25KX6, RFTSD28KX6, RFTSD32KX6, RFTSD36KX6, RFTSD40KX6, RFTSD45KX6, RFTSD50KX6, RFTSD56KX6, RFU40KX6, RFU45KX6, RFU50KX6, RFU56KX6, RFU63KX6, RFU71KX6, RFU80KX6, RFU90KX6, RFU100KX6, RFU112KX6, RFU125KX6, RFU140KX6, RFU150KX6, RFUD40KX6, RFUD45KX6, RFUD50KX6, RFUD56KX6, RFUD63KX6, RFUD71KX6, RFUD80KX6, RFUD90KX6, RFUD100KX6, RFUD112KX6, RFUD125KX6, RFUD140KX6, RFUD150KX6, RFUM22KX6, RFUM25KX6, RFUM28KX6, RFUM32KX6, RFUM36KX6, RFUM40KX6, RFUM45KX6, RFUM50KX6, RFUM56KX6, RFUM63KX6, RFUM71KX6, RFUM80KX6, RFUM90KX6, RFUM100KX6, RFUM112KX6, RFUM125KX6, RFUM140KX6, RFUM150KX6, RFUMD22KX6, RFUMD25KX6, RFUMD28KX6, RFUMD32KX6, RFUMD36KX6, RFUMD40KX6, RFUMD45KX6, RFUMD50KX6, RFUMD56KX6, RFUMD63KX6, RFUMD71KX6, RFUMD80KX6, RFUMD90KX6, RFUMD100KX6, RFUMD112KX6, RFUMD125KX6, RFUMD140KX6, RFUMD150KX6, RFUT22KX6, RFUT25KX6, RFUT28KX6, RFUT32KX6, RFUT36KX6, RFUT40KX6, RFUT45KX6, RFUT50KX6, RFUT56KX6, RFUT63KX6, RFUT71KX6, RFUTD22KX6, RFUTD25KX6, RFUTD28KX6, RFUTD32KX6, RFUTD36KX6, RFUTD40KX6, RFUTD45KX6, RFUTD50KX6, RFUTD56KX6, RFUTD63KX6, RFUTD71KX6, RFTW22KX6, RFTW25KX6, RFTW28KX6, RFTW32KX6, RFTW36KX6, RFTW40KX6, RFTW45KX6, RFTW50KX6, RFTW56KX6, RFT28KX6, RFT32KX6, RFT36KX6, RFT40KX6, RFT45KX6, RFT50KX6, RFT56KX6, RFT63KX6, RFT71KX6, RFT80KX6, RFT90KX6, RFT100KX6, RFT112KX6, RFT125KX6, RFT140KX6, RFT150KX6, RFTD28KX6, RFTD32KX6, RFTD36KX6, RFTD40KX6, RFTD45KX6, RFTD50KX6, RFTD56KX6, RFTD63KX6, RFTD71KX6, RFTD80KX6, RFTD90KX6, RFTD100KX6, RFTD112KX6, RFTD125KX6, RFTD140KX6, RFTD150KX6, RF71KX6, RF140KX6证书编号:CQC10701050887生效日期:2010-10-08有效期至:2013-10-08品牌:海尔制造商:三菱重工海尔(青岛)空调机有限公司获证规格型号:室外机:RFC504KX6室内机:RFTS22KX6、RFTS25KX6、RFTS28KX6、RFTS32KX6、RFTS36KX6、RFTS40KX6、RFTS45KX6、RFTS50KX6、RFTS56KX6、RFTSD22KX6、RFTSD25KX6、RFTSD28KX6、RFTSD32KX6、RFTSD36KX6、RFTSD40KX6、RFTSD45KX6、RFTSD50KX6、RFTSD56KX6、RFU40KX6、RFU45KX6、RFU50KX6、RFU56KX6、RFU63KX6、RFU71KX6、RFU80KX6、RFU90KX6、RFU100KX6、RFU112KX6、RFU125KX6、RFU140KX6、RFU150KX6、RFU224KX6、RFU280KX6、RFUD40KX6、RFUD45KX6、RFUD50KX6、RFUD56KX6、RFUD63KX6、RFUD71KX6、RFUD80KX6、RFUD90KX6、RFUD100KX6、RFUD112KX6、RFUD125KX6、RFUD140KX6、RFUD150KX6、RFUD224KX6、RFUD280KX6、RFUM22KX6、RFUM25KX6、RFUM28KX6、RFUM32KX6、RFUM36KX6、RFUM40KX6、RFUM45KX6、RFUM50KX6、RFUM56KX6、RFUM63KX6、RFUM71KX6、RFUM80KX6、RFUM90KX6、RFUM100KX6、RFUM112KX6、RFUM125KX6、RFUM140KX6、RFUM150KX6、RFUMD22KX6、RFUMD25KX6、RFUMD28KX6、RFUMD32KX6、RFUMD36KX6、RFUMD40KX6、RFUMD45KX6、RFUMD50KX6、RFUMD56KX6、RFUMD63KX6、RFUMD71KX6、RFUMD80KX6、RFUMD90KX6、RFUMD100KX6、RFUMD112KX6、RFUMD125KX6、RFUMD140KX6、RFUMD150KX6、RFUT22KX6、RFUT25KX6、RFUT28KX6、RFUT32KX6、RFUT36KX6、RFUT40KX6、RFUT45KX6、RFUT50KX6、RFUT56KX6、RFUT63KX6、RFUT71KX6、RFUTD22KX6、RFUTD25KX6、RFUTD28KX6、RFUTD32KX6、RFUTD36KX6、RFUTD40KX6、RFUTD45KX6、RFUTD50KX6、RFUTD56KX6、RFUTD63KX6、RFUTD71KX6、RFTW22KX6、RFTW25KX6、RFTW28KX6、RFTW32KX6、RFTW36KX6、RFTW40KX6、RFTW45KX6、RFTW50KX6、RFTW56KX6、RFT28KX6、RFT32KX6、RFT36KX6、RFT40KX6、RFT45KX6、RFT50KX6、RFT56KX6、RFT63KX6、RFT71KX6、RFT80KX6、RFT90KX6、RFT100KX6、RFT112KX6、RFT125KX6、RFT140KX6、RFT150KX6、RFTD28KX6、RFTD32KX6、RFTD36KX6、RFTD40KX6、RFTD45KX6、RFTD50KX6、RFTD56KX6、RFTD63KX6、RFTD71KX6、RFTD80KX6、RFTD90KX6、RFTD100KX6、RFTD112KX6、RFTD125KX6、RFTD140KX6、RFTD150KX6、RF71KX6、RF140KX6。

BY359-1500中文资料

BY359-1500中文资料

Philips Semiconductors Product specificationDamper diode BY359-1500, BY359-1500Sfast, high-voltageFEATURESSYMBOL QUICK REFERENCE DATA• Low forward volt drop • Fast switching• Soft recovery characteristic• High thermal cycling performance • Low thermal resistanceGENERAL DESCRIPTIONPINNINGSOD59 (TO220AC)Glass-passivated double diffused PIN DESCRIPTION rectifier diode featuring low forward voltage drop,fast reverse recovery 1cathode and soft recovery characteristic.The device is intended for use in TV 2anode receivers and PC monitors.tabcathodeThe BY359series is supplied in the conventional leaded SOD59(TO220AC)package.LIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134).SYMBOL PARAMETERCONDITIONSMIN.MAX.UNIT V RSM Peak non-repetitive reverse -1500V voltageV RRM Peak repetitive reverse voltage -1500V V RWM Crest working reverse voltage -1300V I F(peak)Peak forward current16-32kHz TVBY359-1500 -10A 31-70kHz monitor BY359-1500S-7A I F(RMS)RMS forward current-15.7A I FRM Peak repetitive forward current sinusoidal; a = 1.57-60A I FSMPeak non-repetitive forward t = 10 ms -60A currentt = 8.3 ms-66A sinusoidal; T j = 150 ˚C prior to surge;with reapplied V RWM(max)T stg Storage temperature-40150˚C T jOperating junction temperature-150˚CTHERMAL RESISTANCESSYMBOL PARAMETERCONDITIONSMIN.TYP.MAX.UNIT R th j-mb Thermal resistance junction to -- 2.0K/W mounting baseR th j-aThermal resistance junction to in free air.-60-K/Wambient1tab2Philips Semiconductors Product specificationDamper diode BY359-1500, BY359-1500Sfast, high-voltageSTATIC CHARACTERISTICST j = 25 ˚C unless otherwise statedBY359-1500BY359-1500S SYMBOL PARAMETER CONDITIONS TYP.MAX.TYP.MAX.UNIT V F Forward voltage I F = 20 A1.3 1.8 1.52.0V I F = 10 A; T j = 150˚C 1.00 1.5 1.25 1.75V I RReverse currentV R = 1300 V 1010010100µA V R = 1300 V;50300100600µAT j = 100 ˚CDYNAMIC CHARACTERISTICST j = 25 ˚C unless otherwise statedBY359-1500BY359-1500S SYMBOL PARAMETERCONDITIONS TYP.MAX.TYP.MAX.UNIT t rr Reverse recovery time I F = 2 A; V R ≥ 30 V;0.470.600.280.35µs Q s Reverse recovery charge -dI F /dt = 20 A/µs 1.6 2.00.700.95µC V frPeak forward recovery voltageI F = 10 A;11.0-17.0-VdI F /dt = 30 A/µsPhilips Semiconductors Product specificationDamper diode BY359-1500, BY359-1500Sfast, high-voltagePhilips Semiconductors Product specificationDamper diode BY359-1500, BY359-1500Sfast, high-voltageMECHANICAL DATANotes1. Refer to mounting instructions for TO220 envelopes.2. Epoxy meets UL94 V0 at 1/8".Philips Semiconductors Product specification Damper diode BY359-1500, BY359-1500S fast, high-voltageDEFINITIONSData sheet statusObjective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.Limiting valuesLimiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections ofthis specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application informationWhere application information is given, it is advisory and does not form part of the specification.© Philips Electronics N.V. 1998All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.LIFE SUPPORT APPLICATIONSThese products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.。

AO4459中文资料

AO4459中文资料

AO4459中⽂资料SymbolTyp Max 33406275R θJL 1824Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-AmbientAt ≤ 10s R θJA °C/W Maximum Junction-to-Ambient ASteady-State °C/W AO4459AO4459SymbolMin TypMaxUnits BV DSS -30V -1T J =55°C-5I GSS ±100nA V GS(th)-1.5-1.85-2.5V I D(ON)-30A 3846T J =125°C53685872m ?g FS 11S V SD -0.78-1V I S-3.5A C iss 668830pF C oss 126pF C rss 92pF R g69?Q g (10V)12.716nC Q g (4.5V) 6.4nC Q gs 2nC Q gd 4nC t D(on)7.7ns t r 6.8ns t D(off)20ns t f 10ns t rr 2230ns Q rr15nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.DYNAMIC PARAMETERS Maximum Body-Diode Continuous CurrentGate resistanceV GS =0V, V DS =0V, f=1MHzV GS =0V, V DS =-15V, f=1MHz Input Capacitance Output Capacitance Turn-On Rise Time Turn-Off DelayTime V GS =-10V, V DS =-15V, R L =2.5?, R GEN =3?Turn-Off Fall TimeTurn-On DelayTime SWITCHING PARAMETERSTotal Gate Charge (4.5V)Gate Source Charge Gate Drain Charge Total Gate Charge (10V)V GS =-10V, V DS =-15V, I D =-6.5Am ?V GS =-4.5V, I D =-5AI S =-1A,V GS =0V V DS =-5V, I D =-6.5AR DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward VoltageI DSS µA Gate Threshold Voltage V DS =V GS I D =-250µA V DS =-24V, V GS =0VV DS =0V, V GS =±20V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery ChargeI F =-6.5A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =-250µA, V GS =0V V GS =-10V, V DS =-5V V GS =-10V, I D =-6.5AReverse Transfer Capacitance I F =-6.5A, dI/dt=100A/µs A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev0 Sept 2006AO4459AO4459。

74435561100;中文规格书,Datasheet资料

74435561100;中文规格书,Datasheet资料

74435561100
DATUM / DATE : 2009-11-02 Gurtspezifikation / Tape specification:
G H
SPEICHERDROSSEL WE-HCI POWER-CHOKE WE-HCI
I Rollenspezifikation / tape and reel specification:
74435561100
DATUM / DATE : 2009-11-02
SPEICHERDROSSEL WE-HCI POWER-CHOKE WE-HCI
H Induktivitätskurve / Inductance curve:
Induktivität vs Strom (typ.) Inductance vs Current (typ.)
08-09-29
Geprüft / checked
Kontrolliert / approved
Datum / date
D-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400 http://www.we-online.de
12,00
10,00
8,00
L (µH)
6,00
4,00
2,00
0,00 0 5 10 15 Current (A) 20 25 30 35
Freigabe erteilt / general release:
..................................................................................

FD470中文资料

FD470中文资料

FICHE TECHNIQUEFD400 RELAIS HERMETIQUE 2 RT DOUBLE COUPURE10 A/56 VccNOTES D'APPLICATION:001007SOCLE ASSOCIE:SFD400CE40ERelais hermétique monostable polariséCombinaison des contacts 2 R(DC) + 2 T(DE)Alimentation bobine Courant continuCARACTERISTIQUES TECHNIQUES PRINCIPALESPrévu pour commuter10 A / 56 VccMasse80 g maxDimensions max. du boîtier enmm26 x 25,7 x 26Armature à forces équilibréesBoîtier métallique hermétique protégé anti-corrosionNon chevauchement des contactsCARACTERISTIQUES ELECTRIQUES DES CONTACTSDurée de vie minimale Tension aux bornes du contact56 Vcc100 000 cycles20 000 cyclesPouvoir de commutation en Ampèressur charge résistivesur charge inductive (L/R=5ms)10650 cycles surcharge résistive40400 000 cycles sous 25% de la charge nominale résistiveLEACH®INTERNATIONALSolutions for Power Switching and ControlNorth America6900 Orangethorpe Ave.P.O. Box 5032Buena Park, CA 90622 USATel: (01) 714-736-7599Fax: (01) 714-670-1145Europe, SA2 Rue Goethe57430 SarralbeFranceTel: (33) 3 87 97 98 97Fax: (33) 3 87 97 84 04Asia-Pacific Ltd.20/F Shing Hing Commercial Bldg.21-27 Wing Kut StreetCentral, Hong KongTel: (852) 2 191 2886Fax: (852) 2 389 5803CARACTERISTIQUES DES BOBINES (Vcc)FD400 CODE A B C E N V Tension nominale (Un)281264828110 Tension maximale291475029125 Tension maximale d'enclenchement à +125° C19,810534,119,875 Tension de déclenchement assuré à -65° C1,50,50,221,55Résistance de la bobine en Ω ±10% à +25° C29070189552905000 Circuit suppresseur (Vcc)N/A N/A N/A N/A-42N/ACARACTERISTIQUES GENERALESGamme de température-65°C à +125°CRigidité diélectrique au niveau de la mer- Entre contacts et masse et entre contacts1250 Veff / 50 Hz- Entre bobine et masse1000 Veff / 50 Hz Rigidité diélectrique à 25 000 m (tous points)350 Veff / 50 HzRésistance d'isolement initiale sous 500 Vcc100 M Ω min Vibrations sinusoïdales (Sauf fixation G, O et R)30 G / 75 à 3000 Hz Vibrations sinusoïdales (uniquement fixation G, O et R)20 G / 75 à 3000 Hz Chocs (sauf fixation G, O et R)200 G / 6 msChocs (uniquement fixation G, O et R)100 G / 6 msDurée maximum d'ouverture des contacts sous l'influence des vibrations et chocs10 µsTemps d'enclenchement sous tension nominale15 ms maxTemps de déclenchement15 ms maxTemps de rebonds 1 ms maxChute de tension dans le contact sous courant nominal- Valeur initiale200 mV maxTYPES DE FIXATIONS FD400Dimensions en mmTolérances générales: ±0,25mmLa fixation k peut être utilisée avec les types de sorties 1 ou 8; elle inlut la fourniture de la cale isolante 10124TYPES DE SORTIESSCHEMA FD400SYSTEME DE REFERENCESFD400 J 2 NRéférence de base_________________________________| | | |1-Fixation (A,B,C,D,G,J,K,O,R)__________________________| | |2-Type de sortie (1,2,4,8)__________________________________| |3-Code bobine (A,B,C,E,N,V)_____________________________________|REMARQUES1. Les relais avec fixations B, D et la sortie 4 sont compatibles avec les socles des familles S400, SF400 et SFD 400.2. Possibilité de cales isolantes.3. Autres fixations ou sorties: nous consulter.CARACTERISTIQUES TYPIQUES DONNEES A TITRE INDICATIFq Variation de la résistance bobine en température: Voir note d'application n° 001q Constante de temps L/R des bobines: 11 msNote d'application N°001CORRECTION LIEE A LA VARIATION DE LA RESISTANCEDU CUIVRE EN FONCTION DE LA TEMPERATUREExemple: Le catalogue donne une résistance à 25°C de 935 ohms. Quelle valeur à 125°C?Le coefficient correcteur sur I'abaque est de 1,39 à 125°C. R devient: 935x1.39=1299 OhmsLa correction s'applique à la résistance bobine ainsi qu'aux tensions de fonctionnementNote d'application N°007DISPOSITIFS D'ECRETAGE POUR RELAISLes bobines de relais sont inductives, c'est ce qui leur permet de créer les efforts et les mouvements qui font fonctionner les contacts. Lorsque la tension est appliquée sur une bobine, le courant qui s'établit génère le flux magnétique créateur del'effort. A la coupure du circuit, la variation de flux inverse génère une tension qui tend à maintenir le courant qui circulait dans la bobine. La tension générée dépend essentiellement du dispositif de coupure. Plus cette coupure est rapide plus la surtension est élevée. Tous les dispositifs de limitation sont basés sur un ralentissement de la vitesse de décroissance du courant.Cette réduction peut présenter l'inconvénient de ralentir également le mouvement interne du relais, donc les conditionsd'ouverture des contacts, avec de ce fait, répercussion sur la durée de vie et la fiabilité.Il est donc important lors de la définition des dispositifs de commande des bobines de bien comprendre ces phénomènes. Caractéristiques typiques des bobinesSur le diagramme ci-contre, la courbe supérieure indique l'état des contacts. (état haut travail, état bas repos, étatintermédiaire en transfert). La courbe inférieure montre la tension qui apparait au bornes de la bobine lorsque le courant est coupé par un contact de relais.La surtension est écrêtée à -300V par la décharge luminescente qui se produit aux bornes de ces contacts. L'écrêtage a une durée de 200 µs après laquelle les variations de courant ne génèrent plus une tension suffisante. La tension décroît jusqu'au début du mouvement de l'équipage mobile, à ce moment la tension remonte du fait de la libération d'énergie des ressorts de contact travail. La tension chute pendant le transfert, puis croît de nouveau, lorsque le circuit magnétique se referme surl'aimant permanent.Les temps d'ouverture se décomposent en:- Temps jusqu'au début de mouvement: 1,5ms- Temps total de mouvement: 2,3ms- Temps de transfert: 1,4msLes différents types d'écrêteurDispositifs passifsLe circuit résistance - capacitéIl élimine le problème de la dissipation, ainsi que les fronts rapides de tension. Avec une bonne adaptation entre capacité et self, il ne ralentit pas l'ouverture. Dans certain cas de relais polarisés l'ouverture peut même être accélérée. La valeur de la capacité peut être calculée en utilisant la formule approximative:C =0,02 x T avec T = temps de réponse à l'enclenchement en ms R = résistance bobine en KOhmsR C = capacité en µFaradLa résistance série doit être comprise entre 0,5 et 1 fois la résistance bobine. Dans le cas de bobine de faible résistance, il faut faire attention au courant de charge de la capacité.Dans l'exemple ci-contre, effectué avec le même relais que précédemment, les temps deviennent:- Temps jusqu'au début du mouvement: 2,2 ms- Temps de transfert: 1,2 msIl y a donc eu une légère accélération de la vitesse de transfert.L'inconvénient principal réside dans le volume de la capacité. Notre exemple utilise un relais à bobine 290 Ohms et temps de réponse 8 ms. On trouve C=0,5 µF. Cette capacité non polarisée de 63 V au minimum, a un volume d'environ 3cm3.L'enroulement bifiliaireLe principe est de disposer, sur le circuit magnétique de la bobine principale, un second enroulement mis en court-circuit. Par une bonne adaptation de la résistance secondaire il est possible de trouver un compromis acceptable entre la surtension et le ralentissement. Cette méthode purement interne au relais présente des difficultés technologiques de réalisation. Pour être efficace aux variations rapides, le couplage entre les deux enroulements doit être parfait. Ceci implique pratiquement des enroulements imbriqués. Le volume occupé par le second enroulement diminue l'efficacité, et donc augmente la puissance nécessaire. Cette méthode ne peut être appliquée efficacement qu'à des produits étudiés spécifiquement pour cette caractéristique.La résistance (en parallèle sur la bobine)Pour présenter une certaine efficacité, la résistance doit être du même ordre de grandeur que la résistance de la bobine. Une résistance de 1,5 fois la bobine va limiter à 1,5 fois la tension d'alimentation. Le temps et la vitesse de retombé sont affectés modérement. L'inconvénient majeur est la puissance dissipée.Les dispositifs à semi-conducteursLa diodeC'est la méthode la plus simple et qui supprime toute surtension. Elle présente toutefois un inconvénient majeur qui est le ralentissement maximum de la vitesse d'ouverture. En effet la diode recycle la totalité de l'énergie dans la bobine elle-même. Le relevé ci-contre est toujours pris sur le même relais. Les temps indiqués par la courbe 2 deviennent:Temps jusqu'au début du mouvement: 14msTemps de transfert: 5msCes temps sont donc multipliés par un coefficient de 4 à 8.La courbe 1 montre le courant dans la bobine. La remonté indique la libération d'énergie des contacts travail. Au moment òu ils s'ouvrent, le courant redevient constant indiquant une ouverture des contacts à vitesse pratiquement nulle.Il résulte de ces caractéristiques que ce type d'écrêtage est absolument à proscrire pour les relais de puissance avec aimant de polarisation. Pour les petits relais ayant à commuter des courants faibles inférieurs à 0,2 A, la dégradation de durée de sa vie n'est pas significative, et la méthode est acceptable.Le réseau diode + résistanceIl permet d'éliminer l'inconvénient résistance seule cité précédemment, et de limiter l'inconvénient diode seule. Il est maintenant préférable d'utiliser le réseau diode + zener.Le réseau diode + zenerComme la résistance, la zener accélère la vitesse de décroissance du courant. En plus elle introduit un seuil de conduction qui permet d'éviter le recyclage de la libération d'énergie lors du mouvement de l'élément mobile.L'enregistrement ci-contre met en évidence ces caractéristiques. La courbe 1 monte la tension qui est écrêtée à -42 V. Les 2 remontées de tension lors de l'ouverture sont inférieures au seuil de conduction.Les temps d'ouverture se décomposent en:- Temps jusqu'au début du mouvement: 2,6ms- Temps total de mouvement: 2,4ms- Temps de transfert: 1,4msLa vitesse d'ouverture des contacts est donc inchangée.FICHE TECHNIQUE SFD400CE40ESOCLE POUR FD400/FD470 RELAISFAMILLE DE SOCLES POUR:Relais FD400 et FD470Socle pour montage sur circuit impriméCARACTERISTIQUES GENERALESTempérature d'utilisation-55°C à +125°CTempérature de stockage-70°C à +150°CResistance d'isolement> 1000 MΩRigidité diélectrique- Entre broches et fixations1500 Vrms / 50 Hz- Entre broches1500 Vrms / 50 HzVibrations sinusoïdales 20 g / 10 à 2000 HzChocs50 g / 11 msFixations livrées 6 vis M3-5. 6 rondelles onduflexLEACH®INTERNATIONAL Solutions for Power Switching and Control North America6900 Orangethorpe Ave.P.O. Box 5032Buena Park, CA 90622 USAEurope, SA2 Rue Goethe57430 SarralbeFranceAsia-Pacific Ltd.20/F Shing Hing Commercial Bldg.21-27 Wing Kut StreetCentral, Hong Kong。

浩浩科技 HFH80 水果与蔬菜成熟度 硬度测试器说明书

浩浩科技 HFH80 水果与蔬菜成熟度 硬度测试器说明书
Ordering Example: HFH81, fruit hardness tester for small fruits.
)UHHSKRQH _ ,QWHUQDWLRQDO _ )D[ _ 6DOHV#RPHJDFRXN
HFH81
Fruit hardness tester, small fruits, soft fruits
HFH83
Fruit hardness tester, large fruits, firm/hard fruits
MN1500-4
Replacement “AAA” batteries (4)
Power Supply: 4 x 1.5V “AAA” batteries (included)
HFH81, fruit hardness tester.
To Order Visit /hfh80 for Pricing and Details
Model No.Fra bibliotekDescription
'DWD $FTXLVLWLRQ
Communication Products and Converters, Data Acquisition and Analysis Software, Data Loggers Plug-in Cards, Signal Conditioners, USB, RS232, RS485, Ehernet and Parallel Port Data Acquisition Systems, Wireless Transmitters and Receivers
Resolution: 0.01 if reading <10
0.1 if 10 <reading <99.9 1 if reading >100

2SK3591中文资料

2SK3591中文资料

Min. Typ. Max. Units
150
V
3.0
5.0 V
25
µA
250
10
100
nA
31
41
mΩ
13
26
S
1940 2910
pF
310
465
24
36
20
30
ns
26
39
50
75
20
30
52
78
nC
15
22.5
18
27
40
A
1.10
1.65 V
0.14
µs
0.77
µC
Thermalcharacteristics Item Thermal resistance
Peak Diode Recovery dV/dt Max. power dissipation
dV/dt *3 PD Ta=25°C
Tc=25°C
5 2.16 70
kV/µs W
Operating and storage
Tch
+150
°C
temperature range
Tstg
-55 to +150
(Tc=25°C unless otherwise specified)
Item
Symbol
Ratings
Unit
Drain-source voltage
VDS
150
V
VDSX *5
120
V
Continuous drain current
ID
±40
A
Pulsed drain current

现代刀具材料与切削加工技术 - 27~52W

现代刀具材料与切削加工技术 - 27~52W
YW2
YW3
YS25
YS30
YW2
YW2A
YT798
K313
UTi20T
A30N
DX25
UMS
M30
YS25
YS30
YC30S
YC30T
SM30
KFM
K600
1C28
UTi20T
UX30
A30N
DX25
UMS
M40
YC40T
YC40
1C28
TU40
K
K01
YG3X
YD05
YG3X
YG610
HTi05T
14.60
92.2
>3200
适于加工铸铁、非合金钢、铝合金及塑料。
KFK40UF
K30-K40
89.5
10
0.5
0.65
14.50
91.7
>3600
适于切削耐热钢、耐腐蚀钢、不锈钢、钛合金、有色金属、塑料的通用刀具材料。
KFK44UF
K40-K50
86.7
12
1.3
0.5
14.10
92.1
>3800
自贡764
山特维克
肯纳公司
伊斯卡
公司
三菱公司
东芝公司
住友公司
山高公司
黛杰公司
铣削
P
P30
YT5
YS25
YC30S
YS30
ZP35
YT5
SM30
GX
K600
1C50M
1C28
UTi20T
UX30
A30N
SR30
DX30
P40
YC40

UC2875中文资料

UC2875中文资料

UC1875/6/7/8UC2875/6/7/8UC3875/6/7/8DESCRIPTIONThe UC1875family of integrated circuits implements control of a bridge power stage by phase-shifting the switching of one half-bridge with respect to the other,allowing constant frequency pulse-width modulation in combi-nation with resonant,zero-voltage switching for high efficiency performance at high frequencies.This family of circuits may be configured to provide control in either voltage or current mode operation,with a separate over-current shutdown for fast fault protection.A programmable time delay is provided to insert a dead-time at the turn-on of each output stage.This delay,providing time to allow the resonant switching action,is independently controllable for each output pair (A-B,C-D).With the oscillator capable of operation at frequencies in excess of 2MHz,overall switching frequencies to 1MHz are practical.In addition to the stan-dard free running mode,with the CLOCKSYNC pin,the user may configure these devices to accept an external clock synchronization signal,or may lock together up to 5units with the operational frequency determined by the fastest device.Protective features include an undervoltage lockout which maintains all out-puts in an active-low state until the supply reaches a 10.75V threshold.1.5V hysteresis is built in for reliable,boot-strapped chip supply.Over-current protection is provided,and will latch the outputs in the OFF state within 70nsec of a fault.The current-fault circuitry implements full-cycle restart operation.(continued)Phase Shift Resonant ControllerFEATURES•Zero to 100%Duty Cycle Control •Programmable Output Turn-On Delay •Compatible with Voltage or Current Mode Topologies•Practical Operation at Switching Frequencies to 1MHz •Four 2A Totem Pole Outputs •10MHz Error Amplifier •Undervoltage Lockout •Low Startup Current –150µA •Outputs Active Low During UVLO •Soft-Start Control•Latched Over-Current Comparator With Full Cycle Restart •Trimmed ReferenceBLOCK DIAGRAMUC1875/6/7/8 UC2875/6/7/8 UC3875/6/7/8ABSOLUTE MAXIMUM RATINGSSupply Voltage(VC,VIN) (20V)Output Current,Source or SinkDC.........................................0.5APulse(0.5µs)..................................3AAnalog I/0s(Pins1,2,3,4,5,6,7,15,16,17,18,19)....–0.3to5.3VStorage Temperature Range.............–65°C to+150°CJunction Temperature...................–55°C to+150°CLead Temperature(Soldering,10sec.)............+300°CNote:Pin references are to20pin packages.All voltages arewith respect to ground.Currents are positive into,neg-ative out of,device terminals.Consult Unitrodedatabook for information regarding thermal specifica-tions and limitations of packages.Additional features include an error amplifier with band-width in excess of7MHz,a5V reference,provisions forsoft-starting,and flexible ramp generation and slope com-pensation circuitry.These devices are available in20-pin DIP,28-pin“bat-wing”SOIC and28lead power PLCC plastic pack-ages for operation over both0°C to70°C and–25°C to+85°C temperature ranges;and in hermetically sealedcerdip,surface mount,and ceramic leadless chip carrierpackages for–55°C to+125°C operation.Device UVLOTurn-OnUVLOTurn-OffDelaySetUC187510.759.25V YesUC187615.25V9.25V YesUC187710.75V9.25V NoUC187815.25V9.25V No DESCRIPTION(cont.)UC1875/6/7/8UC2875/6/7/8UC3875/6/7/8ELECTRICAL CHARACTERISTICS:Unless otherwise stated,–55°C <T A <125°C for the UC1875/6/7/8,–25°C <T A <85°C for the UC2875/6/7/8and 0°C <T A <70°C for the UC3875/6/7/8,VC =VIN =12V,R FREQSET =12k Ω,C FREQSET =330pF,R SLOPE =12k Ω,C RAMP =200pF,C DELAYSET A-B =C DELAYSET C-D =0.01µF,I DELAYSET A-B =I DELAYSET C-D =–500µA,T A =T J .PARAMETERTEST CONDITIONSMINTYPMAXUNITSUndervoltage Lockout Start Threshold UC1875/UC187710.7511.75V UC1876/UC187815.25V UVLO Hysteresis UC1875/UC18770.51.252.0V UC1876/UC18786.0VSupply Current I IN Startup VIN =8V,VC =20V,R SLOPE open,I DELAY =0150600µA I C Startup VIN =8V,VC =20V,R SLOPE open,I DELAY =010100µA I IN 3044mA I C1530mAVoltage Reference Output Voltage T J =+25°C 4.925 5.08V Line Regulation 11<VIN <20V 110mV Load Regulation I VREF =–10mA520mV Total Variation Line,Load,Temperature 4.95.1V Noise Voltage 10Hz to 10kHz 50µVrms Long Term Stability T J =125°C,1000hours 2.5mV Short Circuit CurrentVREF =0V,T J =25°C60mAUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8 ELECTRICAL CHARACTERISTICS:Unless otherwise stated,–55°C<T A<125°C for the UC1875/6/7/8,–25°C<T A< 85°C for the UC2875/6/7/8and0°C<T A<70°C for the UC3875/6/7/8,VC=VIN=12V,R FREQSET=12kΩ,C FREQSET=330pF,R SLOPE=12kΩ,C RAMP=200pF,C DELAYSET A-B=C DELAYSET C-D=0.01µF,I DELAYSET A-B=I DELAYSET C-D=–500µA,T A=T J.PARAMETER TEST CONDITIONS MIN TYP MAX UNITS Error AmplifierOffset Voltage515mV Input Bias Current0.63µA AVOL1V<V E/AOUT<4V6090dB CMRR 1.5V<V CM<5.5V7595dB PSRR11V<VIN<20V85100dB Output Sink Current V E/AOUT=1V1 2.5mA Output Source Current V E/AOUT=4V–1.3–0.5mA Output Voltage High I E/AOUT=–0.5mA4 4.75V Output Voltage Low I E/AOUT=1mA00.51V Unity Gain BW(Note8)711MHz Slew Rate(Note8)611V/µsec PWM ComparatorRamp Offset Voltage T J=25°C(Note3) 1.3V Zero Phase Shift Voltage(Note4)0.550.9V PWM Phase Shift(Note1)and(Note7)V E/AOUT>(Ramp Peak+Ramp Offset)9899.5102%V E/AOUT<Zero Phase Shift Voltage00.52% Output Skew(Note1)and(Note7)V E/AOUT<1V5±20nsec Ramp to Output Delay,(Note8)UC3875/6/7/8(Note6)65100nsecUC1875/6/7/8,UC2875/6/7/8(Note6)65125nsec OscillatorInitial Accuracy T J=25°C0.851 1.15MHz Voltage Stability11V<VIN<20V0.22% Total Variation Line,Temperature0.80 1.20MHz Sync Pin Threshold T J=25°C 3.8V Clock Out Peak T J=25°C 4.3V Clock Out Low T J=25°C 3.3V Clock Out Pulse Width R CLOCKSYNC=3.9kΩ30100nsec Maximum Frequency,(Note7)R FREQSET=5kΩ2MHz Ramp Generator/Slope CompensationRamp Current,Minimum I SLOPE=10µA,V FREQSET=VREF–11–14µA Ramp Current,Maximum I SLOPE=1mA,V FREQSET=VREF–0.8–0.95mA Ramp Valley0V Ramp Peak-Clamping Level R FREQSET=100kΩ 3.8 4.1V Current LimitInput Bias V CS+=3V25µA Threshold Voltage 2.4 2.5 2.6V Delay to Output,(Note8)UC3875/6/7/885125nsecUC1875/6/7/8,UC2875/6/7/885150nsecUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8Note 1:Phase shift percentage (0%=0°,100%=180°)is defined as θ=200TΦ%,where q is the phase shift,and F and T are de-fined in Figure 1.At 0%phase shift,F is the output skew.Note 2:Delay time is defined as delay =T (1/2–(duty cycle)),where T is defined in Fig.1.Note 3:Ramp offset voltage has a temperature coefficient of about –4mV/°C.Note 4:Zero phase shift voltage has a temperature coefficient of about –2mV/°C.Note 5:Delay time can be programmed via resistors from the delay set pins to ground.Delay time ≅•6251012.–I DELAYsec.WhereI DELAY =Delay set voltageR DELAY The recommended range for I DELAY is 25m A £I DELAY £1mA Note 6:Ramp delay to output time is defined in Fig.2.Note 7:Not production tested at -55°C.ELECTRICAL CHARACTERISTICS:Unless otherwise stated,–55°C <T A <125°C for the UC1875/6/7/8,–25°C <T A <85°C for the UC2875/6/7/8and 0°C <T A <70°C for the UC3875/6/7/8,VC =VIN =12V,R FREQSET =12k Ω,C FREQSET =330pF,R SLOPE =12k Ω,C RAMP =200pF,C DELAYSET A-B =C DELAYSET C-D =0.01µF,I DELAYSET A-B =I DELAYSET C-D =–500µA,T A =T J .PARAMETERTEST CONDITIONSMINTYPMAXUNITSSoft-Start/Reset Delay Charge Current V SOFTSTART =0.5V –20–9–3µA Discharge Current V SOFTSTART =1V120230µA Restart Threshold 4.34.7V Discharge Level 300mVOutput Drivers Output Low Level I OUT =50mA 0.20.4V I OUT =500mA 1.2 2.6V Output High LevelI OUT =–50mA 1.5 2.5V I OUT =–500mA1.72.6VDelay Set (UC1875and UC1876only)Delay Set Voltage I DELAY =–500µA2.3 2.4 2.6V Delay Time,(Note 8)I DELAY =–250µA (Note 5)(UC3875/6/7/8,UC2875/6/7/8)150250400nsec I DELAY =–250µA (Note 5)(UC1875/6/7/8)150250600nsecUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8CLOCKSYNC (bi-directional clock and synchronization pin):Used as an output,this pin provides a clock signal.As an input,this pin provides a synchronization point.In its simplest usage,multiple devices,each with their own local oscillator frequency,may be connected together by the CLOCKSYNC pin and will synchronize on the fastest oscillator.This pin may also be used to synchronize the device to an external clock,provided the external signal is of higher frequency than the local oscillator.A resistor load may be needed on this pin to minimize the clock pulse width.E/AOUT (error amplifier output):This is is the gain stage for overall feedback control.Error amplifier output volt-age levels below 1volt will force 0°phase shift.Since the error amplifier has a relatively low current drive capabil-ity,the output may be overridden by driving with a suffi-ciently low impedance source.CS+(current sense):The non-inverting input to the cur-rent-fault comparator whose reference is set internally to a fixed 2.5V (separate from VREF).When the voltage at this pin exceeds 2.5V the current-fault latch is set,the outputs are forced OFF and a SOFT-START cycle is initi-ated.If a constant voltage above 2.5V is applied to this pin the outputs are disabled from switching and held in a low state until the CS+pin is brought below 2.5V.The outputs may begin switching at 0degrees phase shift be-fore the SOFTSTART pin begins to rise --this condition will not prematurely deliver power to the load.FREQSET (oscillator frequency set pin):A resistor and a capacitor from FREQSET to GND will set the oscillator frequency.DELAYSET A-B,DELAYSET C-D (output delay control):The user programmed current flowing from these pins to GND set the turn-on delay for the corresponding outputpair.This delay is introduced between turn-off of oneswitch and turn-on of another in the same leg of thebridge to provide a dead time in which the resonantswitching of the external power switches takes place.Separate delays are provided for the two half-bridges to accommodate differences in the resonant capacitor charging currents.EA–(error amplifier inverting input):This is normally con-nected to the voltage divider resistors which sense thepower supply output voltage level.EA+(error amplifier non-inverting input):This is normally connected to a reference voltage used for comparison with the sensed power supply output voltage level at the EA+pin.GND (signal ground):A ll voltages are measured with re-spect to GND.The timing capacitor,on the FREQSET pin,any bypass capacitor on the VREF pin,bypass ca-pacitors on VIN and the ramp capacitor,on the RAMP pin,should be connected directly to the ground plane near the signal ground pin.OUTA-OUTD (outputs A-D):The outputs are 2A to-tem-pole drivers optimized for both MOSFET gates and level-shifting transformers.The outputs operate as pairs with a nominal 50%duty-cycle.The A-B pair is intended to drive one half-bridge in the external power stage and is syncronized with the clock waveform.The C-D pair will drive the other half-bridge with switching phase shifted with respect to the A-B outputs.PWRGND (power ground):V C should be bypassed with a ceramic capacitor from the VC pin to the section of the ground plane that is connected to PWRGND.Any re-quired bulk reservoir capacitor should parallel this one.Power ground and signal ground may be joined at a sin-gle point to optimize noise rejection and minimize DC drops.RAMP (voltage ramp):This pin is the input to the PWM comparator.Connect a capacitor from here to GND.A voltage ramp is developed at this pin with a slope:dV dT S ense Voltage R C S LOPE RAMP=•Current mode control may be achieved with a minimum amount of external circuitry,in which case this pin pro-vides slope compensation.Because of the 1.3V offset between the ramp input and the PWM comparator,the error amplifier output voltage can not exceed the effective ramp peak voltage and dutycycle clamping is easily achievable with appropriate val-ues of R SLOPE and C RAMP .SLOPE (set ramp slope/slope compensation):A resistorfrom this pin to VCC will set the current used to generatethe ramp.Connecting this resistor to the DC input linevoltage will provide voltage feed-forward.SOFTSTART (soft start):SOFTSTART will remain at GND as long as VIN is below the UVLO threshold.SOFTSTART will be pulled up to about 4.8V by an inter-nal 9µA current source when VIN becomes valid (assum-ing a non-fault condition).In the event of a current-fault (CS+voltage exceeding 2.5V),SOFTSTART will bepulled to GND and them ramp to 4.8V.If a fault occursduring the SOFTSTART cycle,the outputs will be imme-diately disabled and SOFTSTART must charge fully prior to resetting the fault latch.For paralleled controllers,the SOFTSTART pins may beparalled to a single capacitor,but the charge currents will be additive.PIN DESCRIPTIONSUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8VC (output switch supply voltage):This pin supplies power to the output drivers and their associated bias cir-cuitry.Connect VC to a stable source above 3V for nor-mal operation,above 12V for best performance.This supply should be bypassed directly to the PWRGND pin with low ESR,low ESL capacitors.VIN (primary chip supply voltage):This pin supplies power to the logic and analog circuitry on the integrated circuit that is not directly associated with driving the out-put stages.Connect VIN to a stable source above 12V for normal operation.To ensure proper chip functionality,these devices will be inactive until VIN exceeds the up-per undervoltage lockout threshold.This pin should by bypassed directly to the GND pin with low ESR,low ESL capacitors.NOTE:When VIN exceeds the UVLO threshold the sup-ply current (I IN )will jump from about 100µA to a current in excess of 20µA.If the UC1875is not connected to a well bypassed supply,it may immediately enter UVLO again.VREF:This pin is an accurate 5V voltage reference.This output is capable of delivering about 60mA to peripheral circuitry and is internally short circuit current limited.VREF is disabled while VIN is low enough to force the chip into UVLO.The circuit is also in UVLO until VREF reaches approximately 4.75V.For best results bypass VREF with a 0.1µF,low ESR,low ESL,capacitor to the GND pin.PIN DESCRIPTIONS (cont.)APPLICATION INFORMATION Undervoltage Lockout SectionUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8 APPLICATION INFORMATION(cont.)UC1875/6/7/8UC2875/6/7/8UC3875/6/7/8APPLICATION INFORMATION (cont.)Delay Blocks And OutputStagesOutput Switch OrientationUC1875/6/7/8UC2875/6/7/8UC3875/6/7/8 APPLICATION INFORMATION(cont.)UC1875/6/7/8UC2875/6/7/8UC3875/6/7/8APPLICATIONS INFORMATION(cont.)Slope/Ramp PinsCONTACT INFORMATIONIf you should have questions or need additional information,please contact Jody Bustamante at(903)868-6132or j-busta@.PACKAGING INFORMATIONOrderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)5962-9455501M3A ACTIVE LCCCFK 281TBD POST-PLATE Level-NC-NC-NC 5962-9455501MRA ACTIVE CDIP J 201TBD A42SNPB Level-NC-NC-NC 5962-9455501MXA OBSOLETE TO-92LP 28TBD Call TI Call TI5962-9455501V3A ACTIVE LCCC FK 281TBD Call TI Level-NC-NC-NC 5962-9455501VRAACTIVE CDIP J 201TBD Call TI Level-NC-NC-NC UC1875J ACTIVE CDIP J 201TBD A42SNPB Level-NC-NC-NC UC1875J883B ACTIVE CDIP J 201TBD A42SNPB Level-NC-NC-NC UC1875JQMLV ACTIVE CDIP J 20TBD Call TICall TIUC1875L ACTIVE LCCC FK 281TBD POST-PLATE Level-NC-NC-NC UC1875L883B ACTIVE LCCC FK 281TBD POST-PLATE Level-NC-NC-NC UC2875DWP ACTIVE SOIC DW 2820Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC2875DWPG4ACTIVE SOIC DW 2820Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC2875DWPTR ACTIVE SOIC DW 281000Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC2875DWPTRG4ACTIVE SOIC DW 281000Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC2875J ACTIVE CDIP J 201TBD A42SNPB Level-NC-NC-NC UC2875N ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NC-NC-NC UC2875NG4ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NA-NA-NA UC2875QP ACTIVE PLCC FN 2837TBD Call TI Level-2-220C-1YEAR UC2876N ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NC-NC-NC UC3875DWP ACTIVE SOIC DW 2820Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC3875DWPG4ACTIVE SOIC DW 2820Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC3875DWPTR ACTIVE SOIC DW 281000Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC3875DWPTRG4ACTIVE SOIC DW 281000Green (RoHS &no Sb/Br)CU NIPDAU Level-2-260C-1YEAR UC3875N ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NC-NC-NC UC3875NG4ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NC-NC-NC UC3875QP ACTIVE PLCC FN 2837TBD Call TI Level-2-220C-1YEAR UC3875QPTR ACTIVE PLCC FN 28750TBD Call TI Level-2-220C-1YEAR UC3876N ACTIVE PDIP N 2020Green (RoHS &no Sb/Br)CU NIPDAU Level-NC-NC-NC UC3877DWPTRACTIVESOICDW281000Green (RoHS &no Sb/Br)CU NIPDAULevel-2-260C-1YEAR(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.19-Oct-2005NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS)or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annualbasis.19-Oct-2005IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments Incorporated。

新标准低硫船用燃料油的调和研究

新标准低硫船用燃料油的调和研究

第49卷第11期 当 代 化 工 Vol.49,No.11 2020年11月 Contemporary Chemical Industry November,2020基金项目:国家自然基金项目(项目编号:21978125);辽宁省博士启动基金项目(项目编号:20170520251);辽宁省教育厅资助项目(项目编 号:L2019002; L2017LFW008)。

收稿日期: 2020-03-03 作者简介:王琪(1993-),男,辽宁省葫芦岛市人,硕士,研究方向:清洁燃料。

E -mail:****************。

新标准低硫船用燃料油的调和研究王琪1,陈春2,张霖3,施岩1*,刘铭锦1,苏飞铭1,王一鸣1(1. 辽宁石油化工大学 化学化工与环境学部,抚顺 113001;2. 辽宁抚清助剂有限公司,抚顺113008;3. 军委后勤保障部军需能源技术服务中心,北京100842)摘 要:以减压渣油、加氢尾油、乙烯焦油为原料,按一定比例调和制备低硫质量分数的船用燃料油。

在保证硫含量符合规定的同时,测定了调和油的黏度,并分析了温度和搅拌时间对黏度的影响。

结果表明:在调和质量比例满足1∶1∶1.25和1∶1∶1.75时,硫质量分数和黏度均符合标准,温度对黏度影响显著,搅拌时间35 min 即可;表面活性剂会对黏度产生影响,加入质量分数为2.5%时效果最佳。

关 键 词:船用燃料油;硫质量分数;黏度;调和中图分类号:TQ 016 文献标识码: A 文章编号: 1671-0460(2020)11-2371-04Study on the Blending of New Standard Low Sulfur Marine FuelWANG Qi 1, CHEN Chun 2, ZHANG Lin 3, SHI Yan 1*, LIU Ming-jin 1, SU Fei-ming 1, WANG Yi-ming 1(1. Liaoning Shihua University, Fushun 113001, China; 2. Liaoning Fuqing Auxiliary Co., Ltd., Fushun 113008, China ;3. Technical service center of logistics support department of CMC, Beijing 100842,China )Abstract : Low sulfur content marine fuel oil was prepared by blending vacuum residue, ethylene tar and hydrogenated tail oil in a certain proportion. At the same time, the viscosity of blending oil was determined, and the effect of temperature and stirring time on the viscosity was analyzed. The results showed that, when the blending ratio was 1∶1∶1.25 and 1∶1∶1.75, the sulfur content and viscosity were in line with the standard, and the temperature had significant effect on the viscosity, and suitable stirring time was 35 min. Key words : Marine fuel oil; Sulphur content; Viscosity; Blending随着经济的快速发展和全球一体化的到来,作为航运大国和贸易大国,中国对船用燃料油的需求量十分巨大,并将在今后持续上涨[1-2]。

数码显示磁感应强度检测仪的模块化制作

数码显示磁感应强度检测仪的模块化制作

中学物理 Vol . 38 No . 232020年12月教码显示磕感启强度袷测仪的模块化剎作王富民夏洪旭(山东省济宁市实验中学山东济宁272023)摘要:数码显示的磁感应强度检测仪的模块化制作,利用了磁感应强度检测模块及4位数码管显示模块,连接 5V 电源,经模块化搭接而成.磁感应强度检测模块使用SS 49E 线性霍尔传感器,与4位数码管显示模块的连接采用Modbus - RS 485 通讯协议.关键词:磁感应强度检测模块;线性霍尔传感器;数码管显示模块;磁感应强度检测仪 文章编号:1〇〇8 -4134(2020)23 -0045中图分类号:G 633.7文献标识码:I !1技术背景数码显示磁感应强度检测仪的模块化制作,利用 了成都康威科技公司推出的磁感应强度检测模块(如 图1)及4位数码管显示模块,连接5 V 电源,经模块 化搭接而成.磁感应强度检测模块使用SS 49E 线性霍 尔传感器,与4位数码管显示模块的连接采用Modhus -RS 485通讯协议.Modbus 协议是应用于电子控制器上的一种通用语言.随着工业应用通信越来越多,1979年施耐德电 气制定了一个用于工业现场的总线Mod b u s 协议,现 在工业中使用RS 485通讯场合很多都采用Modbus 协 议,通过此协议,控制器相互之间、控制器经由网络与 其他设备之间可以通讯,已经成为一种工业标准. Mwlbus 协议以信息f 贞的方式传输,每巾贞有确定的起 始点和结束点,使接收设备在信息的起点开始读地 址,并确定寻址的设备,以及信息传输的结束时间,并 可以检测错误信息.RS 485是差分通讯,接收数据和发送数据是不能 同时进行的,它是一种半双工通讯.Modbus -RS 485 通讯协议,是控制器采用RS -485总线,协议符合Modbus R T U 规约.R T U 串行输人模式是控制器在总线上通讯时,信息中的每8位字节分成2个4位16进 制的字符,该模式的主要优点是在相同的波特率下传 输的字符的密度高于A S C n 模式.数据传输均采用8 位数据位、1位停止位、无奇偶校验位.波特率可达 9600 b i t /s .通讯传送分为独立的信息头和发送的编 码数据.RS 485通讯的特点是速度快、传输距离最远.2主要模块参数磁感应强度检测模块参数:图1磁感应强度检测模块实物图表1模块供电电压5V波特率9600通讯协议M odbus - RS 485检测范围±1000GS模块尺寸37 m m * 17 m m检测精度±1GS 响应时间10 - 20ms 工作环境温度-40-85X :数码管显示模块刷新一次的时间为7〇〇m s .电源模块:使用4节5号1.2V 可充电电池串联的电池盒,用数字万用表实测电压5V .作者简介:王富民( 1962 -),男,山东济宁人,本科,中学高级教师,研究方向:学生创新能力培养;夏洪旭(1983 -),男,山东济宁人,本科,中学一级教师,研究方向:物理教育教学.• 45•2020年12月Vol . 38 No . 23 中学物理3电路连接与测试(1)按照磁感应强度检测模块接线图(如图2),将5V 电源的正极接磁感应强度检测模块的5V 供电 接线柱,将5 V 电源的负极接磁感应强度检测模块的G N D 接线柱.检测仪实物图如图3所示.图2磁感应强度检测模块接线图图3数码显示磁感应强度检测仪实物图(2)将磁感应强度检测模块的G N D 接线柱,接数 码管显示模块的G N D ,将磁感应强度检测模块的Kcc 接线柱,接数码管显示模块的W c .其他接线柱按一字 方向顺次排列,对应连接.检测仪电路连接放大图如图4所示. 34图4数码®示磁感应强度检测仪电路连接放大图(3)将磁感应强度检测模块与数码管显示模块和5V 电池盒用热培胶粘贴在长40r m 、宽3c m 、厚度2cm的木条上,霍尔传感器放在木条的前端,模块化制作即搭接完成.(4) 检查无误后接通电源,电路稳定后,由于环境温度漂移和电源电压的波动,数码管显示的磁感应强 度约十几高斯,而不是地磁场的磁感应强度0.5高 斯.在没有高斯计进行校准的情况下,可以用磁化的1 号缝衣针靠近磁感应强度检测模块的霍尔传感器,数 码管显示约几十高斯.用带有磁性的螺丝刀紧靠磁感应强度检测模块的霍尔传感器,数码管显示接近二百 高斯•图5用数码显示磁感应强度检测仪检测螺丝刀刀口的磁感应强度4使用方法手持自制的数码显示磁感应强度检测仪,接通电源,待电路稳定后(由于温度漂移,约20秒后稳定,在 不靠近磁体时,数码显示器显示的数值小于1〇高 斯),将磁感应强度检测模块的霍尔传感器的正面或 反面放在被检测的磁场的某一位置,数码管即刻显示 该点磁感应强度的高斯数值.磁场中磁感应强度的检 测范围为±1〇〇〇高斯•5结束语数码显示磁感应强度检测仪的模块化制作,利用了成都康威科技公司推出的磁感应强度检测模块及4 位数码管显示模块,连接5V 电源,经模块化搭接而 成.磁感应强度检测模块使用SS 49E 线性霍尔传感 器,与4位数码管显示模块的连接采用Modbus -RS 485通讯协议,程序烧写在微处理芯片内部控制接口电路,免除了测试和调节的繁琐,连接电路无误即 可通电使用.在某些方面可以代替价值数千元的高斯 计,使学生对看不见、摸不着的磁场有了客观的、真实 的感受.数码显示磁感应强度检测仪实验成本低廉, 模块化制作搭接简单,实验成功率高,便于中学生动 手制作.该数码显示磁感应强度检测仪在检测比较弱的磁场时,灵敏度不如传统的小磁针,对于较强一点的 磁场(如功率为几瓦的电动扬声器的铁氧磁体的磁 场),数码显示磁感应强度检测仪可以直观地显示磁感应强度的大小.参考文献:[1 ]谢晓虎.对霍尔效应测量磁场实验的方法改进[•!].教 育教学论坛,2014( 16) :254 - 255.[2]王希庆.磁感应强度测量仪的设想[_!].物理实验,2000,20(04) :44,(收稿日期:2020 - 08 - 24)• 46•。

昆仑滑油型品录

昆仑滑油型品录

1、DCA5040船用气缸油2、DCA5070H船用气缸油3、DCB3015、4015船用中速筒状活塞柴油机油4、DCB3030、4030船用中速筒状活塞柴油机油5、DCC3008、4008船用系统油6、L-HM抗磨液压油7、L-HV低温抗磨液压油8、L-TSA抗氧防锈汽轮机油9、L-DAB往复式空气压缩机油10、L-CKD系列工业闭式齿轮油11、L-CKC系列工业闭式齿轮油12、L-DRC系列冷冻机油13、25# 变压器油【产品概述】中国石油润滑油公司DCA5040船用气缸油是采用优质润滑油馏分,经过脱蜡及深度精制后,以独特的高碱性环烷酸盐为主剂,加入适量的清净剂、分散剂、抗氧抗腐剂等多种功能添加剂调制而成。

经台架试验及实船试验表明:该产品具有良好的清净分散性、抗氧抗腐性、扩散性、酸中和速度及氧化安定性,质量达到国外同类产品质量水平。

【应用范围】DCA5040船用气缸油适用于燃烧含硫量低于2.5%重质燃料的大功率低速船用二冲程十字头式柴油机气缸的润滑。

【性能特点】●优良的清净分散性:能有效地减缓及清除气缸及活塞上的沉积物;●优良的热氧化安定性:可有效地防止高温沉积物的形成;●优良的抗氧抗腐性及酸中和速度:独特的高碱性环烷酸盐技术,能有效中和因燃烧高硫燃油而产生的强酸,有效降低气缸及活塞的腐蚀及磨损;●优良的扩散性:能够迅速在气缸内形成润滑油膜;●优良的抗磨性:在高温和高压下保证有足够的油膜强度,防止刮缸及活塞环、缸套产生卡咬。

【实船试验及混对试验】●DCA5040船用气缸油在B&W8K84EF机型上进行实船试验,试验时间3962小时。

●活塞环的磨损率正常,活塞环无粘结卡咬、气缸内壁光滑、无拉痕,活塞表面、气口积炭均较少。

其质量达到国外同类产品质量水平,可以满足远洋运输船舶的要求。

●DCA5040船用气缸油与各种国外同类船用气缸油混对,无沉淀、悬浮物、分层等现象发生,可以任意比例混对使用。

HVD359资料

HVD359资料
Capacitance C (pF)
40
30
20
10
0 0.1
1.0 Reverse voltage VR (V)
10
Fig.2 Capacitance vs. Reverse Voltage
Rev.1, Mar. 2002, page 3 of 5
HVD359
Package Dimensions
(Ta = 25°C)
Item Reverse voltage Junction temperature Storage temperature Symbol VR Tj Tstg Value 15 125 −55 to +125 Unit V °C °C
Electrical Characteristics
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109
HVD359
Variable Capacitance Diode for VCO
ADE-208-955A (Z) Rev.1 Mar. 2002 Features
• High capacitance ratio and good C-V linearity. • To be usable at low voltage. • Super small Flat Package (SFP) is suitable for surface mount design.

74HC595芯片中文资料

74HC595芯片中文资料
SHCP
11
移位寄存器时钟输入
STCP
12
存储寄存器时钟输入
OE
13
输出有效(低电平)
DS
14
串行数据输入
VCC
16
电源
输入
输出
功能
SHCP
STCP
OE
MR
DS
Q7’
Qn
×
×
L

×
L
NC
MR为低电平时紧紧影响移位寄存器
×

L
L
×
L
L
空移位寄存器到输出寄存器
×
×
H
L
×
L
Z
清空移位寄存器,并行输出为高阻状态

×
L
H
H
Q6’
NC
逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
×

L
H
×
NC
Qn’
移位寄存器的内容到达保持寄存器并从并口输


LHΒιβλιοθήκη ×Q6’Qn’
移位寄存器内容移入,先前的移位寄存器的内容到达保持寄存器并输出
引脚说明 H=高电平状态 ,L=低电平状态,↑=上升沿,↓=下降沿,Z=高阻, NC=无变化,功能表:当MR为高电平,OE为低电平时,数据在SHCP上升沿进入移位寄存器,在STCP上升沿输出到并行端口。
符号
引脚
描述
Q0…Q7
15, 1, 7
并行数据输出
GND
8

Q7’
9
串行数据输出
MR
10
主复位(低电平)

BD3985FV资料

BD3985FV资料

Please contact our sales offices for details ;
U.S.A / San Diego Atlanta Dallas Germany / Dusseldorf TEL : +1(858)625-3630 TEL : +1(770)754-5972 TEL : +1(972)312-8818 TEL : +49(2154)9210 FAX : +1(858)625-3670 FAX : +1(770)754-0691 FAX : +1(972)312-0330 FAX : +49(2154)921400 FAX : +44(1)908-282-528
Appendix1-Rev1.1
Contact us
Attached-1
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.
TEL : +33(0)1 56 97 30 60 FAX : +33(0) 1 56 97 30 80 TEL : +852(2)740-6262 TEL : +86(21)6279-2727 TEL : +86(411)8230-8549 TEL : +86(10)8525-2483 TEL : +866(2)2500-6956 TEL : +82(2)8182-700 TEL : +65-6332-2322 TEL : +60(3)7958-8355 TEL : +63(2)807-6872 TEL : +66(2)254-4890 FAX : +852(2)375-8971 FAX : +86(21)6247-2066 FAX : +86(411)8230-8537 FAX : +86(10)8525-2489 FAX : +866(2)2503-2869 FAX : +82(2)8182-715 FAX : +65-6332-5662 FAX : +60(3)7958-8377 FAX : +63(2)809-1422 FAX : +nal Sales)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FDH3595 DO-35
ã1997 Fairchild Semiconductor Corporation
FDH3595
TRADEMARKS
ACEx™CoolFET™
CROSSVOLT™E 2CMOS TM FACT™
FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:
ISOPLANAR™MICROWIRE™POP™
PowerTrench™QS™
Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life
support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition Advance Information
Preliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.
Formative or In Design
First Production
Full Production
Not In Production
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.。

相关文档
最新文档