湖北省武汉市2012届高三数学四月适应性调研测试试题 理

合集下载

湖北省武汉市武昌区2010届高三1月调研测试数学(理)试题

湖北省武汉市武昌区2010届高三1月调研测试数学(理)试题

武昌区2010届高三年级元月调研测试理科数学参考答案及评分细则一.选择题1.B2.C3.B4.D5.A6.D7.D8.B9.B 10.D二.填空题:11.13-=n n a 12. 12 13.120 14.8 15.①②④三.解答题:16.解:(Ⅰ) ∥A b B a cos cos ,=∴.由正弦定理,得A B B A cos sin cos sin =,0)sin(=-∴B A .又B A B A =∴<-<-,ππ. ……………………………………………………………………………2分而9sin 42sin 8222=++==A C B p , 9)cos 1(4)cos 1(42=-++∴A A .21cos =∴A . ………………………………………………………4分又,0π<<A ∴3π=A ..3π===∴C B A …………………………………………………………6分 (Ⅱ))6sin(6sin cos 6cossin )(πππ+=+=x x x x f ,…………………………………………………8分 ]32,6[6],2,0[ππππ∈+∴∈x x . 0=∴x 时,21)0()(m i n ==f x f ,3π=x 时,.1)3()(m a x ==πf x f …………………………………12分 17. 解:(Ⅰ)11452959C C p C ⋅==. ………………………………………………………………………………4分 (Ⅱ)ξ的所有可能取值为0、1、2、3.3464(0)()9729P ξ===, 12134580(1)()()99243P C ξ==⋅=, 212345100(2)()()99243P C ξ==⋅=,35125(3)()9729P ξ===.………………………………………………9分 概率分布列为:p 01 2 3 ξ64729 80243 100243 125729 ∴E ξ=640729⋅+801243⋅+1002243⋅+1253729⋅=53. ……………………………………………………………12分18.解:(Ⅰ) ⊥D B 1 面ABC ,AC D B ⊥∴1,又,BC AC ⊥⊥∴AC 面C C BB 11.又11AB BC ⊥,由三垂线定理可知,11B C BC ⊥,即平行四边形11BB C C 为菱形.……………………2分又1B D BC ⊥ ,且D 为BC 的中点,∴ 11B C B B =.即1BB C ∆为正三角形,160B BC ∴∠=︒.……………………………………4分 1B D ⊥ 平面ABC ,且点D 落在BC 上,1B BC ∴∠即为侧棱与底面所成的角.∴60α=︒. (6)分(Ⅱ)过11C C E BC ⊥作,垂足为E ,则1C E ⊥平面ABC .过E 作EF AB ⊥,垂足为F ,由三垂线定理得AB F C ⊥1. FE C 1∠∴是所求二面角1C AB C --的平面角.…………………………………………………………8分设1AC BC AA a ===,在1Rt CC E ∆中,由111arccos ,3C CE C E α∠===得. 在,45,Rt BEF EBF EF ∆∠=︒=中1,45C FE =∴∠=︒. 故所求的二面角1C A B C --为45°.…………………………………………………………………12分另法:建系设点正确2分;(1)4分;(2)6分19.解:(Ⅰ)作l MM ⊥1于111,N l NN M 于⊥,则||||||||11K N K M NF MF =.又由椭圆的第二定义,有,||||||||11NN NF MM MF =||||||||1111MM K M NN K N =∴.NKF MKF KNN KMM ∠=∠∠=∠∴,即11.A 1B 1C 1 A BDC EFKF∴平分.M K N ∠ (4)分 (Ⅱ)设()()2211,,,y x N y x M ,由P M A ,,三点共线可求出P 点的坐标为)26,4(11x y +, 由Q N A ,,三点共线可求出Q 点坐标为)26,4(22x y +.………………………………………………………6分 设直线MN 的方程为1+=my x ,由⎪⎩⎪⎨⎧=++=,134,122y x m y x 得++22)43(y m096=-my .…………………8分.439,436221221+-=+-=+∴m y y m m y y ∴9)(3)(18)(24])(2[62626||212122121212112212211+++-=+++-+-=+-+=y y m y y m y y x x x x y x y x y y x y x y PQ 222222216943634394336)436(18m m m m m m m m m +=++-⋅++-⋅+++=.…………………………………………………………10分又直线MN 的倾斜角为θ,则θcot =m . θθπθsin 6cot 16||),,0(2=+=∴∈PQ . 2πθ=∴时,.6||m i n =PQ …………………………………………………………………………………12分20.解:(Ⅰ) .3512361015212112141243112112111111=---=-+----+=----=--++n n n n n n n n n n n n a a a a a a a a a b b ∴数列}1{-n b 是等比数列,首项为11211111=--=-a b ,公比为.35……………………………………4分 (Ⅱ)由,211-=n n a b 得.211n n n b b a +=由(Ⅰ)得11)35(1,)35(1--+=∴=-n n n n b b .………………………………………………………………6分11)35(2123])35(1[211--+=++=∴n n n n b a . =--+=+=∴∑=-135]1)35[(2123])35(2123[11n nk n n n S .43)35(4323-+n n …………………………………………8分 (Ⅲ)由,211-=n n a b 得211+=n n b a . ∴211211+-=-+=-n n n n n n b b b b b a . ……………………………………………………………………10分又由(Ⅱ)知,1)35(1-+=n n b ,∴数列}{n b 是单调递增的,∴}1{nb 与}{n b -均为递减数列. ∴数列}{n n b a -为单调递减数列. …………………………………………………………………………12分∴当1=n 时,12111-=-=-b a 最大,即数列}{n n b a -中存在最大项且为该数列中的首项,其值为1-. ……………………………………13分21. 解:(Ⅰ)由题意,得()2ln 2--=--=ep qe e e q pe e f , 化简,得()01=⎪⎭⎫ ⎝⎛+-e e q p ,q p =∴. ………………………………………………………………2分(Ⅱ)函数()x f 的定义域为()+∞,0.由(Ⅰ)知,()x xp px x f ln 2--=, ()22222xp x px x x p p x f +-=-+='. ……………………………………………………………………3分令()p x px x h +-=22,要使()x f 在其定义域()+∞,0内为单调函数,只需()x h 在()+∞,0内满足()0≥x h 或()0≤x h 恒成立.(1)当0=p 时,()02<-=x x h ,()0<'∴x f .()x f ∴在()+∞,0内为单调减函数,故0=p 符合条件. …………………………………………………4分(2)当0>p 时,()p p p h x h 11min -=⎪⎪⎭⎫ ⎝⎛=.只需01≥-p p ,即1≥p 时()0≥x h ,此时()0≥'x f .()x f ∴在()+∞,0内为单调增函数,故1≥p 符合条件. ………………………………………………6分(3)当0<p 时,()()p h x h ==0max .只需0≤p ,此时()0≤'x f .()x f ∴在()+∞,0内为单调减函数,故0<p 符合条件.综上可得, 1≥p 或0≤p 为所求. ………………………………………………………………………8分(Ⅲ)()xe x g 2= 在[]e ,1上是减函数,e x =∴时,()2min =x g ;1=x 时,()e x g 2max =. 即()[]e x g 2,2∈. ……………………………………………………………………………………………9分(1)当0≤p 时,由(Ⅱ)知,()x f 在[]e ,1上递减,()()201max <==f x f ,不合题意. ………10分(2)当10<<p 时,由[]e x ,1∈知,01≥-x x .()x x x x x x p x f ln 21ln 21--≤-⎪⎭⎫ ⎝⎛-=∴. 由(Ⅱ)知,当1=p 时,()x xx x f ln 21--=单调递增, ()221ln 21<--≤--≤∴ee x x x xf ,不合题意. …………………………………………………12分(3)当1≥p 时,由(Ⅱ)知()x f 在[]e ,1上递增,()201<=f ,又()x g 在在[]e ,1上递减,()()2min max =>∴x g x f . 即2ln 21>-⎪⎭⎫ ⎝⎛-e e e p ,142->∴e e p .综上,p 的取值范围是⎪⎭⎫ ⎝⎛+∞-,142e e .………………………………………………………………………14分。

四川省绵阳中学2024届高三高考适应性考试(一)数学(理科)试题(含答案与解析)_4574

四川省绵阳中学2024届高三高考适应性考试(一)数学(理科)试题(含答案与解析)_4574

绵阳中学2024届高三高考适应性考试(一)数学(理科)时间:120分钟 满分:150分注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合ππ2π2π,Z 42A k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,ππππ,Z 42B k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,则( ) A. A B ⊆B. BA ⊆C. A B =D. A B ⋂=∅2. 已知i 为虚数单位,则复数()21i 2i-+的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知命题()11:221x p f x =+-为奇函数;命题:0,,sin tan 2q x x x x π⎛⎫∀∈<< ⎪⎝⎭,则下面结论正确的是A. ()p p ∧⌝是真命题B. ()p q ⌝∨是真命题C. p q ∧是假命题D. p q ∨是假命题4. 已知双曲线()222210,0x y a b a b-=>>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为( )A.B.C.D.5. 若数列{}n a 的前n 项积217n b n =-,则n a 的最大值与最小值之和为( ) A. 13-B.57 C. 2D.736. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.7. 已知函数()()sin 0f x x ωω=>在π0,6⎡⎤⎢⎥⎣⎦上的最大值为()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()g x 且()g x 满足77ππ1212g x g x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭时,则正数ϕ的最小值为( ) A.π12B.π6 C.π3D.π28. 三棱柱111ABC A B C -,底面边长和侧棱长都相等.1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A.B.12C.D.9. 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有1,2,3,4的蓝色卡片,从这8张卡片中,取出4张排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有( )种. A. 72B. 144C. 384D. 43210. 已知向量是单位向量a ,b ,若0a b ⋅= ,且2c a c b -+-=r r r r ,则2c a +r r的取值范围是( )A. []1,3B. ⎡⎤⎣⎦C. D. ⎤⎥⎦11. 十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间段10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010=,lg 30.4771=)( ) A 4B. 5C. 6D. 712. 已知定义在R 上的函数(),()f x f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x +'+>,若不等式2(21)33(1)f x x x f x +++>+有实数解,则其解集为( )A 2,3⎛⎫-∞- ⎪⎝⎭B. 2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭C. (0,)+∞D. 2,(0,)3⎛⎫-∞-+∞ ⎪⎝⎭第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.若6的展开式中有理项的系数和为2,则展开式中3x -的系数为__________.14. 已知公比为q 的等比数列{}n a 的单调性与函数()e xf x =的单调性相同,且满足463a a +=,372a a ⋅=.若[]0,πx ∈,则22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭的概率为__________15.ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()()25sin sin sin sin ,5,cos 31C A B B C A a A -=-==,则ABC 的周长为__________. 16. 已知抛物线()22(0),2,1y px x P =>为抛物线内一点,不经过P 点的直线:2l y x m =+与抛物线相交..于,A B 两点,连接,AP BP 分别交抛物线于,C D 两点,若对任意直线l ,总存在λ,使得,(0,1)AP PC BP PD λλλλ==>≠成立,则该抛物线方程为______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等差数列{}n a 的首项11a =,公差0d >,且25214a a a =,设关于x 的不等式()222*3x n x nx n n n +-<--∈N 的解集中整数的个数为n c .(1)求数列{}n a 前n 项和为n S ;(2)若数列满足1122332nn n n S c b c b c b c b c ++++-=,求数列{}n b 的通项公式. 18. 如图(1)在三角形PCD 中,AB 为其中位线,且2BD PC CD ===若沿AB 将三角形PAB 折起,使120PAD ∠=︒,构成四棱锥P ABCD -,如图(2)E 和F 分别是棱CD 和PC 的中点.(1)求证:平面BEF ⊥平面PCD ;(2)求平面PBC 与平面PAD 所成的二面角的余弦值.19. 某县电视台决定于2023年国庆前夕举办“弘扬核心价值观,激情唱响中国梦”全县歌手大奖赛,比赛分初赛演唱部分和决赛问答题部分,各位选手的演唱部分成绩频率分布直方图(1)如下:已知某工厂的6名参赛人员的演唱成绩得分(满分10分)如茎叶图(2)(茎上的数字为整数部分,叶上的数字为小数部分).的(1)根据频率分布直方分布图和茎叶图评估某工厂6名参赛人员的演唱部分的平均水平是否高于全部参赛人员的平均水平?(计算数据精确到小数点后三位数)(2)已知初赛9.0分以上的选手才有资格参加决赛,问答题部分为5组题,选手对其依次回答.累计答对3题或答错3题即结束比赛,答对3题者直接获奖,已知该工厂参赛人员甲进入了决赛且答对每道题的概率为这6位中任意抽取2位演唱得分分差大于0.5的概率,且各题对错互不影响,设甲答题的个数为X ,求X 的分布列及X 的数学期望.20. 在直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的右焦点为()1,0F ,过点F 的直线交椭圆C 于A ,B 两点,AB的最小值为.(1)求椭圆C 的标准方程;(2)若与A ,B 不共线的点P 满足()2OP OA OB λλ=+-,求PAB 面积的取值范围.21. 现定义:()()213321f x f x x x --为函数()f x 在区间()12,x x 上的立方变化率.已知函数()e axf x =,()22ln g x x x x a a ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭(1)若存在区间()12,x x ,使得()f x 的值域为()122,2x x ,且函数()f x 在区间()12,x x 上的立方变化率为大于0,求实数a 的取值范围;(2)若对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做.则按所做的第一题计分,作答时请写清题号. 选修4-4:坐标系与参数方程22. 在平面直角坐标系xOy 中,点P 的坐标是()0,1,曲线1C 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),0πθ<<,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为21sin ρθ=-,1C 与2C 交于A ,B 两点.(1)将曲线2C 极坐标方程化为直角坐标方程,并指出它是什么曲线? (2)过点P 作垂直于1C 的直线l 交2C 于C ,D 两点,求11PA PB PC PD+的值.选修4-5:不等式选讲23 设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合ππ2π2π,Z 42A k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,ππππ,Z 42B k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,则( ) A. A B ⊆ B. BA ⊆C. A B =D. A B ⋂=∅【答案】A 【解析】【分析】根据角的范围及集合的关系即可判断. 【详解】当2,Z k n n =∈时,ππ2π2π,Z 42B n n k A αα⎧⎫=+≤≤+∈=⎨⎬⎩⎭, 的.当21,Z k n n =+∈时,ππ2ππ2ππ,Z 42B n n k αα⎧⎫=++≤≤++∈⎨⎬⎩⎭, 所以A B ⊆. 故选:A2. 已知i 为虚数单位,则复数()21i 2i-+的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据题意,利用复数的运算法则,求得2(1i)2i 24i 2i 2i 55--==--++,得到共轭复数为24i 55-+,结合复数的几何意义,即可求解.【详解】由复数()22i 2i (1i)2i 24i 2i 2i 555----===--++,可得共轭复数为24i 55-+,其在复平面内对应点为24,55⎛⎫- ⎪⎝⎭,位于第二象限.故选:B .3. 已知命题()11:221x p f x =+-为奇函数;命题:0,,sin tan 2q x x x x π⎛⎫∀∈<< ⎪⎝⎭,则下面结论正确的是A. ()p p ∧⌝是真命题B. ()p q ⌝∨是真命题C. p q ∧是假命题D. p q ∨是假命题【答案】B 【解析】【分析】先判断命题,p q 都是真命题,故可得正确选项. 【详解】对于p ,()f x 的定义域为()(),00,-∞⋃+∞,()1112221212--=+=+--xx xf x ,进一步化简得到()()121111212221x x x f x f x -+-=+=--=---,故()f x 为奇函数,故p 为真命题.对于q ,考虑单位圆中的正弦线、正切线和弧长的关系,如图所示,,sin ,DOB x CE x BCx ∠===,tan BD x =,因为OBC OBD OBC S S S ∆∆<<扇形, 故1111sin 1tan 222x x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x .故q 真命题, 综上,p q ⌝∨为真命题,选B .【点睛】复合命题p q ∨的真假判断为“一真必真,全假才假”,p q ∧的真假判断为“全真才真,一假必假”,p ⌝的真假判断是“真假相反”.4. 已知双曲线()222210,0x y a b a b-=>>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为( )A.B.C.D.【答案】B 【解析】【分析】根据点()2,1--在抛物线的准线上则可得4p =,进而可得抛物线的焦点坐标,再求出a 的值,由点()2,1--在双曲线的渐近线上,可得渐近线方程,进而可得b 的值,则可得c 的值,进而可得答案. 【详解】根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--, 即点()2,1--在抛物线的准线上,又由抛物线()220y px p =>的准线方程为22px =-=-,则4p =,则抛物线的焦点为()2,0,为则双曲线的左顶点为()2,0,即2a =点()2,1--在双曲线的渐近线上,则其渐近线方程为12y x =±,由双曲线的性质,可得1b =,则c =,则焦距为2c =,故选:B5. 若数列{}n a 的前n 项积217n b n =-,则n a 的最大值与最小值之和为( ) A. 13-B.57 C. 2D.73【答案】C 【解析】【分析】由题可得2129n a n +-=,利用数列的增减性可得最值,即求.【详解】∵数列{}n a 的前n 项积217n b n =-,当1n =时,157a =,当2n ≥时,()12117n b n -=--,()1212727122929117n nn nb n a b n n n ---===+----=, 1n =时也适合上式,∴2129n a n +-=,∴当4n ≤时,数列{}n a 单调递减,且n a 1<,当5n ≥时,数列{}n a 单调递减,且n a 1>, 故n a 的最大值为53a =,最小值为41a =-, ∴n a 的最大值与最小值之和为2. 故选:C.6. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C 【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =. 故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.7. 已知函数()()sin 0f x x ωω=>在π0,6⎡⎤⎢⎥⎣⎦上的最大值为()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()g x 且()g x 满足77ππ1212g x g x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭时,则正数ϕ的最小值为( ) A.π12B.π6 C.π3D.π2【答案】C【解析】【分析】由函数的最大值求出ω的表达式,根据图像变换结合对称性求出ϕ的表达式,根据ϕ为正数求出最小值【详解】依题意,()f x 在π0,6⎡⎤⎢⎥⎣⎦上单调递增,11πππsin 2π122663k k ωωω⎛⎫∴=⇒=+⇒=+⎪⎝⎭,1k Z ∈时,把()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()()sin 2g x x ωϕ=-, 又77ππ1212g x g x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,得7π12x =是()g x 的一条对称轴, ()2222π7πππ7π2π,Z Z 1222424k k k k ωϕϕω∴⨯-=+∈⇒=--+∈ 即()()1222ππ7,Z 23k k k k ϕ=-+∈,当120k k ==时,正数ϕ取最小值π3故选:C .8. 三棱柱111ABC A B C -,底面边长和侧棱长都相等.1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A.B.12C.D.【答案】D 【解析】【分析】由题意设1,,,1AB a AC b AA c a b c ======,11,,,60,,a b b c c a AB a c BC a b c ===︒=+=-++,由数量积的运算律、模的运算公式以及向量夹角的余弦的关系即可运算求解.【详解】设1,,,1AB a AC b AA c a b c ======,由题意11,,,60,,a b b c c a AB a c BC a b c ===︒=+=-++,1AB === ,1BC == ,又()()22111111122AB BC a c a b c b a b c c a ⋅=+⋅-++=⋅+⋅+-=++-=,设异面直线1AB 与1BC 所成角为θ,则1cos cos ,AB θ= . 故选:D .9. 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有1,2,3,4的蓝色卡片,从这8张卡片中,取出4张排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有( )种. A. 72 B. 144 C. 384 D. 432【答案】D 【解析】【分析】根据所取数字之和为10,分3类,再由分类加法计数原理求解即可. 【详解】分3类:①红1蓝1,红4蓝4,排成一排44A 24=; ②红2蓝2,红3蓝3,排成一排44A 24=;③2个1选1张,2个2选1张,2个3选1张,2个4选1张,排成一排1111422224C C C C A 384⋅=, 由分类加法计数原理,共2424384432++=种, 故选:D .10. 已知向量是单位向量a ,b ,若0a b ⋅=,且2c a c b -+-=r r r r ,则2c a +r r的取值范围是( )A. []1,3B. ⎡⎤⎣⎦C.D. ⎤⎥⎦【答案】D 【解析】【分析】由题意将所用的向量放到坐标系中用坐标表示,借助于两点之间的距离公式以及几何意义解答本题.详解】由题设单位向量()()()1,0,0,1,,a b c x y ===,【()()1,2,2c a x y c b x y ∴-=--=-,,+=即(),x y 到()1,0A 和()0,2B ,而AB =故动点(),P x y 表示线段AB 上的动点.又2c a +=,该式表示()2,0-到线段AB 上点的距离,其最小值为点()2,0-到线段:220(01)AB x y x +-=≤≤的距离,而d =,故|2|min c a +==.最大值为()2,0-到()1,0A 的距离是3,所以2c a +r r的取值范围是⎤⎥⎦. 故选:D .【点睛】关键点点睛:根据向量关系可得动点的轨迹,再根据点到直线的距离可得点点距的最小值.2c a +=表示点到线段上的连线的范围,结合其几何关系不难解决问题.11. 十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间段10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010=,lg 30.4771=)( ) A. 4 B. 5 C. 6 D. 7【答案】C 【解析】【分析】根据规律可总结出第n 次操作去掉区间的长度和为123n n -,利用等比数列求和公式可求得去掉区间的长度总和,由此构造不等式求得结果.【详解】第一次操作去掉的区间长度为13; 第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;以此类推,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,∴进行了第n 次操作后,去掉区间长度和112133122212393313nn n nnS -⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭=++⋅⋅⋅+==- ⎪⎝⎭-,由902131n⎛⎫-≥ ⎪⎝⎭,即21310n ⎛⎫≤ ⎪⎝⎭,22331lg101log log 10 5.68210lg 2lg 3lg 3n ∴≥=-=-=-≈-, 又n N *∈,n ∴的最小值为6. 故选:C.【点睛】关键点点睛:本题解题关键是能够根据已知所给的规律总结出每次操作去掉的区间长度和成等比数列,并能得到等比数列通项公式.12. 已知定义在R 上的函数(),()f x f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x +'+>,若不等式2(21)33(1)f x x x f x +++>+有实数解,则其解集为( )A 2,3⎛⎫-∞- ⎪⎝⎭B. 2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭C. (0,)+∞D. 2,(0,)3⎛⎫-∞-+∞ ⎪⎝⎭【答案】D 【解析】【分析】令()2()=++F x f x x x ,由()210f x x +'+>得到其单调性,再由()()2f x f x x =--,得到其奇偶性求解.【详解】解:令()2()=++F x f x x x ,则()()210'=++>'F x f x x ,.所以()F x 在[0,)+∞上递增, 因为()()2f x f x x =--,所以()22()()-+--=++f x x x f x x x ,即()()F x F x -=,所以()F x 是偶函数,不等式2(21)33(1)f x x x f x +++>+等价于:()()()()22(21)2121(1)11+++++>+++++f x x x f x x x ,即()()211F x F x +>+,即()()211+>+F x F x , 所以211x x +>+, 解得23x <或0x >, 故选:D第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13. 若6的展开式中有理项的系数和为2,则展开式中3x -的系数为__________.【答案】1 【解析】【分析】利用二项式展开式的通项公式即可求解.【详解】()()12566166C C 10,16rrrr rr r r T a xr --+⎛==-⋅= ⎝0,6r =时为有理项,06621a a a ∴+=⇒=,由3125366r r x --=-⇒=∴系数:()6666C 11a -=, 故答案为:1.14. 已知公比为q 的等比数列{}n a 的单调性与函数()e xf x =的单调性相同,且满足463a a +=,372a a ⋅=.若[]0,πx ∈,则22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭的概率为__________【答案】14##0.25 【解析】【分析】由等比数列性质可列关于46,a a 的方程组,结合{}n a 为单增等比数列,即可求得q ,进一步利用三角恒等变换化简表达式22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭得到πsin 24x ⎛⎫+≥ ⎪⎝⎭,结合[]0,πx ∈解三角不等式即可得解.【详解】37462a a a a == ,又46463,,a a a a +=∴是方程2320x x -+=的两根, 又{}n a 为单增等比数列,2461,22a a q ∴==⇒=又2ππcos 22cos sin2cos212124x x x x x ⎛⎫⎛⎫-+=++=++ ⎪ ⎪⎝⎭⎝⎭,ππ212sin 244x x ⎛⎫⎛⎫++≥⇒+≥⎪ ⎪⎝⎭⎝⎭, []ππ9πππ3ππ0,π,2,,204444444x x x x ⎡⎤∈∴+∈∴≤+≤⇒≤≤⎢⎥⎣⎦ , ∴所求概率π014π04P -==-. 故答案为:14.15.ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()()25sin sin sin sin ,5,cos 31C A B B C A a A -=-==,则ABC 的周长为__________. 【答案】14 【解析】【分析】先利用两角差的正弦公式、正弦定理和余弦定理对题目条件进行化简得出:2222a b c =+;再结合255,cos 31a A ==和余弦定理得出b c +的值即可求解. 【详解】因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin cos sin sin sin cos sin cos sin C A B C A B B C A B C A -=-, 即sin sin cos sin cos sin 2sin sin cos C A B B C A B C A +=,.由正弦定理可得:cos cos 2cos ac B ab C bc A +=,由余弦定理可得:22222222222a cb a bc c b a +-+-+=+-,整理得:2222a b c =+.因为255,cos 31a A ==, 所以222225025cos 231b c b c a A bc ⎧+=⎪⎨+-==⎪⎩,整理得:2250231b c bc ⎧+=⎨=⎩,则9b c +===, 所以14a b c ++=, 故答案为:14.16. 已知抛物线()22(0),2,1y px x P =>为抛物线内一点,不经过P 点的直线:2l y x m =+与抛物线相交于,A B 两点,连接,AP BP 分别交抛物线于,C D 两点,若对任意直线l ,总存在λ,使得,(0,1)AP PC BP PD λλλλ==>≠成立,则该抛物线方程为______.【答案】24y x = 【解析】【分析】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,根据,AP PC BP PD λλ==推出()()123421y y y y λλ+++=+,结合点在抛物线上可得12y y p +=,34y y p +=,即可求得p ,即得答案.【详解】由题意设()()()()112212334434,,,,(),,,,,()A x y B x y x x C x y D x y x x ≠≠,由AP PC λ=可得:()()11332,12,1x y x y λ--=--,可得:1313221x x y y λλλλ+=+⎧⎨+=+⎩,同理可得:2424221x x y y λλλλ+=+⎧⎨+=+⎩,则:()()()()123412344121x x x x y y y y λλλλ⎧+++=+⎪⎨+++=+⎪⎩(*)将,A B 两点代入抛物线方程得2211222,2y px y px ==,作差可得:()1212122y y y y p x x -+=-,而12122y y x x --=,即12y y p +=, 同理可得,34y y p +=,代入(*),可得2p =, 此时抛物线方程为24y x =, 故答案为:24y x =三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等差数列{}n a 的首项11a =,公差0d >,且25214a a a =,设关于x 的不等式()222*3x n x nx n n n +-<--∈N 的解集中整数的个数为n c .(1)求数列{}n a 的前n 项和为n S ;(2)若数列满足1122332nn n n S c b c b c b c b c ++++-= ,求数列{}n b 的通项公式. 【答案】(1)2n S n =(2)112n b n=+ 【解析】【分析】(1)根据题意,列出方程,求得2d =,得到21n a n =-,结合等差数列的求和公式,求得n S 的值,得到答案;(2)根据题意,结合一元二次不等式的解法,求得21n x n <<+,得到n c n =,进而得到()212222n b b nb n n +++-= ,当2n ≥时,()21212211n b b n b n -⎡⎤+++-=-⎣⎦ ,两式相减得112n b n=+,进而得到数列{}n b 的通项公式.【小问1详解】由等差数列{}n a 的首项11a =,且25214a a a =,可得()()()2111134a d a d a d ++=+,整理得212a d d =,即22d d =,因为0d >,所以2d =,所以()21N n a n n *=-∈,可得()()2121135212n n n S n n +-=++++-== .【小问2详解】由不等式2223x n x nx n n +-<--,即22(31)20x n x n n +++-<, 解得21n x n <<+,因为()2223Nx n x nx n n n *+-<--∈解集中整数的个数为nc,所以n c n =,又因为2112233122n n n n S c b c b c b c b c n ++++-== 可得()21232232n b b b nb n n ++++-= , 即()21232232n b b b nb n n ++++=+ ,当2n ≥时,()()22121221(1)211n b b n b n n n -⎡⎤+++-=-+-=-⎣⎦ ,两式相减得()2212n nb n n =+≥,则()1122n b n n=+≥, 当1n =时,1221b -=,解得132b =,满足上式,所以112n b n =+, 所以数列{}n b 的通项公式为112n b n=+. 18. 如图(1)在三角形PCD 中,AB 为其中位线,且2BD PC CD ===若沿AB 将三角形PAB 折起,使120PAD ∠=︒,构成四棱锥P ABCD -,如图(2)E 和F 分别是棱CD 和PC 的中点.(1)求证:平面BEF ⊥平面PCD;的(2)求平面PBC 与平面PAD 所成的二面角的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)先利用几何关系证明和线面垂直的判定定理BA ⊥平面PAD ,再利用线面垂直的判定定理证明CD ⊥平面BEF ,最后可得平面BEF ⊥平面PCD ;(2)建系,然后分别求出平面PBC 和平面PAD 的法向量,代入二面角的向量公式求解即可. 【小问1详解】因为2BD PC =,所以90PDC ∠=︒,因为//,AB CD E 为CD 中点,2CD AB =,所以//AB BE 且AB DE =, 所以四边形ABED 为平行四边形, 所以//,BE AD BE AD =.而,BA PA BA AD ⊥⊥,又PA AD A ⋂=,PA ⊂平面PAD ,AD ⊂平面PAD , 所以BA ⊥平面PAD .因为//AB CD ,所以CD ⊥平面PAD , 又因为PD ⊂平面,PAD AD ⊂平面PAD , 所以CD PD ⊥且CD AD ⊥, 又因为在平面PCD 中,//EF PD ,于是CD FE ⊥.因为在平面ABCD 中,//BE AD ,于是CD BE ⊥. 因为,FE BE E EF =⊂ 平面,BEF BE ⊂平面BEF , 所以CD ⊥平面BEF ,又因为CD ⊂平面PCD , 所以平面BEF ⊥平面PCD . 【小问2详解】以A 点为原点,以AB 为x 轴,AD 为y 轴,面ABD 的垂线为z 轴建立空间直角坐标系,由(1)知BA ⊥平面PAD ,所以z 轴位于平面PAD 内,所以30,PAz P ∠︒=到z 轴的距离为(1,0,P ∴-,同时知())()0,0,0,,2,0A BC ,),2,0PB BC ==,设平面PBC 的一个法向量为(),,n x y z,所以()()),,000,020,,2,00x y z n PB y n BC y x y z ⎧⋅=⎧⋅=+=⎪⎪∴⇒⎨⎨⋅=+=⎪⋅=⎪⎩⎩, 令1y =,则n ⎛= ⎝;又)AB =为平面PAD 的一个法向量,所以cos ,n AB n AB n AB⋅===⋅,又因为平面PBC 与平面PAD 所成的二面角的平面角为锐角, 所以平面PBC 与平面PAD19. 某县电视台决定于2023年国庆前夕举办“弘扬核心价值观,激情唱响中国梦”全县歌手大奖赛,比赛分初赛演唱部分和决赛问答题部分,各位选手的演唱部分成绩频率分布直方图(1)如下:已知某工厂的6名参赛人员的演唱成绩得分(满分10分)如茎叶图(2)(茎上的数字为整数部分,叶上的数字为小数部分).(1)根据频率分布直方分布图和茎叶图评估某工厂6名参赛人员的演唱部分的平均水平是否高于全部参赛人员的平均水平?(计算数据精确到小数点后三位数)(2)已知初赛9.0分以上的选手才有资格参加决赛,问答题部分为5组题,选手对其依次回答.累计答对3题或答错3题即结束比赛,答对3题者直接获奖,已知该工厂参赛人员甲进入了决赛且答对每道题的概率为这6位中任意抽取2位演唱得分分差大于0.5的概率,且各题对错互不影响,设甲答题的个数为X ,求X 的分布列及X 的数学期望. 【答案】(1)高于 (2)分布列见解析,()2541625E X =【解析】【分析】(1)根据频率分布直方图各矩形面积和为1求出a ,再分别根据频率分布直方图和茎叶图求平均数,比较即可;(2)先利用古典概型的概率公式求出甲答对每道题的概率,再利用二项分布求出X 所有可能取值的概率,得到分布列,根据分布列求数学期望即可. 【小问1详解】根据频率分布直方图各矩形面积和为1得()20.2500.3750.5000.6250.51a ++++⨯=,解得0.125a =,所以全部参赛人员的整体水平为7.07.57.58.08.08.58.59.09.09.59.510.00.50.1250.2500.6250.5000.3750.1258.531222222++++++⎛⎫⨯⨯+⨯+⨯+⨯+⨯+⨯≈ ⎪⎝⎭, 根据茎叶图可知某工厂6名参赛人员的演唱部分的平均水平为7.58.68.79.09.29.68.7676+++++≈,所以某工厂的参赛6名人员的演唱水平高于全部参赛人员的平均水平. 【小问2详解】从这6位抽取2位的基本事件总数为26C ,分差大于0.5的基本事件为除数据()8.6,8.7,()()()()()8.6,9.0,9.2,9.6,9.2,9.0,8.7,9.0,9.2,8.7外的9个基本事件,故概率为26993C 155P === 依题意X 的取值为3,4,5,则()333235355125P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭;()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪⎝⎭⎝⎭;()222222443232322165C C 555555625P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以X 的分布列为X 34 5P35125 234625 216625所以()352342162541345125625625625E X =⨯+⨯+⨯=. 20. 在直角坐标系xOy 中,已知椭圆()2222:10x y C ab a b+=>>的右焦点为()1,0F ,过点F 的直线交椭圆C 于A ,B 两点,AB 的最小值为.(1)求椭圆C 的标准方程;(2)若与A ,B 不共线的点P 满足()2OP OA OB λλ=+-,求PAB 面积的取值范围.【答案】(1)2212x y +=;(2)⎛ ⎝.【解析】【分析】(1)根据通径的性质即可求解;(2)取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点.得PABOAB S S = ,设AB 方程,与椭圆方程联立,表示出OAB S 并求其范围即可.【小问1详解】由右焦点()1,0F 知,1c =,当AB 垂直于x 轴时,AB最小,其最小值为22b a=.又∵222a b c =+,解得a =1b =,∴椭圆C 的标准方程为2212x y +=.【小问2详解】解法一:取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点. ∴PAB OAB S S = .当AB 垂直于x 轴时,A ,B的坐标分别为⎛ ⎝,1,⎛ ⎝,OAB S =△; 当AB 不垂直于x 轴时,设其斜率为k ,则直线AB 的方程为()()10y k x k =-≠. 则点O 到直线AB的距离d =,联立方程()22112y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 整理得()2222124220k x k x k +-+-=, 则2122412k x x k +=+,21222212k x x k-=+,()2810k ∆=+>,2AB x =-==,∴1122OABS AB d =⋅==△, 令212t k =+,则()2112t k t -=>,此时OABS ⎛= ⎝△. 综上可得,PAB面积的取值范围为⎛ ⎝. 解法二:当AB 垂直于x 轴时,A ,B的坐标分别为⎛ ⎝,1,⎛⎝, 由()2OP OA OB λλ=+-,得点P的坐标为(-,则点P 到直线AB 的距离为1,又AB =PAB的面积为112=,当AB 不垂直于x 轴时,设其斜率为k , 则直线AB 的方程为()()10y k x k =-≠, 设P ,A ,B 的坐标分别为()00,x y ,()11,x y ,()22,x y ,则()111y k x =-,()221y k x =-,由()2OP OA OB λλ=+-,得()0122x x x λλ=+-,()()()()()0121212212122y y y k x k x k x x λλλλλλ=+-=-+--=+--⎡⎤⎣⎦,即()002y k x =-.故点P 在直线()2y k x =-上,且此直线平行于直线AB.则点P 到直线AB的距离d =,联立方程()22112y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 整理得()2222124220k x k x k +-+-=, 则2122412k x x k +=+,21222212k x x k -=+,2AB x =-==,∴1122PABS AB d =⋅==△, 令212t k =+,则()2112t k t -=>,此时PABS ⎛= ⎝△. 综上可得,PAB面积的取值范围为⎛ ⎝. 解法三:取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点. ∴PAB OAB S S = ,设直线AB 的方程为1x ty =+,则点O 到直线AB 的距离d =联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩,消去x 整理得()222210t y ty ++-=, 则12222t y y t +=-+,12212y y t =-+,()2810t ∆=+>,2AB y =-==,∴1122OABS AB d =⋅==△,∴OAB S ⎛=⎝△, 即PAB面积的取值范围为⎛ ⎝. 21. 现定义:()()213321f x f x x x--为函数()f x 在区间()12,x x 上的立方变化率.已知函数()e axf x =,()22ln g x x x x a a ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭(1)若存在区间()12,x x ,使得()f x 的值域为()122,2x x ,且函数()f x 在区间()12,x x 上的立方变化率为大于0,求实数a 的取值范围;(2)若对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,求实数a 的取值范围. 【答案】(1)20,e ⎛⎫ ⎪⎝⎭(2)[)e,+∞ 【解析】【分析】(1)由题意得到()f x 单调递增,即0a >,故1212e 2,e 2ax axx x ==,分离参数后得到()ln 2x a x=有两不等实根,构造()()ln 2x h x x=,得到其单调性,结合函数图象得到实数a 的取值范围;(2)由题意得到()()()()212133332121f x f xg x g x x xx x-->--,转化为对任意21x x >,有()()()()2211f x g x f x g x ->-,构造()()()22e ln ax r x f x g x x x x a a ⎛⎫⎛⎫=-=-++- ⎪ ⎪⎝⎭⎝⎭,求导得到()0r x '≥在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,解法一:考虑a<0与0a >两种情况,结合同构思想,得到()ln m x x x =+,求出其单调性,得到e 2ax a ax ≥+在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,变形为2e 0ax x a --≥,构造()2e axl x x a =--,求导后得到其单调性,求出e a ≥; 解法二:变形为212e ln axx a a a ⎛⎫-≥+ ⎪⎝⎭,构造()()212e ,ln ax m x n x x a a a ⎛⎫=-=+ ⎪⎝⎭,观察得到()m x 与()n x 互为反函数,从而证明出()m x x ≥恒成立即可,构造()2e ax l x x a=--,求导后得到其单调性,求出e a ≥;方法三:对()r x 二次求导,构造()22e 1axx a x a ϕ⎛⎫=+- ⎪⎝⎭,求导后分0a >与a<0两种情况,分析出0a >时,在2,a ⎛⎫-+∞ ⎪⎝⎭上存在唯一0x ,使得()00x ϕ=,求出()2e ln 20axr x a x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,转化为只需()00r x '≥即可,利用基本不等式证明出结论,且a<0时,不合题意,得到答案. 【小问1详解】()f x 在区间()12,x x 上的立方变化率为正,可得()f x 单调递增,即0a >.故若存在区间()12,x x ,使得()f x 的值域为()122,2x x , 即存在不同的12,x x ,使得1212e2,e 2ax ax x x ==,故方程e 2ax x =有两不等实根,化简得()ln 2x a x=有两不等实根.即y a =与()()ln 2x h x x=有两个不同的交点. 由()()21ln 2x h x x -'=,可知()h x 在e 02⎛⎫ ⎪⎝⎭,上单调递增,在e ,2⎛⎫+∞⎪⎝⎭上单调递减, 且当0x →时,()h x →-∞,当x →+∞时,()0h x →, 故要使y a =与()()ln 2x h x x=有两个不同的交点,e 202ea h ⎛⎫<<=⎪⎝⎭, 故实数a 的取值范围是20,e ⎛⎫⎪⎝⎭;【小问2详解】由对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,可得()()()()212133332121f x f x g x g x x x x x -->--,由21x x >可得,()()()()2121f x f x g x g x ->-,即对任意21x x >,有()()()()2211f x g x f x g x ->-可得()()()22e ln axr x f x g x x x x a a ⎛⎫⎛⎫=-=-++- ⎪ ⎪⎝⎭⎝⎭在2,a ⎛⎫-+∞ ⎪⎝⎭上单调递增. 即()2ln 20axr x ae x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 解法一:①当0a <时,当x →+∞时,()t x →-∞,显然不成立. ②当0a >时,()()e ln 2ln 20axr x a ax a +'=-+-≥在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 即()e ln ln 22axa ax a ax ax ++≥+++在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 令()()ln ,e ln ln 22axm x x x a ax a ax ax =+++≥+++在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,即()()e 2ax m a m ax ≥+.显然()m x 在()0,∞+上单调递增,得e 2ax a ax ≥+在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立.即2e 0ax x a --≥恒成立令()()2e ,e 1axax l x x l x a a-='=--, 可得()l x 在ln ,a a ∞-⎛⎫- ⎪⎝⎭上单调递减,在ln ,a a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 故ln ln 10a a l a a -⎛⎫-=≥ ⎪⎝⎭,解得e a ≥ 解法二:①当0a <时,当x →+∞时,()t x →-∞,显然不成立. ②当0a >时,2e ln 20axa x a ⎛⎫-+-≥ ⎪⎝⎭可转化为212e ln axx a a a ⎛⎫-≥+ ⎪⎝⎭,令()()212e ,ln axm x n x x a a a ⎛⎫=-=+ ⎪⎝⎭,可得()m x 与()n x 互为反函数, 故()()m x n x ≥恒成立,只需()m x x ≥恒成立即可,即2e 0axx a--≥恒成立. 令()()2e ,e 1axax l x x l x a a -='=--,可得()l x 在ln ,a a ∞-⎛⎫- ⎪⎝⎭上单调递减,在ln ,a a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 故ln ln 10a a l a a -⎛⎫-=≥ ⎪⎝⎭,解得e a ≥. 解法三:令()22e 1axx a x a ϕ⎛⎫=+- ⎪⎝⎭,可得()()2e 3axx a ax ϕ'=+ ①当0a >时,32a a -<-,此时()x ϕ在2,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,由210a ϕ⎛⎫-=-< ⎪⎝⎭,当x →+∞时,()x ϕ→+∞,故在2,a⎛⎫-+∞ ⎪⎝⎭上存在唯一0x ,使得()00x ϕ=,即0202e 1ax a x a ⎛⎫+= ⎪⎝⎭,即001e 2ax a a x a =⎛⎫+ ⎪⎝⎭,000221ln ln 2ln e ax x a ax a a ⎛⎫+==-- ⎪⎝⎭, 令()()2e ln 2axt x r x a x a ⎛⎫==- ⎝'+-⎪⎭,则()21e 2axt x a x a'=-+, 当02,x x a ⎛⎫∈-⎪⎝⎭时,()0t x '<,当()0,x x ∈+∞时,()0t x '>, 此时()r x '在02,x a ⎛⎫-⎪⎝⎭上单调递减,在()0,x +∞上单调递增, 故()2e ln 20axr x a x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,只需()00r x '≥即可. 而()000021e ln 22ln 22ax r x a x ax a a a x a ⎛⎫=-+-=++- ⎪⎛⎫⎝⎭+' ⎪⎝⎭ 00122ln 4242ln 02a x a a a a x a ⎛⎫=+++-≥-+≥ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,解得e a ≥经检验,当e a =时等号成立,故e a ≥②当0a <时,当x →+∞时,()t x →-∞,显然不成立.故e a ≥.【点睛】隐零点的处理思路:第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;第二步:虚设零点并确定取范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做.则按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22. 在平面直角坐标系xOy 中,点P 的坐标是()0,1,曲线1C 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),0πθ<<,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为21sin ρθ=-,1C 与2C 交于A ,B 两点.(1)将曲线2C 的极坐标方程化为直角坐标方程,并指出它是什么曲线?(2)过点P 作垂直于1C 的直线l 交2C 于C ,D 两点,求11PA PB PC PD +的值. 【答案】(1)244x y =+,抛物线;(2)18. 【解析】【分析】(1)根据222cos ,sin ,x y x y ρθρθρ==+=,对2C 的极坐标方程进行化简即可求得其直角坐标方程,再根据方程判断曲线类型即可;(2)联立直线l 的参数方程与曲线2C 的直角坐标方程,根据韦达定理以及参数的几何意义求得1PA PB=,再将θ替换为π2θ+,即可求得1PC PD ,相加即可求得最后结果.。

考点17 平面向量的应用(教师版) 新课标

考点17 平面向量的应用(教师版) 新课标
3.(2 012年高考江西卷理科20)(本题满分13分)
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M( x,y)满足 .
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。
(4)考综合,体现三角的工具作用:由于近几年高考试题突出能力立意,加强对知识性和应用性的考查,故常常在知识交汇点处命题,而三角知识是基础中的基础,故考查与立体几何、解析几何、导数等综合性问题时突出三角与向量的工具性作用.
三.规律总结
一个手段
实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.
4.(2012年高考陕西卷理科19)(本小题满分12分)
已知椭圆 ,椭圆 以 的长轴为短轴,且与 有相同的离心率.
(1)求椭圆 的方程;
(2)设O为坐标原点,点A,B分别在椭圆 和 上, ,求直线 的方程.
【考点剖析】
一.明确要求
1.会用向量方法解决简单的平面几何问题.
2.会用向量方法解决简单的力学问题与其他一些实际问题.
【答案】
【解析】由题可知 , , ,所以 , ,所求面积为 。
13.【2012三明市普通高中高最小正周期 ;
(Ⅱ)已知 、 、 分别为 内角 、 、 的对边,其中 为锐角, ,且 ,求 和 的面积 .
【解析】本题主要考查了向量及其数量积、二倍角公式、周期公式,余弦定理和面积公式.属于容易 题。考查了基础知识、基本运算、基本变换能力.
11.【2012 深圳中学期末理13】给出下列命题中

皖豫联盟体2025届高三适应性调研考试数学试题含解析

皖豫联盟体2025届高三适应性调研考试数学试题含解析

皖豫联盟体2025届高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +2.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-3.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164814.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .1695.已知21,0(),0x x f x x x ⎧-≥=⎨-<⎩,则21log 3f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A .2B .23 C .23-D .36.函数的图象可能是下列哪一个?( )A .B .C .D .7.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( ) A .4πB .38π C .2π D .58π 8.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度9.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.3510.已知复数,z a i a R =+∈,若||2z =,则a 的值为( ) A .1B 3C .±1D .311.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =( )A .(3,)+∞B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3)12.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路D .甲走天烛峰登山线路二、填空题:本题共4小题,每小题5分,共20分。

(全国版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷02 文

(全国版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷02 文

【步步高】(全国版)2013届高三数学 名校强化模拟测试卷02 文第I 卷 一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 【江西省临川一中2012届高三信息卷数学】设全集U=R ,若集合M ={}3222+-=x x y y ,N =⎭⎬⎫⎩⎨⎧-+=x x y x 23lg ,则N M C U )(= A .(-3,2) B .(-3,0) C.(-∞,1)∪(4,+∞) D.(-3,1)2. 【四川省成都市高2013级(高三)一诊模拟】 如图,在复平面内,复数1z ,2z 对应的向量分别是O A ,OB,则复数12z z对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】(2,1)O A =-- ,(0,1)O B = ,12212z ii z i--==-+,对应的点的坐标为(1,2)-, 所以位于第二象限.3.【2012年河南省豫东、豫北十所名校高中毕业班阶段性测试(三)】2012年的NBA 全明星赛,于美国当地时间2012年2月26日在佛罗里达州奥兰多市举行.如图是参加此次比赛的甲、乙两名篮球运动员以往几场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是.A .64B .28 C.36 D. 634. 【长春市实验中学2013届高三模拟考试】设F 是抛物线x y =2的焦点,A,B 是抛物线上两点,若线段AB 的中点到y 轴的距离为45,则BF AF +等于2.A 25.B 3.C 4.D5. 【江西省南昌市2012届高三第二次模拟考试】某家电企业要将刚刚生产的100台变频空调送往南昌,现有4辆甲型货车和8辆乙型货车调配。

每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为A 、2000元B 、2200元C 、2400元D 、2800元6. 【河南省中原名校2013届高三第三次联考】某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .||()x f x x=B .11()221xf x =-+C .()xx xx e e f x e e --+=-D .221()1x f x x-=+【答案】B【解析】∵()()0f x f x +-=∴()()f x f x -=-∴函数是奇函数,A 答案是奇函数,但是无零点;B 答案是奇函数,且有零点,所以输出f(x),符合程序;C 答案是奇函数,但无零点;D 答案是偶函数,综上得,符合程序的只有B 答案。

湖北省高中六校2025届高三适应性调研考试数学试题含解析

湖北省高中六校2025届高三适应性调研考试数学试题含解析

湖北省高中六校2025届高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .2.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1B .)31±C .)31±D .53.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( ) A .12B .45C .38D .344.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列; ②若直线l 上有两个不同的点到平面α的距离相等,则//l α; ③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件; ④若0,0,24a b a b >>+=,则ab 的最大值为2. A .1B .2C .3D .05.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .49B .49-C .43D .43-6.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为 A .2B .3C 2D 37.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭8.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-9.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-10.设点P 是椭圆2221(2)4x y a a +=>上的一点,12F F ,是椭圆的两个焦点,若12F F =12PF PF +=( ) A .4B .8C.D.11.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“UA B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:本题共4小题,每小题5分,共20分。

湖北省武汉市2014届高三9月调考数学理试题 Word版含答案

湖北省武汉市2014届高三9月调考数学理试题 Word版含答案

武汉市2014届高三9月调研测试数 学(理科)2013.9.6一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i z =2+4i ,则在复平面内z 对应的点的坐标是A .(2,4)B .(2,-4)C .(4,-2)D .(4,2) 2.已知全集为R ,集合A ={x |log 2x <1},B ={x |x -1≥0},则A ∩(∁R B )=A .{x |0<x <1}B .{x |0<x <2}C .{x |x <1}D .{x |1<x <2}3.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真 4.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是5.执行右边的程序框图,如果输入a =4,那么输出的n 的值为A .2B .3C .4D .56.一个几何体的三视图如图所示,则该几何体的体积是A .64B .72C .80D .1127.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为A .35mB .30mC .25mD .20m8.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0.表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53) 9.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有相同的焦点F ,点A是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为A .2+2B .5+1C .3+1D .2+1 10.若函数f (x )=x 3+ax 2+bx +c 有极值点x 1,x 2,且f (x 1)=x 1,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实数根的个数是A .3B .4C .5D .6二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.若⎠⎛0T x 2d x =9,则常数T 的值为 .12.已知△ABC 是边长为1的等边三角形,P 为边BC 上一点,满足→PC =2→BP ,则→AB ·→AP = . 13.将序号分别为1,2,3,4,5的5张电影票全部分给4人,每人至少1张.如果分给同一人的2张电影票连号,那么不同的分法种数是 . 14.设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= .15.已知数列{a n }的各项均为正整数,S n 为其前n 项和,对于n =1,2,3,…,有a n +1=⎩⎪⎨⎪⎧3a n+5,a n 为奇数,a n 2k ,其中k 是使a n +1为奇数的正整数,a n 为偶数.(Ⅰ)当a 3=5时,a 1的最小值为 ;(Ⅱ)当a 1=1时,S 1+S 2+…+S 10= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos(B -C )+1=4cos B cos C . (Ⅰ)求A ;(Ⅱ)若a =27,△ABC 的面积为23,求b +c .17.(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求二面角D -A 1C -E 的正弦值.18.(本小题满分12分)设公差不为0的等差数列{a n }的首项为1,且a 2,a 5,a 14构成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,求{b n }的前n 项和T n .19.(本小题满分12分)现有A ,B 两球队进行友谊比赛,设A 队在每局比赛中获胜的概率都是23. (Ⅰ)若比赛6局,求A 队至多获胜4局的概率;(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.20.(本小题满分13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为22.(Ⅰ)求a ,b 的值;(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有→OP =→OA +→OB 成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由. 21.(本小题满分14分)已知函数f (x )=2-xx -1+a ln(x -1)(a ∈R ).(Ⅰ)若f (x )在[2,+∞)上是增函数,求实数a 的取值范围;(Ⅱ)当a =2时,求证:1-1x -1<2ln(x -1)<2x -4(x >2);(Ⅲ)求证:14+16+…+12n <ln n <1+12+…+1n -1(n ∈N *,且n ≥2).武汉市2014届高三9月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.C 2.A 3.C 4.A 5.B 6.B 7.D 8.C 9.D 10.A 二、填空题11.3 12.56 13.96 14.-105 15.(Ⅰ)5;(Ⅱ)230 三、解答题 16.(本小题满分12分) 解:(Ⅰ)由2cos(B -C )+1=4cos B cos C ,得2(cos B cos C +sin B sin C )+1=4cos B cos C ,即2(cos B cos C -sin B sin C )=1,亦即2cos(B +C )=1,∴cos(B +C )=12.∵0<B +C <π,∴B +C =π3.∵A +B +C =π,∴A =2π3.………………………………………………………6分 (Ⅱ)由(Ⅰ),得A =2π3.由S △ABC =23,得12bc sin 2π3=23,∴bc =8. ① 由余弦定理a 2=b 2+c 2-2bc cos A ,得(27)2=b 2+c 2-2bc cos 2π3,即b 2+c 2+bc =28,∴(b +c )2-bc =28. ② 将①代入②,得(b +c )2-8=28,∴b +c =6.………………………………………………………………………12分17.(本小题满分12分) 解:(Ⅰ)如图,连结AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连结DF ,则BC 1∥DF . ∵BC 1⊄平面A 1CD ,DF ⊂平面A 1CD ,∴BC 1∥平面A 1CD .………………………………………………………………4分 (Ⅱ)由AC =CB =22AB ,得AC ⊥BC .以C 为坐标原点,→CA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系C-xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),∴→CD =(1,1,0),→CE =(0,2,1),→CA 1=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·→CD =0,n ·→CA 1=0.即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则 ⎩⎪⎨⎪⎧m ·→CE =0,m ·→CA 1=0.可取m =(2,1,-2).从而cos <n ,m >=n ·m |n ||m |=33,∴sin <n ,m >=63.故二面角D -A 1C -E 的正弦值为63.……………………………………………12分18.(本小题满分12分) 解:(Ⅰ)设等差数列{a n }的公差为d (d ≠0),则∵a 2,a 5,a 14构成等比数列, ∴a 25=a 2a 14,即(1+4d )2=(1+d )(1+13d ), 解得d =0(舍去),或d =2.∴a n =1+(n -1)×2=2n -1.……………………………………………………4分 (Ⅱ)由已知b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -(1-12n -1)=12n .∴b n a n=12n ,n ∈N *.由(Ⅰ),知a n =2n -1,n ∈N *, ∴b n =2n -12n ,n ∈N *. 又T n =12+322+523+…+2n -12n , 12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得12T n =12+(222+223+…+22n )-2n -12n +1=32-12n -1-2n -12n +1,∴T n =3-2n +32n .…………………………………………………………………12分19.(本小题满分12分) 解:(Ⅰ)记“比赛6局,A 队至多获胜4局”为事件A ,则P (A )=1-[C 56(23)5(1-23)+C 66(23)6]=1-256729=473729.故A 队至多获胜4局的概率为473729.………………………………………………4分 (Ⅱ)由题意可知,ξ的可能取值为3,4,5.P (ξ=3)=(23)3+(13)3=927=13,P (ξ=4)=C 23(23)2×13×23+C 23(13)2×23×13=1027, P (ξ=5)=C 24(23)2(13)2=827. ∴ξ的分布列为:ξ 3 4 5 P131027827∴E (ξ)=3×13+4×1027+5×827=10727.…………………………………………12分20.(本小题满分13分) 解:(Ⅰ)设F (c ,0),当l 的斜率为1时,其方程为x -y -c =0,∴O 到l 的距离为|0-0-c |2=c2,由已知,得c 2=22,∴c =1. 由e =c a =33,得a =3,b =a 2-c 2=2. (4)分(Ⅱ)假设C 上存在点P ,使得当l 绕F 转到某一位置时,有→OP =→OA +→OB 成立,设A (x 1,y 1),B (x 2,y 2),则P (x 1+x 2,y 1+y 2). 由(Ⅰ),知C 的方程为x 23+y 22=1.由题意知,l 的斜率一定不为0,故不妨设l :x =ty +1. 由⎩⎪⎨⎪⎧x =ty +1,x 23+y 22=1.消去x 并化简整理,得(2t 2+3)y 2+4ty -4=0.由韦达定理,得y 1+y 2=-4t2t 2+3,∴x 1+x 2=ty 1+1+ty 2+1=t (y 1+y 2)+2=-4t 22t 2+3+2=62t 2+3,∴P (62t 2+3,-4t2t 2+3).∵点P 在C 上,∴(62t 2+3)23+(-4t2t 2+3)22=1, 化简整理,得4t 4+4t 2-3=0,即(2t 2+3)(2t 2-1)=0,解得t 2=12. 当t =22时,P (32,-22),l 的方程为2x -y -2=0; 当t =-22时,P (32,22),l 的方程为2x +y -2=0.故C 上存在点P (32,±22),使→OP =→OA +→OB 成立,此时l 的方程为2x ±y -2=0.…………………………………………………………………………………13分21.(本小题满分14分)解:(Ⅰ)由已知,得f (x )=-1+1x -1+a ln(x -1),求导数,得f ′(x )=-1(x -1)2+ax -1. ∵f (x )在[2,+∞)上是增函数,∴f ′(x )≥0在[2,+∞)上恒成立,即a ≥1x -1在[2,+∞)上恒成立,∴a ≥(1x -1)max.∵x ≥2,∴0<1x -1≤1,∴a ≥1.故实数a 的取值范围为[1,+∞).………………………………………………4分 (Ⅱ)当a =2时,由(Ⅰ)知,f (x )在[2,+∞)上是增函数,∴当x >2时,f (x )>f (2),即-1+1x -1+2ln(x -1)>0,∴2ln(x -1)>1-1x -1.令g (x )=2x -4-2ln(x -1),则g ′(x )=2-2x -1=2(x -2)x -1.∵x >2,∴g ′(x )>0,∴g (x )在(2,+∞)上是增函数,∴g (x )>g (2)=0,即2x -4-2ln(x -1)>0, ∴2x -4>2ln(x -1).综上可得,1-1x -1<2ln(x -1)<2x -4(x >2).………………………………9分(Ⅲ)由(Ⅱ),得1-1x -1<2ln(x -1)<2x -4(x >2),令x -1=k +1k ,则1k +1<2ln k +1k <2·1k ,k =1,2,…,n -1.将上述n -1个不等式依次相加,得 12+13+…+1n <2(ln 21+ln 32+…+ln n n -1)<2(1+12+…+1n -1), ∴12+13+…+1n <2ln n <2(1+12+…+1n -1),∴14+16+…+12n <ln n <1+12+…+1n -1(n ∈N *,且n ≥2).………………14分。

湖北省荆州2024届高三下学期5月第四次适应性考试数学试卷含答案

湖北省荆州2024届高三下学期5月第四次适应性考试数学试卷含答案

荆州2021级高三下学期5月第四次适应性考试数学试题(答案在最后)本试卷满分150分,考试用时120分钟。

一、选择题:本大题共8小题,每一小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()tan(2)3f x x π=+的最小正周期为A .πB .π2C .π3D .π62.已知椭圆C :2218x y k+=的一个焦点为()0,2,则k 的值为A .4B .8C .10D .123.已知集合{}()21,{}A xx B x x a a =<=>∈R ∣∣,若A B =∅ ,则a 的取值范围为A.(,1]-∞B .(1,)+∞C .(,1)-∞D .[1,)+∞4.已知()202422024012202431a a x a x a x x =+++-+L ,则122024a a a +++L 被3除的余数为A.3B .2C .1D .05.L 的图形.图中四边形ABCD 的对角线相交于点O ,若DO OB λ=,则λ=A .1BC .2D 6.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤7.根据变量Y 和x 的成对样本数据,由一元线性回归模型()()20,Y bx a eE e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆybx a =+,求得如右图所示的残差图.模型误差A.满足一元线性回归模型的所有假设B.不满足一元线性回归模型的()0E e =的假设C.不满足一元线性回归模型的2()D e σ=假设D.不满足一元线性回归模型的()0E e =和2()D e σ=的假设8.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).我们记一个正整数()1n n ≠经过()K n 次上述运算法则后首次得到1(若 n 经过有限次上述运算法则均无法得到1,则记()K n =+∞),以下说法正确的是A.()K n 可看作一个定义域和值域均为*N 的函数B .()K n 在其定义域上不单调,有最小值,有最大值C .对任意正整数()1n n ≠,都有()()()221K n K K n =-D .()()2121n nK K -≤+三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.已知双曲线C :2221(0)x y a a-=>经过点(2,1),则C 的渐近线方程为_______.13.若实数0,,,6x y 成等差数列,11,,,,28a b c --成等比数列,则y xb-=_______.14.设π02αβ<<<,tan tan m αβ=,()3cos 5αβ-=,若满足条件的α与β存在且唯一,则m =_______,tan tan αβ=_______.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()f x x=(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求证:函数()y f x =的图象位于直线y x =的下方;16.(15分)如图在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.(1)求证:PQ ∥平面BCD ;(2)2,AB AD BC CD AC BD ======求直线DQ 与平面ACP 所成角的正弦值.17.(15分)宜昌市是长江三峡起始地,素有“三峡门户”、“川鄂咽喉”之称.为了合理配置旅游资源,管理部门对首次来宜昌旅游的游客进行了问卷调查,据统计,其中14的人计划只参观三峡大坝,另外34的人计划既参观三峡大坝又游览三峡人家.每位游客若只参观三峡大坝,则记1分;若既参观三峡大坝又游览三峡人家,则记2分.假设每位首次来宜昌旅游的游客计划是否游览三峡人家相互独立,视频率为概率.(1)从游客中随机抽取2人,记这2人的合计得分为X ,求X 的分布列和数学期望;(2)从游客中随机抽取n 人()n N *∈,记这n 人的合计得分恰为1n +分的概率为nP ,求1nii P =∑;(3)从游客中随机抽取若干人,记这些人的合计得分恰为n 分的概率为n a ,随着抽取人数的无限增加,n a是否趋近于某个常数?若是,求出这个常数;若不是,请说明理由.18.(17分)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BD BF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.19.(17分)对于数列{}n x ,如果存在一个正整数m ,使得对任意()*N n n ∈,都有n m n x x +=成立,那么就把这样的一类数列{}n x 称作周期为m 的周期数列,m 的最小值称作数列{}n x 的最小正周期,简称周期.(1)判断数列122,1sin π3,231,n n n n x y n n y n y n --+⎪=⎧⎪===⎨-≥⎩和是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;(2)设(1)中数列{}n y 前n 项和为n S ,试问是否存在,p q ,使对任意*N n ∈,都有(1)n n Sp q n≤-⋅≤成立,若存在,求出,p q 的取值范围,若不存在,说明理由.(3)若数列{}n a 和{}n b 满足1n n n b a a +=-,且()12121,1,N n n n b b a b b n n b ++==⎧⎪⎨=≥∈⎪⎩,是否存在非零常数a ,使得{}n a 是周期数列?若存在,请求出所有满足条件的常数a ;若不存在,请说明理由.绝密★启用前5月适应性考试数学参考答案1.【详解】由周期公式得ππ2T ω==.故选:B2.【详解】由题意得,24c =,2a k =,28b =,所以4812k =+=.故选:D .3.【详解】由题意知{|11}A x x =-<<,又(){}B x x a a =>∈R ∣且A B =∅ ,故1a ≥,即a 的取值范围为[1,)+∞.故选D.4.【详解】令0x =,得01a =,令1x =,得202401220242a a a a ++++=L ,两式相减,101212202441a a a +++=- .因为()1012010121101110111012101210121012101231C C C 33C 3+=++++ ,其中010*******1011101210121012C 3C 3C 3+++L 被3整除,所以()101231+被3除的余数为1,从而122024a a a +++L 能被3整除.故选D.5.【详解】延长AB 、DC 交于点E ,取CE 的中点F ,连接BF ,易知ABC 为等腰直角三角形,则90ABC ACD ∠=∠= ,45ACB ∠= ,所以,ACE 90∠= ,90CBE ∠=o ,45BCE ACE ACB ∠=∠-∠= ,故BCE 为等腰直角三角形,且1BE BC AB ===,则CE =因为B 、F 分别为AE 、CE 的中点,则//BF AC ,且122CF CE ==,所以,DO CDOB CF=λ=故选:B.6.【详解】由题意可知圆C 的圆心坐标为()0,m ,半径为1.因为直线l 与圆C 有公共点,所以直线l 与圆C 相切或相交,所以圆心()0,C m 到直线l 的距离1d =,解得112m -≤≤.其必要不充分条件是把m 的取值范围扩大,所以选项中只有11m -≤≤是112m -≤≤的必要不充分条件.故选:A7.【详解】解:用一元线性回归模型2()0,()Y bx a e E e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆy bx a =+,根据对应的残差图,残差的均值()0E e =不可能成立,且残差图中的点分布在一条拋物线形状的弯曲带状区域上,说明残差与坐标轴变量有二次关系,2()D e σ=不满足一元线性回归模型,故选D.8.【详解】依题意,()K n 的定义域是大于1的正整数集,A 错误;由(4)2,(5)5,(8)3K K K ===,得()K n 在其定义域上不单调,而(2)1K =,()N K n *∈,则()K n 有最小值1,由 n 经过有限次角谷运算均无法得到1,记()K n =+∞,得()K n 无最大值,B 错误;对任意正整数()1n n ≠,(2)()1K n K n =+,而(2)1K =,因此()(2)()(2)1K n K K n K n ==-,C 正确;由22(21)(3)7,(21)(5)5K K K K -==+==,知()()2121n nK K -≤+不正确,D 错误.故选:C9.【详解】复数()()211i z m m m =-++∈R 的实部为21m -,虚部为1m +,复数z 在复平面内对应的点的坐标为()21,1m m -+,对于A :若z 为纯虚数,则21010m m ⎧-=⎨+≠⎩,解得1m =,故A 错误;对于B :若z 为实数,则10m +=,解得1m =-,则0z =,故B 正确;对于C :若z 在复平面内对应的点在直线2y x =上,所以()2121m m +=-,解得1m =-或32m =,故C 错误;对于D :令21010m m ⎧-<⎨+<⎩,即111m m -<<⎧⎨<-⎩,不等式组无解,所以z 在复平面内对应的点不可能在第三象限,故D 正确.10.【详解】A 选项,连接,BD EF ,由对称性可知,EF ⊥平面ABCD ,且,EF BD 相交于点O ,O 为BD 和EF 的中点,又2BE DE BF DF ====,故四边形BFDE 为菱形,故//BE DF ,又DF ⊂平面ADF ,BE ⊄平面ADF ,所以//BE 平面ADF ,A 正确;对于B ,将△EBC 和△F BC 展开至同一平面,由余弦定理得:2222π2cos73FP CF CP CF CP =+-⋅=,FP ∴=,B 正确;C 选项,F ADP A FDP V V --=,其中A 到平面FDP 的距离为AO =设菱形BFDE 的面积为S ,则11422S BD EF =⋅=⨯=,122FDP S S == ,若点P 为棱EB 上的动点,则三棱锥F ADP -的体积为定值133FDP S = ,C 错误.对于D ,易得以O 为球心,1为半径的球与各条棱均切于中点处,故每个侧面的交线即侧面正三角形的内切圆,以2可得内切圆半径r 82πL r =⨯=D 正确.故选ABD11.【详解】由()()()()++-=f x y f x y f x f y ,令1x =,0y =,有(1)(1)(1)(0)f f f f +=,可得()02f =,故A 正确;令0x =,则()()()(0)()2f y f y f f y f y +-==,则()()f y f y =-,()11f =,令1y =,则()()(1)(1)()1f x f x f x f f x ++-==,所以(1)()(1)f x f x f x +=--,则()(1)(2)f x f x f x =---,(1)[(1)(2)](1)(2)f x f x f x f x f x +=-----=--,所以()(3)(6)f x f x f x =--=-,则()f x 周期为6,C 正确.由于()f x 为偶函数且周期为6,故()()()333f x f x f x ==-+-,()f x 关于3x =轴对称,B 错误,函数()f x 是偶函数且周期为6,()02f =,()11f =,故D 正确.12.【详解】因为双曲线C :2221(0)x y a a-=>经过点(2,1),所以1a b ==,渐近线方程为b y x x a =±=.13.【详解】实数0,,,6x y 成等差数列,则6023y x --==,11,,,,28a b c --成等比数列,则211121616b ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.由于等比数列奇数项同号,所以0b <,所以14b =-.则8y xb-=-.故答案为8-.14.【详解】由tan tan m αβ=,得sin sin cos cos m αβαβ=,即sin cos cos sin m αβαβ=,由于()3cos 5αβ-=,所以()()sin cos cos s 5in 1cos s n i i n 4s m βααβαβαβ=--=-=-,所以()4cos sin 51m αβ=--,所以()4sin cos cos sin 51mm m αβαβ==--,所以()()()41sin sin cos cos sin 51m m αβαβαβ-++=+=-,因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以()0,παβ+∈,因为满足条件的α与β存在且唯一,所以αβ+唯一,所以()()()41sin 151m m αβ-++==-,所以19m =,经检验符合题意,所以1tan tan 9αβ=,则()24tan tan tan 9tan tan 31tan tan 19tan αβαααβαβα---=-==++,解得1tan 3α=,所以2tan tan 9tan 1αβα==.15.【详解】(1)()f x x=',则()11f '=,又()10f =,所以曲线在点()()1,1f 处的切线方程为1y x =-;..................................................5分(2)因为0x >0>,要证明()f x x <,只需要证明ln x <ln 0x <,令()ln h x x =()1h x x=='..................................................8分当04x <<时,()0h x '>,此时()h x 在()0,4上单调递增;当>4x 时,()0h x '<,此时()h x 在()4,∞+上单调递减,..................................................11分故()h x 在4x =取极大值也是最大值,故()()4ln420h x h ≤=-<,所以ln 0x <恒成立,即原不等式成立,所以函数()y f x =的图象位于直线y x =的下方;..................................................13分16.【详解】(1)过点P 作PE ∥AD 交BD 于点E ,过点Q 作QF ∥AD 交CD 于点F ,则PE ∥QF ,因为M 是AD 的中点,P 是BM 的中点,所以14PE AD =,因为3AQ QC =,由平行线分线段成比例定理得:14QF AD =,所以PE =QF ,所以四边形PEFQ 为平行四边形,所以PQ ∥EF ,又PQ ⊄平面BCD ,EF ⊂平面BCD ,所以PQ ∥平面BCD ;..................................................6分(2)因为BD =所以1,AE CE ==又AC =所以120,AEC ∠= 因为,AB AD E =为中点,所以AE BD ⊥,同理CE BD ⊥,又因为AE CE E = ,所以BD ⊥平面ACE ,又因为BD ⊂平面BCD ,所以平面BCD ⊥平面,ACM作AH CE ⊥交CE 延长线于点,H 则AH ⊥平面BCD 且,2AH =如图,以EB 为x 轴,EC 为y 轴,z 轴//AH 建立空间直角坐标系....................................8分)()()13313530,,,3,0,0,0,1,0,3,0,0,(,,),(0,,)2828488A B C D P Q ⎛-- ⎝⎭,333330,,,,,3954888,228AC P DQ C ⎛⎫⎛⎫⎫=-=-= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭设面ACP 的一个法向量为(),,n x y z =033003930n AC y z n CP y z ⎧⎧⋅=-=⎪⎪⇒⇒⎨⎨⋅=-+=⎪⎪⎩⎩3,x =则1,3y z ==所以3,1,3n =...........................13分设直线DQ 与平面ACP 所成角为,θ516385s 3in |co |8s ,DQ n θ=<>=所以直线AB 与平面ACD 取成线面角的正弦值为385385...................................................15分17.【详解】(1)X 的可能取值为2,3,4,211(2)(416P X ===,12136(3)4416P X C ==⨯⨯=,239(4)()416P X ===所以X 的分布列如下表所示:X234P116616916所以1697()2341616162E X =⨯+⨯+⨯=..................................................5分(2)因为这n 人的合计得分为1n +分,则其中只有1人计划既参观三峡大坝又游览三峡人家,所以11313(444n n n n n P C -=⋅⋅=,231332333...4444ni n i n P =⨯⨯=++++∑,则234111332333...44444n i n i n P +=⨯⨯⨯=++++∑由两式相减得,2311111333333334 (14444444414)nn i n n n i n n P ++=-⨯=++++-=⨯--∑所以141(1344ni n n i nP ==--∑..................................................10分(3)在随机抽取的若干人的合计得分为1n -分的基础上再抽取1人,则这些人的合计得分可能为n 分或1n +分,记“合计得n 分”为事件A ,“合计得1n +分”为事件B ,A 与B 是对立事件.因为()n P A a =,13()4n P B a -=,所以131(2)4n n a a n -+=≥,即1434()(2)747n n a a n --=--≥.因为114a =,则数列4{}7n a -是首项为928-,公比为34-的等比数列,所以1493((1)7284n n a n --=--≥,所以1493()(1)7284n n a n -=--≥所以随着抽取人数的无限增加,n a 趋近于常数47...................................................15分18.【详解】(1)设垂线段中点坐标为(,)x y ,抛物线上点坐标为(,2)x y ,代入抛物线方程,则2(2)8y x =,即22y x =.................3分(2)①如图,,,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,设()()()223121234455662,,,,,,,,,,,222y y y A y B y C y D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,...........4分则抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,将切线方程与抛物线方程联立,得:联立()211222y x t y y y x ⎧-=-⎪⎨⎪=⎩,消去x ,整理得2211220y ty ty y -+-=,所以()()2222211111Δ(2)4248440t ty y t ty y t y =---=-+=-=,从而有1t y =,所以抛物线上过点A 的切线方程为2112y x y y =-,................................................5分同理可得抛物线上过点,B C 的切线方程分别为223223,22y y x y y x y y =-=-,两两联立,可以求得交点,,D E F 的纵坐标分别为132312456,,222y y y y y y y y y +++===,.................................................7分则121141213124523222y y y AD y y y y y y y y DE y y y y +---===++---,同理可得12122323,EF y y DB y y FC y y BF y y --==--,即AD EF DB DE FC BF ==,...............................................9分当//AC DF 时,AD CF DE FE =,故EF FCFC EF =,即EF FC =,因此1BD EF BF FC==......................10分②易知12221212222AB y y k y y y y -==+-,则直线AB 的方程为2111222y y x y y y ⎛⎫-=- ⎪+⎝⎭,化简得1212,2y y y x y y +=+即1212()2x y y y y y ++=且()22222121212212221y A y B y y y y y y ⎛⎫+⎛⎫=-+-=+- ⎪ ⎪⎝⎭⎝⎭,点323,2y C y ⎛⎫ ⎪⎝⎭到直线AB 的距离为()()231323123231122121222122212y y y y y y y y y y d y y y y y +-+--==++⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则三角形ABC 的面积()()()112131321124S AB d y y y y y y =⋅=---..............................................14分由(2)①知切线DE 的方程为2112y x y y =-131323231212(,),(,),(,)222222y y y y y y y y y y y y D E F +++可知32DE y ==-,点F 到直线ED的距离为2d =则外切三角形DEF 的面积()()()222131321128S ED d y y y y y y =⋅=---.故122S S ==.因此三角形ABC 与外切三角形DEF 的面积之比为定值2..............17分19.【详解】(1){}{}n n x y 、均是周期数列,理由如下:因为()1sin 1π0sin πn n x n n x +=+===,所以数列{}n x 是周期数列,其周期为1.因为321211,1n n n n n n y y y y y y +++++=-+=-+,所以32n n y y +=-+.则632n n y y ++=-+,所以6n ny y +=所以数列{}n y 是周期数列,其周期为6..............................................4分(2)由(1)可知,{}n y 是周期为6的数列.计算数列为:2,3,2,0,1,0,2,3...-故,661,613,62,4,633,641,65n n n k n n k n n k S k N n n k n n k n n k =+⎧⎪+=+⎪⎪+=+=∈⎨+=+⎪⎪+=+⎪+=+⎩,.............................................6分当66n k =+时,(1)1n n Sn-⋅=,故1,1p q ≤≥;当61n k =+时,12(1)1n n S n n n +-≤-⋅=-<-,故2,1p q ≤-≥-;当62n k =+时,351(1)2n n S n n n +<-⋅=≤,故51,2p q ≤≥当63n k =+时,74(1)13n n S n n n +-≤-⋅=-<-,故7,13p q ≤-≥-当64n k =+时,371(1)4n n S n n n +<-⋅=≤,故71,4p q ≤≥当65n k =+时,61(1)15n n S n n n +-≤-⋅=-<-,故6,15p q ≤-≥-综上所述:存在,且75,32p q ≤-≥.............................................10分(3)解:假设存在非零常数a ,使得{}n a 是周期为T 的数列,所以n T n a a +=,即0n T n a a +-=所以,11,n T n n T n a a a a ++++==,即110n T n n T n a a a a ++++-=-=所以,11n T n T n n a a a a ++++-=-,即11n T n T n T n n n b a a a a b +++++=-=-=,所以数列{}n b 是周期为T 的周期数列,.............................................12分因为()()()()11113221T T T T T a a a a a a a a a a ++--=-+-++-+- 1210T T b b b b -=++++= ,即10Ti i b ==∑,因为()12121,1,N n n n b b a b b n n b ++==⎧⎪⎨=≥∈⎪⎩,所以,35243456123411,1,,b b b b b a b b b b b b a b a ========,6787895671,,,b b b b b a b a b b b ====== ..................15分所以数列{}n b 是周期为6T =,所以612220i i b a a ==++=∑,即22131024a a a ⎛⎫++=++= ⎪⎝⎭,显然方程无解,所以,不存在非零常数a ,使得{}n a 是周期数列..............................................17分。

考点01集合的概念与运算(教师版) 新课标

考点01集合的概念与运算(教师版) 新课标

2013年数学40个考点总动员 考点01 集合的概念与运算(教师版)新课标【高考再现】热点一 集合的概念1 .(2012年高考(新课标))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈, 则B 中所含元素的个数为( ) A .3 B .6C .8D .103.(2012年高考(广东))设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6热点二 集合间的关系和运算4.(2012年高考(陕西))集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N = ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]【答案】C【解析】{|lg 0}{|1}M x x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.5.(2012年高考(山东))已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B ()为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,4【答案】C【解析】因}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 6 .(2012年高考(辽宁))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集 合B={2,4,5,6,8},则)()(B C A C U U 为 ( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}热点三 与集合为背景探求参数取值7.(2012年高考(大纲))已知集合{{},1,,A B m A B A ==⋃=,则m = ( )A .0或B .0或3C .1D .1或38.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n - ,则=m _____,=n _______. 【答案】1-,1【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n .9.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B = 则k =______.【考点剖析】 一.明确要求1.了解集合的含义、元素与集合的“属于”关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn )图表达集合的关系及运算. 二.命题方向三.规律总结 1.一个性质要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 2.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 3.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.【基础练习】1.(教材习题改编)设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )= ( )A .{1,3}B .{1,5}C .{3,5}D .{4,5} 【答案】C【解析】先求出M 的补集∁U M ={2,3,5},N ={1,3,5},则N ∩(∁U M )={1,3,5}∩{2,3,5}={3,5}.2. (教材习题改编)设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ). A .{x |3≤x <4}B .{x |x ≥3}C .{x |x >2}D .{x |x ≥2}4. (人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________. 【答案】2【解析】A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.【名校模拟】一.扎实基础1.(湖北省黄冈中学2012届高三五月模拟考试理)设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是A .1B .0C .-1D .1或-1答案:C解析:由M N N = ,根据集合元素的互异性,则1a =-,故选C 。

湖北省武汉市2024届高三五月适应性考试数学试卷含答案

湖北省武汉市2024届高三五月适应性考试数学试卷含答案

2024届高三年级五月适应性考试数学试题(答案在最后)时限:120分钟满分:150分命审题:高三数学备课组一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}(){}42,lg 10A x x B x x =-≤≤=-<,则A B = ()A.{}42x x -≤<B.{}42x x -≤≤C.{}12x x << D.{}12x x <≤【答案】C 【解析】【分析】根据对数函数的性质和交集的定义可得【详解】()()()lg 10,011,12,1,2,1,2x x x B A B -<∴<-<∴<<∴== ,故选:C2.函数()()ln e 12xxf x =+-()A.是偶函数,且在区间()0,∞+上单调递增B.是偶函数,且在区间()0,∞+上单调递㺂C.是奇函数,且在区间()0,∞+上单调递增D.既不是奇函数,也不是偶函数【答案】A 【解析】【分析】借助函数奇偶性的定义可判断函数奇偶性,借助导数即可得函数单调性.【详解】()f x 的定义域为R ,()()()()()ln e 1ln e 1ln e 1222xx x x x xf x x f x --=++=+-+=+-=,()f x \为偶函数;当0x >时,()()()e 1e 10,e 122e 1x x x xf x f x '-=-=>∴++在区间()0,∞+上单调递增.故选:A.3.如图,一个电路中有,,A B C 三个电器元件,每个元件正常工作的概率均为12,这个电路是通路的概率是()A.18B.38C.58D.14【答案】B 【解析】【分析】根据给定条件,利用对立事件的概率公式及相互独立事件的概率公式计算即得.【详解】元件,B C 都不正常的概率1111(1)224p =--=,则元件,B C 至少有一个正常工作的概率为1314p -=,而电路是通路,即元件A 正常工作,元件,B C 至少有一个正常工作同时发生,所以这个电路是通路的概率133248p =⨯=.故选:B4.已知数列{}n a ,则“()2223n n n a a a n n *-++=≥∈N ,”是“数列{}na 是等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】先判断充分性:由已知可得22n n n n a a a a +--=-,数列{}n a 的偶数项成等差数列,奇数项成等差数列,举例可知数列{}n a 不一定是等差数列,再判断必要性:数列{}n a 是等差数列,可得222n n n a a a -+=+,可得结论.【详解】先判断充分性:22222,n n n n n n n a a a a a a a -++-+=∴-=- ,令()2n k k *=∈N,则22222242,k k k k aa a a a a +--=-==-∴ 数列{}n a 的偶数项成等差数列,令()*21n k k =-∈N,则2121212331,k k k k a a a a a a +----=-==-∴ 数列{}n a 的奇数项成等差数列,但数列{}n a 不一定是等差数列,如:1,1,2,2,3,3,∴“()*2223,n n n a a a n n -++=≥∈N”不是“数列{}na 是等差数列”的充分条件;再判断必要性:若数列{}n a 是等差数列,则22221122222n n n n n n n n n n a a a a a aa a a a -+-+-+++=+=+=+,222n n n a a a -+∴=+,∴“()*2223,n n n a a a n n -++=≥∈N ”是“数列{}n a 是等差数列”的必要条件;综上,“()*2223,n n n a a a n n N -++=≥∈”是“数列{}na 是等差数列”的必要不充分条件.故选:B.5.已知ABC 的三个角A ,B ,C 的对边分别是a ,b ,c ,若32a b =,2B A =,则cos B =()A.716-B.716C.18-D.18【答案】D 【解析】【分析】利用正弦定理将边化为角,利用题设将B 换为A ,从而求出cos A ,再利用二倍角公式求出cos B .【详解】因为32a b =,所以3sin 2sin 2sin24sin cos A B A A A ===,因为()0,πA ∈,所以sin 0A >,所以34cos A =,即3cos 4A =,所以2231cos cos22cos 12148B A A ⎛⎫==-=⨯-= ⎪⎝⎭.故选:D .6.设抛物线22(0)y px p =>的焦点为F ,过F 的直线l 与抛物线在第一象限交于点A ,与y 轴交于点C ,若AF FC =,则直线l 的斜率为()A.3B.3C. D.【答案】C 【解析】【分析】由题意可求得,AA p A '=的坐标为()p ,进而可求的l 的斜率.【详解】AF FC F =∴,为AC 的中点,过点A 作AA '垂直于y 轴于点,A OF '∴为AA C '△的中位线,则,AA p A '=∴的坐标为()p ,而,02p F ⎛⎫ ⎪⎝⎭,则直线l的斜率为212k p ==.故选:C .7.若函数()sin f x x x ωω=+(0)>ω在区间[,]a b 上是减函数,且()1f a =,()1f b =-,πb a -=,则ω=()A.13B.23C.1D.2【答案】A 【解析】【分析】利用辅助角公式化简函数表达式,根据单调性与函数值,结合正弦函数的图象,确定π3a ω+与π3b ω+的值,两式相减,即可求出ω的值.【详解】由题知()πsin 2sin 3f x x x x ωωω⎛⎫=+=+ ⎪⎝⎭,因为()1f a =,()1f b =-,所以π1sin 32a ω⎛⎫+= ⎪⎝⎭,π1sin 32b ω⎛⎫+=- ⎪⎝⎭又因为()f x 在区间[,]a b 上是减函数,所以()π5π2π36a k k ω+=+∈Z ,()π7π2π36b k k ω+=+∈Z 两式相减,得()π3b a ω-=,因为πb a -=,所以13ω=.故选:A.8.已知ABC是边长为P 是ABC 所在平面内的一点,且满足3AP BP CP ++=,则AP的最小值是()A.1 B.2C.3D.83【答案】C 【解析】【分析】可由重心的性质结合向量运算得到点P 的轨迹,再结合圆上的点到圆外定点的距离最小值为圆心到定点减半径得到;亦可建立适当平面直角坐标系,借助向量的坐标运算结合圆的性质得解.【详解】法一:设ABC 的重心为G ,则33AP BP CP AG BG CG GP GP ++=+++=,3,1,AP BP CP GP ++=∴=∴点P 的轨迹是以G 为圆心,1为半径的圆,又23432AG =⨯⨯= ,AP ∴ 的最小值是13AG -= .法二:以AC 所在直线为x 轴,以AC 中垂线为y 轴建立直角坐标系,则()()(),0,6,A B C -,设(),,3P x y AP BP CP ++=,即3,化简得22(2)1x y +-=,∴点P 的轨迹方程为22(2)1x y +-=,设圆心为G ,()0,2G ,由圆的性质可知当AP 过圆心时AP最小,又4AG ==,故AP得最小值为1413AG -=-=.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是()A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知复数12,z z 满足:1z 为纯虚数,22124z z -=-,则下列结论正确的是()A.2211z z =- B.237z ≤≤C.12z z -的最小值为3 D.123i z z -+的最小值为3【答案】ABD 【解析】【分析】借助复数的基本概念与模长运算可得A ;借助复数的几何意义计算可得B ;借助圆与直线的距离可得C 、D.【详解】对A :1z 为纯虚数,∴可设()222111i 0,,z b b z b z =≠∴=-=-∴选项A 正确;对B :设()2i ,R z m n m n =+∈,22124z z -=- ,则()()22221444m n m n -+=-+,即()2254m n -+=,则2z 所对应点的轨迹是以()5,0为圆心,以2为半径的圆,237z ∴≤≤,∴选项B 正确;对C :1z 为纯虚数,1z ∴对应点在y 轴上(除去原点),2z 所对应点的轨迹是以()5,0为圆心,以2为半径的圆,12z z ∴-的取值范围为()3,+∞,12z z ∴-无最小值,选项C 错误;对D :()1223i 3i z z b z -+=+- ,表示点()0,3b +到以()5,0为圆心,以2为半径的圆上的点的距离,()()3i 0b b +≠ 为纯虚数或0,()0,3b +在y 轴上(除去点()0,3),∴当3b =-时123i z z -+取得最小值3,∴选项D 正确.故选:ABD .11.已知函数()f x 的定义域为R ,对()()()(),,21x y f x y f x y f x f y ∀∈+--=-R ,且()()11,f f x ='为()f x 的导函数,则()A.()f x 为偶函数B.()20240f =C.()()()1220250f f f +++'''= D.()()2211f x f x -=⎡⎤⎡⎤⎣⎦⎣⎦+【答案】BCD 【解析】【分析】对于A :令0x =,()()f y f y =--可判断A ;对于B :令0x y ==,()()11,f x f x +=--进而计算可判断B ;对于C :()f x 为奇函数,可得()f x '为偶函数;进而可得()()()11,f x f x f x '=--'+'关于()1,0对称,可判断C ;对于D :令1x y =-,可得()()()21122f f x fx --=,令1y x =-,则()()()212121f f x fx --=-,两式相加可判断D .【详解】对于A :令0x =,则()()()()()()()212,f y f y f f y f y f y f y --==∴=--,()f x \为奇函数,故选项A 不正确;对于B :令0x y ==,则()00f =,令1y =,则()()()()()()1121121,f x f x f x f f x f x +--=-=- 为奇函数,()()()()()()()1111,24()f x f x f x f x f x f x f x f x ∴-=--∴+=--∴+=-∴+=,,,()f x \的周期为4,()()202400f f ∴==,故选项B 正确;对于C :()f x 为奇函数,()()()()(),,f x f x f x f x f x ∴=--∴-'∴'='为偶函数;()()11f x f x +=-- ()()()()()()11,24(),f x f x f x f x f x f x f x ''''∴+=--+=-∴+='∴'',的周期为4,()f x ' 为偶函数,()()11f x f x ∴'-'=-,()()()11,f x f x f x ∴+=--∴'''关于()1,0对称,所以()10f '=,令2x =,可得()()310f f ''=-=,令3x =,可得()()42f f ''=-,所以()()420f f ''+=,故()()()()12340f f f f ''''+++=,()()()()122025506010f f f f ∴+++=⨯+''''= ,故选项C 正确;对于D :令1x y =-,则()()()21122f f y f y --=,即()()()21122f f x f x --=①,令1y x =-,则()()()212121f f x f x --=-②,由①+②得()()()()()()()()222222121122121211fx f x f f x f x f f x f x +-=----==∴+-=,故选项D 正确.故选:BCD .【点睛】关键点睛:本题综合考查函数性质的应用,涉及到函数的奇偶性、周期性以及导数的知识,解答的关键是根据题意采用变量代换推出函数为周期为4的周期函数,进而求得一个周期内的函数值,即可求解.三、填空题:本题共3小题,每小题5分,满分15分.12.已知圆锥曲线221mx ny +=的焦点在y 轴上,且离心率为2,则mn=______.【答案】13-【解析】【分析】由圆锥曲线是双曲线,方程表示成标准方程,由离心率求mn的值.【详解】圆锥曲线的离心率为2,则该圆锥曲线是双曲线,将方程化成焦点在y 轴上的标准形式22111y x n m-=-,由离心率2e =,有21141m nn m e m n⎛⎫+- ⎪-⎝⎭===,得13m n =-.故答案为:13-13.已知矩形ABCD中2AB BC ==,以AC 所在直线为旋转轴,将矩形ABCD 旋转一周形成的面所围成的几何体的体积为______.【答案】56π9【解析】【分析】以AC 所在直线为旋转轴,ABC 旋转一周形成两个共底面的圆锥,ADC △旋转一周形成一个倒立的相同的几何体,将其体积记为1V ,这两个几何体重叠部分是以圆O 为底面,,A C 为顶点的两个小圆锥,其体积记为2V ,计算可求矩形ABCD 旋转一周形成的面所围成的几何体的体积.【详解】如图,以AC 所在直线为旋转轴,ABC旋转一周形成两个共底面的圆锥,ADC △旋转一周形成一个倒立的相同的几何体,将其体积记为1V ,这两个几何体重叠部分是以圆O 为底面,,A C 为顶点的两个小圆锥,其体积记为2V ,则所求几何体体积2212112356224π4π3339V V V ⎛⎫=-=⨯⨯-⨯= ⎪ ⎪⎝⎭.故答案为:56π9.14.一只口袋装有形状、大小完全相同的3只小球,其中红球、黄球、黑球各1只.现从口袋中先后有放回地取球2n 次()*n ∈N ,且每次取1只球,X 表示2n 次取球中取到红球的次数,0X X Y X ⎧=⎨⎩,为奇数,为偶数,则Y 的数学期望为______(用n 表示).【答案】233n n n+【解析】【分析】由题知12,,0,1,0,3,0,21,03X B n Y n ⎛⎫~=- ⎪⎝⎭ ,()E Y =()12132321122221C 23C 221C 23n n n n n n n n ---⎡⎤+++-⎣⎦ ,利用1221C 2C k k n n k n --=,可求得()233n n n E Y =+.【详解】由题知12,,0,1,0,3,0,21,03X B n Y n ⎛⎫~∴=- ⎪⎝⎭,()()12132321113212221212121C 3C 21C 333333n n n n n n n E Y n ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅++-⋅ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()12132321122221C 23C 221C 23n n n n n n n n ---⎡⎤=+++-⎣⎦ ()()102122322122121212122C 2C ,C 2C 2C 23k k n n n n n n n n nn k n E Y --------=∴=+++ ,210211222232212102121212121(21)22C C 2C 2C 2C n n n n n n n n n n n -----------+=+++++ ,210211222232212102121212121(C 21)222C C C 2C 2n n n n n n n n n n n ------------=-+++- ,()21210212232212121212231231C2C2C2,23233n n n n n n n n n nn n n E Y --------++∴+++=∴=⋅+ .故答案为:233n n n+.二、解答题:本题共5小题,共77分.15.已知函数()(0)ax f x x =>.(1)求函数()f x 的单调区间;(2)若函数()f x 有最大值12,求实数a 的值.【答案】(1)答案见解析(2)2e-【解析】【分析】(1)求导得()(0)ax f x x =>',分类讨论可求单调区间;(2)利用(1)的结论可求实数a 的值.【小问1详解】()e (0)ax ax ax f x x =+=>'1°当0a ≥时()()0,f x f x >'∴在区间()0,∞+上单调递增。

2024届高三新高考改革数学适应性练习(九省联考题型)数学卷及答案

2024届高三新高考改革数学适应性练习(九省联考题型)数学卷及答案

2024届高三新高考改革数学适应性练习(九省联考题型)数学试题卷注意事项:1.本卷共4页,四大题19小题,满分150分,答题时间120分钟;2.答题时须在答题卡上填涂所选答案(选择题),或用黑色字迹的签字笔规范书写答案与步骤(非选择题),答在本试题卷上或草稿纸上的答案均属无效;3.考试结束时,考生须一并上交本试题卷,答题卡与草稿纸。

一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校高三年级一名学生一学年以来七次月考物理成绩(满分100分)依次为84,78,82,84,86,89,96,则这名学生七次月考物理成绩的第70百分位数为( ) A .86 B .84 C .96 D .895.在数列{}n a 中,已知132n n n a a ++=⋅,则{}n a 的前10项的和为( ) A .1023 B .1024 C .2046 D .20476.瑞士数学家欧拉在《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,这7.已知函数()e ln x f x x x x a =−−−,若()f x 在(0,e)存在零点,则实数a 值可以是( )腰三角形.将长方体1111ABCD A B C D −的上底面1111D C B A 绕着其中心旋转45°得到如图2所示的十面体ABCD EFGH −.已二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.) 9.已知函数()22sin cos 2sin f x x x x =−,给出下列四个选项,正确的有( ).10.已知圆22:16O x y +=,点(,)P a b 在圆O 外,以线段OP 为直径作圆M ,与圆O 相交于,A B 两点,则 ( ) A .直线,PA PB 均与圆O 相切B .若5,4a b ==−,则直线AB 的方程为54160x y −−=C .当4PA PB ==时,点M 在圆228x y +=上运动D .当3PA PB ==时,点P 在圆225x y +=上运动11.e 是自然对数的底数,m ∈R ,0n >,已知e ln ln m m n n n m +>+,则下列结论一定正确的是( ) A .若0m >,则0m n −> B .若0m >,1n >,则e 0m n −> C .若0m <,则ln 0m n +< D .若0m <,则e 2m n +> 三、填空题(本题共3小题,每小题5分,共15分.)12.已知集合{}{}1,0,1,0,1,2A B =−=,则A B ∪= .13.如图所示,在等腰直角三角形ABC 中,∠C 为直角,BC =2,EF ∥BC ,沿EF 把面AEF 折起,使面AEF ⊥面EFBC ,当四棱锥A -CBFE 的体积最大时,EF 的长为 .四、解答题(本题共小题,共分.解答应写出文字说明,证明过程或演算步骤.)参考答案:。

河南省部分学校2023届高三高考仿真适应性测试理科数学试题

河南省部分学校2023届高三高考仿真适应性测试理科数学试题

一、单选题1. 已知函数若函数有三个零点,则实数的取值范围是( )A .(2,3)B .(2,3]C .[2,3)D .[2,3]2.抛物线:的准线与轴交于点,焦点为,点是抛物线上的任意一点,令,当取得最大值时,直线的斜率是A.B.C.D.3. 若从无穷数列中任取若干项(其中)都依次为数列中的连续项,则称是的“衍生数列".给出以下两个命题:(1)数列是某个数列的“衍生数列”;(2)若各项均为0或1,且是自身的“衍生数列”,则从某一项起为常数列.下列判断正确的是( ).A .(1)(2)均为真命题B .(1)(2)均为假命题C .(1)为真命题,(2)为假命题D .(1)为假命题,(2)为真命题4.若,则( )A.B.C.D.5. 已知随机变量服从正态分布, 且,则A.B.C.D.6. 设集合,,则A.B.C.D.7. 某地为方便群众接种新冠疫苗,开设了,,,四个接种点,每位接种者可去任一个接种点接种.若甲,乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为( )A.B.C.D.8.已知双曲线的左、右焦点分别为,,过且斜率为的直线与双曲线在第二象限的交点为A ,若,则此双曲线的渐近线为( )A.B.C.D.9.已知,则()A .a >b >cB .a >c >bC .b >c >aD .c >a >b10. 已知函数,则的一个单调递减区间是( )A.B.C.D.11. 已知i 是虚数单位,若复数z满足,则=A .-2iB .2iC .-2D .212. 已知,,c =40.1,则( )A.B.C.D.河南省部分学校2023届高三高考仿真适应性测试理科数学试题二、多选题13. 已知某种垃圾的分解率为,与时间(月)满足函数关系式(其中,为非零常数),若经过12个月,这种垃圾的分解率为10%,经过24个月,这种垃圾的分解率为20%,那么这种垃圾完全分解,至少需要经过( )(参考数据:)A .48个月B .52个月C .64个月D .120个月14.已知函数,则下列结论正确的是( )A .是偶函数,递增区间是B.是偶函数,递减区间是C .是奇函数,递减区间是D .是奇函数,递增区间是15. 已知直线经过点,那么直线的斜率是( )A.B.C .1D .216. 若a 、b 为实数,则“0<ab <1”是“a <”或“b>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件17. 若随机变量X服从两点分布,且,则( )A.B.C.D.18.如图所示,在长方体中,是的中点,直线交平面于点,则()A .三点共线B .的长度为1C .直线与平面所成角的正切值为D .的面积为19. 已知异面直线与直线所成角为,过定点的直线与直线、所成角均为,且平面与平面的夹角为,直线与平面所成角均为,则对于直线的条数分析正确的是( )A .当时,直线不存在B.当 时,直线有3条C .当时,直线有4条D .当时,直线有4条20. 对于函数,下列说法正确的是( )A .在处取得极大值B.有两个不同的零点C.D .若在上恒成立,则三、填空题四、解答题21.设复数的共轭复数为,则下列结论正确的有( )A.B.C.D.22.已知正四面体的棱长为2,M ,N 分别为和的重心,为线段上一点,则下列结论正确的是( )A.若取得最小值,则B.若,则平面C .若平面,则三棱锥外接球的表面积为D .直线到平面的距离为23. 下列说法中的是( )A.B .若且,则C .若非零向量且,则D .若,则有且只有一个实数,使得正确24.设等差数列的前项和为,公差为,,,,下列结论正确的是( )A.B.当时,的最大值为C.数列为等差数列,且和数列的首项、公差均相同D .数列前项和为,最大25. 已知函数对任意的满足,且当时,,若有4个零点,则实数a 的取值范围是______.26.已知三棱锥的所有棱长都相等,点O 是的中心,点D 为棱PC 上一点,平面ABD 把三棱锥分成体积相等的两部分,平面ABD 与PO 交于点E ,若点P ,A ,B ,C都在球的表面上,点E ,A ,B ,C 都在球的表面上,则球与球表面积的比值为______.27. 在锐角中,角,,所对的边分别为,,,若,,则面积的取值范围为______.28. 的展开式的各项二项式系数之和为32,各项系数和为1,则展开式中的系数为_________.29. 设点在单位圆的内接正六边形的边上,则的取值范围是__________.30.设函数是定义域为的奇函数,且,则____________.31. 点M (2,-2)到直线的距离为______.32. 函数和的定义域均为,且为偶函数,为奇函数,对,均有,则______.33. 我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”事实上,很多代数问题可以转化为几何问题加以解决,已知曲线C上任意一点满足.(1)化简曲线的方程;(2)已知圆(为坐标原点),直线经过点且与圆相切,过点A 作直线的垂线,交于两点,求五、解答题面积的最小值.34. 已知数列是公比为2的等比数列,数列是等差数列,.(1)求数列的通项公式;(2)设,求数列的前项和.35. 在△ABC 中,已知角A 为锐角,且.(1)将化简成的形式;(2)若,求边AC 的长.36. 已知椭圆C :()的离心率为,左顶点A 到右焦点的距离为3.(1)求椭圆的方程;(2)设直线与椭圆交于不同两点,(不同于A ),且直线和的斜率之积与椭圆的离心率互为相反数,求在上的射影的轨迹方程.37. 已知,求下列各式的值(1);(2)38.在中,,,.(1)求A 的大小;(2)求外接圆的半径与内切圆的半径.39. 如图所示,在三棱锥A -BCD 中,E ,F 分别是AD ,BC 的中点,且.(1)在∠BDC 的角平分线上,是否存在一点O ,使得AO ∥平面EFC ?若存在,请作出证明;若不存在,请说明理由;(2)若平面BCD ⊥平面ADC ,BD ⊥DC ,,求二面角F -EC -D 的正切值.40.如图,在正方体中,E 是棱上的点(点E 与点C ,不重合).(1)在图中作出平面与平面ABCD 的交线,并说明理由;(2)若正方体的棱长为1,平面与平面ABCD 所成锐二面角的余弦值为,求线段CE 的长.41. 开学初学校进行了一次摸底考试,物理老师为了了解自己所教的班级参加本次考试的物理成绩的情况,从参考的本班同学中随机抽取名学生的物理成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如图所示,已知抽取的学生中成绩在内的有3人.(1)求的值,并估计本班参考学生的平均成绩;(2)已知抽取的名参考学生中,在的人中,女生有甲、乙两人,现从的人中随机抽取2人参加物理竞赛,求女学生甲被抽到的概率.42. 如图,已知平行六面体的底面是菱形,,,且.(1)试在平面内过点作直线,使得直线平面,说明作图方法,并证明:直线;(2)求平面与平面所成锐二面角的余弦值.43. 如图,在四棱锥中,平面,底面满足,且,,三角形的面积为(1)画出平面和平面的交线,并说明理由(2)求点到平面的距离44. 今年春节期间,在为期5天的某民俗庙会上,某摊点销售一种儿童玩具的情况如下表:日期天气2月13日2月14日2月15日2月16日2月17日小雨小雨阴阴转多云多云转阴销售量上午4247586063下午5556626567由表可知:两个雨天的平均销售量为100件/天,三个非雨天的平均销售量为125件/天.(1)以十位数字为茎,个位数字为叶,画出表中10个销售数据的茎叶图,并求出这组数据的中位数;六、解答题(2)假如明天庙会5天中每天下雨的概率为,且每天下雨与否相互独立,其他条件不变,试估计庙会期间同一类型摊点能够售出的同种儿童玩具的件数;(3)已知摊位租金为1000元/个,该种玩具进货价为9元/件,售价为13元/件,未售出玩具可按进货价退回厂家,若所获利润大于1200元的概率超过0.6,则称为“值得投资”,那么在(2)的条件下,你认为“值得投资”吗?45.如图,正四棱柱中,,点在上且.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.46.如图,正三棱柱中,,,,分别是棱,的中点,在侧棱上,且.(1)求证:平面平面;(2)求平面与平面所成的锐二面角的余弦值.47.如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,,求三棱锥的体积.48. 已知函数.(1)求的单调递增区间;(2)当时,求证:.49. 已知四边形ABCD 为平行四边形,E 为CD 的中点,AB =4,为等边三角形,将三角形ADE 沿AE 折起,使点D 到达点P 的位置,且平七、解答题面平面ABCE.(1)求证:;(2)试判断在线段PB 上是否存在点F ,使得平面AEF 与平面AEP 的夹角为45°.若存在,试确定点F 的位置;若不存在,请说明理由.50.已知数列的前n项和为,且,,数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.51. 某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取份作为样本,将个样本数据按、、、、、分成组,并整理得到如下频率分布直方图.(1)请通过频率分布直方图估计这份样本数据的平均值(同一组中的数据用该组区间的中点值作代表).(2)以样本频率估计概率,若竞赛成绩不低于分,则被认定为成绩合格,低于分说明成绩不合格.从参加知识竞赛的市民中随机抽取人,用表示成绩合格的人数,求的分布列及数学期望.52. 中国历史悠久,积累了许多房屋建筑的经验.房梁为柱体,或取整根树干而制为圆柱形状,或作适当裁减而制为长方体形状,例如下图所示.材质确定的梁的承重能力取决于截面形状,现代工程科学常用抗弯截面系数W 来刻画梁的承重能力.对于两个截面积相同的梁,称W 较大的梁的截面形状更好.三种不同截面形状的梁的抗弯截面系数公式,如下表所列,圆形截面正方形截面矩形截面条件r 为圆半径a 为正方形边长h 为矩形的长,b 为矩形的宽,抗弯截面系数(1)假设上表中的三种梁的截面面积相等,请问哪一种梁的截面形状最好?并具体说明;(2)宋朝学者李诫在《营造法式》中提出了矩形截面的梁的截面长宽之比应定为的观点.考虑梁取材于圆柱形的树木,设矩形截面的外接圆的直径为常数D,如下图所示,请问为何值时,其抗弯截面系数取得最大值,并据此分析李诫的观点是否合理.53. 某校举办歌唱比赛,七名评委对甲、乙两名选手打分如下表所示:评委选手甲91949692939795选手乙929590969491(1)若甲和乙所得的平均分相等,求的值;(2)在(1)的条件下,从七名评委中任选一人,求该评委对甲的打分高于对乙的打分的概率;(3)若甲和乙所得分数的方差相等,写出一个的值(直接写出结果,不必说明理由).54. 某学校为了迎接党的二十大召开,增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了2个题目,求第2题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.已知第三支部从乙箱中取出的这个题目是选择题,求第二支部从甲箱中取出的是2个选择题的概率.55. 随着生活节奏的加快、生活质量的提升,越来越多的居民倾向于生活用品的方便智能.如图是根据2016—2020年全国居民每百户家用汽车拥有量(单位:辆)与全国居民人均可支配收入(单位:万元)绘制的散点图.(1)由图可知,可以用线性回归模型拟合与的关系,求关于的线性回归方程;(过程和结果保留两位小数)(2)已知2020年全国居民人均可支配收入为32189元,若从2020年开始,以后每年全国居民人均可支配收入均以6%的速度增长,预计哪一年全国居民每百户家用汽车拥有量可以达到50辆.参考数据:2.8232.560.46 5.27,,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,.56. 甲乙二人均为射击队S中的射击选手,某次训练中,二人进行了100次“对抗赛”,每次“对抗赛”中,二人各自射击一次,并记录二人射击的环数,更接近10环者获胜,环数相同则记为“平局”.已知100次对抗的成绩的频率分布如下:“对抗赛”成绩(甲:乙)总计频数21136251510424100八、解答题这100次“对抗赛”中甲乙二人各自击中各环数的频率可以视为相应的概率.(1)设甲,乙两位选手各自射击一次,得到的环数分别为随机变量X ,Y,求,,,.(2)若某位选手在一次射击中命中9环或10环,则称这次射击成绩优秀,以这100次对抗赛的成绩为观测数据,能否在犯错误的概率不超过0.01的前提下认为甲的射击成绩优秀与乙的射击成绩优秀有关联?(3)在某次团队赛中,射击队S 只要在最后两次射击中获得至少19环即可夺得此次比赛的冠军,现有以下三种方案:方案一:由选手甲射击2次﹔方案二:由选手甲、乙各射击1次;方案三:由选手乙射击2次.则哪种方案最有利于射击队S 夺冠?请说明理由.附:参考公式:参考数据:0.10.050.010.0050.0012.7063.8416.6357.87910.82857. 已知椭圆的离心率与双曲线的离心率互为倒数,短轴长为.(1)求椭圆C 的标准方程;(2)设直线l 与椭圆C 相切于点A ,A 关于原点O 的对称点为点B ,过点B 作,垂足为M ,求面积的最大值.58.在中,已知.(1) 求的值;(2)若,求的面积.59.在中,内角的对边分别为,已知.(1)求角A 的大小;(2)若的面积为,且,求的周长.60. 已知函数.(1)讨论函数的单调性;(2)设函数有两个极值点,证明:.61. 年是决胜全面建成小康社会、决战脱贫攻坚之年,面对新冠肺炎疫情和严重洪涝灾害的考验.党中央坚定如期完成脱贫攻坚目标决心不动摇,全党全社会戮力同心真抓实干,取得了积极成效.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积与相应的管理时间的关系如下表所示:土地使用面积(单位:亩)管理时间(单位:月)并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示;愿意参与管理不愿意参与管理男性村民女性村民(1)做出散点图,判断土地使用面积与管理时间是否线性相关;并根据相关系数说明相关关系的强弱.(若,认为两个变量有很强的线性相关性,值精确到) .参考公式:参考数据:(2)完成以下列联表,并判断是否有的把握认为该村的村民的性别与参与管理意愿有关.愿意参与管理不愿意参与管理合计男性村民女性村民62. 《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,如图所示,四面体中,平面,,是棱的中点.(I)证明:.并判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(Ⅱ)若四面体是鳖臑,且,求二面角的余弦值.。

(全国版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷06 文

(全国版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷06 文

【步步高】(全国版)2013届高三数学 名校强化模拟测试卷06 文第I 卷一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 【湖北武汉2012毕业生五月供题训练(三)】已知,,A B A C ⊆⊆B={l ,2,3,5 },C={0,2,4,8},则A 可以是 A .{l,2} B .{2,4}C .{2}D .{4}3. 【2013届安徽省示范高中高三9月模底考试】已知i 是虚数单位,复数1012i i-的虚部为( )A 、-2B 、2C 、-2iD 、2i3. 【湖北襄阳2013高三年级第二次适应性考试】某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表:A .84B .12C .81D .14 【答案】A【解析】由题意得,根据分层抽样的方法,则343528b a ==,解得5,21b a ==,所以总人数为35212884++=人,故选A 。

4. 【湖北省黄冈中学2012届高三五月模拟考试】下列函数中既是偶函数,又是区间[-1,0]上的减函数的是A .x y cos =B .1--=x yC .x xy +-=22lnD .xxee y -+=5. 【2013襄阳五中高三年级第一次适应性考试】若不等式组13220x y x y λλ≤⎧⎪≤⎨⎪-+-≥⎩表示的平面区域经过四个象限,则实数λ的取值范围是( ) A .(,2)-∞ B .[1,1]- C .[1,2)- D .[1,)+∞ 【答案】D【解析】因220(2)(2)0x y x y λλλ-+-=⇒+-+=表示过点()2,2--的直线,当直线过原点时,把原点代入直线2201x y λλλ-+-=⇒=,当1λ≥不等式组表示的可行域经过第四象限,故选D 。

6. 【湖北襄阳五中2012高三年级第二次适应性考试】 阅读如图所示的程序框图,若输出y 的值为0,则输入x 的值为( ). A.2log 3B.0C.20log 3或 D.30log 2或【答案】C【解析】若输出y 的值为0,则0x =或2230log 3xx -=⇒=,故答案为C.7. 【唐山市2011—2012学年度高三年级第三次模拟考试】 己知某几何体的三视图如图所示,则其表面积为【答案】A【解析】由几何体的三视图可知该几何体为直三棱柱,如图所示,111111111,2,2,1,2224,=2+2246C BC B ABA B C BC B ABC ABA B C D A B B B A B C D C B S S S S S S Λ⊥====∴===⨯=∴+=++=+ 表8. 【原创题】在三棱锥A B C D -中,侧棱A B 、A C 、A D 两两垂直,A B C ∆、A C D ∆、ABC1C1A1BD1DAD B ∆ 2、22A. 2πB. 6πC.D. 24π9. 【2013年河南郑州高中毕业年级第一次质量预测】 已知曲线⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+=x x y 4cos 4sin 2ππ与直线21=y 相交,若在y 轴右侧的交点自左向右依次记为P 1, P 2, P 3…,则|51P P |等于 A .π B. 2π C. 3π D. 4π10. 【安徽省皖南八校2013届高三第二次联考】过双曲线22221x y ab-=(0,0)a b >>的左焦点F 作直线交双曲线的两条渐近线与A,B 两点,若2FA FB =,2()O B O A O B ∙= ,则双曲线的离心率为( )A. C. 2 【答案】C【解析】∵2()O B O A O B ∙= ,∴()0O B O B O A ∙-= ∴0OB AB ∙= ,又∵2FA FB =∴点B 为FA 的中点,∴可得0=60BOF AOB AOX ∠=∠=∠,()X x 为轴正半轴上的点∴tan 60b a==∴双曲线的离心率为:2e ==11. 【河北省唐山市2011—2012学年度高三年级第二次模拟考试】奇函数f (x )、偶函数g (x )的图象分别如图1、2所示,方程f (g(x ))=0、g (f(x ))=0的实根个数分别为a 、b ,则a+b=A .14B .10C .7D .312. 【改编题】已知等比数列{}n a 的各项都为正数,且当3n ≥时,242410nn a a -⋅=,则数列1lg 2a ,2lg 2a , 3lg 2a ,4lg 2a , ,lg 2n a , 的前n 项和n S 等于 A.122n +- B.121n +- C.22n - D.122n ++第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

湖北省武汉市2014届高三下学期4月调研测试理科数学试卷(带解析)

湖北省武汉市2014届高三下学期4月调研测试理科数学试卷(带解析)

湖北省武汉市2014届高三下学期4月调研测试理科数学试卷(带解析)1.若复数143-++iia (a 为实数,i 为虚数单位)是纯虚数,则=a ( ) A.7 B.-7 C.34 D.34-【答案】A【解析】试题分析:由已知得,()(34)(34)(34)1=1134(34)(34)25a i a i i a a ii i i ++-++---=-++-,故341025a +-=,解得7a =. 考点:1、复数的概念;2、复数的运算.2.若一元二次不等式08322<-+kx kx 对一切实数x 都成立,则k 的取值范围为( ) A.(]0,3- B.[)0,3- C.[]0,3- D.)0,3(- 【答案】D 【解析】试题分析:由题意0k ≠,2030k k k <⎧⎨+<⎩,解得30k -<<.考点:二次函数的图象和性质.3.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A.1083cm B.1003cm C.923cm D.843cm【答案】B 【解析】试题分析:如图所示,该几何体是由长、宽、高分别为6、3、6的长方体截去如图一角,所得的几何体,其体积为1636461003⨯⨯-⨯⨯=3cm .32424考点:1、三视图;2、几何体体积. 4.已知命题R p ∈∃ϕ:,使)s i n ()(ϕ+=x x f 为偶函数;命题x x R x q sin 42cos ,:+∈∀03<-,则下列命题中为真命题的是( )A.q p ∧B.()q p ∨⌝C.()q p ⌝∨D.()()q p ⌝∨⌝ 【答案】C【解析】试题分析:当2k πϕπ=+时,函数()f x 是偶函数,故命题p 是真命题;2cos 24sin 32sin 4sin 2x x x x +-=-+-22(sin 1)0x =--≤,故命题q 是假命题,故选C .考点:复合命题的真假判断.5.已知O 为坐标原点,F 为抛物线x y C 24:2=的焦点,P 为C 上一点,若24=PF ,则△POF 的面积为( )A.2B.22C.32 D.4 【答案】C 【解析】试题分析:设点P 00(,)x y ,则点P到准线x =0x,由抛物线定义得,x =0x =,则0y =POF 的面积为12=考点:1、抛物线的定义;2、抛物线的标准方程.6.在△ABC 中,角A,B,C 的对边分别为c b a ,,,若A,B,C 成等差数列,c b a 2,2,2成等比数列,则=B A cos cos ( ) A.14 B.61 C.21 D.32 【答案】A【解析】试题分析:由已知得,2B A C =+,又=A C B π++,故=3B π,又244b ac =,则2b ac =,所以由余弦定理得,2222cos 3b ac ac π=+-ac =,即2()0a c -=,故a c =,所以△ABC是等边三角形,则=B A cos cos 14考点:1、等差中项;2、等比中项;3、余弦定理.7.安排6名歌手演出顺序时,要求歌手乙、丙排在歌手甲的前面或者后面,则不同排法的种数是( )A.180B.240C.360D.480 【答案】D 【解析】试题分析:歌手乙、丙排在歌手甲的前面时,由题意,甲只能在从左至右第三、四、五、六个位置,当甲在第三个位置时有232312A A =种;当甲在第四个位置时有233336A A =种;当甲在第五个位置时有234372A A =种;当甲在第六个位置时有2353120A A =种,此时共有123672120240+++=种;同理歌手乙、丙排在歌手甲的后面时也有240种,故满足条件的不同排法种数有480种.考点:排列、组合.8.设321,,a a a 均为正数,321λλλ<<,则函数332211)(λλλ-+-+-=x a x ax a x f 的两个零点分别位于区间( )A.),(),(211λλλ⋃-∞内B.),(),(3221λλλλ⋃内C.),(),(332+∞⋃λλλ内D.),(),(31+∞⋃-∞λλ内 【答案】B 【解析】试题分析:由已知得,当1(,)x λ∈-∞时,123,,x x x λλλ--- 均小于0,故()0f x <,故在该区间内不存在零点;当3(,)x λ∈+∞时,123,,x x x λλλ---都大于0,故在该区间内不存在零点,故两点在区间),(),(3221λλλλ⋃内,选B .考点:函数的零点.9.如图,在△ABC 中,∠C=90°,CA=CB=1,P 为△ABC 内一点,过点P 分别引三边的平行线,与各边围成以P 为顶点的三个三角形(图中阴影部分),则这三个三角形的面积和的最小值为( )A.91B.81C.61D.31 【答案】C 【解析】试题分析:如图所示,建立平面直角坐标系,设直线EF 的方程为1x ya a+=(01)a <<,P 00(,)x a x -,则三个三角形的面积和22200111()(1)222y x a x a =+-+-,因为2222000011()()2224x a x a x a x +-+-≥=,故22200111()(1)222y x a x a =+-+-23142a a ≥-+2321()436a =-+16≥.考点:1、函数的性质;2、不等式的性质.10.设函数cx bx x x f 33)(23++=有两个极值点21,x x ,且[]0,11-∈x ,[]2,12∈x ,则( )A.21)(101-≤≤-x fB.0)(211≤≤-x f C.27)(01≤≤x f D.10)(271≤≤x f【答案】C【解析】 试题分析:'2()363f x x bx c=++,由已知得,12,x x 是方程23630x bx c ++=的两根,故122x x b+=-,12x x c⋅=,由321111()33f x x bx cx =++,故1()f x 3211211123()32x x x x x x x =-++⋅⋅321121322x x x =-+,'211121()32f x x x x =-+⋅,由已知得,'1()0f x <,故函数1()f x 在[]0,11-∈x 单调递减,故12130()22f x x ≤≤=+,又[]2,12∈x ,故27)(01≤≤x f .考点:1、导数在单调性上的应用;2、利用导数求函数的极值、最值.11.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,由表中数据,求得线性回归方程a x y +=65.0,根据回归方程,预测加工70个零件所花费的时间为________分钟. 【答案】102 【解析】试题分析:150305x ==,380765y ==,因回归直线必过样本点中心(,)x y ,故56.5a =,当70x =时,花费时间为0.657056.5102⨯+=(分钟).考点:回归直线方程.12.执行如图所示的程序框图,则输出的S 的值是______.【答案】1- 【解析】试题分析:程序在执行过程中,,S i 的值依次为:4,1S i ==;1,2S i =-=;2,33S i ==;3,42S i ==;4,5S i ==;故S 的值依次周期性的出现,而且周期为4,当10i =时,1S =-,故输出的1S =-.考点:程序框图.13.在计算“1×2+2×3+...+n (n+1)”时,某同学学到了如下一种方法: 先改写第k 项:k (k+1)=)]1()1()2)(1([31+--++k k k k k k 由此得1×2=)210321(31⨯⨯-⨯⨯.)321432(3132⨯⨯-⨯⨯=⨯..............)]1()1()2)(1([31)1(+--++=+n n n n n n n n .相加,得1×2+2×3+...+n (n+1))2)(1(31++=n n .类比上述方法,请你计算“1×2×3×4+2×3×4×+....+)3)(2)(1(+++n n n n ”,其结果是_________________.(结果写出关于n 的一次因式的积的形式) 【答案】1(1)(2)(3)(4)5n n n n n ++++ 【解析】 试题分析:先改写第k 项:1(1)(2)(3)[(1)(5k k kk k k k k k +++=++++--由此得11234[1234501234]5⨯⨯⨯=⨯⨯⨯⨯-⨯⨯⨯⨯12345[2345612345]5⨯⨯⨯=⨯⨯⨯⨯-⨯⨯⨯⨯……1(1)(2)(3)[(1)(2)(3)(4)(1)(1)(2)(3)]5n n n n n n n n n n n n n n +++=++++--+++ 相加,得1(1)1234(35...n n n n n n n n n ⨯⨯⨯+⨯⨯⨯+++++=++++.考点:归纳推理.14.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线)<20(≤=t t x 左侧的图形的面积为)(t f ,则(1)函数)(t f 的解析式为_______;(2)函数)(t f y =的图像与直线t t 、2=轴围成的图形面积为______.【答案】(1)22,012()2),122t f t t t <≤⎪⎪=⎨-<≤(2【解析】试题分析:(1)由题意,当01t <≤时,21()2f t t =⋅=;当12t <≤时,21()242f t =-⋅(2))t t --22)t =-,故函数函数)(t f 的解析式为22,012()(2),122t f t t t <≤⎪⎪=⎨-<≤。

河南省郑州市外国语中学2025届高三适应性调研考试数学试题含解析

河南省郑州市外国语中学2025届高三适应性调研考试数学试题含解析

河南省郑州市外国语中学2025届高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知3ln 3a =,1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b c a >>D .b a c >>2.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).金牌 (块) 银牌(块) 铜牌(块) 奖牌总数 24 5 11 12 28 25 16 22 12 54 26 16 22 12 50 27 28 16 15 59 28 32 17 14 63 29 51 21 28 100 3038272388A .中国代表团的奥运奖牌总数一直保持上升趋势B .折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C .第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D .统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.53.已知数列{}n a 的首项1(0)a a a =≠,且+1n n a ka t =+,其中k ,t R ∈,*n N ∈,下列叙述正确的是( ) A .若{}n a 是等差数列,则一定有1k =B .若{}n a 是等比数列,则一定有0t =C .若{}n a 不是等差数列,则一定有 1k ≠D .若{}n a 不是等比数列,则一定有0t ≠4.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( )A .98B .78C .12D .62565.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i + B .1i -+C .12i -D .12i +6.函数的图象可能是下列哪一个?( )A .B .C .D .7.已知全集{},1,2,3,4,U Z A ==()(){}130,B x x x x Z =+->∈,则集合()U A C B ⋂的子集个数为( ) A .2B .4C .8D .168.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( )A .B .C .D .9.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( ) A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)10.已知双曲线C :2214x y -=,1F ,2F 为其左、右焦点,直线l 过右焦点2F ,与双曲线C 的右支交于A ,B 两点,且点A 在x 轴上方,若223AF BF =,则直线l 的斜率为( ) A .1B .2-C .1-D .211.若复数z 满足3(1)1z z i +=,复数z 的共轭复数是z ,则z z +=( ) A .1B .0C .1-D .1322i -+ 12.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( ) A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞二、填空题:本题共4小题,每小题5分,共20分。

2021-2022年高三四月二模数学理科试卷及答案

2021-2022年高三四月二模数学理科试卷及答案

2021-2022年高三四月二模数学理科试卷及答案xx.4.19一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在正方形ABCD中,点E为CD的中点,点F为BC上靠近点B的一个三等分点,则→EF=(A)12→AB-13→AD(B)23→AB+12→AD(C)13→AB-12→AD(D)12→AB-23→AD2.“复数a+i2+i(a∈R,i为虚数单位)在复平面内对应的点位于第二象限”是“a<-1”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件3.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为(A)0.35 (B)0.25 (C)0.20 (D)0.154.一个体积为123的正三棱柱的三视图如图所示,则该三棱柱的侧视图的面积为(A)6 3(B)8(C)8 3(D)125.已知(33x2-1x)n的展开式中各项系数之和为256,则展开式中第7项的系数是(A)-24 (B)24 (C)-252 (D)2526.执行如图所示的程序框图,若输出的结果是9,则判断框内m的取值范围是(A)(42,56](B)(56,72](C)(72,90](D)(42,90)7.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y=1x(x>0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为(A)ln2 2(B)1-ln22(C)1+ln22(D)2-ln228.已知直线l:Ax+By+C=0(A,B不全为0),两点P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)( Ax2+By2+C)>0,且|Ax1+By1+C|<|Ax2+By2+C|,则直线l(A)与直线P1P2不相交(B)与线段P2P1的延长线相交(C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交9.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为(A )22 (B )32(C )1 (D ) 3 10.已知函数f (x )=⎩⎪⎨⎪⎧ax +1,x ≤0,log 2x , x >0。

2025届武汉东西湖区高三数学上学期8月考试卷

2025届武汉东西湖区高三数学上学期8月考试卷

武汉市东西湖区2025届新高三8月适应性考试数学试卷本试题卷共4页,19题,全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){},|20Ax y x y =+=,(){},|10B x y x my =++=.若A B ∩=∅,则实数m =()A.2− B. 12−C. 12D. 22.若复数z 满足(2i)i 54i z −−=+,则z =( )A.33i+ B.33i− C.13i + D.13i−3.若,a b 是夹角为60°两个单位向量,a b λ+与32a b −+ 垂直,则λ=( )A.18B.14C.78D.744 已知π,0,2αβ ∈,()5cos 6αβ−=,1tan tan 4αβ⋅=,则αβ+=( )A.π3 B.π4C.π6D.2π35.已知圆锥的高为6,体积为高的43倍,用平行于圆锥底面的平面截圆锥,得到的圆台高是3,则该圆台的体积为()A.83 B.113C.7D.9的.6. 已知函数()2log ,0223,2x x f x x x <≤ = −> ,若()()1210f a f a +−−≥,则实数a 的取值范围是( )A. (],2−∞B. [)2,+∞C. []2,6D. 1,227. 已知函数()2sin()10,||2f x x πωϕωϕ=++><,其图象与直线y =3相邻两个交点的距离为23π,若f (x )>1对任意,126x ππ∈−恒成立,则φ的取值范围为( ) A. ,42ππB. ,24ππ−−C. ,42ππD. 0,4π8. 已知定义在R 上的函数()f x 满足()()()()()226f x y f x f y f x f y +=−−+,()14f =,则()()()1299f f f ++⋅⋅⋅+=( )A. 992198+B. 992196+C. 1002198+D. 1002196+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. “杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给作出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高ξ(单位:cm )近似服从正态分布()2100,10N .已知()2~,X N µσ时,有(||)0.6827P X µσ−≤≈,(||2)0.9545P X µσ−≤≈,(||3)0.9973P X µσ−≤≈.下列说法正确的是( )A. 该地水稻的平均株高约为100cmB. 该地水稻株高的方差约为100C. 该地株高超过110cm 的水稻约占68.27%D. 该地株高低于130cm 的水稻约占99.87%10. 对于函数()ln xf x x=,下列说法正确的是( ) A. ()f x 在(1,)e 上单调递增,在(),e +∞上单调递减 B. 若方程(||)f x k =有4个不等的实根,则e k > C. 当1201x x <<<时,1221ln ln x x x x <D. 设2()g x x a =+,若对1x R ∀∈,2(1),x ∃∈+∞,使得12()()g x f x =成立,则a e ≥11. 数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222xyx y +=,则( )A. 曲线C 有两条对称轴B. 曲线C 上的点到原点的最大距离为12C. 曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的图形面积最大值为18D 四叶草面积小于π4三、填空题:本题共3小题,每小题5分,共15分.12. 已知过原点的直线与双曲线()222210,0x y a b a b−=>>交于M ,N 两点,点M 在第一象限且与点Q 关于x 轴对称,43ME MQ =,直线NE 与双曲线的右支交于点P ,若PM MN ⊥,则双曲线的离心率为______.13. 已知直线:l y kx =是曲线(1ex f x +=和()ln g x x a =+的公切线,则实数a =______. 14. 著名数学家欧几里得的《几何原本》中曾谈到:任何一个大于1的整数要么是质数,要么可以写成一系列质数的积,例如602235=×××.已知12315n a a a =××× ,且123,,,,n a a a a 均为质数,若从123,,,,n a a a a 中任选2个构成两位数(i j a a i j ≠,且1,)i j n ≤≤,则i j a a 的十位数字i a 与个位数字j a 不相等的概率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 记ABC 的内角,,A B C 的对边分别为a ,b ,c ,ABC 的面积为S ,已知222a c b +−,2a =. (1)求角B ;(2)若22cos cos 210A A +−=,求S 的值.16. 已知椭圆22:184x y E +=,过左焦点F 且斜率大于0的直线l 交E 于AB 、两点,AB 的中点为,GAB .的垂直平分线交x 轴于点D . (1)若点G 纵坐标为23,求直线GD 方程; (2)若1an 2t BAD ∠=,求ABD ∆的面积. 17. 如图,在直三棱柱111ABC A B C 中,E 是1B A 上的点,且1A E ⊥平面11AB C .(1)求证:BC⊥平面11AA B B ;(2)若14,2,AA AC AB BC P ==是棱AC 上且靠近C 的三等分点,求点A 到平面1PBB 的距离.18. 已知函数22()2ln f x ax bx x =++−.(1)当0b =时,若()f x 有两个零点,求实数a 的取值范围;(2)当0a =时,若()f x 有两个极值点12,x x ,求证:212e x x >;(3)若()f x 在定义域上单调递增,求2a b +的最小值.19. 有穷数列12,,,(2)n a a a n > 中,令()()*1,1,,p p q S p q a a a p q n p q +=+++≤≤≤∈N ,(1)已知数列3213,,,−−,写出所有有序数对(),p q ,且p q <,使得(),0S p q >;(2)已知整数列12,,,,n a a a n 为偶数,若(),11,2,,2n S i n i i−+=,满足:当i 为奇数时,(),10S i n i −+>;当i 为偶数时,(),10S i n i −+<.求12n a a a +++ 的最小值;(3)已知数列12,,,n a a a 满足()1,0S n >,定义集合(){}1,0,1,2,,1Ai S i n i n =+>=− .若{}()*12,,,k Ai i i k =∈N 且为非空集合,求证:()121,k ii i S n a a a >+++ .的的。

浙江杭州学军中学2024届高三下学期4月适应性测试数学试题+答案

浙江杭州学军中学2024届高三下学期4月适应性测试数学试题+答案

绝密★启用前杭州学军中学2024届高中毕业生适应性测试数学命题,审校:杭州学军中学高三数学备课组2024.4本试题卷共4页,19题,全卷满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.不选、多选、错选均不得分.1.在复平面内表示复数()()1i i −+a 的点位于第二象限,则实数a 的取值范围是( ) A.(),1∞− B.(),1∞−− C.()1,∞+ D.()1,∞−+2.设,a b为单位向量,a 在b 方向上的投影向量为12−b ,则2−=a b ( )3.设集合{}2414,8120 =+=−+A y x yB xx x x∣ ,则∩=A B ( ) A.{}28x x ∣ B.{}26x x ∣ C.{}46x x ∣ D.{}68x x ∣ 4.已知2sin cos ,cos sin 13+=+=A B A B,则()sin +=A B ( ) A.518− B.49 C.13− D.165.波斯诗人奥马尔•海亚姆于十一世纪发现了一元三次方程32(0,0)+=≠>x a x b a b 的几何求解方法.在直角坐标系xOy 中,,P Q 两点在x 轴上,以OP 为直径的圆与抛物线C :2=x ay 交于点,⊥R RQ OQ .已知=x OQ 是方程32+=x a x b 的一个解,则点P 的坐标为( )A.2,0 b aB.,0 b aC.2,0a b D.,0 a b6.小蒋同学喜欢吃饺子.某日他前往食堂购买16个饺子,其中有X 个为香菇肉馅,其余为玉米肉馅,且()1,0,1,,1617===P X i i .在小蒋吃到的前13个饺子均为玉米肉馅的条件下,这16个饺子全部为玉米肉馅的概率为( )A.45B.1316C.1417D.56 7.若函数()ln =−+−f x x x x x a 有且仅有两个零点,则a 的取值范围是( ) A.()1,00,e e −∪ B.()2,00,e e −∪ C.()2,00,3e −∪ D.()1,00,3e −∪8.以半径为1的球的球心O 为原点建立空间直角坐标系,与球O 相切的平面α分别与,,x y z 轴交于,,A B C三点,=OC ,则22|4|+OA OB 的最小值为( )A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设函数()cos sin =+f x x x ,则( ) A.()f x 是偶函数 B.()f x 的最小正周期为π C.()f x的值域为 −D.()f x 在区间7,4ππ单调递增 10.在对具有相关关系的两个变量进行回归分析时,若两个变量不呈线性相关关系,可以建立含两个待定参数的非线性模型,引入中间变量将其转化为线性关系,再利用最小二乘法进行线性回归分析.下列选项为四个同学根据自己所得数据的散点图建立的非线性模型,且散点图样本点均位于第一象限,则其中可以根据上述方法进行回归分析的模型有( ) A.212=+y c x c x B.12+=+x c y x c C.21e +=x c y c D.()12ln =++y c x c11.已知()1212,>x x x x 是方程()2*210−−=∈x px p N 的两根,数列{}n a 满足12=a ,(){}2122,23,−−==+n n n n a p a pa a n b 满足()1=n n b f x ,其中()sin2π=f x x x .则( )A.2342=+a pB.()12+−=n n n f a x b C.存在实数r ,使得对任意的正整数n ,都有<n b r D.不存在实数r ,使得对任意的正整数n ,都有>n b r 三、填空题:本题共3小题,每小题5分,共15分.12.经过椭圆2222:1(0,0)+=>>x y C a b a b 的右顶点与上顶点的直线斜率为53−,则C 的离心率为__________.13.将()()*21+∈n n N 个棱长为1的正方体如图放置,其中上层正方体下底面的顶点与下层正方体上底面棱的中点重合.设最下方正方体的下底面ABCD 的中心为O ,过O 的直线l 与平面ABCD 垂直,以O 为顶点,l 为对称轴的抛物线()201+yax y n 可以被完全放入立体图形中.若1=n ,则a 的最小值为__________;若a 有解,则n 的最大值为__________.14.若函数()()23434sin 4ππ=−++−f x axx a a x (其中0>a )在区间[]0,5上恰有4个零点,则a 的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)平面1234,,,αααα两两平行,且αi 与1α+i 的距离均为,1,2,3=d i .已知正方体1111−ABCD A B C D 的棱长为1,且112314,,,αααα∈∈∈∈A B C D .(1)求d ;(2)求1α与平面1A BD 夹角的余弦值. 16.(15分)斜二测画法是一种常用的工程制图方法,在已知图形中平行于y 轴的线段,在直观图画成平行于′y 轴(由y 轴顺时针旋转45 得到)的线段,且长度为原来的12,平行于x 轴的线段不变.如图,在直角坐标系xOy中,正方形ABCD定义如下图像变换:1T 表示“将图形用斜二测画法变形后放回原直角坐标系”;()2T i 表示“将图形的横坐标保持不变,纵坐标拉伸为原来的1+i i倍”.(1)记正方形ABCD 经过两次1T 变换后所得图形为2222A B C D ,求22,A B 的坐标;(2)在第i 次复合变换中,将图形先进行一次1T 变换,再进行一次()2T i 变换,1,2=i ,,n .记正方形ABCD 进行n 次复合变换后所得图形为n n n n A B C D .过n A 作n n C D 的垂线,垂足为n H ,若<n nn nD H m H C 恒成立,求m 的取值范围. 17.(15分) 已知函数()()1122e ,e e e 1−=+−=++xx x xf x m mg x . (1)当0=m 时,证明:()e −<x f x ; (2)当0<x 时,()<g x t ,求t 的最小值;(3)若()f x 在区间()0,∞+存在零点,求m 的取值范围.18.(17分)设双曲线22:12−=x C y ,直线:=+l y x m 与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得⋅=⋅=PA PB QA QB t.(i )当4=t 时,求,P Q 到点()2,−−m m 的距离(用含m 的代数式表示);(ii )当2=t 时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),−m m ,求d 的取值范围. 19.(17分)在概率较难计算但数据量相当大、误差允许的情况下,可以使用UnionBound (布尔不等式)进行估计概率.已知UnionBound 不等式为:记随机事件1,,n A A ,则()()121=∪∪∪∑nn i i P A A A P A .其误差允许下可将左右两边视为近似相等.据此解决以下问题:(1)有n 个不同的球,其中k 个有数字标号.每次等概率随机抽取n 个球中的一个球.抽完后放回.记抽取t 次球后k 个有数字标号的球每个都至少抽了一次的概率为()P t ,现在给定常数p ,则满足()P t p 的t 的最小值为多少?请用UnionBound 估计其近似的最小值,结果不用取整.这里n 相当大且远大于k ;(2)然而实际情况中,UnionBound 精度往往不够,因此需要用容斥原理求出精确值.已知概率容斥原理:记随机事件1,,n A A ,则()()121211211(1).−=<<<∪∪∪=−∑∑k k nk n a a a k a a a nP A A A P A A A .试问在(1)的情况下,用容斥原理求出的精确的t 的最小值是多少(结果不用取整)?n 相当大且远大于k . (1)(2)问参考数据:当x 相当大时,取111e −=xx .绝密★启用前杭州学军中学2024届高中毕业生适应性测试数学参考答案一、选择题:本题共8小题,每小题5分,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市2012届高三4月调研测试数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在正方形ABCD 中,点E 为CD 的中点,点F 为BC 上靠近点B 的一个三等分点,则→EF =(A )12→AB -13→AD (B )23→AB +12→AD(C )13→AB -12→AD (D )12→AB -23→AD2.“复数a +i2+i(a ∈R ,i 为虚数单位)在复平面内对应的点位于第二象限”是“a <-1”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件3.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为(A )0.35 (B )0.25 (C )0.20 (D )0.154.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为(A )6 3(B )8 (C )8 3 (D )125.已知(33x 2-1x)n的展开式中各项系数之和为256,则展开式中第7项的系数是(A )-24 (B )24 (C )-252 (D )2526.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是(A )(42,56](B )(56,72] (C )(72,90] (D )(42,90)7.如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x(x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为 (A )ln22(B )1-ln22 (C )1+ln22(D )2-ln228.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交9.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为(A )22 (B )32(C )1 (D ) 3 10.已知函数f (x )=⎩⎪⎨⎪⎧ax +1,x ≤0,log 2x , x >0。

则下列关于函数y =f (f (x ))+1的零点个数的判断正确的是(A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点 (C )无论a 为何值,均有2个零点 (D )无论a 为何值,均有4个零点二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡...对应题号....的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元).根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=6.5x +17.5,则表中t 的值为 . 12.已知α∈[π12,3π8],点A 在角α的终边上,且|OA |=4cos α,则点A 的纵坐标y 的取值范围是 .13.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .14.在平面直角坐标系xOy 中,已知三点A (a ,b ),B (b ,c ),C (c ,a ),且直线AB 的倾斜角与AC 的倾斜角互补,则直线AB 的斜率为 .(结果中不含字母a ,b ,c )(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,P 为圆O 外一点,由P 引圆O 的切线PA 与圆O 切于A 点,引圆O 的割线PB 与圆O 交于C 点.已知AB ⊥AC ,PA =2,PC =1,则圆O 的面积为 . 16.(选修4-4:坐标系与参数方程)在极坐标系下,已知直线l 的方程为ρcos(θ-π3)=12,则点M (1,π2)到直线l 的距离为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°.(Ⅰ)若cos(B +C )=-1114,求cos C 的值; (Ⅱ)若a =5,→AC ²→CB =5,求△ABC 的面积.18.(本小题满分12分)在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(Ⅰ)若a 1>0,当S n 取得最大值时,求n 的值; (Ⅱ)若a 1=-46,记b n =S n -a nn,求b n 的最小值. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为平行四边形,∠ADB =90°,AB =2AD .(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A -PB -C 的余弦值.20.(本小题满分12分)为增强市民节能环保意识,某市面向全市征召义务宣传志愿者.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.21.(本小题满分13分)如图,已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的一个动点,满足|→F 1Q |=2a .点P 是线段F 1Q 与该椭圆的交点,点M 在线段F 2Q 上,且满足→PM ²→MF 2=0,|→MF 2|≠0.(Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)设不过原点O 的直线l 与轨迹C 交于A ,B 两点,若直线OA ,AB ,OB 的斜率依次成等比数列,求△OAB 面积的取值范围;(Ⅲ)由(Ⅱ)求解的结果,试对椭圆Γ写出类似的命题.(只需写出类似的命题,不必说明理由)22.(本小题满分14分)已知函数f (x )=ln(1+x )-ax 在x =-12处的切线的斜率为1.(Ⅰ)求a 的值及f (x )的最大值;(Ⅱ)证明:1+12+13+ (1)>ln(n +1)(n ∈N *);(Ⅲ)设g (x )=b (e x-x ),若f (x )≤g (x )恒成立,求实数b 的取值范围.武汉市2012届高三4月调研测试 数学(理科)试题参考答案及评分标准一、选择题:每小题5分,满分50分.1.D 2.B 3.B 4.A 5.D 6.B 7.C 8.B 9.A 10.A 二、填空题:每小题5分,满分25分.11.50 12.[1,2] 13.433.-1±52 15.9π4 16.3-12三、解答题:本大题共6小题,共75分. 17.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314, ∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114³12+5314³32=17.…………………………………………(6分) (Ⅱ)由→AC ²→CB =5,得|→AC |²|→CB |cos(180°-C )=5,即ab cos C =-5,又a =5,∴b cos C =-1, ①由正弦定理a sin A =b sin B ,得a sin(120°-C )=bsin60°,∴532cos C +12sin C =b32,即3b cos C +b sin C =53, ② 将①代入②,得b sin C =63,故△ABC 的面积为S =12ab sin C =125³63=153.……………………(12分)18.(本小题满分12分) 解:(Ⅰ)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d =-223a 1.∴S n =na 1+n (n -1)2³(-223a 1)=-123a 1n 2+2423a 1n =-1231(n -12)2+14423a 1.∵a 1>0,∴当n =12时,S n 取得最大值.…………………………………(6分) (Ⅱ)由(Ⅰ)及a 1=-46,得d =-223³(-46)=4,∴a n =-46+(n -1)³4=4n -50,S n =-46n +n (n -1)2³4=2n 2-48n .∴b n =S n -a n n =2n 2-52n +50n =2n +50n-52≥22n ³50n-52=-32,当且仅当2n =50n,即n =5时,等号成立.故b n 的最小值为-32.……………………………………………………(12分)19.(本小题满分12分) 解:(Ⅰ)由∠ADB =90°,可得BD ⊥AD .因为PD ⊥底面ABCD , 所以PD ⊥BD .又PD ∩AD =D ,所以BD ⊥平面PAD ,因为PA ⊂平面PAD , 所以BD ⊥PA .…………………………………………………………………(4分)(Ⅱ)建立如图所示的空间直角坐标系D -xyz ,设AD =a ,则A (a ,0,0),B (0,3a ,0),C (-a ,3a ,0),P (0,0,a ),→AB =(-a ,3a ,0),→BC =(-a ,0,0),→AP =(-a ,0,a ),→PC =(-a ,3a ,-a ).设平面PAB 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ²→AB =0,n ²→AP =0。

相关文档
最新文档