角平分线的性质和判定经典复习题(1份)
角平分线的性质和判定复习题
角平分线内容及典型例题一. 复习内容:1. 角平分线的作法.2. 角平分线的性质及判定.3. 角平分线的性质及判定的应用.二. 知识要点:1. 角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.2. 角平分线的性质及判定(1)角平分线的性质:角的平分线上的点到角的两边的距离相等.①推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB②几何表达:(角的平分线上的点到角的两边的距离相等)如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.(2)角平分线的判定:到角的两边的距离相等的点在角的平分线上.①推导已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在R t△PAO和R t△PBO中,∴R t△PAO≌R t△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.②几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)3. 角平分线性质及判定的应用①为推导线段相等、角相等提供依据和思路;②实际生活中的应用.例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由.4. 画一个任意三角形并作出两个角(内角、外角)的平分线,观察交点到这个三角形三条边所在直线的距离的关系.三. 重点难点:1. 重点:角平分线的性质及判定2. 难点:角平分线的性质及判定的应用【考点分析】本讲内容作为基础内容来讲,它在中考题中偶尔以选择题或填空题的形式出现,但角平分线的性质及判定有时出现在综合题题目当中,因此还是比较重要的.【典型例题】例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定).分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路.证明:(1)∵∠C=∠C′=90°(已知),∴AC⊥BC,AC′⊥BC′(垂直的定义).又∵AC=AC′(已知),∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).∴∠ABC=∠ABC′.(2)∵∠C=∠C′,∠ABC=∠ABC′,∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)(三角形内角和定理).即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′(角平分线上的点到这个角两边的距离相等).评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性.例2. 如图所示,已知△ABC中,PE∥AB交BC于E,PF∥AC交BC于F,P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出∠1=∠2,再利用平行线推得∠3=∠4,最后用角平分线的定义得证.解:AD平分∠BAC.∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.评析:由角平分线的判定判断出PD平分∠EPF是解决本例的关键.“同理”是当推理过程相同,只是字母不同时为书写简便可以使用“同理”.例3. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.解:AP平分∠BAC.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.∵BM是∠ABC的角平分线且点P在BM上,∴PD=PE(角平分线上的点到角的两边的距离相等).同理PF=PE,∴PD=PF.∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).例4.如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m,现分别以公路、铁路所在直线为x轴、y轴建立平面直角坐标系.(1)学校距铁路的距离是多少?(2)请写出学校所在位置的坐标.分析:因为角平分线上的点到角的两边距离相等,所以点P到铁路的距离与到公路的距离相等,也是400m;点P在第四象限,求点P的坐标时要注意符号.解:(1)∵点P在公路与铁路所夹角的平分线上,∴点P到公路的距离与它到铁路的距离相等,又∵点P到公路的距离是400m,∴点P(学校)到铁路的距离是400m.(2)学校所在位置的坐标是(400,-400).评析:角平分线的性质的作用是通过角相等再结合垂直证明线段相等.例5.如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.分析:由于点D在∠CAB的平分线上,若过点D作DE⊥AB于E,则DE=DC.于是有BD+DE=BD+DC=BC=AC,只要知道AC与AE的关系即可得出结论.解:能.过点D作DE⊥AB于E,则△BDE的周长等于AB的长.理由如下:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE.在R t△ACD和R t△AED中,,∴R t△ACD≌R t△AED(HL).∴AC=AE.又∵AC=BC,∴AE=BC.∴△BDE的周长=BD+DE+BE=BD+DC+BE=BC+BE=AE+BE=AB.评析:本题是一道探索题,要善于利用已知条件获得新结论,寻找与要解决的问题之间的联系.本题利用角平分线的性质将要探究的结论进行转化.这是初中几何中常用的一种数学思想.【方法总结】学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.练习题一. 选择题1. 如图所示,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是()A. PC>PDB. PC=PDC. PC<PDD. 不能确定2. 在R t△ABC中,∠C=90°,AD是角平分线,若BC=10,BD∶CD=3∶2,则点D 到AB的距离是()A. 4B. 6C. 8D. 103. 在△ABC中,∠C=90°,E是AB边的中点,BD是角平分线,且DE⊥AB,则()A. BC>AEB. BC=AEC. BC<AED. 以上都有可能4. (2007年浙江义乌)如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A. 3B. 4C. 5D. 65. 如图所示,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A. DC=DEB. ∠AED=90°C. ∠ADE=∠ADCD. DB=DC6. 到三角形三边距离相等的点是()A. 三条高的交点B. 三条中线的交点C. 三条角平分线的交点D. 不能确定7. 如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,且AB=6cm,则△DEB的周长为()A. 4cmB. 6cmC. 10cmD. 以上都不对8. 如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有()A. 一处B. 二处C. 三处D. 四处二. 填空题9. 如图所示,点P是∠CAB的平分线上一点,PF⊥AB于点F,PE⊥AC于点E,如果PF=3cm,那么PE=__________.10. 如图所示,DB⊥AB,DC⊥AC,BD=DC,∠BAC=80°,则∠BAD=__________,∠CDA=__________.11. 如图所示,P在∠AOB的平分线上,在利用角平分线性质推证PD=PE时,必须满足的条件是____________________.12. 如图所示,∠B=∠C,AB=AC,BD=DC,则要证明AD是∠BAC的__________线.需要通过__________来证明.如果在已知条件中增加∠B与∠C互补后,就可以通过__________来证明.因为此时BD与DC已经分别是__________的距离.13. 如图所示,C为∠DAB内一点,CD⊥AD于D,CB⊥AB于B,且CD=CB,则点C 在__________.14. 如图所示,在R t△ACB中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=8,BD=5,则点D到AB的距离是__________.(2)若BD∶DC=3∶2,点D到AB的距离为6,则BC的长为__________.15. (1)∵OP平分∠AOB,点P在射线OC上,PD⊥OA于D,PE⊥OB于E,∴__________(依据:角平分线上的点到这个角两边的距离相等).(2)∵PD⊥OA,PE⊥OB,PD=PE,∴OP平分∠AOB(依据:___________).三. 解答题16. 已知:如图,在R t△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE =DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.17. 如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF +∠BAF=180°.(1)求证:DE=DF;(2)若把最后一个条件改为:AE>AF,且∠AED+∠AFD=180°,那么结论还成立吗?18. 如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC =BC.19. 如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.(1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.四. 探究题20. 有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.八年级数学试题得分评卷人一、选择题(每题3分,共24分)1. 下列图案是轴对称图形的有()A .1个B .2个C .3个D .4个 2.如果一个有理数的平方根和立方根相同,那么这个数是( )A. ±1B. 1C. 0D. 0和13. 下列说法:①用一张底片冲洗出来的2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形.其中正确的是( ) A. ①②③ B .①③④ C .①③ D .③4.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( ) A. 大于90° B. 等于90° C. 小于90° D. 不能确定 5. ( )A .9B .9±C .3D .3± 6. 估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D . 5与6之间 7. 如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )B 图1AEBDC A 'E 'A.B.C.D.8.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个二、填空题(每题4分,共32分)9. 无理数3-的相反数是_______,绝对值是___________.10. 在-3-1,0 这四个实数中,最大的是________,最小的是___________.11. 以下是一个简单的数值运算程序:当输入x的值为4-时,则输出的结果为___________.12. 已知等腰三角形的一个内角为70°,则另外两个内角的度数是___________ .13. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.14. 如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E.若PE=2,则两平行线AD与BC间的距离为___________.(第13题图)15.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB•的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是___________.16. 如图所示,90E F∠=∠=,B C∠=∠,AE AF=,结论:①EM FN=;②CD DN=;③FAN EAM∠=∠;④ACN ABM△≌△.其中正确的有__________.得分评卷人(第15题图)(第16题图)三、解答题(共56分)17. 计算(每小题5分,共10分)(1)(21 2()2-18.(6分)自由下落的物体的高度h(m)与下落时间t(s)的关系为h=4.9t2.有一学生不慎让一个玻璃杯从19.6m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m/s)?得分评卷人19.(6分)已知:如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE =FE , FC ∥AB .求证:AD =CF .20. (6分)如图,写出A 、B 、C 关于y 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形.21. (8分) 认真观察下图4个图中阴影部分构成的图案,回答下列问题: (1)请写出这四个图案都具有的两个共同特征.EADFC特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22.(8分) 如图,两条公路AB ,AC 相交于点A ,现要建个车站D,使得D 到A 村和B 村的距离相等,并且到公路AB 、AC 的距离也相等. (1) 请在图1中画出车站的位置.(2) 若将A 、B 抽象为两个点,公路AC 抽象为一条直线,请在直线AC 上找一个点M ,使△ABM23.(10分)在△ABC 中,AB =CB ,∠ABC =90º,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30º,求∠ACF 度数.CDD24.(10分)数学课上,李老师出示了如下框中的题目.A小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).ABCEF(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A 二、填空题(32分)9. 3,3 ; 10. 0, -3; 11. 2 ; 12. 70°40°或55°55°;13. AC ,∠CAE ; 14. 4 ; 15. 20cm ; 16.①③④. 三、解答题(64分) 17.(10分) (1)原式=7)2(9.061+--⨯…………………………2分 =7210961++⨯ ……………………………4分 =2039 …………………………………5分(2) 原式=)2(164222-⨯-+-…………………2分 =324222++-……………………………4分 = 24334-………………………………… 5分 18. (6分)解:根据题意得 6.199.42=t …………………1分 9.46.192=t …………………2分 2=t …………………3分声音传播所用的时间是 )(6.03406.19s ≈÷ …………………4分 因为 6.0< 2…………………………………5分答:楼下的学生能躲开。
专训12.3.1角平分线的性质+判定-八年级上册考点专训(解析版)(人教版)
专训12.3.1角平分线的性质+判定1.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是_______.【答案】30【分析】作DE AB ⊥于E ,如图,利用基本作图得到AP 平分∠BAC ,根据角平分线的性质得4DC DE ==,然后根据三角形面积公式.【详解】解:作DE AB ⊥于E ,如图,由作法得AP 平分∠BAC ,∴4DC DE ==,∴△ABD 的面积=1154302⨯⨯=.故答案为:30.【点睛】本题考查了基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2.如图,OC 是AOB ∠的角平分线,点P 是OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,若6PM =,则PN 的最小值为______.【答案】6【分析】根据垂线段最短可得PN ⊥OA 时,PN 最短,再根据角平分线上的点到角的两边的距离相等可得PM =PN ,从而得解.【详解】当PN ⊥OA 时,PN 的值最小,∵OC 平分∠AOB ,PM ⊥OB ,∴PM =PN ,∵PM =6,∴PN 的最小值为6.故答案为:6.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.3.如图,在ABC 中,AD 为BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F .若ABC 的面积是228cm ,20cm AB =,8cm AC =,则DE =____cm .【答案】2【分析】先根据角平分线的性质得出DE =DF ,再根据三角形的面积公式即可得出结论.【详解】解:在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,∴S △ABC =S △ABD +S △ACD =12AB •DE +12AC •DF ,∵△ABC 面积是28cm 2,AB =20cm ,AC =8cm ,∴12×20DE +12×8DF =10DE +4DF =14DE =28,解得DE =2cm .故答案为:2.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.4.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若3BE =,BDE 的周长为11,则BC =______.【答案】8【分析】利用角平分线的性质推出DE DC =,再根据三角形的周长计算得出答案.【详解】解:∵AD 平分BAC ∠,过点D 作DE AB ⊥于E ,90C ∠=︒,∴DE DC=∴BDE 的周长311BE BD DE BE BD CD BE BC BC =++=++=+=+=,∴8BC =.故答案为:8【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记定理是解题的关键.5.如图所示,AD 是△ABC 的平分钱,DF ⊥AB 于点F ,DE =DG ,若S △DEF =2,S △ADG =9:则△ADE 的面积为________.【答案】5【分析】过点D 作DH ⊥AC 于H ,根据角平分线的性质得到DH =DF ,进而证明Rt △DEF ≌Rt △DGH ,根据全等三角形的性质得到△DEF 的面积=△DGH 的面积=2,同理:△ADF 的面积=△ADH 的面积=7,进而即可求解.【详解】解:过点D 作DH ⊥AC 于H,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DH =DF ,在Rt △DEF 和Rt △DGH 中,∵DF DH DE DG ⎧⎨⎩==,∴Rt △DEF ≌Rt △DGH (HL ),∴△DEF 的面积=△DGH 的面积=2,同理可证,Rt △ADF ≌Rt △ADH ,∴△ADF 的面积=△ADH 的面积=9-2=7,∴△ADE 的面积=7-2=5.故答案是:5.【点睛】本题考查的是全等三角形的判定与性质、角平分线的性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.6.如图,在ABC 中,90,C AD ∠=︒是ABC 的角平分线,DE AB ⊥,垂足为E ,若2,CD DE ==_______.【答案】2【分析】根据角平分线的性质定理即可完成.【详解】∵AD 平分∠CAB ,且∠C =90°,DE AB⊥∴DE =CD =2故答案为:2.【点睛】本题考查了角平分线的性质定理,关键是清楚定理的条件:一是角平分线,二是经过角平分线的点的直线,且这两条直线垂直角的两边,即要有两个垂直,具体在有些题目中,往往缺少一个或两个垂直,这时要作一个垂直或两个垂直.7.如图在ABC 中,=90ACB ∠︒,BE 平分ABC ∠,DE AB ⊥于D ,如果+=3AE DE ,那么=AC ________.【答案】3【分析】根据角平分线上的点到角的两边距离相等可得CE =DE ,然后求出AC =AE +DE .【详解】解:∵∠ACB =90°,BE 平分∠ABC ,DE ⊥AB ,∴CE =DE ,∴AC =AE +CE =AE +DE =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,是基础题,熟记性质是解题的关键.8.如图,在ABC 中,90C ∠=,AD 是BAC ∠的平分线,若2CD =,6AB =,则ABD 的面积是________.【答案】6【分析】设点D 到AB 的距离为h ,根据角平分线的性质即可求解【详解】设点D 到AB 的距离为h ,AD 是BAC ∠的平分线,90C = ∠,2CD =DC AC ∴⊥,2CD h == 6AB =∴1162622ABC S AB h =⨯=⨯⨯=△故答案为:6【点睛】本题考查了角平分线的性质,熟悉角平分线的性质是解题的关键.9.如图,OP 平分∠AOB ,PC ⊥OA ,点D 是OB 上的动点,若PC =1cm ,则PD 的长的最小值为___.【答案】1cm【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】解: 垂线段最短,∴当PD OB ⊥时PD 最短,OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,1PC = ,1PD ∴=,即PD 长度最小为1.故答案为:1cm .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,解题的关键是:确定出PD 最小时的位置是解题的关键.10.如图,//AB CD ,108CDM ∠=︒,GF 交MEB ∠的角平分线EF 于点F ,120BGF ∠=︒.则F ∠=______.【答案】84︒【分析】根据//AB CD ,求出AED ∠,由对顶角相等及角平分线性质求出FEG ∠,最后根据三角形的外角性质求出F ∠即可.【详解】解://,108AB CD CDM ∠=︒ ,72AED ∴∠=︒,72MEG ∴∠=︒,EF 是MEB ∠的角平分线,1362FEG MEG ∴∠=∠=︒,120BGF ∠=︒ 为三角形的外角,BGF FEG F ∴∠=∠+∠,1203684F ∴∠=︒-︒=︒,故答案是:84︒.【点睛】本题考查了平行线的性质、对顶角、角平分线的性质、三角形的外角,解题的关键是掌握相关的性质,灵活运用.11.如图,AD 是ABC 的角平分线.若90,B BD ∠=︒=,则点D 到AC 的距离是_________.【分析】根据角平分线的性质,角平分线上的点到角的两边的距离相等,即可求得.【详解】如图,过D 作DE AC ⊥,则D 到AC 的距离为DEAD平分CAB ∠,90,B BD ∠=︒=,∴DE BD ==∴点D 到AC【点睛】本题考查了角平分线的性质,点到直线的距离等知识,理解点到直线的距离的定义,熟知角平分线的性质是解题关键.12.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若4BC =,1.6DE =,则BD 的长为______.【答案】2.4【分析】先根据角平分线的性质可得 1.6CD DE ==,再根据线段的和差即可得.【详解】解:AD 平分BAC ∠,90C ∠=︒,DE AB ⊥, 1.6DE =,1.6CD DE ∴==,4BC = ,4 1.6 2.4BD BC CD ∴=-=-=,故答案为:2.4.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.13.如图,在 ABC 中,BD 平分∠ABC 交AC 于点D ,EF ∥BC 交BD 于点G ,若∠BEG =130°,则∠DGF =_____°.【答案】25【分析】根据角平分线的定义得到∠EBG =∠CBG ,根据平行线的性质得到∠EGB =∠CBG ,等量代换得到∠EBG =∠EGB ,再根据三角形的内角和定理和对顶角的性质于是得到结论.【详解】解:∵EF ∥BC ,∴∠EGB =∠CBG ,∵BD 平分∠ABC ,∴∠EBG =∠CBG ,∴∠EBG =∠EGB ,∵∠BEG =130°,∴∠EGB =1801302︒︒-=25°,∴∠DGF =∠EGB =25°.故答案为:25.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的内角和定理,熟练掌握这些性质是解题的关键.14.如图,在ABC 中,90C ∠=︒,以点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知14CB =,8BE =,则点E 到AB 的距离为________.【答案】6【分析】如图,过点E 作ET ⊥AB 于T .证明ET =EC ,可得结论.【详解】解:如图,过点E 作ET ⊥AB 于T .∵BC =14,BE =8,∴EC =BC -BE =6,由作图可知,AE 平分⊥CAB ,∵EC ⊥AC ,ET ⊥AB ,∴ET =EC =6,故答案为:6.【点睛】本题考查作图——复杂作图,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.判断正误:三角形三条角平分线交于一点,且这一点到三顶点的距离相等__.【答案】⨯【分析】根据三角形角平分线的性质分析,即可得到答案.【详解】由角平分线性质可知:三角形的三条角平分线交于一点,这点到三角形的三边的距离相等;故答案为:⨯.【点睛】本题考查了三角形角平分线的知识;解题的关键是熟练掌握三角形角平分线的性质,从而完成求解.16.如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ∠=︒,②AC BD =,③OM 平分AOD ∠,④MO 平分AMD ∠.其中正确的结论是______(填序号).【答案】①②④【分析】由SAS 证明△AOC ≌△BOD 得出,得出∠OAC =∠OBD ,由扇形内角和:∠AMB=180-∠OBD-∠MGB =180°-∠OAC -∠OGA =∠AOC =36°,得出∠AMB =∠AOB =36°,①正确;由△AOC ≌△BOD 得出AC =BD ,②正确;作OG ⊥AM 于G ,OH ⊥DM 于H ,如图所示:则∠OGA =∠OHB =90°,利用全等三角形对应边上的高相等,得出OG =OH ,由角平分线的判定方法得出MO 平分∠AMD ,④正确;假设MO 平分∠AOD ,则∠DOM =∠AOM ,由全等三角形的判定定理可得△AMO ≌△DMO ,得AO =OD ,而OC =OD ,所以OA =OC ,而OA <OC ,故③错误;即可得出结论.【详解】解:设AC 与OB 交于G∵∠AOB =∠COD =36°,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴∠OAC =∠OBD ,∵∠OGA =∠MGB ,∴∠AMB=180-∠OBD-∠MGB =180°-∠OAC -∠OGA =∠AOC =36°,∴∠AMB =∠AOB =36°,故①正确;∵△AOC ≌△BOD (SAS ),∴AC=BD ,故②,作OG ⊥AM 于G ,OH ⊥DM 于H,如图所示,则∠OGA =∠OHB =90°,∵△AOC ≌△BOD ,∴S △OAC =S △OBD ,即AC·OG =BD·OH ,∵AC =BD ,∴OG =OH ,∴MO 平分∠AMD ,故④正确;假设MO 平分∠AOD ,则∠DOM =∠AOM ,在△AMO 与△DMO 中,AOM DOM OM OM AMO DMO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO ≌△DMO (ASA ),∴AO =OD ,∵OC =OD ,∴OA =OC ,而OA <OC ,∴假设不正确,OM 不能平分AOD∠故③错误;正确的序号有①②④.故答案为①②④.【点睛】本题考查了全等三角形的判定与性质、三角形的内角和性质、角平分线的判定与性质,反证法等知识;掌握全等三角形的判定与性质、三角形的内角和性质、角平分线的判定与性质,反证法等知识,证明三角形全等是解题的关键.17.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.【答案】112.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩,∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC ,∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.18.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.【答案】61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.19.数学课上,同学们兴致勃勃地尝试着利用不同画图工具画一个角的平分线.小明用直尺画角平分线的方法如下:(1)用直尺的一边贴在∠AOB的OA边上,沿着直尺的另一条边画直线m;(2)再用直尺的一边贴在∠AOB的OB边上,沿着直尺的另一条边画直线n,直线m与直线n交于点D;(3)作射线OD.射线OD是∠AOB的平分线.请回答:小明的画图依据是____________________.【答案】角的内部到角的两边距离相等的点在这个角的平分线上【分析】根据角平分线的判定定理即可得出答案.【详解】∵作图时使用同一把尺子,尺子的宽度是一致的,∴点D 到OA 和OB 的距离是一样的,∴射线OD 是∠AOB 的平分线(角的内部到角的两边距离相等的点在这个角的平分线上).故答案为:角的内部到角的两边距离相等的点在这个角的平分线上.【点睛】本题考查了角平分线的判定定理,熟练掌握角平分线判定定理是解题关键.20.如图,ABC 中,ABC ∠、EAC ∠的角平分线BP 、AP 交于点P ,延长BA 、BC ,则下列结论中正确的有_______.(将所有正确序号填在横线上)①CP 平分ACF ∠;②2180ABC APC ︒∠+∠=,③2ACB APB =∠∠;④若PM BE ⊥,PN BC ⊥,则AM CN AC +=.【答案】①②③④【分析】①作PD ⊥AC 于D .由角平分线的性质得出PM=PN ,PM=PD ,得出PM=PN=PD ,即可得出①正确;②首先证出∠ABC+∠MPN=180°,证明Rt △PAM ≌Rt △PAD (HL ),得出∠APM=∠APD ,同理:Rt △PCD ≌Rt △PCN(HL ),得出∠CPD=∠CPN ,即可得出②正确;③由角平分线和三角形的外角性质得出∠CAE=∠ABC+∠ACB ,∠PAM=12∠ABC+∠APB ,得出∠ACB=2∠APB ,③正确;④由全等三角形的性质得出AD=AM ,CD=CN ,即可得出④正确;即可得出答案.【详解】解:①作PD ⊥AC 于D .∵PB 平分∠ABC ,PA 平分∠EAC ,PM ⊥BE ,PN ⊥BF ,∴PM=PN ,PM=PD ,∴PM=PN=PD ,∴点P 在∠ACF 的角平分线上,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,在Rt △PAM 和Rt △PAD 中,PA PA PM PD=⎧⎨=⎩,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM=∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD=∠CPN ,∴∠MPN=2∠APC ,∴∠ABC+2∠APC=180°,②正确;③∵PA 平分∠CAE ,BP 平分∠ABC ,∴∠CAE=2∠PAM ,∵∠CAE=∠ABC+∠ACB ,∠PAM=12∠ABC+∠APB ,∴∠ACB=2∠APB ,③正确;④∵Rt △PAM ≌Rt △PAD (已证),∴AD=AM ,∵Rt △PCD ≌Rt △PCN (已证),∴CD=CN ,∴AM+CN=AD+CD=AC ,④正确;故答案为:①②③④.【点睛】本题考查了角平分线的性质定理和判定定理,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,有一定综合性,但难度不大,只要仔细分析便不难求解.21.如图,在△ABC 中,∠A =90°,DE ⊥BC ,垂足为E .若AD =DE 且∠C =50°,则∠ABD =_____°.【答案】20︒【分析】利用三角形的内角和定理先求解ABC ∠,再利用角平分线的性质定理的逆定理证明:BD 平分,ABC ∠从而可得答案.【详解】解:9050A C ∠=︒∠=︒ ,,180905040ABC ∴∠=︒-︒-︒=︒,90,,A DE BC DA DE ∠=︒⊥= ,BD ∴平分,ABC ∠1202ABD ABC ∠=∠=︒,故答案为:20.︒【点睛】本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.22.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=60°,∠ADG=120°,则∠DGF=_____________【答案】150°【分析】先根据到角的两边距离相等的点在角的平分线上得到AD是∠BAC的平分线,求出∠CAD的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=60°,∴∠CAD=12∠BAC=30°,∴∠DGF=∠CAD+∠ADG=30°+120°=150°.故答案为:150°.【点睛】本题考查了角平分线的判定与三角形的一个外角等于与它不相邻的两个内角的和的性质,仔细分析图形是解题的关键.23.如图,O是△ABC内一点,且O到三边AB,BC,CA的距离OF=OD=OE,若∠BAC=80°,则∠BOC 的度数为_________.【答案】130°根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=80°,∴∠ABC+∠ACB=180°-80°=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=12×100°=50°,在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-50°=130°.故答案为:130°.【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.24.如图,ABC 中,A 60∠=︒,AB>AC ,两内角的平分线CD 、BE 交于点O ,OF 平分BOC ∠交BC 于F ,(1)BOC 120∠=︒;(2)连AO ,则AO 平分BAC ∠;(3)A 、O 、F 三点在同一直线上;(4)OD=OE ;(5)BD+CE=BC .其中正确的结论是__________.(填序号)【答案】①②④⑤.【分析】根据三角形内角和定理求出∠ABC+∠ACB 度数,求出∠EBC+∠DCB 度数,根据三角形内角和定理求出∠BOC 即可判断①,过O 作OM ⊥AB 于M ,OQ ⊥AC 于Q ,ON ⊥BC 于N ,根据角平分线性质求出OQ=OM=ON ,根据角平分线性质求出AO 平分∠BAC 即可判断②;假设,,A O F 三点共线,利用三角形的外角的性质逆推可得:ABC ACB ∠=∠,与已知条件AB>AC ,得ACB ∠>ABC ∠,互相矛盾,可判断③,证MOD QOE ≌,即可推出OD=OE ,从而判断④,通过全等求出BM=BN ,CN=CQ ,代入即可求出BD+CE=BC ,从而判断⑤.解:∵∠A=60°,∴18060120ABC ACB ∠+∠=︒-︒=︒,∴()1602ABC ACB ∠+∠=︒,∵BE 平分∠ABC ,CD 平分∠ACB ,∴1122EBC ABC DCB ACB ∠=∠∠=∠,,∴()1602EBC DCB ABC ACB ∠+∠=∠+∠=︒,∴()180120BOC EBC DCB ∠=︒-∠+∠=︒,∴①正确;过O 作OM ⊥AB 于M ,OQ ⊥AC 于Q ,ON ⊥BC 于N ,∵O 是∠ABC 和∠ACB 的角平分线交点,∴OM=ON ,ON=OQ ,∴OQ=OM ,∴O 在∠A 平分线上,∴②正确;如图,若,,A O F 三点共线,BOF BAO ABO COF OAC OCA ∴∠=∠+∠∠=∠+∠,,BOF COF BAO CAO ∠=∠∠=∠ ,,ABO ACO ∴∠=∠,ABC ACB ∴∠=∠,∵AB >AC ,∴∠ABC <∠ACB ,所以:A 、O 、F 不在同一直线上,∴③错误;∵120BOC ∠=︒,∴120DOE ∠=︒,OM ⊥AB ,OQ ⊥AC ,ON ⊥BC ,∴∠AMO=∠AQO=90°,∵∠A=60°,∴∠MOQ=120°,∴∠DOM=∠EOQ ,在OMD 和OQE 中,MOD EOQ OMD OQE OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OMD OQE ≌(AAS ),∴OE=OD ,∴④正确;在Rt BNO 与Rt BMO 中,BO BO ON OM=⎧⎨=⎩∴()Rt BNO Rt BMO HL ≌,BN BM BD DM∴==+同理,Rt CNO Rt CQO ≌,CN CQ CE EQ ∴==-,∴BN CN BD DM CE EQ +=++-,∵DM=EQ,∴BC=BD+CE ,∴⑤正确;故答案为:①②④⑤.【点睛】本题考查了角平分线性质,三角形的内角和定理,三角形的外角的性质,全等三角形的性质和判定的应用,掌握以上知识是解题的关键.25.如图,已知OQ 平分∠AOB ,且PM ⊥OA ,PN ⊥OB ,根据角平分线的性质,则有___________;反之如果PM=PN ,且___________,那么OP 平分∠AOB.【答案】PM=PN PM ⊥OA ,PN ⊥OB【分析】依据角平分线的定理和逆定理可知.【详解】解: OQ 平分∠AOB ,且PM ⊥OA ,PN ⊥OB ,PNO PMONOP MOP OP OP∠=∠⎧⎪∴∠=∠⎨⎪=⎩()PMO PNO AAS ∴≅ PM PN∴=反之PM=PN ,且PM ⊥OA ,PN ⊥OB ,PM PNOP OP=⎧∴⎨=⎩()Rt PMO Rt PNO HL ∴≅ POM PON∴∠=∠∴OP 平分∠AOB故答案为:PM=PN ;PM ⊥OA ,PN ⊥OB【点睛】本题考查角平分线性质及其逆定理、全等三角形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.26.如图,已知点D 是△ABC 的两外角平分线的交点,下列说法:(1)AD =CD ;(2)D 到AB 、BC 的距离相等;(3)D 到△ABC 的三边的距离相等;(4)点D 在∠B 的平分线上;其中正确的说法的序号是________________.【答案】(2),(3),(4)【解析】试题解析:如图,过点D 作DE BA ⊥交BA 的延长线于E ,作DF BC ⊥交BC 的延长线于F ,作DG AC ⊥于G ,∵点D 是ABC 的两外角平分线的交点,DE DG DF DG ∴==,,故()2正确;DE DF DG ∴==,故()3正确;∴点D 在B Ð的平分线上,故()4正确;只有AB BC =时,AE CF =,AD CD =,故()1错误.综上所述,说法正确的是()2()3()4.故答案为()2()3()4.点睛:角平分线上的点到角两边的距离相等.27.如图,90,C D E ∠=∠=︒为CD 中点,AE 平分,DAB ∠若32,DEA ∠= 则ABE ∠的度是__________.【答案】32︒【分析】根据已知条件以及直角三角形两锐角互余、角平分线的定义、四边形的内角和是360︒可求出64ABC ∠=︒,再根据角平分线的判定和性质即可求得答案.【详解】解:过点E 作EF AB ⊥于点F ,如图:∵90D ∠=︒,32DEA ∠=︒∴90903258DAE DEA ∠=︒-∠=︒-︒=︒∵AE 平分DAB∠∴2258116DAB DAE ∠=∠=⨯︒=︒∵90C D ∠=∠=︒∴在四边形ABCD 中,360909011664ABC ∠=︒-︒-︒-︒=︒∵EF AB ⊥,90D ∠=︒,AE 平分DAB∠∴EF ED=∵E 为CD 中点∴ED EC=∴EF EC =∵EF AB ⊥,90C ∠=︒∴BE 平分ABC∠∴11643222ABE ABC ∠=∠=⨯︒=︒故答案是:32︒【点睛】本题重点考查了角平分线的定义、判定和性质,涉及到的知识点有直角三角形的两锐角互余和四边形的内角和,其中证得EF EC =是解题的关键.28.如图,在OAB ∆和OCD ∆中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠= ,连接AC ,BD 交于点M ,连接OM ,下列结论:①AC BD =;②40CMD ∠= ;③OM 平分AOD ∠;④MO 平分BMC ∠,其中正确的序号是__________.【答案】①②④【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD ,①正确;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,④正确;先假设OM 平分∠AOD ,推出OA=OC 与条件中OA OC >相矛盾,推出③错误.【详解】解:∵∠AOB=∠COD=40︒,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≅△BOD ,∴∠OCA=∠ODB ,AC=BD ,①正确;∵△AOC ≅△BOD∴∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,∴∠AMB=∠AOB=40︒,∴∠CMD=∠AMB=40︒,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图2所示:则∠OGC=∠OHD=90︒,在△OCG 和△ODH 中,OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG ≅△ODH ,∴OG=OH ,∵OG ⊥MC ,OH ⊥MB∴MO 平分∠BMC ,④正确;∵∠AOB=∠COD ,假设OM 平分∠AOD ,∵OM 平分∠AOD,∴∠AOM=∠DOM ,∵△AOC ≌△BOD ,∴∠COM=∠BOM ,∵MO 平分∠BMC ,∴∠CMO=∠BMO ,在△COM 和△BOM 中,∴△COM ≌△BOM(ASA),∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA>OC 矛盾,故假设不成立,OM 不平分∠AOD∴③错误;故答案为:①②④【点睛】本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.29.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】1166426在【分析】∠ABC+∠ACB=180°-∠A ,∠OBC+∠OCB=12(∠ABC+∠ACB ),∠BOC=180°-(∠OBC+∠OCB ),据此可求∠BOC 的度数;∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP 平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+12∠A=90°+12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°-12[∠A+(∠A+∠ABC+∠ACB)]=180°-12(∠A+180°)=90°-12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∴PAB∠=26°同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1)116;(2)64;(3)26;(4)在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.30.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”小明的做法,其理论依据是__【答案】在角的内部,到角两边距离相等的点在角的平分线上【分析】根据角平分线的性质即可证明.【详解】因为直尺的宽度一样,故点P 到AO 与BO 的距离相等,故可知PO 为角平行线.【点睛】此题主要考查角平行线的性质,解题的关键是熟知角平分线的性质.31.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
角平分线的性质练习题
角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。
5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。
6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。
三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。
8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。
四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。
10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。
五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。
12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。
六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。
14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (87)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:BD=CD.【答案】见解析【解析】【分析】根据角平分线的性质得到DE=DF,通过SAS证明△DEB≌△DFC,即可得到结论.【详解】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.在△DEB和△DFC中,∵DE DFDEB DFCBE FC=⎧⎪∠=∠⎨⎪=⎩,∴△DEB≌△DFC,∴BD=DC.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质定理,解题的关键是正确寻找全等三角形解决问题.62.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,求证:∠EAB=∠EAD.【答案】证明见详解【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”进行分析证明.【详解】解:证明:如图,过点E作EF⊥AD于F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,∴点E在∠BAD的平分线上,∴∠EAB=∠EAD.【点睛】本题考查角平分线性质,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.63.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,△ABC 的面积为36cm 2,AB=18cm ,BC=12cm ,求DE 的长.【答案】125cm 【解析】【分析】由题意作DF ⊥BC 于F ,根据角平分线性质可得DE=DF ,进而利用ABC BCD ABD S S S =+进行分析计算即可求得DE 的长.【详解】解:作DF ⊥BC 于F ,∵BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DF ,∵△ABC 的面积为36cm 2, ∴113622ABC BCD ABD S S S BC DF AB DE =+=+=cm 2, ∵AB=18cm ,BC=12cm ,∴69691536DF DE DE DE DE +=+==,∴5361125DE ==cm. 【点睛】本题考查的是角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.64.如图,已知在ABC ∆中,90C ∠=︒,CA CB =,AD 平分CAB ∠交BC 于D ,DE AB ⊥.(1)说明ADC ADE ∆∆≌的理由;(2)若8AB =,求DEB ∆的周长.【答案】(1)详见解析;(2)8.【解析】【分析】(1)根据角平分线的性质及HL 即可判定Rt Rt ACD AED ∆∆≌;(2)根据全等三角形的性质及周长的定义即可求解.【详解】(1)90C ∠=︒DC AC ∴⊥ AD 平分BAC ∠,DE AB ⊥CD ED ∴=在Rt ACD ∆和Rt AED ∆中CD ED AD AD =⎧⎨=⎩Rt Rt ACD AED ∴∆∆≌(2)∵Rt Rt ACD AED ∆∆≌,CA CB =,CD ED =∴8DEB C DB DE EB BC BE AC BE AE BE AB ∆=++=+=+=+==【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知角平分线的性质定理.65.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B=40°,∠E=30°,求∠BAC 的度数.【答案】∠BAC=100°.【解析】【分析】本题考查了三角形外角性质,角平分线定义的应用,根据三角形外角性质求出∠ECD ,根据角平分线定义求出∠ACD ,根据三角形外角性质求出即可.【详解】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE 是△ABC 的外角∠ACD 的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点睛】本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理66.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.【答案】20°,105°.【解析】【分析】先根据三角形内角和定理计算出∠BAC=180°-∠ABC-∠C=80°,再根据角平分线的性质得到∠CAE=12∠BAC=40°,利用三角形外角性质得∠AED=∠CAE+∠C=70°,进一步求得∠DAE;利用三角形外角的性质得出∠AOB=∠AED+∠CBF进行计算.【详解】∵∠ABC=70°,∠C=30°,∴∠BAC=180°﹣∠ABC﹣∠C=80°,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40°,∠CBF=12∠ABC=35°,∴∠AED=∠CAE+∠C=40°+30°=70°,∵AD ⊥BC ,∴∠DAE =90°﹣∠AED =20°;∵∠AOB =∠AED +∠CBF ,∴∠AOB =70°+35°=105°.【点睛】此题考查三角形内角和定理,三角形外角性质,角平分线的定义,解题关键在于掌握三角形内角和为180°.67.如图,DAB BCD ∠=∠,12180∠+∠=︒,BC 平分ACH ∠.(1)找出图中所有的平行直线,直接写出结论.(2)判断:AD 是GAC ∠的角平分线吗?并说明理由.(3)图中与B 相等的角共有______个.(不包括B )【答案】(1)AB ∥DC ,AD ∥BC ;(2)是,理由见解析;(3)5【解析】【分析】(1)根据平行线的判定解答即可;(2)利用平行线的性质和角平分线的定义解答即可;(3)根据平行线的性质和等量代换解答即可.【详解】(1)∵∠1+∠2=180°,∠2+∠ACD=180°,∴∠1=∠ACD,∴AB∥DC,∴∠DAB+∠ADC=180°,∵∠DAB=∠BCD,∠BCD+∠BCH=180°,∴∠ADC=∠BCH,∴AD∥BC;(2)∵AD∥BC,∴∠DAC=∠ACB,∵AB∥DC,∴∠GAC=∠ACH,∵BC平分∠ACH.∴∠ACB=∠BCH,∴∠GAD=∠DAC,即AD平分∠GAC;(3)∵AB∥DC,∴∠B=∠BCH, ∠DAF=∠ACB.∵AD∥BC,∴∠B=∠GAD, ∠D=∠BCH.∵∠GAD=∠DAC,∴∠B=∠BCH=∠D=∠GAD=∠ACB=∠DAC,∴图中与B相等的角共有5个.【点睛】此题考查平行线的判定和性质,用到的知识点:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.68.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE (1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【答案】(1)OF⊥OD,证明详见解析;(2)∠EOF=60°.【解析】【分析】(1)由OD平分∠BOE、OF平分∠AOE,可得出∠FOE=12∠AOE、∠EOD=12∠EOB,根据邻补角互补可得出∠AOE+∠EOB=180°,进而可得出∠FOD =∠FOE+∠EOD=90°,由此即可证出OF⊥OD;(2)由∠AOC:∠AOD=1:5结合邻补角互补、对顶角相等,可求出∠BOD 的度数,根据OD平分∠BOE、OF平分∠AOE,可得出∠BOE的度数以及∠EOF=12∠AOE,再根据邻补角互补结合∠EOF=12∠AOE,可求出∠EOF的度数.【详解】(1)OF⊥OD.证明:∵OD平分∠BOE,OF平分∠AOE,∴∠FOE=12∠AOE,∠EOD=12∠EOB.∵∠AOE+∠EOB=180°,∴∠FOD=∠FOE+∠EOD=12(∠AOE+∠EOB)=90°.∴OF⊥OD.(2)∵∠AOC:∠AOD=1:5,∠AOC=∠BOD,∴∠BOD:∠AOD=1:5.∵∠AOD+∠BOD=180°,∴∠BOD=30°,∠AOD=150°.∵OD平分∠BOE,OF平分∠AOE,∴∠BOE=2∠BOD=60°,∠EOF=12∠AOE.∵∠AOE+∠BOE=180°,∴∠AOE=120°,∴∠EOF=60°.【点睛】此题考查对顶角,邻补角,角平分线的定义,解题的关键是:(1)根据邻补角互补结合角平分线的定义找出∠FOD=90°;(2)通过比例关系结合邻补角互补求出∠BOD的度数.69.已知DB∥EH,F是两条射线内一点,连接DF、EF.(1)如图1:求证:∠F=∠D+∠E;(2)如图2:连接DE,∠BDE、∠HED的角平分交于点F时,求∠F的度数;(3)在(2)条件下,点A是射线DB上任意一点,连接AF,并延长交EH于点G,求证:AF=FG.【答案】(1)见解析;(2)90 ;(3)见解析.【解析】【分析】(1)过点F作FM∥BD,则FM∥HE,又根据FM∥BD,即可有∠1=∠D,∠2=∠E,则可证明∠F=∠D+∠E;(2)根据角平分线得出∠3=∠5,∠4=∠6,DB∥HE得出∠3+∠5+∠4+∠6=1800,即可证明∠F=900;(3)过F 点作BD的垂线,垂足为K,延长KF交EH于点I;过F点作FJ垂线于点J,根据DA∥EH得出∠AKF=∠GIF=900,由角平分线得出KF=FJ,FI=FJ,所以KF=FI,则可证明△AKF≌△GIF,所以AF=FG.【详解】(1)过点F作FM∥BD,则FM∥HE,∵FM∥BD,FM∥HE∴∠1=∠D,∠2=∠E∵∠F=∠1+∠2∴∠F=∠D+∠E(2)∵DF是角平分线∴∠3=∠5又∵EF是角平分线∴∠4=∠6又∵DB∥HE∴∠3+∠5+∠4+∠6=1800∴∠5+∠6=900∴∠F=900(3)过F 点作BD 的垂线,垂足为K ,延长KF 交EH 于点I ;过F 点作FJ 垂线于点J∵DA ∥EH∴∠AKF =∠GIF =900∵DF 是角平分线∴KF =FJEF 是角平分线∴FI =FJ∴KF =FI在△AKF 和△GIF 中90 KFA IFG AKF GIF KF FI∠∠⎧⎪∠∠⎨⎪⎩==== ∴△AKF ≌△GIF (AAS )∴AF =FG【点睛】本题考查了平行线、角平分线、三角形全等等知识点,综合性较强,熟练掌握各个知识点,并学会综合运用是解题的关键.70.如图,OA BC ⊥,ODC ABO ∠=∠.(1)请判断CD 和AB 位置关系,并说明理由;(2)ADC ∠的平分线DE 与OAB ∠的平分线交于F ,求F ∠的度数.(3)在(2)的条件下,M 是线段AD 上任意一点(不同于A 、D ),作MN OA ⊥交AF 于N ,作ADE ∠与ANM ∠的平分线交于P 点,求P ∠的度数.【答案】(1)CD ⊥AB ,理由见解析;(2)45F ∠=︒;(3)22.5P ∠=︒.【解析】【分析】(1)利用等量代换得出∠ABO +∠OCD =90°,说明CD ⊥AB 即可;(2)利用角平分线的性质,邻补角的意义以及三角形的内角和定理在△AFD 中解决问题即可;(3)利用角平分线的性质,三角形的内角和,四边形的内角和解决问题即可.【详解】CD ⊥AB .如图,延长CD 交AB 于点P ,∵OA BC ⊥∴∠ODC +∠OCD =90°,∵ODC ABO ∠=∠∴∠ABO +∠OCD =90°,∴∠CPB =180°−(∠ABO +∠OCD )=90°∴CD ⊥AB .(2)∵DE 平分∠ADC ,AF 平分∠OAB ,11()22ADE ADC COD OCD ∴∠=∠=∠+∠ 12FAD BAO ∠=∠, OA BC ⊥,90,90,90COD OAB ABO OCD ODC ,11180()13522FDA COD OCD OCD ∴∠=︒-∠+∠=︒-∠ ∵ODC ABO ∠=∠∴OCD OAB ∠=∠,∴在△ADF 中,180()F FDA DAF ∠=︒-∠+∠1118013522OCD OAB ⎛⎫=︒-︒-∠+∠ ⎪⎝⎭180135=-︒︒45=︒(3)∵MN OA ⊥∴90NMD ∠=︒,()360225ADF MNF F NDF ∴∠+∠=︒-∠+∠=︒∵ADE ∠与ANM ∠的平分线交于P 点 ∴11,22PDA EDA PNM ANM ()11()18018067.522PDA PNM EDA ANM ADF MNF ∴∠+∠=∠+∠=-∠+-∠=︒︒︒ 360P F ADF MNF PDA PNM ︒∴∠=-∠-∠-∠-∠-∠360()()22.5F ADF MNF PDA PNM ︒=-∠-∠+∠-∠+∠=︒.【点睛】本题考查三角形内角和定理,垂线,三角形的外角性质,四边形的内角和定理,角平分线的性质.(1)中能正确画出辅助线是解题关键;(2)中能考虑到利用△AFD 的内角和,并正确表示出FDA ∠和FAD ∠是解题关键;(3)中能表示出四边形DNFP 的其它三个角是解题关键.。
角平分线的性质专项练习(含解析)
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
角平分线的性质定理和判定(经典)
角仄分线的本量定理战判决之阳早格格创做第一部分:知识面回瞅1、角仄分线:把一个角仄衡分为二个相共的角的射线喊该角的仄分线;2、角仄分线的本量定理:角仄分线上的面到角的二边的距离相等:①仄分线上的面;②面到边的距离;3、角仄分线的判决定理:到角的二边的距离相等的面正在角仄分线上第二部分:例题领会例 1.已知:正在等腰Rt△ABC中,AC=BC,∠C=90°,AD仄分∠BAC,DE⊥AB于面E,AB=15cm,(1)供证:BD+DE=AC.(2)供△DBE的周少.例2.如图,∠B=∠C=90°,M是BC中面,DM仄分∠ADC,供证:AM仄分∠DAB.例3.如图,已知△ABC的周少是22,OB、OC分别仄分∠ABC战∠ACB,OD⊥BC于D,且OD=3,△ABC的里积是几?第三部分:典型例题例1、已知:如图所示,CD⊥AB于面D,BE⊥AC于面E,BE、CD接于面O,且AO仄分∠BAC,供证:OB=OC.【变式训练】如图,已知∠1=∠2,P为BN上的一面,PF⊥BC于F,PA=PC,供证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M是BC的中面,DM仄分∠ADC.(1)若对接AM,则AM是可仄分∠BAD?请您道明您的论断;(2)线段DM与AM有何如的位子闭系?请道明缘由.(3)CD、AB、AD间?间接写出截止【变式训练】如图,△ABC中,P是角仄分线AD,BE的接面.供证:面P正在∠C的仄分线上.例3.如图,正在△ABC中,BD为∠ABC的仄分线,DE⊥AB于面E,且DE=2cm,AB=9cm,BC=6cm,供△ABC的里积.【变式训练】如图,D、E、F分别是△ABC的三条边上的面,CE=BF,△DCE战△DBF的里积相等.供证:AD仄分∠BAC.一、轻视“笔曲”条件例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.供证:AF 为∠BAC的仄分线.(1)有角仄分线,常常背角二边引垂线.(2)道明面正在角的仄分线上,闭键是要道明那个面到角二边的距离相等,即道明线段相等.时常使用要领有:使用齐等三角形,角仄分线的本量战利用里积相等,但是特地要注意面到角二边的距离.(3)注意:许多共教对于道明二个三角形齐等的问题已经很认识了,所以证题时,没有习惯间接应用角仄分线本量定理战判决定理,仍旧来找齐等三角形,截止相称于沉新道明白一次那二个论断.所以特地指示大家,能用简朴要领的,便没有要绕近路.A 组一、耐性选一选,您会启心(每题6分,共30分)1.三角形中到三边距离相等的面是( )A 、三条边的笔曲仄分线的接面B 、三条下的接面C 、三条中线的接面D 、三条角仄分线的接面2.如图,△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的仄分线,DE ⊥AB ,垂脚为E ,若AB =12cm ,则△DBE 的周少为()A 、12cmB 、10cmC 、14cmD 、11cm DCE B3.如图2所示,已知PA 、PC 分别是△ABC 的中角∠DAC 、∠ECA 的仄分线,PM ⊥BD ,PN ⊥BE ,垂脚分别为M 、N ,那么PM 与PN 的闭系是()4.如图3所示,△ABC 中,AB=AC ,DE ⊥AB ,DF ⊥AC ,垂脚分别是E 、F 确的论断有( ) ①AD 仄分∠EDF ; ②AE=AF ; C 二面的D M A B C N P E图2 图3距离相等④到AE、AF距离相等的面,到DE、DF的距离也相等A、1个B、2个C、3个D、4个5.如图,已知面D是∠ABC的仄分线上一面,面P正在BD上,P A⊥AB,PC⊥BC,垂脚分别为A,C.下列论断过失的是().A.AD=CP B.△ABP≌△CBPC.△ABD≌△CBD D.∠ADB=∠CDB.二、解问题6.已知:AD是△ABC角仄分线,DE⊥AB,DF⊥AC,垂脚分别是E、F,BD=CD,证:∠B=∠C.7.如图,已知正在△ABC中,90C∠=2AB BC=,DE AB⊥接AC于E.供证:8、如图,∠B=∠C=90°,M是BC ADC,供证:AM仄分∠DAB.9.如图,正在∠AOB的二边OA,OB上分别与OM=ON,OD=OE,DN战EM相接于面C.供证:面C正在∠AOB的仄分线上.一.采用题(共3小题)1.(2011•衢州)如图,OP仄分∠MON,PA⊥ON于面A,面Q 是射线OM上的一个动面,若PA=2,则PQ的最小值为()A.1B.2C.3D.4AECAB CDP2.(2011•恩施州)如图,AD是△ABC的角仄分线,DF⊥AB,垂脚为F,DE=DG,△ADG战△AED的里积分别为50战39,则△EDF的里积为()A.11 B.C.7D.3.(2010•鄂州)如图,AD是△ABC中∠BAC的仄分线,DE⊥AB于面E,DF⊥AC接AC于面F.S△ABC=7,DE=2,AB=4,则AC少是()A.4B.3C.6D.5 4.(2011•岳阳)如图,AD∥BC,∠ABC的角仄分线BP与∠BAD的角仄分线AP相接于面P,做PE⊥AB于面E.若PE=2,则二仄止线AD与BC间的距离为_________.5.(2011•桂林)供证:角仄分线上的面到那个角的二边距离相等.已知:供证:道明:。
【精】2018年八年级数学《12.3 角平分线的性质与判定》同步复习资料【1】【含解析】
2018年八年级数学《12.3 角平分线的性质与判定》同步复习资料【1】一.选择题(共10小题)1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.22.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.123.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.44.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【1】【3】【4】5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.56.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,S△ABD=12,则S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:167.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP 的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:28.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【5】【6】【8】9.如图,四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【9】【10】二.填空题(共10小题)11.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.12.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.【11】【12】【14】15.如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为.16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=.17.如图,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.18.直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有处.19.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是.(填写序号)【17】【18】【19】三.解答题(共10小题)20.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.21.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.22.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,△ABC中∠B的外角平分线BD于∠C的外角平分线CE相交于点P,求证:点P在∠ABC的角平分线上.24.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.25.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.《12.3 角平分线的性质与判定》同步复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.2【解答】解:过点P作PB⊥OM于B,∵OP平分∠MON,PA⊥ON,PA=3,∴PB=PA=3,∴PQ的最小值为3.故选:C.2.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.12【解答】解:如图,∵BD+CD=BC=32,BD:DC=9:7作DE⊥AB于E,∵∠C=90°,AD平分∠BAC∴DE=CD=14.(角平分线上的点到角的两边的距离相等)即:点D到AB的距离为14,故选C.3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.4.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∴PA=PD=4,∴PE=4.故选C.5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.6.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,S△ABD=12,则S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:16【解答】解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)∴DE=DF,…(3分)∴S△ABD=•DE•AB=12,∴DE=DF=3…(5分)∴S△ADC=•DF•AC=×3×6=9…(6分)∴S△ABD:S△ACD=12:9=4:3.故选A.7.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP 的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)【解答】解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.二.填空题(共10小题)11.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.12.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC 的面积是30.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=20×3=30,故答案为:30.15.如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为8.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小.∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=8,∴DP=8.故答案为:8.16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=125°.【解答】解:∵OF=OD=OE,∴OB、OC分别平分∠ABC和∠ACB,∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×110°=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125°.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于2.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.18.直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有4处.【解答】解:∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点,而外角平分线有3个交点,内角平分线有一个交点,∴货物中转站可以供选择的地址有4个.故答案为:4.19.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是①③④.(填写序号)【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC=60°﹣25°=35°,③正确;∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分线,∴∠DAC=55°,④正确,故答案为:①③④.三.解答题(共10小题)20.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.21.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.22.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADF与Rt△ADE中,,∴Rt△ADF≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23.如图,△ABC中∠B的外角平分线BD于∠C的外角平分线CE相交于点P,求证:点P在∠ABC的角平分线上.【解答】证明:作PF⊥AB于F,PG⊥BC于G,PH⊥AC于H,∵∠B的外角平分线BD与∠C的外角平分线CE相交于点P,∴PF=PG,PH=PG,∴PF=PH,又PF⊥AB,PH⊥AC,∴点P在∠CAB的角平分线上.24.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.25.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.【解答】证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.【解答】证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.。
《角平分线的性质 》专题复习(含答案)
《角平分线的性质》专题复习本节主要通过介绍画角的平分线,引导学生发现问题:角的平分线有什么性质?通过将一个角对折的方法学习对角线的性质:在角的平分线上的点到这个角的两边的距离相等.利用三角形全等来说明角平分线的判定定理:到一个角的两边的距离相等的点在这个角的平分线上.接着引导学生试做一个三角形内的三个内角的角平分线,看看有什么特点,特点是:三角形的三条角平分线交于三角形内一点,•并且这个点到三角形三边的距离相等.角的平分线的性质一课占有很重要的地位,它是证明线段相等、角相等的有利工具。
一.角的平分线的性质这是本节的重点知识,但在以后的习题中很少会单独的出现只考查角平分线的性质的题目,一般会综合的考查三角形全等、平行线等有关知识,故在【知识点击】、【典例引路】、【当堂检测】、【基础训练】中设置了相应的例题以提高解题能力。
二.性质运用在【备选题目】中,设置了角平分线与方程解决问题的题目,以提高学生的综合解题能力。
三.易错点本节知识的易错点是,把角平分线的性质及角平分线的判断混淆了,所以在【典例引路】例3题及【基础训练】第3题设置了相应的题目。
【知识点击】点击一: 角平分线性质定理:在角的平分线上的点到这个角的两边的距离相等.如图:AB是∠CAD的平分线,则有:CB=BD。
点击二:角平分线判定定理:到一个角的两边的距离相等的点在这个角的平分线上.如图:如果有CB=BD ,则有AB是∠CAD的平分线。
点击三:三角形的三条角平分线交于三角形内一点,•并且这个点到三角形三边的距离相等.如图:在三角形ABC中,AD是∠BAC,BE是∠ABC的角平分线,则有IH=IG=IF。
【典例引路】类型之一:求证角平分线的性质定理例1:三角形的三条角平分线交于一点,你知道这是为什么吗?【解析】我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.【答案】已知:如图,△ABC的角平分线AD与BE交于点I,求证:点I在∠ACB的平分线上.D CAEHIFGD C BAEHIFG证明:过点I作IH⊥AB、IG⊥AC、IF⊥BC,垂足分别是点H、G、F.∵点I在∠BAC的角平分线AD上,且IH⊥AB、IG⊥AC∴IH=IG(角平分线上的点到角的两边距离相等)同理 IH=IF ∴IG=IF(等量代换)又IG⊥AC、IF⊥BC∴点I在∠ACB的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上)即:三角形的三条角平分线交于一点.类型之二:利用角平分线的性质求线段之比例2:如图,已知:∠BAC=30,G为∠BAC的平分线上的一点,若EG ∥AC交AB于E,GD ⊥AC 于D,GD:GE=()【解析】作GF⊥AB于F(目的是为了用定理)∵AG平分∠BAC,GD ⊥AC∴ GF=GD(角平分线的性质定理)∵ EG ∥AC ,∠BAC=300∴∠FEG=300∴FG:EG=1:2∴GD:GE=1:2【答案】1:2类型之三: 利用角平分线的性质求角的度数例3:在△ABC中,∠ABC=100,∠ACB=20,CE 平分∠ACB交 AB于 E,D在 AC上,且∠CBD=20。
专项12-8 角平分线的性质与判定(解析版)
2020—2021八年级上学期专项冲刺卷(人教版)专项12.8 角平分线的性质与判定姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 【答案】A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用.2.如图,O 是△ABC 内一点,且点O 到三边AB ,BC ,CA 的距离OF =DO =OE ,若∠BAC =70°,则∠BOC 的度数为( ).A .95°B .105°C .115°D .125°【答案】D【分析】 根据70BAC ∠=︒,求出ABC ACB ∠+∠的度数,再根据角平分线的判定证明BO 和CO 是角平分线,求出OBC OCB ∠+∠的度数,从而求出结果.【详解】解:∵70BAC ∠=︒,∴18070110ABC ACB ∠+∠=︒-︒=︒,∵OF OD =,OF AB ⊥,OD BC , ∴BO 平分ABC ∠,同理CO 平分ACB ∠, ∴115522OBC OCB ABC ACB ∠+∠=∠+∠=︒, ∴18055125BOC ∠=︒-︒=︒.故选:D .【点睛】本题考查角平分线的判定,解题的关键是掌握角平分线的判定定理.3.如图,∠ACD 是△ABC 的外角,∠BAC =80°,∠ABC 和∠ACD 的平分线相交于点E ,连接AE ,则∠CAE 的度数是( )A.35°B.40°C.50°D.55°【答案】C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义列式并整理得到∠BAC=2∠BEC,过点E作EF⊥BA交延长线于F,作EG⊥AC于G,作EH⊥BD于H,根据角平分线上的点到角的两边的距离相等可得EF=FH,EG=EH,然后求出EF=EG,再根据到角的两边距离相等的点在角的平分线上判断出AE是∠CAF的平分线,再根据角平分线的定义解答即可.【详解】解:∵∠ABC与∠ACD的角平分线相交于点E,∴∠CBE=12∠ABC,∠ECD=12∠ACD,由三角形的外角性质得,∠ACD=∠ABC+∠BAC,∠ECD=∠BEC+∠CBE,∴12∠ACD=∠BEC+12∠ABC,∴12(∠ABC+∠BAC)=∠BEC+12∠ABC,整理得,∠BAC=2∠BEC,∵∠BAC=80°,∴∠BEC=40°,过点E作EF⊥BA交延长线于F,作EG⊥AC于G,作EH⊥BD于H,∵BE平分∠ABC,∴EF=EH,∵CE平分∠ACD,∴EG=EH,∴EF=EG,∴AE是∠CAF的平分线,∴∠CAE=12(180°-∠BAC)=12(180°-80°)=50°.故选C.本题考查了三角形的内角和定理,三角形的外角性质,角平分线的性质定理与角平分线的判定定理,难点在于作辅助线并判断出AE 是ABC 外角的平分线.4.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且110ADC ∠=︒,则MAB ∠=( )A .30B .35︒C .40︒D .45︒【答案】B【分析】 作MN ⊥AD 于N ,根据平行线的性质求出∠DAB ,根据角平分线的判定定理得到∠MAB=12∠DAB ,计算即可.【详解】解:作MN ⊥AD 于N ,∵∠B=∠C=90°,∴AB ∥CD ,∴∠DAB=180°-∠ADC=70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN=MC ,∵M 是BC 的中点, ∴MC=MB ,∴MN=MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB=12∠DAB=35°,【点睛】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,在ABC ∆中,E 、D 分别为AB 、AC 边上的两点,且EB CD =,若平面内动点P 满足PEB PCD S S ∆∆=,则满足此条件的点P 有( )个.A .1B .2C .4D .无数【答案】D【分析】 根据角平分线的性质分析,作∠EAD 的平分线,直线AF 上除A 点外任意一点到BE 和CD 的距离相等,即可得到PEB PCD S S ∆∆=.【详解】解:作∠EAD 的平分线,直线AF 上除A 点外任意一点到BE 和CD 的距离相等,可得点P 到BE 和CD 的距离相等,∵EB=CD ,∴此时点P 满足PEB PCD S S ∆∆=.故满足此条件的点P 有无数个,故选:D .此题考查了角平分线的性质,解题的关键是根据EB=CD和三角形等底,作出等高即可.6.如图,在△ABC中,AB=AC,D是BC边上的动点(点D与B,C不重合),△ABD和△ACD的面积分别表示为S1和S2,下列条件不能..说明AD是△ABC角平分线的是()A.BD=CD B.∠ADB=∠ADC C.S1=S2D.AD=12BC【答案】D【分析】根据等腰三角形的性质进行分析即可.【详解】在△ABC中,AB=AC,如果D是BC中点或AD⊥BC,那么AD是△ABC角平分线.因为BD=CD所以根据“三线合一”可得AD是△ABC角平分线.因为∠ADB=∠ADC,∠ADB+∠ADC=180〬,所以∠ADB=∠ADC=90〬,所以AD⊥BC,那么AD 是△ABC角平分线.因为S1=S2,,所以AD是BC上的中线,所以AD是△ABC角平分线.如果AD=12BC,不一定能保证D是BC中点或AD⊥BC,故不能保证AD是△ABC角平分线.【点睛】考核知识点:等腰三角形性质.理解“三线合一”是关键.7.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=2,△ABC的面积是()A.20 B.24 C.32 D.40【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F;然后利用角平分线定理可得OF=OE=DO=2,然后用S△ABC=S△AOC+S△OBC+S△ABO求解即可.【详解】解:如图:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S△ABC=12×2AC+12×2BC +12×2AB=12×2(AC+BC+AB)= AC+BC+AB=20.故答案为A.【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.8.如图,OB平分∠MON,A为OB的中点,AE⊥ON,EA=3,D为OM上的一个动点,C是DA 延长线与BC的交点,BC//OM,则CD的最小值是()A .6B .8C .10D .12【答案】A【分析】 根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.9.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4【答案】C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC 的面积是12,周长是8,即可得出点O 到边BC 的距离.【详解】如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×OD×(AB +BC +AC )=12×OD×8=12 OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.10.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒【答案】A【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∵点O 到ABC 三边的距离相等,∴BO 平分ABC ∠,CO 平分ACB ∠,∴ ()180A ABC ACB ∠=︒-∠+∠()1802OBC OCB =︒-∠+∠()1802180BOC =︒-⨯︒-∠()1802180110︒=︒-⨯-︒40=︒.故选A .【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键. 11.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =()A .134°B .124°C .114°D .104°【答案】B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。
人教八上:专题三--角平分线的性质与判定(含解析)
专题三角平分线的性质与判定一、单选题1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=15,且BD:CD=3:2,则点D到AB的距离为()2345.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,AB+BC+CA=18,过O作OD⊥BC于点D,且OD=3,则△ABC的面积是.6.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE7得8910.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N 两点,AB=6,ΔAMN的周长是15.则AC的长为.三、解答题11.如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.12.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,若∠ABC=60°,FD=10,求DC的长.13.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.14.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.15.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,设∠ABC=α.(1)α=50°时,求∠DFC的度数;(2)证明:BE∥DF.16.在△ABC中,AO、BO分别平分∠BAC、∠ABC.(1)如图1,若∠C=32°,则∠AOB=________;(2)如图2,连结OC,求证:OC平分∠ACB;(3)如图3,若∠ABC=2∠ACB,AB=4,AC=7,求OB的长.17.如图,在△ABC中,D在BC边的延长线上,∠ACD的平分线CE交BA的延长线于点E,已知∠B=30°,∠E=40°,求证:AE=CE.18.如图,在四边形ABCD中,AB∥CD,∠C=90°,点E为BC的中点,DE平分∠CDA.(1)求证:AD=AB+CD;(2)若S△CDE=3,S△ABE=4,则四边形ABCD的面积为______.(直接写出结果)19.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB,AC分别相交于点M,N,且MN∥BC.(2)已知AB=7,AC=6,求△AMN的周长.参考答案题号12答案B B1.B【分析】本题考查的是角平分线的性质,作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出CD的长即可.∵∴∵∴2∴3【详解】试题分析:本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.点睛:对于这种在三角形中求角度问题的时候,如果题目中没有给出图形,我们首先一定要根据题意画出图形,然后根据图形求出角的度数.特别要注意分类讨论的思想,在画图时一定要注意锐角三角形和钝角三角形两种情况.在画垂线的时候要注意高线在三角形内部和三角形外部两种情况.4.3:2【分析】过点D作DE⊥AB于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DE⊥AB于点E,∵AD是Rt△ABC的角平分线,CD⊥AC,DE⊥AB∴DE=CDS△ABD S△ACD =12AB⋅DE12AC⋅CD=ABAC=128=32故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.5.27【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,∵AB+BC+CA=18.∴△ABC的面积=12×AB×3+12×AC×3+12×BC×3=27.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.4【分析】根据角平分线的性质以及平行线的性质即可得出PM =PE =2,PE =PN =2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM =PE =2,PE =PN =2,∴MN =2+2=4.故答案为:4.7.2【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据三角形的面积公式计算即可.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE=PD=PF , S △APC +S △APB +S △BPC =S △ACB ,∴12AC·PE+12AB·PD+12BC·PF=12AC·BC ,即12×12·PD+12×13•PD+12×5•PD=12×5×12,解得,PD=2,故答案为:2.【点睛】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.8.60【分析】根据五边形的内角和求出∠BCD和∠CDE的和,再根据角平分线及三角形内角和求出∠CPD.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,(∠BCD+∠CDE)=120°,∴∠PDC+∠PCD=12∴∠CPD=180°﹣120°=60°.故答案是:60.【点睛】本题解题的关键是知道多边形内角和定理以及角平分线的性质.9.5【分析】本题考查角平分线的性质定理,过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,利用角平分线的性质可得PF=PG=PE,然后根据三角形的面积求出PF=PE=PG=2,再利用△OMP的面积+△ONP的面积−△PMN的面积=4,进行计算即可解答.根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,∵MP平分∠AMN,NP平分∠MNB,∴PF=PG=PE,∵MN=1,△PMN的面积是1,∴ 12MN ⋅PF =1,∴PF =2,∴PG =PE =2,∵△OMN 的面积是4,∴△OMP 的面积+△ONP 的面积−△PMN 的面积=4,∴ 12OM ⋅PG +12ON ⋅PE−1=4,∴OM +ON =5.故答案为:5.10.9【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可得△MOB 和△NOC 是等腰三角形,从而可得MO =MB ,NO =NC ,然后利用等量代换可得ΔAMN 的周长=AB +AC ,从而进行计算即可解答.【详解】解:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠OBC ,∠ACO =∠OCB ,∵MN ∥BC ,∴∠MON =∠OBC ,∠NOC =∠OCB ,∴∠ABO =∠MON ,∠ACO =∠NOC ,∴MO =MB ,NO =NC ,∵△AMN 的周长是15,∴AM +MN +AN =15,∴AM +MO +ON +AN =15∴AM +MB +NC +AN =15,∴AB +AC =15,∵AB =6,∴AC =15−6=9,故答案为:9.11.(1)65°;(2)①25°;②证明见解析.【分析】(1)根据三角形内角和定理求得∠CBA +∠CAB =130°,则∠EBA +∠BAD =230°,再由角平分线的定义求出∠OBA +∠OAB =115°,根据四边形内角和求出∠AOB 即可;(2)①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,根据角平分线的性质求解即可;②先求出KB=KC,过点A作AH∥BC交CO于点H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可得出结论.【详解】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°−130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°−50°−115°−130°=65°;(2)解:如图2,①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,∵AO、BO分别平分∠DAB、∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;②证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,如图3,过点A作AH∥BC交CO于点H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.12∴∵∴∴∵∴∴故DC=5.【点睛】此题主要考查了角平分线的定义,四边形内角和定理,含30°角的直角三角形的性质等知识,解题关键是熟练掌握各性质与定理.13.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.14.(1)见解析(2)△ADC和△ABC是倍角三角形,见解析【分析】(1)利用等边对等角及三角形的内角和求出∠B=∠C=72°,得到2∠A=∠C即可;(2)根据SAS证明△ABD≌△AED,得到∠ADE=∠ADB,BD=DE,证明CE=DE,得出∠C=∠BDE=2∠ADC,可得出∠ABC=2∠C.则结论得证.【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴2∠A=∠C,即△ABC是倍角三角形;(2)解:△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴∴又∴∴∴∴∵15(2)∠EBC=∠DFC即可得出结论.【详解】(1)解:在四边形ABCD中,∠A=∠C=90°,∠ABC=α,α=50°,∴∠ADC=360°−∠A−∠C−∠ABC=130°,∵DF平分∠CDA,∠ADC=65°,∴∠FDC=12∴∠DFC =90°−65°=25°;(2)证明:在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,∴∠ADC =360°−∠A−∠C−∠ABC =180°−α,∵DF 平分∠CDA ,∴∠FDC =12∠ADC =12(180°−α),∴∠DFC =90°−12(180°−α)=12α,∵BE 平分∠ABC ,∴∠EBC =12α,∴∠EBC =∠DFC ,∴BE ∥DF .16.(1)106°;(2)见解析;(3)3;【分析】(1)本题考查与角平分线有关的三角形内角和关系,根据∠C =32°得到∠CAB +∠CBA ,再结合角平分线求出∠CAO +∠CBO ,即可得到答案;(2)本题考查角平分线判定与性质,过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,根据角平分线性质得到OD =OF =OE ,结合角平分线的判定即可证明;(3)本题主要考查三角形全等的性质与判定,解题的关键是根据截长补短作出辅助线,在AC 上截取一点D ,使AD =AB ,连OD ,证明△ABO≌△ADO ,即可得到答案;【详解】(1)解:∵∠C =32°,∴∠CAB +∠CBA =180°−32°=148°,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴∠CAO +∠CBO =148°2=74°,∴∠AOB =180°−74°=106°;(2)证明:过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴OD =OF ,OD =OE ,∴OC 平分∠ACB ;(3)解:在AC 上截取一点D ,使AD =AB ,连OD ,设∠ACO =∠BCO =α,∵∠ABC =2∠ACB ,∴∠ABC =4α,∵BO 平分∠ABC ,∴∠ABO =∠CBO =2α,∵AO 平分∠BAC ,∴∠BAO =∠DAO ,在△ABO 与△ADO 中,AO =AO ∠BAO =∠DAO AB =AD,∴△ABO≌△ADO(SAS),∴∠ABO =∠ADO =2α,OB =OD,AB =AD =4,又∵∠ACO =α,∴∠ACO =∠DCO =α,∴OD =OC =AC−AD =7−4=3,∴OB =3.17.证明见解析【分析】本题主要考查了角平分线的定义,三角形外角的性质以及等腰三角形的判定和三角形内角和定理的应用,根据外角的性质求出∠ECD=702,由角平分线的定义得∠ACE=∠ECD=70°,根据三角形内角和定理求出∠CAE=70°,可得∠ACE=∠CAE,从而可得结论.【详解】证明:∠B=30°,∠E=40°,∴∠ECD=∠B+∠E=70°,∵CE平分∠ACD,∴∠ACE=∠ECD=70°,在△ABE中,∠ACE+∠E+∠CAE=180°,∴∠CAE=180°−∠ACE−∠E=180°−70°−40°=70°,∴∠ACE=∠CAE,∴AE=CE.18.(1)见解析(2)14【分析】本题考查角平分线的性质,全等三角形的判定与性质.(1)过点E作EF⊥AD于F,根据角平分线的性质得出CE=EF,再证明△ABE≌△AFE,△CED≌△FED,根据全等三角形的性质得出AB=AF,DC=DF,进而得出结论;(2)由△ABE≌△AFE,△CED≌△FED,推出S△CED=S△FED,S△ABE=S△AFE,据此求解即可.【详解】(1)证明:如图,过点E作EF⊥AD于F,∵∠C=90°,AB∥CD,∴∠B=90°,∵DE平分∠CDA,∴CE=EF,∴Rt△CED≌Rt△FED(HL),∴DC=DF,∵E是BC的中点,∴BE=CE,∴BE=EF,∵AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AD=AF+FD=AB+CD;(2)解:∵△CED≌△FED,△ABE≌△AFE,∴S△CED=S△FED,S△ABE=S△AFE,∵S∴19(2)((∴∴∴(∴∵∴∴∠BOM=∠ABO,∴BM=OM,同理可得:CN=ON,∴MN=OM+ON=BM+CN,∵AB=7,AC=6,∴△AMN的周长是AM+MN+AN=AM+BM+CN+AN=AB+AC=13.。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质复习题(含答案) (47)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,BD 是ABC ∆的角平分线,点E 、F 分别在BC 、AB 上,且//DE AB ,//EF AC ;(1)求证:BE AF =;(2)如图,若60A C ∠=∠=︒,请写出4个面积等于ABC ∆面积一半的几何图形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由DE ∥AB ,EF ∥AC ,可证得四边形ADEF 是平行四边形,∠ABD =∠BDE ,又由BD 是△ABC 的角平分线,根据角平分线的定义得到∠ABD =∠DBE ,等量代换得到∠DBE =∠BDE ,根据等腰三角形的判定定理得到BE =DE ,即可证得结论;(2)根据三角形中线的性质和中位线定理解答即可.【详解】证明:(1)∵DE ∥AB ,EF ∥AC ,∴四边形ADEF 是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)∵∠A=∠C=60°,∴AB=BC,∵BD是△ABC的角平分线,∴BD是AC的中线,∴△ABD的面积=△BDC的面积=△ABC的面积的一半,∵DE∥AB,EF∥AC,∴AF=BF,BE=EC,∴四边形AFED的面积=四边形FDCE的面积=△ABC的面积的一半.【点睛】此题考查了平行四边形的判定与性质.关键是证得四边形ADEF是平行四边形.62.阅读材料并回答问题:阅读材料:数学课上,老师给出了如下问题:如图1,∠AOB=120°,OC平分∠AOB.若∠COD=20°,请你补全图形,并求∠BOD的度数.以下是小明的解答过程:解:如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC= ∠AOB= .∵∠COD=20°,∴∠BOD= .小敏说:“我觉得这个题有两种情况,小明考虑的是OD在∠BOC内部的情况,事实上OD还可能在∠AOC的内部”.完成以下问题:(1请你将小明的解答过程补充完整;(2)根据小敏的想法,请你在图1中画出另一种情况对应的图形,此时∠BOD的度数为.;60°;40°;(2)图详见解析,80°.【答案】(1)12【解析】【分析】(1)根据角平分线性质即可解题,(2)参照上一问步骤即可解题.【详解】解:(1)∵∠AOB=120°,OC平分∠AOB.∴∠BOC=12∠AOB=60°.∵∠COD=20°,∴∠BOD=40°.(2)见下图,∠BOD=∠BOC +∠COD=12∠AOB+∠COD=60°+20°=80°.【点睛】本题考查了角平分线的应用,属于简单题,熟悉角平分线性质是解题关键.63.如图所示,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=10,BD=6,则点D到AB的距离是多少?(2)若∠BAD=30°,求∠B的度数.【答案】(1)4.(2)30°.【解析】【分析】过点D作DE⊥AB于E,先求出CD,再根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解;根据角平分线的定义可求出∠CAB的度数,再根据三角形内角和定理即可解答.【详解】解:1)过点D作DE⊥AB于E,⊥BC=8,BD=5,⊥CD=BC-BD=10-6=4,⊥⊥C=90°,AD平分∠BAC,⊥DE=CD=4,即点D到AB的距离是4;(2) 因为AD平分∠BAC,所以∠BAC=2∠BAD=60°.又因为∠C=90°,所以∠B=90°-60°=30°.【点睛】本题考查的知识点是角平分线上的点到角的两边的距离相等的性质,解题关键是熟记性质并作出辅助线.64.如图,在△ABC中,AB=AC,BD、CE分别是∠ABC、∠ACB的平分线.求证:BD=CE.【答案】详见解析【解析】【分析】根据条件只要证明△BCE⊥⊥CBD,写出理由即可解决问题.【详解】∵AB=AC,⊥⊥ABC=⊥ACB.⊥BD,CE分别是∠ABC,⊥ACB的平分线,⊥⊥CBD12=⊥ABC,⊥BCE12=⊥ACB,⊥⊥CBD=⊥BCE.又∵BC=CB,⊥⊥BCE⊥⊥CBD,⊥BD=CE.【点睛】本题考查了全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确寻找全等三角形,属于基础题,中考常考题型.65.如图所示,∠1=△2=△3=△4=24°,根据图形填空:(1)是∠2的3倍的角是_________________(用字母表示)(2)是∠AOD的12的角有_________个;(3)射线OC是哪个角的3等分线?又是哪个角的4等分线?【答案】(1)⊥A0E 、⊥BOC ;(2) 4个;(3)OC 是∠AOE 的3等分线,是∠AOB 的4等分线.【解析】【分析】(1)根据∠1=∠2=∠3=∠4,找出是∠2的3倍的角可以解题;(2)根据∠1=∠2=∠3=∠4,找出图中哪些角是∠AOD 的12, (3)根据∠1=∠2=∠3=∠4,找出射线OC 是哪个角的三等分线、四等分线.【详解】解:(1)1234∠=∠=∠=∠12332AOE ∴∠=∠+∠+∠=∠同理:42332BOC ∴∠=∠+∠+∠=∠(2)4个;(3)∵∠1=∠2=∠3,∴OC 是∠AOE 的三等分线.同理:OC 是∠AOB 的四等分线.【点睛】本题考查了角的度数的计算,考查了角平分线和三等分线的定义,本题中不要漏解是解题的关键.66.已知,如图,OC 是AOB ∠的角平分线,2AOD BOD ∠=∠,18COD ∠=︒.请你求出BOD ∠的度数.【答案】36BOD ∠=︒.【解析】【分析】根据角平分线的定义得到∠BOC=12∠AOB ,根据已知条件得到∠BOD=13∠AOB ;求得∠BOD=2∠COD ,代入数据即可得到结论.【详解】∵OC 是AOB ∠的角平分线 ∴12BOC AOB ∠=∠; ∵2AOD BOD ∠=∠∴3AOB BOD ∠=∠,即13BOD AOB ∠=∠; ∴111236COD AOB AOB AOB ∠=∠-∠=∠ ∴2BOD COD ∠=∠∵18COD ∠=︒∴36BOD ∠=︒.【点睛】本题考查了角平分线的定义,熟记角平分线的定义是解题的关键.67.如图所示,已知∠AOB =90°,∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOC ;(1)求∠MON ;(2)∠AOB =α,∠BOC =β,求∠MON 的度数.【答案】(1)45°(2)12α 【解析】【分析】(1)由角平分线的定义及∠MON =∠MOC ﹣∠CON ,可得结论;(2)同理可得:∠MOC 12=(α+β),∠CON 12=β,根据图形便可推出∠MON =∠MOC ﹣∠CON =12α. 【详解】(1)∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC ,∠NOC =12∠BOC . ∵∠AOC =∠AOB +∠BOC ,∴∠MON =∠MOC ﹣∠NOC =12(∠AOB +∠BOC ﹣∠BOC )=12∠AOB . ∵∠AOB =90°,∴∠MON =12×90°=45°. (2)同理可得:∠MOC =1()2αβ+,∠CON =12β,∴∠MON =∠MOC﹣∠CON =11()22αββ+-=12α. 【点睛】本题考查了角平分线的性质,角的计算,关键在于运用数形结合的思想推出∠AOC =∠AOB +∠BOC ,∠MON =∠MOC ﹣∠CON .68.如图,O 为直线AB 上一点,OC 为射线,OD 、OE 分别为∠AOC 、∠BOC 的平分线.(1)判断射线OD 、OE 的位置关系,并说明理由;(2)若∠AOD =30°,求证:OC 为∠AOE 的平分线;(3)如果∠AOD :∠AOE =2:11,求∠BOE 的度数.【答案】(1)垂直(2)证明见解析(3)70°【解析】【分析】由OD 、OE 分别为∠AOC 、∠BOC 的平分线,可得⊥DOE 为180°的一半,可得OD ⊥OE ;由OD 为∠AOC 的平分线和∠AOD=30°得到⊥COD=∠AOD=30°,由(1)得⊥DOE=90°,可得⊥COE=60°,又由⊥AOC=60°,可得OC 为∠AOE 的平分线;由OD ⊥OE 和∠AOD ︰∠AOE=2︰11即可求.【详解】(1)垂直∵OD、OE分别为∠AOC、∠BOC的平分线,∴∠COD=12∠COA ∠COE=12∠COB.∴∠EOD=12∠COA+12∠COB=12∠AOB=90°.∴OD⊥OE.(2)∵∠AOD=30°,∴∠COD=30°.∴∠COE=90-30=60°,∠COA=60°∴∠COE=∠COA.∴OC为∠AOE的平分线.(3)∵∠AOD︰∠AOE=2︰11,∴∠AOD︰∠DOE=2︰9.∴∠AOD=20° .∴∠BOE=90°-20°=70°.【点睛】本题考查的知识点是角平分线定理,解题关键是熟记角平分线定理.69.如图,在Rt△ABC中,∠C=90°,△CAB=45°,(1)利用直尺和圆规完成以下作图,并保留作图痕迹.在边BC上求作一点D,使点D到AB,AC的距离相等.(不要求写作法)(2)若AC=5,CD=2.07,求DB和AB的长.【答案】(1)见解析(2)DB=2.93;AB=7.07【解析】【分析】(1)根据角平分线的性质可知:角平分线上的点到角两边的距离相等,所以作∠BAC的平分线,进而得出D点位置;(2)证明Rt△ACD≌Rt△ACE(HL),得AC=AE,可得BD和AB的长.【详解】(1)如图,作∠CAB的平分线AD,交BC于D,则D为所求;(2)过D作DE⊥AB于E,∵∠C=90°,∠CAB=45°,∴∠B=45°,∠DEB=90°,∴∠EDB=∠B=∠CAB=45°,∴BE=DE,AC=BC,∵AD平分∠CAB,DE⊥AB,DC⊥AC,∴DC=DE,∵AD=AD,∴Rt△ACD≌Rt△ACE(HL),∴AC=AE,∴BD=BC﹣DC=AC﹣DC=5﹣2.07=2.93,∴AB=AE+BE=AC+DC=5+2.07=7.07.【点睛】此题考查的是作图﹣基本作图,正确利用角平分线的性质以及等腰直角三角形的性质是解题关键.70.如图,∠DAE=△ADE=15°,DE△AB,DF△AB,若AE=8,求线段DF的长度.【答案】4【解析】【分析】作DG⊥AC,根据DE⊥AB得到∠BAD=⊥ADE,再根据∠DAE=⊥ADE=15°得到∠DAE=⊥ADE=⊥BAD,求出∠DEG=15°×2=30°,再根据30°的角所对的直角边是斜边的一半求出GD的长,然后根据角平分线的性质求出DF.【详解】作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=12DE=4,∴DF=DG=4.【点睛】本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
角的平分线的性质测试题
12.3 角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21BAC B∠∠,AD是∠∶∶BAC的角平分线,DE⊥AB于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°,又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm .4.C 解析:根据角平分线的性质,集贸市场应建在∠A 、∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( )A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是( )A.3x2-x2=3 B.3a2+2a3=5a5C .3+x =3xD .-0.25ab +14ba =0 6.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论: ①若a +b +c =0,且abc ≠0,则a +c 2b =-12; ②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________. 13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x -22-1=x +13-x +86.21.先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-1.22.有理数b 在数轴上对应点的位置如图所示,试化简|1-3b |+2|2+b |-|3b -2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE 的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O 的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A 8.D 9.C 10.B二、11.23;5 12.-8 13.-514.19°31′13″15.3 16.717.> 18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t -4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
湘教版:角平分线的性质与判定(经典题型)
角平分线的性质与判定1、角平分线:把一个角为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点一、角平分线的性质定理例1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=11cm,BD=7cm,那么点D 到直线AB的距离是cm.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.4二:角平分线的性质定理的逆定理例1.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.三、常见题型(一)利用角平分线的性质求线段长度例1.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足是点E,AC=DE+BD.(1)求∠BAD的度数;(2)若△DBE的周长为4cm,则AB=.变式2.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.(二)利用角平分线的性质求角度问题例1.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,P A=PC.求证:∠PCB+∠BAP=180°.变式1.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果(三)利用角平分线解决与面积有关的问题例1.如图,BD是△ABC的角平分线,△ABC的面积为60,AB=15,BC=9,求△ABD的面积.变式1 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是多少?(四)角平分线性质定理的逆定理应用例1.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.变式1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.(五)角平分线性质定理的实际应用例1.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?变式1.如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.。
角平分线的性质定理和判定(经典)
角平分线的性质定理和判定第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,AB=15cm,(1)求证:BD+DE=AC.(2)求△DBE的周长.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F ,PA=PC ,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△ABC 中,P 是角平分线AD ,BE 的交点. 求证:点P 在∠C 的平分线上.21NPF CBA例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.第四部分:思维误区一、忽视“垂直”条件例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。
角平分线性质经典习题
E
D
AB
4、如图,OA平分∠BAC,OB=OC,求证:AB=AC
A
O
BC
5、如图,已知∠ACB=∠DEB=90°,BD平分∠ABC,ED的延长线交BC的延长线于点F,求证:AE=CF
A
E
D
BCF
6、如图,l1、l2、l3是三条两两相交的笔直公路,先欲修建一个加油站,使它到三条公路的距离相等,这个加油站的位置共有处。(画出来)
l1
l2
l3
7、如图,O到△ABC的三边AB、BC、CA的距离OF=OD=OE,若∠A=70°,求∠BOC
A
FOE
BDC
8、如图,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF,求证:AD是∠BAC的平分线。
A
EF
BDC
9、如图,BE⊥AC于E,CF⊥AB于F,BE、CF相交于D,且BD=CD,求证:AD平分∠BAC
A
BDEC
B
E
D
AEC
10、已知△ABC的两个外角的平分线相交于点P,连接BP,求证:BP是∠ABC的平分线
A
P
BC
11、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:(1)AM平分∠DAB;(2)∠DMA=90°
DC
M
AB
12、如图,已知∠CAD=∠CDA,AC=BD,E在BC上,DE=EC,求证:AD平分∠BAE
角平分线性质
1、如图,已知AB∥CD,O是∠ACD,∠CAB的平分线的交点,且OE⊥AC于E点,OE=12,求AB与CD之间的距离
AB
E
O
CD
2、如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90cm2,AB=18cm,BC=12cm,分∠BAC,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD
角平分线的性质和判定经典题
1 / 4角平分线的性质和判定复习一知识要点:1. 角平分线的作法(尺规作图)思考:这一画法的根据是什么?2. 角平分线的性质及判定(1)角平分线的性质:文字表达:角的平分线上的点到角的两边的距离相等.几何表达:∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知)∴PA=PB.(角平分线的性质)思考:这一性质定理的根据是什么?(2)角平分线的判定:文字表达:到角的两边的距离相等的点在角的平分线上.几何表达:∵PA⊥OM,PB⊥ON,PA=PB(已知)∴∠1=∠2(OP平分∠MON)(角平分线的判定)二、典型例题角平分线的性质一例题1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等例题2如图,BD平分∠ABC,DE垂直于AB于E点,△ABC的面积等于90,AB=18,BC=12,则求DE的长.例题32 / 4已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证:CF=EB。
DFECA例题4已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C.例题5已知:如图所示,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E,求证:OB=OC.例题6如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10cm,求△DEB的周长.例题7如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F在AC 上,BE=CF,求证:BD=FD.A F CDE B3 / 4例题8如图,在△ABC中,AD是∠BAC的平分线,E,F分别为AB,AC上的点,且∠EDF+∠EAF=180°.求证:DE=DF.例题8 求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.角平分线的性质二例题1如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的平分线上.例题2如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.例题3已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.例题4已知:如图所示,在△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC.4 / 4例5、如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.E是DC的中点,求证:BE平分∠ABC.例题6 .如图所示,在四边形ABCD中,∠ADC+∠ABC=180°,BC=DC,CE⊥AD,交AD 的延长线于点E,CF⊥AB于点F.求证:AC平分∠BAD.例7如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP 能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For personal use only in study and research; not for
commercial use
角平分线的性质和判定复习
一知识要点:
1. 角平分线的作法(尺规作图)
思考:这一画法的根据是什么?
2. 角平分线的性质及判定
(1)角平分线的性质:
文字表达:角的平分线上的点到角的两边的距离相等.
几何表达:
∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知)
∴PA=PB.(角平分线的性质)
思考:这一性质定理的根据是什么?
(2)角平分线的判定:
文字表达:到角的两边的距离相等的点在角的平分线上.
几何表达:
∵PA⊥OM,PB⊥ON,PA=PB(已知)
∴∠1=∠2(OP平分∠MON)(角平分线的判定)
思考:这一判定定理的根据是什么?
二、典型例题
例1 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?
思考:画一个任意三角形并作一个内角、一个外角的平分线相交;两个外角的平分线相交,观察交点到这个三角形三条边所在直线的距离的关系.
例2.如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC 于D,DE⊥AB于E,AB=10求△BDE的周长
例3、如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.E是DC 的中点,求证:BE平分∠ABC.
例4、如图,△ABC中,∠ABC=1000,∠ACB的平分线交AB于E,在AC上取一点D,使∠CBD=200,连结DE.求∠CED的度数.
【思维方法总结】
1、学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离
相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论。
2、如果已知角平分线,(或要证角平分线)可以考虑:有一条距离可以考虑
再作一条距离,一条距离也没有可以考虑作两条距离。
从而利用角平分线
的性质定理和判定定理解决问题。
三、巩固练习
1. 在R t△ABC中,∠C=90°,AD是角平分线,若BC=10,BD∶CD=3∶2,则点D到AB的距离是()
A. 4
B. 6
C. 8
D. 10
2. 到三角形三边距离相等的点是()
A. 三条高的交点
B. 三条中线的交点
C. 三条角平分线的交点
D. 不能确定
3. 如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有()
A. 一处
B. 二处
C. 三处
D. 四处
第3题图第4题图第5题图
4.如图,AB∥CD,点P到AB,BC,CD距离都相等,则∠P=
5、如图,已知AB∥CD,0为∠CAB、∠ACD的平分线的交点.OE⊥AC,且OE=2,则两平行线AB、CD间的距离等于
6、BD是∠ABC的平分线交AC于D,DE⊥AB于点E,AB=36,BC=24,
S△ABC=144则DE=
7、在四边形ABCD中,AC平分∠BAD,且BC=CD,求证∠B+∠D=180°
8. (上一题变式)如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.求证:DE=DF;
9.如图,∠C=900,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.
10.如图,已知在△ABC中,∠B=600,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
For personal use only in study and research; not for commercial use。