高中数学函数概念

合集下载

高中数学函数的定义与性质

高中数学函数的定义与性质

高中数学函数的定义与性质数学函数在高中数学学习过程中占据着非常重要的地位。

函数的定义和性质是数学学科中最基础、最重要的内容之一。

本文将着重介绍高中数学函数的定义及其常见性质,帮助读者更好地理解和应用函数知识。

一、函数的定义在高中数学中,我们通常将函数定义为两个集合之间的映射关系。

具体而言,设有两个集合X和Y,如果对于X中的每个元素x,都对应Y中唯一确定的元素y,那么我们可以说y是x的函数值,记作y=f(x)。

其中,x称为自变量,y称为因变量,f(x)称为函数的函数值。

函数的定义还包括定义域和值域。

定义域是指自变量取值的范围,通常用符号D表示;值域是指因变量取值的范围,通常用符号R表示。

函数的定义域和值域可以是实数集、有理数集、整数集、自然数集等。

二、函数的性质1. 函数的单调性函数的单调性是指函数在定义域内的变化趋势。

一个函数可以是单调递增的,也可以是单调递减的。

具体而言,如果对于定义域内的任意两个自变量x1和x2,当x1<x2时,有f(x1)<f(x2),那么函数f(x)是单调递增的;如果对于定义域内的任意两个自变量x1和x2,当x1<x2时,有f(x1)>f(x2),那么函数f(x)是单调递减的。

2. 函数的奇偶性如果对于定义域内的任意自变量x,有f(-x)=-f(x),那么函数f(x)是奇函数;如果对于定义域内的任意自变量x,有f(-x)=f(x),那么函数f(x)是偶函数。

奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。

3. 函数的周期性如果存在一个正数T,对于函数的定义域内的任意自变量x,有f(x+T)=f(x),那么函数f(x)是周期函数。

周期函数的图像在一定区间内呈现相同的变化规律。

4. 函数的零点和极值函数的零点是指方程f(x)=0的解,即函数取值为0的自变量的取值。

函数的极值是指在定义域内,函数取得最大值或最小值的自变量的取值。

寻找函数的零点和极值是解析函数性质的重要方法之一。

高中数学必修一-第三章-3.1 函数的概念及其表示

高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。

如f(x)=x2中,函数值4有两个自变量2、-2与之对应。

函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。

高中数学函数知识点归纳

高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳函数在高中数学中占据了非常重要的地位。

无论是在初中学习时,还是不同领域的工作和生活中,函数都有着重要的应用。

因此,在高中数学中,系统地学习函数知识点是很有必要的。

下面就对高中数学的函数知识点进行一个简单的归纳。

一、函数基本概念函数是将一个数集和另一个数集之间的对应关系,称作函数。

通常用f(x)表示,其中x称作自变量,f(x)称作函数值或因变量。

其中,自变量的取值有一定的范围,称作函数的定义域;函数的值域则是所有可能的函数值的集合。

二、函数的性质1.函数的单调性:单调递增和单调递减。

2.函数的奇偶性:奇函数和偶函数。

3.函数的周期性:周期函数。

4.函数的反函数。

5.函数的对称性:对称轴和中心对称。

三、函数的图像1.函数图像的表示方法:解析法和图像法。

2.函数的基本图像:常数函数、一次函数、二次函数、反比例函数、指数函数和对数函数。

3.函数的平移和伸缩。

四、函数的应用1.函数模型。

2.函数的变化率。

3.函数的最值。

4.函数的极限。

5.导数。

以上就是高中数学中函数知识点的主要内容。

虽然这个知识点占据了高中数学的很大一部分,但是要想真正掌握函数知识,还需要大量的练习。

因此,在学习函数知识时,我们需要掌握以下几个技巧。

一、常常理解概念,注重基础学习函数知识时,首先需要掌握函数的基本概念,例如定义域、值域、单调性、图像等等。

这些基本概念很重要,是后续学习和应用的关键。

因此,我们需要常常理解这些概念,注重基础。

二、多观察函数图像,探讨函数性质函数的图像是我们理解函数性质的重要途径。

因此,在学习函数知识时,需要多观察函数图像,探讨函数的性质,例如函数的单调性、奇偶性、周期性、对称性等等。

通过对函数图像的观察和分析,我们可以更好地理解函数性质。

三、勤于练习,熟练掌握应用函数知识不仅仅是理论性的知识,还有很多实际应用。

因此,在学习函数知识时,我们需要勤于练习,熟练掌握函数的应用,例如函数模型、函数的变化率、函数的最值、函数的极限和导数等等。

高中函数定义

高中函数定义

高中函数定义函数是数学中的基本概念,也是高中数学中的重要内容之一。

在高中数学中,函数被广泛应用于各个领域,如代数、几何、概率等。

高中函数定义是指高中数学课程中教授的函数的概念及其相关性质和应用的内容。

一、函数的基本概念函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素上。

函数通常用字母表示,比如f(x)。

其中,x称为自变量,f(x)称为因变量。

函数的定义域是自变量的取值范围,值域是函数的所有可能取值。

函数可以用多种形式表示,如函数表达式、图像、数据集等。

二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的基本性质。

定义域的确定需要考虑函数的合理性和可行性,值域的确定要依据函数的定义和性质。

2. 单调性:函数的单调性是指函数在定义域内的增减关系。

可以分为单调递增和单调递减两种情况。

3. 奇偶性:函数的奇偶性是指函数在定义域内的对称性。

奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

4. 周期性:周期函数是指函数在一定范围内具有重复的性质。

周期函数可以通过周期和函数值的关系来确定。

5. 对称轴:对称轴是指函数图像的对称轴线。

对称轴可以通过函数表达式的形式来确定。

三、函数的应用函数在高中数学中有广泛的应用。

以下是一些常见的应用情况:1. 函数的图像:通过函数的图像可以对函数的性质进行分析和判断。

函数的图像可以通过手绘、数学软件或图形计算器等工具得到。

2. 函数的最值:函数的最值是函数在定义域内的最大值和最小值。

最值可以通过函数的图像或数学方法进行求解。

3. 函数的方程:函数的方程是指由函数的定义和性质推导出的方程。

函数的方程可以用于解决实际问题,如求解方程组、求解最值等。

4. 函数的导数:函数的导数是函数变化率的一种表示。

导数可以用于求解函数的极值、判断函数的单调性等问题。

5. 函数的积分:函数的积分是函数的反导数。

积分可以用于计算函数的面积、求解曲线长度等问题。

高中数学函数基础知识

高中数学函数基础知识

高中数学函数基础知识高中数学中,函数是一个非常重要的概念,贯穿于整个数学学科的各个领域中。

掌握函数基础知识,对于高中学生来说是至关重要的。

本文将系统地介绍高中数学函数的基础知识,帮助学生更好地理解和掌握这一概念。

1. 函数的定义函数是一种特殊的关系,即对每一个定义域中的元素,有且只有一个对应的值。

通俗地讲,函数就是一种“输入-输出”的关系,每个输入对应唯一的输出。

数学上用符号f(x) 来表示函数,其中x 表示自变量,f(x) 表示因变量。

形式化地定义,若对于每个 x∈X,存在唯一的 y∈Y,使得对于每个 x,都有唯一的 y 与之对应,则称 f 为定义在 X 上的函数,其中 X 为定义域,Y 为值域。

2. 函数的图象与性质函数的图象是函数 f(x) 在直角坐标系中的几何表示。

通过绘制函数的图象,我们可以直观地看出函数的性质,如单调性、奇偶性、周期性等。

对于一元函数 f(x),其图象通常是一条曲线或者曲线段。

通过观察函数的图象,我们可以更深入地理解函数的性质。

3. 函数的表示方法函数可以通过各种形式进行表示,常见的表示方法包括解析式表示、列表法、集合法等。

其中,解析式表示是最常见的形式,如 f(x) = x²表示一个函数关系。

此外,函数还可以通过函数图像、函数表格等形式进行表示,以便更加清晰地展示函数的性质。

4. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。

这些基本函数在数学中起着重要的作用,通过熟练掌握这些基本函数的性质和图象,可以更好地理解和运用函数的相关知识。

5. 函数的运算函数之间可以进行各种运算,如加法、减法、乘法、除法、复合运算等。

通过函数的运算,可以得到新的函数,对于复杂的函数关系可以通过适当的运算进行简化和分解,便于进行进一步的分析和求解。

6. 函数的应用函数在现实生活中有着广泛的应用,如描述物体的运动规律、经济学中的供求关系、生物学中的生长模型等。

高中数学:函数的基本知识点

高中数学:函数的基本知识点

高中数学:函数的基本知识点函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种*质来解决具体的问题。

小编为大家收集了“高中数学讲解:函数的基本知识点”,供大家参考,希望对大家有所帮助!1.函数的定义定义:设x和y是两个变量,d是实数集r的某个子集.如果对任何的x∈d,按照某种对应法则,变量y总有确定的值与之对应,则称变量y是定义在d上变量x的函数,记作y=f(x).称d为该函数的定义域,称x为自变,.y为因变量.当自变量x取数值xo∈d时,与xo对应的因变量y的值称为函数y=f(x),当x取遍d的所有数值时,对应的变量y取值的全体组成的数集称为函数y二f(x)的值域.如果自变量在定义域内任取一个值时,对应的函数值只有一个,这种函数称为单值函数,否则称为多值函数.例如,y=3x+l是单值函数,而由方程x2+y2=1确定的函数y=士√1-x2就是多值函数.以后凡没有特别说明,本书所讨论的函数都是指单值函数.函数的表示法通常有三种,即表格法、图示法和公式法。

2.函数的两个基本要素由函数的定义知,确定函数的两个基本要素是定义域和对应法则.也就是说,两个函数只有当它们的定义域和对应法则完全相同时,两个函数才是相同的.3.函数的几种特*(1)有界*设函数y=f(x)的定义域为d,数集x∈d,如果存在正数m,使得对于任意的x∈x,都有不等式f(x)?≤m成立,则称了(x)在x上有界,如果这样的m不存在,则称函数在x上无界.(2)单调*.设函数y=f(x)在区向x上有定义.如果对于任意的x1,x2∈x,当x1<x2时,均有f(x1)(3)奇偶*设函数y=f(x)的定义域d是关于原点对称的,如果对于任意的x∈d,均有f(x)=f(一x),则称.f(x)为偶函数;如果对于任意的x∈d,均有f(x)=-f(x),则称了(x)为奇函数.(4)周期*设函数y.=f(x),如果存在不为零的常数t,.使得对于任意x∈d均有x+t∈d,且f(x)=f(x+t)成立,则称函数y=f(x)为周期函数,称t为f(x)的一个周期。

高中数学函数概念

高中数学函数概念

高中数学函数概念在高中数学课程中,函数是一个非常重要的概念。

函数是数学中的基础概念之一,也是更高级数学知识的基础。

通过学习函数的相关知识,不仅可以增进对数学的理解,还可以培养逻辑思维和解决问题的能力。

接下来我们就来详细了解高中数学函数的相关概念。

1. 函数的定义在数学中,函数是一种将一个集合中的元素映射到另一个集合的规则。

一个函数通常表示为 f(x),其中 x 是自变量,f(x) 是因变量。

函数f 定义域内的每个元素 x 都对应唯一的函数值 f(x),即不同的自变量对应不同的因变量。

2. 函数的图像函数可以通过绘制图像来描述。

函数的图像通常采用直角坐标系来表示,自变量 x 沿 x 轴,因变量 f(x) 沿 y 轴。

通过观察函数的图像,可以直观地了解函数的性质,如增减性、奇偶性、周期性等。

3. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数和三角函数等。

这些函数在数学中有着重要的地位,也是其他函数的基础。

- 线性函数:线性函数的图像是一条直线,通常表示为 y = kx + b,其中 k 和 b 分别为斜率和截距。

- 二次函数:二次函数的图像是抛物线,通常表示为 y = ax^2 + bx + c,其中 a、b、c 是常数。

- 指数函数:指数函数的表示形式为 y = a^x,其中 a 为底数,x 为指数。

- 对数函数:对数函数的表示形式为 y = loga(x),其中 a 为底数,x 为真数。

- 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,是研究三角学中常见的函数。

4. 函数的性质函数具有多种性质,如奇偶性、周期性、单调性等。

了解函数的性质可以帮助我们更好地理解函数的变化规律,进而解决相关问题。

- 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) 与 f(x) 的关系。

如果 f(-x) = f(x),则函数是偶函数;如果 f(-x) = -f(x),则函数是奇函数。

高中数学第二章函数

高中数学第二章函数

2.1。

1 函数-2.1。

2 函数的表示方法自主整理1。

函数的概念设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有唯一确定的数值y与它对应,则这种对应关系叫做集合A上的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量的取值范围A叫做函数的定义域;如果自变量取值a,则由法则f确定的值y称作函数在a处的函数值,记作y=f(a)或y|x=a.所有函数值构成的集合{y|y=f(x),x∈A}叫做函数的值域。

2。

两个函数的相等函数的定义含有三个要素,即定义域A、值域C和对应法则f.当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

3.区间(1)在数轴上,区间可以用一条以a,b为端点的线段来表示(如下表)。

用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a〈x<b}开区间(a,b){x|a≤x〈b} 半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间的概念:关于-∞,+∞作为区间的一端或两端的区间称为无穷区间,它的定义和符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x〈a} (-∞,a)R (—∞,+∞)取遍数轴上所有值4.映射的概念设A、B是两个非空的集合,如果按某种对应法则f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x 对应,则称f是集合A到集合B的映射。

这时,称y是x在映射f的作用下的象,记作f(x).于是y=f(x),x称作y的原象,映射f也可记为f:A→B,x→f (x)。

其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A). 5。

常用的函数表示法(1)列表法:通过列出自变量与对应函数值的表来表达函数关系的方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(也称公式法).6。

高中数学函数概念

高中数学函数概念

精品文档函数1、 函数的概念定义:一般地,给定非空数集A,B,按照某个对应法那么f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。

记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。

定义域,值域,对应法那么称为函数的三要素。

一般书写为y=f(x),x ∈D.假设省略定义域,那么指使函数有意义的一切实数所组成的集合。

两个函数相同只需两个要素:定义域和对应法那么。

已学函数的定义域和值域一次函数b ax x f +=)()0(≠a :定义域R, 值域R;反比例函x kx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ;二次函数c bx ax x f ++=2)()0(≠a :定义域R ,值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|22、 函数图象定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。

这些点在平面上组成的图形就是此函数的图象,简称图象。

常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x ²+3x+1 反比例函数f(x)=1/x 3、定义域的求法函数的解析式,假设未加特殊说明,那么定义域是使解析式有意义的自变量的取值范围。

一般有以下几种情况: 分式中的分母不为零;偶次根式下的数或式大于等于零;实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。

4、值域的求法①观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

高中数学函数知识点归纳

高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳(上)函数是高中数学中一个非常重要的知识点,是数学中的基础概念之一。

函数的研究和应用贯穿于高中数学的整个教学过程。

下面将对高中数学中函数的知识点进行系统的归纳总结。

一、函数的定义及其表达方式1. 函数的定义函数是指在两个集合之间有规律地对应元素的关系。

一般地,设A、B是两个非空集合,则f是从A到B的函数,如果对于任意的a∈A,有且只有一个b∈B与之对应,即f(a)=b,称b是a的像,a是b的原像,记作f:A→B。

2. 函数的表达方式(1)显式表达式:y=f(x),y是关于x的函数,f(x)是y的表达式。

(2)参数方程:x=f(t),y=g(t),t是参数,x和y均为t的函数。

(3)极坐标方程:r=f(θ),θ是极角,r是极径。

二、函数的性质及其应用1. 奇偶性设f(x)是定义在R上的函数,如果对于任意x有f(-x)=-f(x),则称f(x)是奇函数。

如果对于任意x有f(-x)=f(x),则称f(x)是偶函数。

如果函数既不是奇函数也不是偶函数,则称其为一般函数。

奇偶性可以通过图像的对称性来判断。

2. 周期性设f(x)是定义在R上的函数,如果存在一个正数T,使得对于任意x有f(x+T)=f(x),则称f(x)是周期函数,T称为函数的周期。

周期性可以通过函数的图像来判断。

3. 单调性设f(x)是定义在[a,b]上的函数,如果对于任意的x1<x2有f(x1)≤f(x2),则称f(x)在[a,b]上是单调不降的;如果对于任意的x1<x2有f(x1)≥f(x2),则称f(x)在[a,b]上是单调不增的;如果存在x1<x2,使得f(x1)<f(x2),则称f(x)在[a,b]上是单调递增的;如果存在x1<x2,使得f(x1)>f(x2),则称f(x)在[a,b]上是单调递减的。

4. 函数的极限当自变量趋近于某一值的时候,函数值也会趋近于某一值,这种趋近可以用极限来描述。

高中数学_函数的概念(学生版)

高中数学_函数的概念(学生版)

函数的概念知识图谱函数的概念与表示知识精讲一.函数的定义1.传统定义:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量.2.现代定义:设集合A 是一个非空的数集,对于A 中的任何一个数x ,按照某个确定的法则f ,都有唯一确定的数y与它对应,则这种对应关系叫做集合A 上的一个函数.记作()y f x =,x A ∈.其中x 叫做自变量,x 的取值集合A 叫做这个函数的定义域,与x 的值对应的y 值叫做函数值,函数值的集合(){,}y y f x x A =∈叫做这个函数的值域.二.区间的概念及表示设 , a b ∈R ,且a b <.则 , a b 可以作为端点表示一个区间,区间的长度为b a -.如图所示,其中符号+∞读作“正无穷大”,符号-∞读作“负无穷大”,用,+∞-∞作为区间的一端或两端的区间成为无穷区间.含义名称符号图形表示{|}x a x b≤≤闭区间[,]a b{|}x a x b<<开区间(,)a b{|}x a x b≤<左闭右开区间[,)a b{|}x a x b<≤左开右闭区间(,]a b{|}x x a≥左闭右开区间[,)a+∞{|}x x a>开区间(,)a+∞{|}x x a≤左开右闭区间(,]a-∞{|}x x a<开区间(,)a-∞R开区间(,)-∞+∞数轴上所有点三.映射与函数1.映射的定义设,A B是两个非空集合,如果按照某种对应关系f,对A中的任意一个元素x,在B中有且仅有一个元素y与之对应,则称f是集合A到集合B的映射.这时,称y是x在映射f的作用下的象,记作()f x.于是()y f x=,x称作y的原象.映射f也可记为:: A Bf→,()x f x→.其中A叫做映射f的定义域(函数定义域的推广),由所有象()f x构成的集合叫做映射f的值域,通常记作()f A.2.一一映射如果映射f是从集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射.3.函数与映射的关系(1)映射中的集合可以是数集,也可以是点集或其他集合.例如映射可以是人到物品或者人到成绩的对应关系,函数只能是数字之间的对应关系.映射是函数概念的推广,函数是一种特殊的映射,是建立在两个非空数集上的映射.(2)在映射:f A B→中:①集合A中的任何一个元素都有象,并且象是唯一的;②不要求集合B中的每一个元素都有原象,即B中可能有些元素不是集合A中的象,且集合B中的象在A中对应的原象不唯一.若映射是一个函数,则要求集合B中的每一个元素都有原象;(3)映射中的“对应”包括“一对一”和“多对一”,但不包括“一对多”和“多对多”.四.函数的表示方法1.列表法:列出自变量与对应函数值的表格来表达两个变量之间的关系的方法.优点:不需要计算就可以直接得到与自变量的值相对应的函数值,对于由统计数据得到的函数关系,列表法很适用.2.图象法:把一个函数定义域内的每个自变量x 的值和它对应的函数值()f x 构成的有序实数(,())x f x 作为点的坐标,所有这些点的集合就称为函数()y f x =的图象,即{(,)|(),}F P x y y f x x A ==∈.这种用“图形”表示函数的方法叫做图象法.优点:能够直观形象地表示与自变量的变化相应的函数值的变化趋势,方便通过数形结合研究函数的相关性质.3.解析法:用代数式(或解析式)表示两个变量之间的函数对应关系的方法,如26y x =-.优点:一是简明、全面地概括了变量之间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.五.复合函数1.定义如果y 是u 的函数,而u 是x 的函数,即(),()y f u u g x ==,那么y 关于x 的函数[()]y f g x =叫做复合函数,u 叫做中间变量.如函数21(0,1)x y a a a +=>≠且可以看成是由指数函数(0,1)u y a a a =>≠且和二次函数21u x =+复合而成的.三点剖析一.注意事项1.函数()y f x =,f 代表此函数的对应法则,也可用其他字母表示,如“()y g x =”.2.符号∞不是一个数,而是一个变化趋势.二.方法点拨1.相同函数的判定函数的定义含有三个要素,即定义域A 、值域()f A 和对应法则f .当函数的定义域A 及对应法则f 确定之后,函数的值域()f A 也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域A 和对应法则f 都分别相同时,这两个函数才是同一个函数;定义域不同而解析式相同的函数要看做是不同的函数.另外,要理解(),()y f x x A =∈的意义,对应法则与我们选择表示自变量的字母没有关系,例如2()f x x =与2()f t t =等都表示同一函数.函数及区间的概念例题1、下列四种说法中,不正确的是()A.函数值域中每一个数都有定义域中的一个数与之对应B.函数的定义域和值域一定是无限集合C.定义域和对应关系确定后,函数的值域也就确定了D.若函数的定义域只含有一个元素,则值域也只含有一个元素例题2、用区间表示下列集合:1{|}x x >-=__________.{5|2}x x <≤=__________.3{|}x x ≤-=__________.4{|2}x x ≤≤=__________.3{|0x x -≤<,或24}x ≤<__________.例题3、如图,可表示函数y =f (x )的图象的可能是()A. B. C. D.随练1、下列四个图象中,不是函数图象的是()A.B.C.D.判断同一函数例题1、下列函数中哪个与函数y x =相等()A.2(y x = B.33y x= C.2y x= D.2x y x=例题2、下列各组函数表示同一函数的是()A.293x y x -=-与y =x +3B.21y x =-与y =x -1C.y =x 0(x ≠0)与y =1(x ≠0)D.y =2x +1,x ∈Z 与y =2x -1,x ∈Z例题3、下列各组函数中,表示同一组函数的是()A.f (x )=x -2,21()31x g x x -=-- B.f (x )=x ,2()(g x x =C.2()f x x =g (x )=x D.f (t )=|t -1|,1,1()1,1x x g x x x -≥⎧=⎨-+<⎩随练1、下列各组函数中,()f x 与()g x 表示同一函数的是()A.()-1f x x =与()221x x x g -+= B.()f x x =与()2g x x x=C.()f x x =与()33g x x =D.()242x x x f --=与()2g x x =+随练2、下列各组函数中,表示同一函数的是()A.f (x )=2x ,g (x )=x )2B.f (x )=(x -1)0,g (x )=1C.f (x )=211x x --,g (x )=x +1D.f (x )2x ,g (t )=|t |映射与函数例题1、设A 到B 的函数2:(1)f x y x →=-,若集合{0,1,2}A =,则集合B 不可能是()A.{0,1}B.[0,1,2]C.{0,1,2}-D.{0,1,1}-例题2、给出下列四个对应:如图,其构成映射的是()A.只有①②B.只有①④C.只有①③④D.只有③④例题3、下列从集合A 到集合B 的对应中,是映射的是()A.A ={0,3},B ={0,1};f :x→y =2xB.A ={-2,0,2},B ={4};f :x→y =|x|+1C.A =R ,B ={y|y >0};f :14x y x →=D.A =R ,B =R ;f :x→y =-x +1随练1、已知集合A 到B 的映射31f x y x →=+:,若B 中的一个元素为7,则对应的A 中原像为()A.22B.17C.7D.2函数的表示方法例题1、如果函数f x g x (),()分别由下表给出x 123f (x )132x 123g (x )321则1g ()的值为,[]1f g ()的值为.例题2、某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为()A.y=[10x ]B.y=[310x +]C.y=[410x +]D.y=[510x +]例题3、如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动,设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积S ,则函数S =f (x )的图象是()A.B.C.D.随练1、如图,等腰梯形的下底边AB =2,上底边CD =1,两腰AD =BC =1,动点P 从点B 开始沿着边BC ,CD 与DA 运动,记动点P 的轨迹长度为x ,将点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为()A. B. C. D.随练2、某工厂8年来某产品产量y 与时间t 年的函数关系如图,则:①前3年总产量增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是.函数的定义域知识精讲一.函数定义域的三种类型解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含以下几种类型:1.自然型:指使函数的解析式有意义的自变量x 的取值范围.2.限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,因为有时这种限制比较隐蔽,容易犯错误;3.实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义.二.具体函数的定义域1.如果()f x 是整式,则()f x 的定义域就是实数集R ;2.如果()f x 是分式,则要求分母不为0;3.如果是()f x 的偶次根式,即形如())*2n f x n N ∈时,则要求()0f x ≥;4.0y x =的定义域是{}0x x ≠;5.如果()f x 是由多项构成的,那么函数的定义域是每项都有意义的x 的集合.三.抽象函数的定义域抽象函数是指没有明确给出具体解析式的函数.求抽象函数的定义域有以下四种基本题型:1.已知()f x 的定义域为A ,求[()]f g x 的定义域.由()g x A ∈解出x 的范围,即为[()]f g x 的定义域.2.已知[()]f g x 的定义域为A ,求()f x 的定义域.()f x 的定义域就是()g x 的值域,其中x A ∈.3.已知[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由[()]f g x 定义域求得()f x 的定义域,再由()f x 的定义域求得[()]f h x 的定义域.4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集.三点剖析一.注意事项1.当函数()y f x =用表格给出时,函数的定义域是指表格中实数x 的集合.2.当函数()y f x =用图象给出时,函数的定义域是指图象在x 轴上的投影所覆盖的实数x 的集合.3.定义域不同,而对应法则相同的函数,是两个不同的函数.4.若未加以特别说明,函数的定义域是指使这个式子有意义的所有x 的集合,在实际问题中,还必须考虑x 所代表的具体量的取值范围.具体函数的定义域例题1、已知函数229xy x -=-,其定义域为()A.(-),2∞ B.(-],2∞C.()-(,3]--3,2∞⋃ D.[)(2,33),⋃+∞例题2、函数23x x x f =-()的定义域为()A.[0,3]2 B.[0]3, C.[30]-, D.03(,)例题3、函数1y x x =-+)A.{}1|x x ≤B.{}0|x x ≥C.{1|x x ≥或0}x ≤D.{}1|0x x ≤≤随练1、(2014四川雅安重点中学高一上期末模拟)函数f (x )=1x ++12x-的定义域为____。

高中数学教案函数的概念和性质

高中数学教案函数的概念和性质

高中数学教案函数的概念和性质高中数学教案:函数的概念和性质一、引言数学中的函数是一个重要的概念,它在各个领域有着广泛的应用。

本教案将引导学生深入理解函数的概念和性质,帮助他们掌握函数的基本知识和运用方法。

二、函数的基本概念1. 函数的定义函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。

表示函数的通常形式为:y = f(x),其中x 为自变量,y为因变量。

2. 自变量和因变量自变量是函数的输入值,因变量是函数的输出值。

例如,在一条直线的方程y = 2x + 1中,自变量为x,因变量为y。

3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

在确定一个函数时,需要确定定义域和值域的范围。

三、函数的性质1. 单调性函数的单调性描述了函数是否在定义域上单调递增(或递减)。

学生可以通过观察函数的图像、导数的符号等方式来判断函数的单调性。

2. 奇偶性函数的奇偶性描述了函数图像关于原点的对称性。

奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

学生可以通过观察函数的表达式来判断函数的奇偶性。

3. 周期性函数的周期性描述了函数图像在一定范围内是否重复出现。

周期函数的图像在每个周期内有一定的规律性。

例如,正弦函数、余弦函数都是周期函数。

4. 极值函数的极值包括最大值和最小值。

学生可以通过求导数、观察函数的图像等方式来确定函数的极值,并进一步分析极值的性质。

四、函数的应用1. 函数在图像绘制中的应用学生可以利用函数的性质,绘制各种形式的函数图像。

通过掌握函数的基本形态和特点,可以更好地理解函数的性质和规律。

2. 函数在实际问题中的应用函数在实际问题中的应用非常广泛。

学生可以通过函数的建模,解决各种实际问题,如距离、速度、面积等。

五、教学活动1. 观察函数图像让学生观察不同函数的图像,帮助他们理解函数的概念和性质。

2. 求解函数的性质让学生通过求导数、观察函数的表达式等方式,判断函数的性质,并进一步分析其特点。

最全函数知识点总结高中

最全函数知识点总结高中

最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。

在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。

其中A称为定义域,B称为值域。

1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。

比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。

我们可以看到,函数本质上就是一种输入与输出的关系。

1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。

1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。

1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。

1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。

1.7 函数的分类函数可以分为初等函数和非初等函数。

初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。

非初等函数包括无穷级数、常微分方程等。

1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。

1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。

1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。

对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。

1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。

二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。

高中函数的概念

高中函数的概念

高中函数的概念引言在数学中,函数是一种非常重要的概念。

它是用来描述自变量与因变量之间的关系的一种数学工具。

在高中数学教学中,函数作为一种基础和核心的内容,被广泛地讲授和研究。

本文将深入探讨高中函数的概念,包括函数的定义、性质、图像、相关概念等内容。

一、函数的定义函数是一种将一个自变量映射到一个唯一的因变量的关系。

通常用字母表示函数,例如常见的f(x)表示一个以x为自变量的函数。

函数的定义可以通过集合的方式描述,也可以通过公式的方式表示。

1. 集合定义对于一个函数f,其定义域为D,值域为R,则函数f可以表示为一个集合对:f={(x,y)|x∈D,y=f(x)∈R}集合定义强调了函数的关系和对应规律,可以方便地进行集合运算和性质推导。

2. 公式定义函数的公式定义是通过一个显式表达式来表示函数的关系。

例如,对于函数f(x)= x2,表示自变量x的平方作为因变量值。

公式定义可以更直观地表示函数的计算过程,便于进行具体计算。

二、函数的性质函数具有一些重要的性质,这些性质是函数概念的基础,也为我们进一步研究函数提供了便利。

1. 单调性函数的单调性指的是函数在定义域内的自变量值增大(或减小)时,因变量值的变化关系。

函数可以是递增的(单调递增),也可以是递减的(单调递减),还可以是常数函数(单调不变)。

2. 奇偶性函数的奇偶性描述了函数图像关于坐标轴的对称性。

奇函数满足f(−x)=−f(x),函数图像关于原点对称;偶函数满足f(−x)=f(x),函数图像关于y轴对称。

3. 边界性质函数的边界性质描述了函数的取值范围和极值情况。

函数在最大值和最小值处取得极值,可以用于求解优化问题。

如果函数在定义域内无界(即无上界或无下界),则其在该区间内可能不存在极值。

三、函数的图像函数图像是函数关系的一种可视化表示方式,也是研究函数性质的重要工具。

根据函数的定义和性质,可以通过绘制函数图像来帮助我们更好地理解和分析函数。

1. 坐标系函数图像通常在直角坐标系中绘制。

高中函数的详细讲解

高中函数的详细讲解

高中函数的详细讲解高中函数是高中数学的一个重点内容,学习函数是建立数学思维的重要一步。

函数是实现数学模型和应用的基本工具,应用广泛,涉及自然、社会、经济、工业和科学等各个领域。

本文将为大家解释函数的定义、性质、常见函数的图像和应用等内容。

一、函数的定义函数是一种数学工具,可以把某些变量(自变量)和一个或多个变量(因变量)联系起来。

例如,我们用y = f(x)表示x变量对应的一个y值,其中f是函数名称,x是自变量,y是因变量。

函数的定义包括以下几个方面:1. 定义域:定义域是自变量可能取值的范围。

一般而言,函数在定义域内有值,但有时也会存在无定义的点。

2. 值域:值域是函数可能取到的值的范围。

3. 对应关系:自变量和因变量之间的对应关系因不同的函数而异。

例如,一次函数表示两个变量的直线关系,而三角函数表示的是一个角度和一个比率的关系。

4. 函数图像:函数图像是函数对应点在平面直角坐标系内的连续曲线。

二、函数的性质函数有很多性质,我们可以通过对这些性质的研究来更好地理解函数。

其中最基本的是单调性和奇偶性。

1. 单调性:一个函数可以是单调递增的(在定义域范围内,随着x的增大,y也增大),也可以是单调递减的(在定义域范围内,随着x的增大,y反而减小)。

2. 奇偶性:一个函数可以是奇函数(在定义域的中心对称,表示为f(-x)=-f(x)),也可以是偶函数(在定义域的中心对称,表示为f(-x)=f(x)),还可以是既不奇也不偶的函数。

3. 周期性:一个函数可以是周期函数,表示每隔一定的距离,函数的值会重复出现。

例如,三角函数就是一种周期函数。

4. 对称性:一个函数可以有各种对称性,包括对称于y轴、对称于x轴、对称于直线x=y、对称于原点等。

三、常见函数的图像高中数学中最常见的函数包括:1. 一次函数:表示为y=kx+b,k是斜率,b是截距。

一次函数的图像是一条直线,可以通过斜率和截距的改变来调节线的位置和角度。

高中数学函数知识点(详细)

高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B的一个函数.记作:y =)(x f ,x ∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

高中数学上册函数的概念及性质

高中数学上册函数的概念及性质

高中数学上册函数的概念及性质
函数是高中数学的一个重要概念,它是一种映射关系,它把一组输入值映射到一组输出值。

函数可以用来描述一些物理现象、社会现象等等,是数学建模的重要工具。

一般来说,函数指的是满足一定性质的关系。

如果输入值是x,输出值是f(x),则称f(x)为x的函数值。

函数的性质包括:
1、定义域:函数f(x)的定义域是指x的取值范围,即函
数f(x)可以接受的输入值的范围。

2、值域:函数f(x)的值域是指函数f(x)的输出值的范围,即f(x)的所有可能的值的范围。

3、单调性:函数f(x)的单调性是指当x的取值发生变化时,f(x)的取值只有一种变化趋势,即f(x)的取值只会变大或
只会变小。

4、对称性:函数f(x)的对称性是指当x取值发生变化时,f(x)的取值也发生相应的变化,但f(x)的曲线不发生变化。

5、凹凸性:函数f(x)的凹凸性是指在函数f(x)的曲线上,当x取某个值时,f(x)的曲线在此点处有凸点或凹点。

6、奇偶性:函数f(x)的奇偶性是指当x取一定的值时,f(x)的值必须满足f(-x)=-f(x)的性质。

函数的性质是高中数学上册研究的必备知识,函数的性质是函数的重要特性,是数学建模过程中不可缺少的知识。

通过理解函数的性质,可以更加准确、深入地研究函数的性质,更好地描述实际问题,从而实现数学建模。

高中数学 函数的概念

高中数学 函数的概念

f (x) 的定义域为 x x ,x 0,
g(x) 的定义域为
以下的四则运算,必须在两函数都有定义之处,才能进行
(1) f g( x) x 1 x2 3x x3 3x2 x 1 ,x 0
x
x
(2) f g( x) x 1 ( x2 3x) x3 3x2 x 1 ,x 0
域的共同范围。
(4)

f g

(
x)

f ( x) ,定义域为 f (x) 与 g(x) 之定义域的 g( x)
共同范围,但 g( x) 0。
2 p.35
已知 f ( x) x 1 ,g( x) x2 3x,试求: x
(1) f g( x)。
(2) f g( x)。
函数的概念

函数的定义 p.32~p.34
两个变量之间,变量 y 随着变量 x 而变化,我们就称 y 是 x 的函数,记为 y f ( x),并称 x 为自变数,y 为应 变数。
函数的定义 p.32~p.34
函数的定义: 设 f 是集合 A,B 中元素之间的一个对应 关系。若对于集合 A 中的每个元素 a,都 可以找到集合 B 中的唯一元素 b,使得 a 对应到 b,则称 f 为 A 到 B 的一个函数。 用
(1) 利用平移的概念,由下列步骤绘出 y x2 向右平移 2 单位 y ( x 2)2 向下平移 3 单位 y ( x 2)2 3
即为所求
(2) 由图形可看出,函数 y ( x 2)2 3 的值域为
y y ,y 3
函数的图形 p.38~p.45
函数的四则运算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数
1、 函数的概念
定义:一般地,给定非空数集A,B,按照某个对应法则f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。

记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。

定义域,值域,对应法则称为函数的三要素。

一般书写为y=f(x),x ∈D.若省略定义域,则指使函数有意义的一切实数所组成的集合。

两个函数相同只需两个要素:定义域和对应法则。

已学函数的定义域和值域
一次函数b ax x f +=)()0(≠a :定义域R, 值域R;
反比例函
x k
x f =
)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ;
二次函数
c bx ax x f ++=2)()0(≠a :定义域R ,值域:当
0>
a 时,⎭⎬

⎩⎨⎧-≥a b ac y y 44|2;当0<
a
时,⎭⎬

⎩⎨⎧-≤a b ac y y 44|2
2、 函数图象
定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。

这些点在平面上组成的图形就是此函数的图象,简称图象。

常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x ²+3x+1 反比例函数f(x)=1/x 3、定义域的求法
已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。

一般有以下几种情况: 分式中的分母不为零;
偶次根式下的数或式大于等于零;
实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。

4、值域的求法
①观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x) 的值域。

②反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

练习:求函数y=(10x+10-x)/(10x -10-x)的值域。

③配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x ²+x+2)的值域。

练习:求函数y=2x -5+√15-4x 的值域. ④判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

⑤图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。

例4求函数y=∣x+1∣+√(x-2) ²的值域。

⑥换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

例5求函数y=x-3+√2x+1 的值域。

练习:求函数y=√x-1 –x 的值域。

⑦不等式法
例6求函数y=(2x-1)/(x+1) (1≤x ≤2) 的值域。

5、复合函数
设y=f(u ),u=g(x ),当x 在u=g(x )的定义域Dg 中变化时,u=g(x )的值在y=f(u )的定义域Df 内变化,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数,其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。

6、函数的表示方法:列表法,解析法,图像法
7、分段函数:对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.
分段函数经常使用图像法 8、函数解析式的求法
①代入法
例1已知f(x)=x ²-1,求f(x+x ²) ②待定系数法
若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

例2已知f(x)是一次函数,f(f(x))=4x+3,求f(x) ③换元法
例3已知:1
1)11(2-=+x x f ,求
)(x f 。

④特殊值法
例4已知函数)(x f 对于一切实数y x ,都有
x
y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求
)0(f 的值;(2)求)(x f 的解析式。

⑤方程组法
例5已知:)
0(,31)(2≠=⎪⎭⎫
⎝⎛+x x x f x f ,求)(x f 。

1、求下列函数的定义域:

21
)(-=
x x f ;② 23)(+=
x x f ;③
x x x f -+
+=21
1)(
2、求下列函数的值域 ① y=3x+2(-1
≤x ≤1) ②x x f -+
=42)(

1+=
x x
y ④
x x y 1+
= 3
函数⎪
⎩⎪
⎨⎧>+-≤<+≤+=1,51
0,30
,32x x x x x x y 的最大值是。

4已知:x x x f 2)1(2
+=+,求)(x f 。

5若,)(2)1
(x x f x f =+求)(x f
6已知()3()26,f x f x x --=+求()f x .。

相关文档
最新文档