行程五大常考题型与三大解题技巧系统梳理————(图解法+综合分析)
行程问题的解题规律
行程问题分为相遇问题,追及问题和流水问题。
每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。
行程问题的基础知识行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇(相离)问题的基本数量关系:速度和×相遇时间=相遇(相离)路程追及问题的基本数量关系:速度差×追及时间=路程差在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高解题速度和能力。
相遇问题:知识要点:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间相遇问题的核心是“速度和”问题。
二次相遇问题:知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地(距离A地S1米)相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地(距离A地S2)相遇。
则有: A、B两地相距:1.5S1+0.5S2 甲从A地出发,乙从B地出发相向而行,两人在C地(距离A地S3米)相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地(距离B 地S4)相遇。
则有:A、B两地相距:3S3-S4关键点:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例4、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A.120B.100C.90D.80解析:【答案】A。
方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
行程问题“九大题型”与“五大方法”
行程问题“九大题型”与“五大方法”。
很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。
1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。
2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。
⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。
示意图包括线段图、折线图,还包括列表。
图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。
另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。
ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。
更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。
ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。
这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。
⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。
ps:方程法尤其适用于在重要的考试中,可以节省很多时间。
四、怎样才能学好行程问题?因为行程的复杂,所以很多学生已开始就会有畏难心理。
所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。
小学数学30道“行程问题”专题归纳,公式+例题+解析!
小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
公考行程问题技巧
公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。
我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。
就像走进了一个迷宫,绕来绕去找不到出口。
首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。
比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。
这种简单题就像是走路碰到一块小石头,轻松就能跨过去。
那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。
两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。
比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。
对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。
后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。
比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。
对了,还有个事儿要说。
在解行程问题的时候,画图是个特别好的方法。
就像给你一堆乱线,你把它整理好画出来就清楚多了。
有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。
但是,我得承认,这个画图法虽然好用,但也有局限性。
行程问题的解题技巧和方法
行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
小学数学行程问题解题思路和方法
行程问题解题思路和方法行程问题,是小学数学的重点,也是难点。
我们就要把行程问题分类,包括相遇、追及、同向、逆向、还有特殊的,如水中行舟、火车过桥,下面介绍一点相关公式,但是这是公式,是“死"的东西,我们解体就是要把他们或用,举一反三,触类旁通,结合具体问题具体分析,发现路程、速度、时间之间的关系,而且做一道题,我们要尝试不同的做法,不要满足于解题的需要,发现隐含条件,找出解决题目的捷径。
因为小学生的抽象思维不强,所以他们往往无从下手,也就是找不到合适的突破口。
但行程问题又是有规律的。
它所涉及的是速度、时间、路程三者间的关系。
按物体运动的路线可分为:直线运动和曲线运动两大类;按物体运动方向分为:相向、相反、同向。
一、行程问题的公式归纳其基本公式为“速度×时间=路程”。
据此,演化成如下具体公式:路程÷速度=时间路程÷时间=速度速度和×相遇时间=路程路程÷相遇时间=速度和路程÷速度和=相遇时间平均速度=总路程÷总时间追及路程÷速度差=追及时间顺水速度=静水速度+水流速逆水速度=静水速度-水流速关键:解决此类应用题,要注意化繁为简,化抽象为具体,化文字为图示。
二、小学数学应用题中关于行程问题的公式(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度(二)追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。
由于速度不同,就发生快的追及慢的问题。
小学数学行程问题解题思路和方法
行程问题解题思路和方法行程问题,是小学数学的重点,也是难点。
我们就要把行程问题分类,包括相遇、追及、同向、逆向、还有特殊的,如水中行舟、火车过桥,下面介绍一点相关公式,但是这是公式,是“死"的东西,我们解体就是要把他们或用,举一反三,触类旁通,结合具体问题具体分析,发现路程、速度、时间之间的关系,而且做一道题,我们要尝试不同的做法,不要满足于解题的需要,发现隐含条件,找出解决题目的捷径。
因为小学生的抽象思维不强,所以他们往往无从下手,也就是找不到合适的突破口。
但行程问题又是有规律的。
它所涉及的是速度、时间、路程三者间的关系。
按物体运动的路线可分为:直线运动和曲线运动两大类;按物体运动方向分为:相向、相反、同向。
一、行程问题的公式归纳其基本公式为“速度×时间=路程”。
据此,演化成如下具体公式:路程÷速度=时间路程÷时间=速度速度和×相遇时间=路程路程÷相遇时间=速度和路程÷速度和=相遇时间平均速度=总路程÷总时间追及路程÷速度差=追及时间顺水速度=静水速度+水流速逆水速度=静水速度-水流速关键:解决此类应用题,要注意化繁为简,化抽象为具体,化文字为图示。
二、小学数学应用题中关于行程问题的公式(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度(二)追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。
由于速度不同,就发生快的追及慢的问题。
小学六年级考试重点:行程问题解析.doc
小学六年级考试重点:行程问题解析行程问题是小学六年级考试中的必考题目,更是考察孩子逻辑思维的重要题型。
行程题以应用题的形式出现,需要学生敏锐的发现很多量之间的关系,并能都灵活熟练的运用一些综合的做题方法,比如:方程、比例、周期性问题等。
现就教学中学生遇到的一些问题,总结一下这一专题,并给出行程中最基本的题型,或者说是题种。
1.火车车长问题:1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩而过,即车尾离人而去。
【例1】火车通过一条长1140米的桥梁用了50秒,火车穿过1980米的隧道用了80秒,求这列火车的速度和车长。
【例2】一列火车通过800米的桥需55秒,通过500米的隧道需40秒。
问该列车与另一列长384、每秒钟行18米的列车迎面错车需要多少秒钟?2)错车或者超车:看哪辆车经过,路程和或差就是哪辆车的车长【例3】快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人或车之间的路程关系【例4】铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民。
问军人与农民何时相遇?2.时钟问题:两个速度单位:1格/时和12格/时,一个路程单位12格时钟问题主要有3大类题型:第一类是追及问题;第二类是相遇问题;第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?【例2】爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,回来的时候时针与分针恰好重合,问爷爷出去散步了多长时间?【例3】一只钟表的时针与分针均指在4和6之间,且钟面上的5恰好在时针与分针的正中央,问这是什么时刻?【例4】小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?3.多次相遇1)2倍的关系:对于单个人来讲,从一次相遇到相邻的下一次相遇走了他从出发到第一次相遇的2倍。
行程问题的解题技巧和方法
行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。
解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。
例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。
2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。
因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。
3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。
当我们知道任意两项,都可以通过公式求出另一项。
因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。
4. 求平均速度
有些题目中,物体在行程中可能有多个速度。
此时,我们可以求出平均速度来解决问题。
平均速度的公式是:平均速度=总路程÷总时间。
在求解平均速度时,我们需要注意速度的单位应该统一。
总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。
行测数量:数量关系行程问题常考三大题型
行测数量:数量关系行程问题常考三大题型公务员考试行测数量关系行程问题可分为以下几类:一、相遇问题要点提示:甲从A地到B地,乙从B地到A地,甲,乙在AB途中相遇。
A、B两地的路程=甲的速度×相遇时间+乙的速度×相遇时间=速度和×相遇时间1、同时出发例1:两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车的旅客发现第一列车在旁边开过时用了6秒,则第一列车的长度为多少米?A.60米B.75米C.80米D.135米解析:D.A、B两地的距离为第一列车的长度,那么第一列车的长度为(10+12.5)×6=135米。
2、不同时出发例2:每天早上李刚定时离家上班,张大爷定时出家门散步,他们每天都相向而行且准时在途中相遇。
有一天李刚因有事提早离家出门,所以他比平时早7分钟与张大爷相遇。
已知李刚每分钟行70米,张大爷每分钟行40米,那么这一天李刚比平时早出门()分钟A.7 B.9 C.10 D.11解析:D.设每天李刚走X分钟,张大爷走Y分钟相遇,李刚今天提前Z分钟离家出门,可列方程为70X+40Y=70×(X+Z-7)+40×(Y-7),解得Z=11,故应选择D.3、二次相遇问题要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
第二次相遇时走的路程是第一次相遇时路程的两倍。
例3:两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米A.200 B.150 C.120 D100解析:D.第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
行程问题ppt课件
Part
06
行程问题述:通过画图的方式,将行程问题中的信息以图形的方式呈现出来,有助 于直观地理解问题,找出关键信息,从而解决问题。
代数法
总结词:通用性强
详细描述:将行程问题中的未知数用代数式表示,通过设立方程或方程组来求解,这种方法通用性强,适用于各种行程问题 。
02 03
详细描述
追及问题涉及到两个物体在同一方向上移动,一个物体追赶另一个物体 直到它们相遇。这类问题需要考虑物体的速度、时间和距离,以及它们 之间的相对运动关系。
公式
距离 = 速度 × 时间
环形跑道问题
总结词
环形跑道问题主要研究在环形跑道上运动的物体之间的相对位置关系。
详细描述
在环形跑道问题中,物体在同一起点出发,沿着环形跑道运动,直到再次相遇。这类问题 需要考虑物体的速度、时间和距离,以及它们之间的相对运动关系。
Part
02
基础行程问题解析
匀速直线运动
总结词
物体在直线运动中,速度保持不变。
详细描述
匀速直线运动是速度恒定的运动,即单位时间内通过的距离相等。在匀速直线 运动中,速度、时间和距离之间的关系可以用公式表示为:速度 = 距离 / 时间。
匀加速直线运动
总结词
物体在直线运动中,速度逐渐增加。
详细描述
行程问题ppt课件
• 行程问题简介 • 基础行程问题解析 • 复杂行程问题解析 • 行程问题的数学模型 • 行程问题的实际应用 • 行程问题的解题技巧
目录
Part
01
行程问题简介
行程问题的定义
总结词
行程问题是指在一定条件下,寻找一条满足特定要求的旅行路线,通常需要考虑时间、 距离、成本等因素。
行程五大常考题型与三大解题技巧系统梳理————(比例思想+代数思想) (3)
【本讲重点】行程问题解题方案:图解法+综合分析——画图技巧如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点60米。
求这个圆的周长。
甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?有一条东西向的铁路桥。
一只小狗在铁路桥中心以西5米的地方。
一列火车以每小时60千米的速度从西边驶过来,火车头距离铁路桥的西桥头还有2个桥长的距离。
如果小狗向西迎着火车跑过去,它恰好能在火车头距西桥头还有1米的时候逃离铁路桥;如果小狗以同样的速度向东跑的话,小狗会在距东桥头还有0.25米的地方被火车追上。
铁路桥长_____米,小狗的速度为每小时_____千米。
一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达。
求甲、乙两地之间的距离及火车原来的速度。
行程五大常考题型与三大解题技巧系统梳理——(比例思想+代数思想)(★★☆) (★★★) (★★★★) (★★★☆)A 、B 两地间有一座桥,甲、乙两人分别从A 、B 两地同时出发,3小时后在桥上相遇。
如果甲加快速度,每小时多走2千米,而乙提前0.5小时出发,则仍能恰在桥上相遇;如果甲延迟0.5小时出发,乙每小时少走2千米,还恰恰在桥上相遇。
那么A 、B 两地相距多少千米?(★★★☆)。
行程问题常用思想之图解法、综合分析
张 王
┗━━━━━━━┻━━━━┻━━━━━━━━┛ ┗━━━━━━┻━━━━━━━┻━━━━━━┛
1
探索
如图可知,小张3点到7点的4个小时比小王3点到4点的 一个小时多走15千米,从出发到2点比小王的1点到2点 也多走15千米,所以出发到2点用4个小时,出发时间是 早晨10点。
【例3】(★★★★★)迎春杯复赛 一条路上有东、西两镇.一天,甲、乙、丙三人同时 出发,甲、乙从东镇向西而行,丙从西镇向东而行, 当甲与丙相遇时,乙距他们20千米,当乙与丙相遇时 ,甲距他们30千米.当甲到达西镇时,丙距东镇还有 20千米,那么当丙到达东镇时,乙距西镇( )千米
加油站
③比例线段图 目的:寻找速度比与路程比的关系 【例4】(★★★) 甲、乙两车分别从A、B两地出发,并在A、B两地间 不断往返行驶,已知甲车的速度是15千米/小时,乙 车的速度是25千米/小时,甲乙两车第三次相遇地点 与第四次相遇地点相差100千米,求A、B两地的距离 是多少千米?
【例5】(★★★) 甲、乙两车分别从A、B两地同时出发,在A、B两地 之间不断往返行驶.甲、乙两车的速度比为3:7,并 且甲、乙两车第1996次相遇的地点和第1997次相遇的 地点恰好相距120千米(注:当甲、乙两车同向时,乙 车追上甲车不算作相遇)。那么,A、B两地之间的距 离是多少千米?
行程问题常用思想 之图解法、综合分析
加油站
加油站
画图技巧: ①不同人,分开画 ②时间点,要标清 ③不同速,不同型
①一般线段图 主要目的:寻找路程和或差的关系 小升初热点应用题盘点—复杂工程、比例应用题
【例1】(★★★) 小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发, 相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相 遇(追上也算作相遇),则甲、乙两地的距离为_______千米。
小学奥数“行程问题”类型归纳及解题技巧总结
小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。
第n次背面追及相遇,两人的路程差是(2n-1)S。
(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。
第n次背面追及相遇,两人的路程差为2ns。
二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。
“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
行测——行程问题解题原理及方法
公务员考试数量关系之行程问题解题原理及方法两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程追及(或领先的)路程÷时间=速度差追及(或领先的)路程÷速度差=时间对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。
分析复杂的行程问题时,最好画线段图帮助思考理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。
(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的At+bt=s t=s/a+b s甲=a*t=a*s/a+b S乙=b*t=b*s/a+b【例1】甲、乙两人分别从A、B两地同时出发,相向而行。
如果两人都按原定速度行进,那么4小时相遇;现在两人都比原计划每小时少走1千米,那么5小时相遇。
A、B两地相距多少千米?【分析】可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走1千米)仍然走4小时,那么他们不能相遇,而是相隔一段路。
这段路的长度是多少呢?就是两人4小时一共比原来少行的路。
由于以现在的速度行走,他们5小时相遇,换句话说,再行1小时,他们恰好共同行完这段相隔的路。
这样,就能求出他们现在的速度和了。
【解】相隔路程:1×4×2行完相隔路程所需时间:(5-4)速度和4×2/(5-4)全程=40(千米)这道题属于相遇问题,它的基本关系式是:速度和×时间=(相隔的)路程。
但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上面的关系式。
不过,当出现“不同时出发”或“没有相遇(而是还相隔一段路)”的情况时,应该通过转化条件,然后应用上面的关系式。
有关行程问题的图象信息题的解法课件
行程问题在生活中的应用
交通工具的运动
如汽车、火车、飞机的行 驶,涉及到速度、时间和 距离的计算。
体育比赛
如田径、游泳、球类比赛 等,需要计算运动员的运 动成绩。
日常生活
如走路、骑自行车等,涉 及到速度和时间的计算。
02
行程问题图象信息解析
图像信息在行程问题中的作用
直观呈现问题情境
图像
THANKS
感谢观看
行程问题涉及的是物体在空间中 的移动,通过已知条件计算出物 体的运动距离、速度和时间。
行程问题的分类
01
02
03
直线行程问题
物体在直线上运动,涉及 匀速运动和匀加速运动。
曲线行程问题
物体在曲线或折线上运动 ,涉及匀速圆周运动和变 速运动。
综合行程问题
涉及多种运动形式和力的 作用,如重力、摩擦力等 。
03
行程问题图象信息题解 法
匀速直线运动问题
总结词
速度恒定,方向不变,路程与时间成正比。
详细描述
匀速直线运动是速度保持不变的直线运动,其路程与时间成正比。在图象上, 匀速直线运动的线是一条斜率为常数的直线,表示速度的大小和方向。通过图 象可以直接读出速度、路程和时间等物理量。
匀加速直线运动问题
04
实际应用案例解析
生活中的行程问题解析
总结词:生活实例
详细描述:通过生活中的实际例子,如上学、上班、旅游等场景,展示行程问题 的常见性和实用性。
物理实验中的行程问题解析
总结词:物理实验
详细描述:结合物理实验,如自由落体、匀速圆周运动等,解释行程问题在物理学中的应用和解决方 法。
数学题目中的行程问题解析
详细描述
匀减速直线运动是加速度保持不变的直线运动,其速度随时间均匀减小。在图象上,匀减速直线运动的线是一条 斜率逐渐减小的直线,表示速度随时间的变化规律。通过图象可以直接读出初速度、加速度、路程和时间等物理 量。
行程题知识点总结
行程题知识点总结了解行程题的基本知识是提高旅游规划和管理的重要前提,对于旅行者也是非常有帮助的。
下面将从目的地选择、行程线路、交通工具、住宿餐饮、景点安排、导游服务等方面对行程题进行总结和讨论。
一、目的地选择行程题首先要确定游览的目的地。
目的地选择可以根据旅行者的兴趣爱好、经济实力、时间安排等不同因素进行考虑。
有些人喜欢游览风景名胜,那么可以选择一些风景秀丽的地方,如旅游胜地、名山大川、宜游海滨等;有些人喜欢体验当地的文化风情,那么可以选择一些历史文化悠久、民俗风情浓厚的地方,如古镇古城、民族风情村、乡村振兴示范区等;有些人喜欢探索未知的冒险,那么可以选择一些偏远、未开发的地方,如森林荒漠、河山草原、高山湖泊等。
所以在选择目的地的时候,要根据自己的实际情况和需求进行分析和取舍,不能一概而论。
二、行程线路确定了目的地之后,就要安排行程线路。
行程线路是指在一定时间内,按照一定的路线对目的地进行游览、考察或参观的路线安排。
行程线路的设计要考虑到时间、距离、景点数量、景点分布、路况等因素,尽量使行程合理、安全、舒适、经济。
行程线路的设计要综合考虑,一般可以采取“环线”、“直线”、“放射线”、“连接线”等不同的方式。
环线是指游览一些较为集中的景点,形成一个相对封闭的环状线路;直线是指游览一些相对分散的景点,沿着一条线路直接到达目的地;放射线是指游览一个核心景点,然后由此向外辐射游览周边景点;连接线是指游览一些距离较远的景点,通过连接线路将它们连接在一起。
三、交通工具交通工具是行程题中的一个重要环节。
根据行程线路的设计和实际情况,要选择合适的交通工具。
一般可以选择汽车、火车、飞机、轮船等不同的交通工具,也可以选择自驾、自行车、徒步等不同的交通方式。
在选择交通工具的时候,要根据时间、距离、舒适度、安全性、经济性等不同的因素进行考虑。
有些时候可以选择直接到达目的地的快速交通工具,有些时候可以选择慢慢游览途中的风景和风情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,甲、乙分别从A 、C 两地同时出发,匀速相向而行,他们的速度之比为5∶4,相遇于B 地后,甲继续以原来的速度向C 地前进,而乙则立即调头返回,并且乙的速度比相遇前降低15
,这样当乙回到C 地时,甲恰好到达离C 地18千米的D 处,那么A 、C 两地之间的距离是______千米。
甲、乙两车分别从A 、B 两地同时出发相向而行,甲车速度为32千米/时,乙车速度为48
千米/时,它们到达B 地和A 地后,甲车速度提高14,乙车速度减少16
,它们第一次相遇地点与第二次相遇地点相距74千米,那么A 、B 之间的距离是多少千米?
甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。
两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。
那么甲从出发到回到出发点共用了多少小时?
行程五大常考题型与三大解题技巧系统梳理
——(图解法+综合分析)
(★★★)(2008年清华附中入学测试题)
(★★★)
(★★★☆)
如图所示,A 至B 是下坡,B 至C 是平路,C 至D 是上坡。
小张和小李在上坡时步行速度是4千米/小时。
平路时步行速度是5千米/小时,下坡时速度是6千米/小时。
小张和小李分别从A 和D 同时出发,1小时后两人在E 点相遇。
已知E 在BC 上,并且E 至C 的距离是
B 至
C 的15。
当小王到达A 后9分钟,小张到达
D ,那么A 至D
全程长是多少千米? (★★★☆)。