最新高二数学题库 北师大版数学必修5试题及答案

合集下载

最新高二数学题库 北师大版必修5数学第一章练习题及答案

最新高二数学题库 北师大版必修5数学第一章练习题及答案

高二数学必修五第一单元检测卷(数列)学校:卧龙寺中学 命题人:韩 梅 鲁向阳一、选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1,的一个通项公式是A. n a =B. n a =C. n a =D. n a =2.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为 A .7 B .15 C.30 D .31 3.下列各组数能组成等比数列的是A. 111,,369B. lg3,lg9,lg 27C. 6,8,10D.3,-4. 等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .2605.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=A.2(21)n -B.21(21)3n -C.41n- D.1(41)3n -6.各项为正数的等比数列{}n a ,478a a ⋅=,则1012222log log log a a a+++=A .5B .10C .15D .207.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 (A)(B)(C)(D)8.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为A. 0B. 100C. 1000D. 100009.已知等比数列{}n a 的通项公式为123n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项和n S =A.31n- B.3(31)n- C.914n - D.3(91)4n -10.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅ 的值为A .32B .64C .256D .±6411.在等差数列{}n a 中,若4681012120a a a a a ++++=,则101123a a -的值为 A. 6 B. 8 C. 10 D. 1612. 设由正数组成的等比数列,公比q=2,且3030212=a a a ……·,则30963a a a a ……··等于 A .102 B .202 C .162 D .152二、填空题:共6小题,每小题5分,共30分.将答案填在题中的横线上.13.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列一共有 项.14.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= .15.已知{}n a 是等比数列,n a >0,又知2a 4a +23a 5a +4a 6a =25,那么35a a +=__________. 16. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是________三、解答题:本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤.17(10分).已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.18(12分).已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ① 求{}n a 的通项公式,并求2009a ;② 若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式19(12分).已知{}n a 满足13a =,121n n a a +=+, (1)求证:{}1n a +是等比数列; (2)求这个数列的通项公式n a .20(12分)已知数列{n a }的前n 项和是n n s n 2205232+-=, (1) 求数列的通项公式n a ; (2) 求数列{|n a |}的前n 项和。

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)模块学习评价 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若a>b>c,则一定成立的不等式是( ) A.a|c|>b|c| B.ab>ac C.a-|c|>b-|c| D.1a<1b<1c 【解析】∵a>b,∴a-|c|>b-|c|. 【答案】 C 2.在△ABC中,若sin A∶sin B∶sin C=3∶2∶4,则cos C的值为( ) A.-14 B.14 C.-23 D.23 【解析】由正弦定理知,a∶b∶c=sin A∶sin B∶sin C=3∶2∶4,设a=3k,b=2k,c=4k,(k>0),由余弦定理得 cos C=a2+b2-c22ab =9k2+4k2-16k22×3k×2k=-14. 【答案】 A 3.(2013•洋浦高二检测)在△ABC中,若a=2,b=23,A=30°,则B为( ) A.60° B.60°或120° C.30° D.30°或150° 【解析】根据正弦定理得sin B=bsin Aa=23×sin30°2=32,∴B=60°或120°,∵b>a,故两解都符合题意.【答案】 B 4.不等式ax2+2x+c>0的解集是(-2,3),则a+c的值是( ) A.10 B.-10 C.14 D.-14 【解析】不等式ax2+2x+c>0的解集是(-2,3),即方程ax2+2x+c=0的解为x=-2或x=3. ∴-2+3=-2a,-2×3=ca,∴a=-2,c=12,∴a+c=10. 【答案】 A 5.设{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n项和,则( ) A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5 【解析】设公差为d,则a1+d=-6,a1+7d=6解得d=2,a1=-8.则a4=-2,a5=0,a6=2,∴S4=S5. 【答案】 B 6.(2013•乌鲁木齐高二检测)已知U 为实数集,M={x|x2-2x<0},N={x|y=x-1},则M∩(∁UN)等于( ) A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.∅【解析】不等式x2-2x<0可化为x(x-2)<0,所以M={x|0<x<2},又因为N={x|x≥1},所以∁UN={x|x<1},M∩(∁UN)={x|0<x<2}∩{x|x<1}={x|0<x<1}.【答案】 A 7.不等式组(x-y+5)(x+y)≥0,0≤x≤3表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形D.等腰梯形【解析】画出图形可知:不等式组(x-y+5)(x+y)≥00≤x≤3表示的平面区域是等腰梯形.【答案】 D 8.(2013•惠州高二检测)若AB→•BC→+AB→2=0,则△ABC是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰直角三角形【解析】由AB→•BC→+AB→2=0,得c2=-ac•cos(π-B),∴cos B=ca,根据余弦定理得a2+c2-b22ac=ca,整理得a2=c2+b2,所以该三角形为直角三角形.【答案】 A 9.等比数列{an}是递增数列,若a5-a1=60,a4-a2=24,则公比q为( ) A.12 B.2 C.12或-2 D.2或12 【解析】由已知得a1q4-a1=60,a1q3-a1q=24,两式相除得q=2或12,经检验q=2或12均满足{an}是递增数列,故选D. 【答案】 D 10.(2013•丰台高二检测)已知数列{an}中,a1=35,an=1-1an-1(n≥2),则a2 012=( ) A.-12 B.-23 C.35 D.52 【解析】由an=1-1an-1及a1=35得a2=-23,a3=52,a4=35,a5=-23,…,所以数列中的项呈周期出现,周期为3,于是a2 012=a670×3+2=a2=-23. 【答案】 B 11.(2012•辽宁高考)设变量x,y满足x-y≤10,0≤x+y≤20,0≤y≤15,则2x+3y的最大值为( ) A.20 B.35 C.45 D.55 【解析】不等式组表示的区域如图所示,所以过点A(5,15)时2x+3y 的值最大,此时2x+3y=55. 【答案】 D 图1 12.如图1,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A.3年 B.4年 C.5年 D.6年【解析】由图像知,函数过点(6,11),可设y=a(x-6)2+11,把点(4,7)代入得7=a(4-6)2+11,解得a=-1,∴y=-(x-6)2+11=-x2+12x-25. ∴平均利润yx=-x2+12x-25x=-(x+25x)+12≤-2x×25x+12=2.这时x=25x即x=5. 【答案】 C 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若关于x的不等式x-ax+1>0的解集为(-∞,-1)∪(12,+∞),则实数a=________.【解析】由题意知 x=-1和x=12是方程(x-a)•(x+1)=0的两个根,∴a =12. 【答案】12 14.等比数列{an}的前n项和为2n-1,则数列{an2}的前n项和为________.【解析】设{an}的前n项和为Sn,则Sn=2n-1,∴n≥2时Sn-1=2n-1-1,∴an=Sn-Sn-1=2n-1,n=1时也适合上式,∴an=2n-1(n∈N+),故an2=4n -1. 易知{an2}为以1为首项,以4为公比的等比数列,∴其前n 项和为1-4n1-4=4n-13. 【答案】13(4n-1) 15.设x,y为正实数,且x+y=2,则2x+1y的最小值为________.【解析】2x +1y=(2x+1y)×1=(2x+1y)•(x+y2)=32+yx+x2y≥32+2 yx•x2y=3+222,当且仅当x+y=2,yx=x2y,即x=4-22,y=22-2,时等号成立.【答案】3+222 16.(2013•哈师大附中高二检测)如图2,在某灾区的搜救现场,一条搜救犬从A点出发沿正北方向行进x m到达B处发现生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°回到出发点,那么x=________.图2 【解析】∠ABC=180°-105°=75°,∠BCA=180°-135°=45°,∠BAC=180°-75°-45°=60°,又AB=x,BC=10,∴xsin 45°=10sin 60°. 得x=10sin 45°sin 60°=1063. 【答案】1063 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知a、b、c分别是△ABC的三个内角所对的边,若△ABC面积S△ABC=32,c=2,A=60°,求a、b的值.【解】∵32=12b×2×sin 60°,∴b=1,又a2=b2+c2-2bccos A,∴a2=3,即a=3. 18.(本小题满分12分)(2013•福州高二检测)已知不等式mx2+nx-1m<0的解集为{x|x<-12,或x>2}. (1)求m,n的值; (2)解关于x的不等式:(2a-1-x)(x+m)>0,其中a是实数.【解】(1)依题意m<0,-12+2=-nm,-12×2=-1m2得m=-1,n=32.(2)原不等式为(2a-1-x)(x-1)>0即[x-(2a-1)](x-1)<0. ①当2a-1<1,即a<1时,原不等式的解集为{x|2a-1<x<1}.②当2a-1=1即a=1时,原不等式的解集为∅. ③当2a-1>1即a>1时,原不等式的解集为{x|1<x<2a-1}. 19.(本小题满分12分)某货轮在A处看灯塔B在货轮北偏东75°,距离为126 n mile;在A处看灯塔C在货轮的北偏西30°,距离为83 n mile.货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求: (1)A处与D处之间的距离; (2)灯塔C与D处之间的距离.【解】(1)在△ABD中,由已知得∠ADB=60°,B=45°. 由正弦定理得 AD=ABsinBsin∠AD B=126×2232 =24(n mile). (2)在△ADC中,AC=83,AD=24,∠CAD=30°,由余弦定理得 CD2=AD2+AC2-2AD•ACcos 30° =242+(83)2-2×24×83cos 30° =3×64,∴CD=83(n mile).所以A处与D处之间的距离为24n mile,灯塔C与D处之间的距离为83 n mile. 20.(本小题满分12分)某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时,又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?【解】设每天生产A型桌子x张,B型桌子y张,则x+2y≤8,3x +y≤9,x≥0,y≥0,目标函数为:z=2x+3y. 作出可行域:把直线l:2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=2x+3y取最大值,解方程x +2y=83x+y=9,得M的坐标为(2,3).故每天应生产A型桌子2张,B型桌子3张才能获得最大利润. 21.(本小题满分12分)(2013•黄冈高二检测)已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn. (1)求an及Sn; (2)令bn=1an2-1(n∈N+),求数列{bn}的前n项和Tn. 【解】(1)设等差数列{an}的公差为d,因为a3=7,a5+a7=26,所以有a1+2d=7,2a1+10d=26,解得a1=3,d=2,所以an=3+2(n-1)=2n+1;Sn=3n+n(n-1)2×2=n2+2n. (2)由(1)知an=2n+1,所以bn=1an2-1=1(2n+1)2-1=14•1n(n+1)=14•(1n-1n+1),所以Tn=14•(1-12+12-13+…+1n-1n+1)=14•(1-1n+1)=n4(n+1),即数列{bn}的前n项和Tn=n4(n +1). 22.(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和f(n)=(前n年的总收入-前n年的总支出-投资额). (1)该厂从第几年开始盈利? (2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?【解】由题意知, f(n)=50n-12n+n(n-1)2×4-72 =-2n2+40n-72. (1)由f(n)>0,即-2n2+40n-72>0,解得2<n <18. 由n∈N+知,从第三年开始盈利. (2)方案①:年平均纯利润f(n)n=40-2n+36n≤16当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6. 方案②:f(n)=-2(n -10)2+128.当n=10,f(n)max=128. 故方案②共获利128+10=138(万元).比较两种方案,选择第①种方案更合算.。

最新高二数学题库 北师大版高二数学必修5试卷及答案

最新高二数学题库 北师大版高二数学必修5试卷及答案

高二数学必修5命题单位:卧龙寺中学 姓名:张平安一 选择题(本题共12个小题,每小题只有一个正确答案,每小题5分,共60分)1、在等比数列}{n a 中,公比q =2,且30303212=⋅⋅⋅⋅a a a a ,则30963a a a a ⋅⋅⋅⋅ 等于( )A 、102B 、202C 、162D 、1522、若}{n a 是等比数列,124,5128374=+-=a a a a 且公比q 为整数,则10a 等于( )A 、-256B 、256C 、-512D 、512 3、a,b,c 成等比数列,那么关于x 的方程 02=++c bx ax ( )A 、一定有两个不相等的实数根B 、一定有两个相等的实数根C 、一定没有实数根D 、以上三种情况均可出现4 .在A B C ∆中,若(a +b+c )(b+c-a )=3bc 且sinA=2sinBcosC ,那么ABC ∆是 ( )A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形5.在ABC ∆中,︒=︒==45,30,2C A a ,则ABC S ∆= ( ) A.2 B .22 C.13+ D.)13(21+ 6、已知在△ABC 中:,sinA: sinB: sinC =3: 5 :7,那么这个三角形的最大角是 ( )A .135°B .90°C .120°D .150° 7、在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则C 等于 ( )A .90°B .120°C .60°D .120°或60° 8、删除正整数数列1,2,3,……中的所有完全平方数,得到一个新数列。

这个新数列的第2005项是( )A 、 2048B 、 2049C 、 2050D 、 20519、已知310<<x ,则)31(x x -取最大值时x 的值是( ) A .31 B .61C .43D .3210、 已知正数,x y 满足1x y +=,则12x y+的最小值( )A.3+B.C .2D .411、若实数b a ,满足1=+b a ,则b a 33+的最小值是( )A .18B .32C .6D .36 12、如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )A .最大值1和最小值43最小值21和最大值1B .最小值21和最大值1C .最小值43而无最大值 D .最大值1而无最小值 二.填空题(本大题共4个小题,每小题4分,共16分) 13、若x<0,则函数x1x x 1x )x (f 22--+=的最小值是___________. 14、若x 、y ∈R +,x +4y =20,则xy 有最______值为______.15、若在等差数列}{n a 中,3,773==a a ,则通项公式n a =______________ 16、数列}{n a 的通项公式11++=n n a n ,其前n 项和时9=n S ,则n 等于_________三 解答题(本大题共6个小题,共74分)17.(12分)在∆ABC 中,设b bc BA-=2tan tan ,求A 的值。

北师大版高二数学必修五第一章试题及答案

北师大版高二数学必修五第一章试题及答案

本试卷分第I卷(选择题)和第II卷(非选择题)两部分命题人:宝鸡石油中学高二年级数学学科王蒙高二数学必修五第一章试题第I卷(选择题,共90分)注意事项:1 •答第I卷前,考生务必将答题卡及第II卷密封线内项目填写清楚。

2 •第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂其他答案,答案不能答在试题纸上。

3 •非选择题答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效。

考生必须保持答题卡的整洁,一、选择题:本大题共有12小题,每小题5分,共60分•在每小题给出的四个选项中,有且只有一项是符合题目要求的.1 •数列、2, 5,22,.冇川,的一个通项公式是A. a n = \ 3n - 3B. a n - 3n -1 c. a n - 3n 1 D. a^ = , 3n 32. 已知数列的首项印=1,且a n= 2a n」+1 (n兰2),则a5为A. 7B. 15C.30D. 313. 下列各组数能组成等比数列的是A. -,-,-B. Ig3,lg9,lg 27C. 6,8,10D. 3,-3、, 3,93 6 94. 等差数列①[的前m项的和是30,前2m项的和是100,则它的前3m项的和是A. 130B. 170C. 210D. 2605. 若a』是等比数列,前n项和S n =2n -1,则a;• a; ' a f J|l ' a2 =1 1A. (2n -1)2B. —(2n-1)2C. 4n-1D. 一(4n-1)3 36. 各项为正数的等比数列g n*,a4a7=8,则log 2® log2a2丨|1 log2^0=A. 5 B . 10 C . 15 D . 207. 已知等差数列{a n}的公差0,若比、比、盹成等比数列,那么公比为3 2 3 4(A)(B)一(C) .一(D)-4 3 2 3&在等差数列和Ib n?中,印=25,b, =75,a100,=100,则数列G,b」的前100项和为A. 0B. 100C. 1000D. 100009.已知等比数列;£n 1的通项公式为an =2 3n‘,则由此数列的偶数项所组成的新数列的前n项和S n =二、填空题:共6小题,每小题13. 等差数列的前4项和为40,最后 一共有项•14. 若:a n /是等比数列,下列数列中是等比数列的所有代号为 __________________ .①a 2』②a/③丄④'ig a n ?® J15. 若{ a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= _________ .16. 已知{a n }是等比数列,a n >0,又知 a 2 a 4+2a 3 a 5 +a 4 a 6=25,那么 a 3+a 5= _____________17.在等差数列iaj 中,印+印+aw +% +厲9 =100,则 亦—a®十比的值是 _____________________18.已知数列 ◎ }的前n 项和S n =3+2n ,则a n = ______________ 答题卡:班级: ________ 姓名: ___________ 号: __________ 得分: _________第II 卷(非选择题,共60 分)注意事项:用钢笔或圆珠笔直接答在试题卷上。

北师大版高中数学必修五数学全册测试.doc

北师大版高中数学必修五数学全册测试.doc

数学必修5全册测试说明:时间120分钟,满分150分;可以使用计算器.一、选择题(每小题只有一个正确选项;每小题5分,共60分)1.数列1,3,6,10,…的一个通项公式是 ( )(A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2)1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的 ( )(A )第12项 (B )第13项 (C )第14项 (D )第15项3.在数列{a n }中,a 1=1,当n ≥2时,n 2=a 1a 2…a n 恒成立,则a 3+a 5等于 ( )(A )7613111(B)(C)(D)3161544.一个三角形的两内角分别为45°和60°,如果45°角所对的边长是6,那么60°角所对的边长为( )(A )36 (B )32 (C )33 (D ) 265.在△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则a ∶b ∶c 等于 ( )(A )1∶2∶3 (B )3∶2∶1 (C )2∶3∶1 (D )1∶3∶26.在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC(A )无解 (B )有解 (C )有两解 (D )不能确定7、等差数列{n a }的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中可以用这个常数表示的是 ( )(A ) 6S (B ) 11S (C )12S (D ) 13S8.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 ( ) (A)20 (B)22(C)24 (D)28 9. 当a <0时,不等式42x 2+ax -a 2<0的解集为 ( )(A){x |-6a <x <7a } (B ){x |7a <x <-6a } (C){x |6a <x <-7a } (D ){x |-7a <x <6a } 10.在∆ABC 中,A B C ,,为三个内角,若cot cot 1A B ⋅>,则∆ABC 是 ( )(A )直角三角形 (B )钝角三角形(C )锐角三角形 (D )是钝角三角形或锐角三角形11.已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( )(A )140 (B )280 (C )168 (D )5612.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是 ( ) (A ) 矩形 ( B ) 三角形 (C ) 直角梯形 (D ) 等腰梯形二、填空题(把答案写在题中的横线上;每小题4分,共16分)13. 数列{a n }中,已知a n =(-1)n·n +a (a 为常数)且a 1+a 4=3a 2,则a =_________,a 100=_________.14.在△ABC 中,若 0503,30,b c a ===则边长___________.15.若不等式ax 2+bx +2>0的解集为{x |-3121<<x },则a +b =_________. 16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 非等边三角形ABC 的外接圆半径为2,最长的边23BC =,求sin sin B C +的取值范围.18. (本小题满分12分)在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB 的距离(写出求解或推理过程,结果用字母表示).19.(本小题满分12分)设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.20.(本小题满分12分)已知10<<m ,解关于x 的不等式13>-x mx . 21、(本小题满分12分)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本)(n g 与科技成本的投入次数n 的关系是)(n g =180+n .若水晶产品的销售价格不变,第n 次投入后的年利润为)(n f 万元.①求出)(n f 的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?22.(本小题满分14分)已知等比数列{}n a 的通项公式为13-=n n a ,设数列{}n b 满足对任意自然数n 都有11a b +22a b +33a b +┅+nn a b =n 2+1恒成立. ①求数列{}n b 的通项公式; ②求+++321b b b ┅+2005b 的值.高二数学组高宗云2009-12-20。

北师大版高中数学必修5测试题含答案

北师大版高中数学必修5测试题含答案

高二数学必修5测试题一.选择题(每道4分,共计40分)1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( )A.99B.100C.96D.1012.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( ) A .21B .23 C.1 D.33.已知{}n a 等比数列,且0n a >,252645342=++a a a a a a 那么53a a +=( )A. 5B. 10C. 15D. 204.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .65.数列 ,1614,813,412,211前n 项的和为 ( )A .2212n n n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+6.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆>7.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A .5 B. 3 C. 7 D. -8 8.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( ) 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )A 、63B 、108C 、75D 、83 二、填空题(每道4分,共计16分)11.在ABC ∆中,045,B c b ===,那么A =_____________;12.a 克糖水中含有b 克糖(0)a b >>,若在糖水中加入x 克糖,则糖水变甜了。

北师大版高中数学必修5测试题含答案解析

北师大版高中数学必修5测试题含答案解析

高二数学必修5测试题一.选择题(每道4分,共计40分)1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( )A.99B.100C.96D.1012.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( ) A .21B .23 C.1 D.33.已知{}n a 等比数列,且0n a >,252645342=++a a a a a a 那么53a a +=( )A. 5B. 10C. 15D. 204.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .65.数列 ,1614,813,412,211前n 项的和为 ( )A .2212n n n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+6.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆>7.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A .5 B. 3 C. 7 D. -88.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( )2A.3 2B.-3 1C.-3 1D.-410.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83二、填空题(每道4分,共计16分)11.在ABC ∆中,045,B c b ===,那么A =_____________; 12.a 克糖水中含有b 克糖(0)a b >>,若在糖水中加入x 克糖,则糖水变甜了。

最新高二数学题库 北师大版高二数学必修5测试题及答案

最新高二数学题库 北师大版高二数学必修5测试题及答案

高二数学(必修5)命题人:宝鸡铁一中数学组 周粉粉 (全卷满分120分,考试时间100分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) (A )110 (B )16 (C )15 (D )122.在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3.不等式0322≥-+x x 的解集为( )A 、{|13}x x x ≤-≥或B 、}31|{≤≤-x xC 、{|31}x x x ≤-≥或D 、}13|{≤≤-x x 4.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂二个)经过3小时,这种细菌由1个可以繁殖成( )A.511个B.512个C.1023个D.1024个 6.数列{n a }的通项公式是n a =122+n n (n ∈*N ),那么n a 与1+n a 的大小关系是( ) (A )n a >1+n a (B )n a <1+n a (C )n a = 1+n a (D )不能确定 7.关于x 的不等式)1,(0-∞>+的解集为b ax ,则关于x 的不等式02>+-x abx 的解集为( ) A .(-2,1) B .),1()2,(+∞-⋃--∞C .(-2,-1)D .),1()2,(+∞⋃--∞8. 两个等差数列}{n a 和}{n b ,其前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 A.49B. 837C. 1479D. 241499.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]10. 等差数列}{n a 中,,0,0,020042003200420031<⋅>+>a a a a a 则使前n 项和0>n S 成立的最大自然数n 为A. 4005B. 4006C. 4007D. 4008 二.填空题. (本大题共6小题,每小题5分,共30分)) 11、数列 121, 241, 381, 4161, 5321, …, 的前n 项之和等于 . 12、已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式为=n a ________13、在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为 . 14、已知232a b +=,则48ab+的最小值是 .15.某人向银行贷款A 万元用于购房。

北师大版高二数学必修5单元测试题

北师大版高二数学必修5单元测试题

高二年级数学学科《必修5》单元质量检测试题第I 卷(选择题,共60分)一、 选择题(本大题共12小题,每小题5分,共60分)1、若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a2. 不等式11<-x ax的解集为}21|{><x x x 或,则a 值( ) A. 21>a B. 21<a C. 21=a D. 以上答案均不正确3.不等式112x <的解集是( )A .(,2)-∞B .(2,)+∞C .(0,2)D .()0,∞-⋃(2,)+∞4.原点和点(1,1)在直线a y x =+两侧,则a 的取值范围是( )A .0<a 或2>aB .20<<aC .0=a 或2=aD .20≤≤a5、已知正数x 、y 满足811x y+=,则2x y +的最小值是 ( ) A.18 B.16 C .8 D .106:对任意a ∈[-1,1],函数f(x)=x 2+(a-4)x+4-2a 的值恒大于零,则x 的取值范围是( ) A 1<x<3 B x<1或x>3 C 1<x<2 D a<1或x>27.已知集合M ={x|x 2<4},N ={x|x 2-2x -3<0},则集合M ∩N =( ) (A ){x|x <-2} (B ){x|x >3} (C ){x|-1<x <2} (D ){x|2<x <3}8.某高速公路对行驶的各种车辆最大限速为120h km /,行驶过程中,同一车道上的车间距d 不得小于10m ,用不等式表示为( )A .h km v /120≤或m d 10≥B .⎩⎨⎧≥≤md h km v 10/120C .h km v /120<或m d 10>D .h km v /120≥或m d 10≤9 若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是( )(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥110 .已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是( )(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x11、设直角三角形两直角边的长分别为a 和b ,斜边长为c ,斜边上的高为h ,则44b a +和44h c +的大小y 关系是 ( )A.4444h c b a +<+ B.4444h c b a +>+ C .4444h c b a +=+ D .不能确定 12、已知等比数列}{n a 的各项均为正数,公比1≠q ,设293a a P +=,75a a Q ∙=,则P 与Q 的大小关系是 ( )A .P > QB .P < QC .P = QD .无法确定第II 卷(非选择题,共90分)二、 填空题(本大题共6小题,每小题5分,共30分.把最佳的答案填在该题的横线上) 13.不等式224122x x +-≤的解集为 _________ . 14.若不等式022>++bx ax 解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则b a +的值为 。

最新北师大版高中数学必修五模块测试卷(附答案)

最新北师大版高中数学必修五模块测试卷(附答案)

2.设 a,b,c,d∈R,且 a>b,c>d,则下列结论正确的是( A. a+c>b+d B. a-c>b-d C. ac>bd a b D. d>c
3.已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 A=45°,B=60°,a =6,则 b 等于( A. 3 B. 3 ) C. 3 D. 2 )
第 3 页 共 7 页
a b c 18. 同学们对正弦定理的探索与研究中, 得到sinA=sinB=sinC=2R(R 为△ABC 外接圆 的半径).请利用该结论,解决下列问题:
(1)现有一个破损的圆块如图 1,只给出一把带有刻度的直尺和一个量角器,请你设计 一种方案,求出这个圆块的直径的长度. (2)如图 2,已知△ ABC 三个角满足(sin∠ CBA) +(sin∠ ACB) -(sin∠ CAB) =sin∠
8.已知 0<x<1,则 x(3-3x)取最大值时 x 的值为( 1 A.3 1 B.2 3 C.4 2 D.3
9.在△ABC 中,已知 a4+b4+c4=2c2(a2+b2),则 C 等于( A.30° B.60° C.45°或 135° D.120°
)
10.设{an}是任意等比数列,它的前 n 项和,前 2n 项和与前 3n 项和分别为 X,Y,Z, 则下列等式中恒成立的是( )
2 2 2
CBA·sin∠ACB,AD 是△ABC 外接圆直径,CD=2,BD=3,求∠CAB 和直径的长.
参考答案
一、选择题 a5 1 1 3 3 1.D ∵a5=a2q ,∴q =a2=8,∴q=2. 2.A 3.A
第 4 页 共 7 页
4.B 画出可行域如图,分析图可知当直线 u=x+2y 经过点 A、C 时分别对应 u 的最大 值和最小值. 2 2 5.A 因数列{an}是等比数列,a2a4=a3,a4a6=a5,代入条件 a2a4+2a3a5+a4a6=25,得 2 2 a3+2a3a5+a5=25,(a3+a5)2=25,又 an>0,所以 a3+a5=5. 6.C 设 a+b=t,则 a=t-b;代入 a +2b =6 中得,(t-b) +2b =6,整理得 3b2-2tb+t2-6=0,∵b∈R,∴Δ=4t2-12(t2-6)≥0, ∴-3≤t≤3.即(a+b)min=-3. 7.C ∵运算满足 xy=x(1-y),∴不等式(x-a) (x+a)<1 化为(x-a)(1-x-

北师大高中数学必修5综合测试卷及答案

北师大高中数学必修5综合测试卷及答案

必修五综合测试卷姓名: 学号: 得分:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知等差数列{}n a 的首项为3,公差为2,则7a 的值等于( ) A .1B .14C .15D .162.∆ABC 中,AB45A =︒,C =75︒则BC=( ) A .3-BC .2D .3.已知等差数列{}n a 中,前n 项和为S n ,若3a +9a =6,则S 11=( )A .12B .33C .66D .994.对于任意实数a ,b ,c ,d ,以下四个命题中①ac 2>bc 2,则a >b ;②若a >b ,c >d , 则a c b d +>+;③若a >b ,c >d ,则ac bd >;④a >b ,则1a >1b其中正确的有( ) A .1个 B .2个 C .3个 D .4个5.某船开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .15kmB .30kmC .15D .km6.已知等比数列{}n a ,若1a +2a =20,3a +4a =80,则5a +6a 等于( ) A .480B .320C .240D .1207.在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若()cos cos sin a C c A B +=,则角B 的值为( ) A .6πB .3πC .6π或56π D .3π或23π8.数列{}n a 满足a 1=1,()1122n n n a a n a --=≥+,则使得12009k a >的最大正整数k 为( )A .5B .7C .8D .109.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是 ( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a10.设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95S S 的值为A .1B .-1C .2D .21二、填空题(本大题共5个小题,每小题5分,共25分,将答案填在题后的横线上) 11.在钝角三角形ABC ∆中a=1,b=2.。

北师大版数学必修5试题及答案

北师大版数学必修5试题及答案
2(1 2n ) n …………………… 12 分 1 2
2n1 n 2 ……………… 14 分

17.在△ABC 中,∠ABC=155o-125o=30o,…………1 分
125o 155o
B
∠BCA=180o-155o+80o=105o,
符合题目要求的)
1. 已知等差数列{an}中, a7 a9 16, a4 1,则a12 的值是
A 。 15
B 。 30
C. 31
D. 64
2。
若全集 U=R,集合 M=
x x2 4
,S=
x
3 x x 1
0
,则
M
ðU
S
=
A.{x x 2} B。 {x x 2或x 3} C。 {x x 3}
bn1 bn 2,即数列bn是等差数列,又b1=1,bn 2n 17分
(II)cn=(2n 1)2n ,
Tn=a1b1 a2b2 anbn 1 2 3 22 5 23 (2n 1)2n , ……9 分
④当 a=1 时,不等式的解为 .
………………………12 分
综上,当 a=0 时,不等式的解集为(1,+∞);当 a<0 时,不等式的解集为(-∞, 1 )∪(1,+
a
∞);当 0<a<1 时,不等式的解集为(1, 1 );当 a〉1 时,不等式的解集为( 1 ,1);当 a=1 时,
a
a
不等式的解集为 。
所以 log2 (an 1) 1 (n 1) 1 n, an 2n 1. ………………………………7 分 (2) an 2n 1. Sn a1 a2 an (2 1) (22 1) (2n 1) ………………9 分 (2 22 2n ) n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修模块5试题
石油中学 夏战灵
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。

考试时间120分钟.
第Ⅰ卷 选择题 共50分
一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)
1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 A . 15 B . 30
C. 31
D. 64
2. 若全集U=R,集合M ={}
2
4x x >,S =301x x
x ⎧-⎫
>⎨⎬+⎩⎭
,则(
)U
M
S =
A.{2}x x <-
B. {23}x x x <-≥或
C. {3}x x ≥
D. {23}x x -≤< 3. 若1+2+22+……+2n >128,n ∈N*,则n 的最小值为
A. 6
B. 7
C. 8
D. 9
4. 在ABC 中,60B =,2
b a
c =,则ABC 一定是 A 、等腰三角形 B 、等边三角形 C 、锐角三角形 D 、钝角三角形
5. 若不等式022>++bx ax 的解集为⎭
⎬⎫

⎨⎧
<
<-3121|x x ,则a -b 值是 A.-10 B.-14 C. 10 D. 14
6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是
A .14
B .16
C .18
D .20
7.已知12=+y x ,则y x 42+的最小值为
A .8
B .6
C .22
D .23
8. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是
A. B.42n - C.24n + D.33n +
9. 已知变量y x ,满足⎪⎩

⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有
A .3,12min max ==z z
B .,12max =z z 无最小值
C .z z ,3min =无最大值
D .z 既无最大值,也无最小值
10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则
实数a 的取值范围是
A .11a -<<
B .02a <<
C .1322a -<<
D .3122
a -<<
第Ⅱ卷 非选择题 共100分
二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上)
11. 已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .
12.b 克糖水中有a 克糖(b>a >0),若再加入m 克糖(m>0),则糖水更甜了,将这个事实用一个不
等式表示为 . 13. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a = ________________.
14.把正整数按上小下大、左小右大的原则排成如图三角形数 表(每行比上一行多一个数):设,i j a (i 、j ∈N*)是位于 这个三角形数表中从上往下数第i 行、从左往右数第j 个数,
如4,2a =8.若,i j a =2006,则i 、j 的值分别为________ ,__________
三、解答题:(本大题共 6 小题,共 80分。

解答应写出文字说明、证明过程或演算步骤。

) 15.(本小题满分12分)△ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积。

第1个 第2个 第3个
1
2 3
4
5
6
7 8 9 10
………………………… A
B
D C
2 1。

相关文档
最新文档