流体力学平板边界层内的流速分布实验报告电子版
平板边界层速度剖面的测定讲义2
2009年04月20~22日平板附面层速度剖面与厚度的测定一、实验目的:1.熟悉附面层速度分布和厚度的测量方法。
2.具体测定平板附面层层流与湍流附面层的速度分布及其厚度。
3.把实验结果与理论计算结果进行比较,分析其差异产生的原因。
二、实验原理:粘性匀质不可压缩流体,测量边界层内的速度,仍利用风速管(皮托管)测风速的原理,即测出某点的总压P0和静压P后再换算成该点的速度,因为边界层很薄,其厚度往往只有几mm到十几mm,因而只能用极细的探针去探测边界层内的压力。
由于在边界层内部满足∂(P)/∂(Y)=0,即静压P沿着平板的法线方向不变,因此,可以用壁面上的静压P来表示边界层内法线上所有不同高度的静压。
于是,本实验将一根微总压管装在一标架上,使微总压管以很小的间距上下移动,测出不同高度处的总压P0(y)后,即可算出法线上离壁面y处的速度。
实验时,把总压管由壁面逐步往上移动,则测出的总压越来越大。
当移动到某一高度以后,再继续往上移动几个间距,这时所测到的总压已不再随高度的变化而变化。
记录下数据,经软件分析后可得速度边界层厚度和速度剖面,并与理论曲线对照。
理论分析中总是假定从平板(或物体)的前缘(或驻点)就开始形成层流或湍流边界层。
实际上绕流体的运动常常是组合边界层问题,即在物体的前部分首先形成层流边界层,在它的后部分形成湍流边界层,在它们之间还有一个过渡段。
过渡段从层流的失稳点(层流不稳定点)开始直到流动成为完全湍流之点(湍流过渡点)结束。
性质介于两者之间。
为了读出压力的微小变化,本实验采用压力传感器,采用总压和静压之差,将其采集的压力信号转换成电信号,再通过放大器进行信号放大后,输入A/D转换器,由计算机直接计算出速度值。
由于速度剖面是以无量纲形式画成的,因此,不需要计算一点的速度,只要计算出速度的相对值就可以了。
计算各高度上的u y/v和y/δ的值,以y/δ为纵坐标,u y/v为横坐标作图(其中v是边界层δ处所对应的边界层外缘处的速度,相当于来流速度),从流速分布图上判断各测点处是层流还是湍流边界层。
边界层流动特性分析
1.边界层方程是描述边界层内流体运动规律的基本方程,主要包括Navier-Stokes 方程和连续方程。 2.边界层方程的求解通常需要采用数值模拟或者近似解析方法,如普适函数法和相 似理论法。 3.边界层方程的研究对于揭示边界层流动的内在机制和预测流动行为具有关键作用 。
边界层概念与定义
▪ 边界层厚度测量方法
1.热膜风速计法:通过测量热膜上的热量传递来推算流体的速 度分布,从而得到边界层的厚度。 2.皮托管法:利用皮托管测量总压和静压差,计算出平均速度 ,再根据速度分布推导出边界层厚度。 3.激光多普勒测速技术(LDV):通过发射激光束并接收反射 光的多普勒频移信号,精确测量流场速度,进而确定边界层厚 度。
边界层分离
1.边界层分离是指当流体流过曲率半径较小的固体表面时,边 界层内的流体由于离心力的作用而从固体表面分离的现象。 2.边界层分离会导致流体在分离点后方形成涡旋,从而增加流 体与固体表面的摩擦阻力并影响流体的整体流动性能。 3.边界层分离的研究对于理解和控制流体流动中的能量损失、 噪声辐射以及流体机械的性能具有重要的实际意义。
边界层的分类
1.根据流体运动的特征,边界层可以分为层流边界层和湍流边 界层。层流边界层是指流体流动呈现有序、稳定的流动状态, 而湍流边界层则表现为无序、随机的流动状态。 2.根据流体与固体表面的相对运动关系,边界层还可以分为静 止边界层和动边界层。静止边界层是指固体表面静止不动时形 成的边界层,而动边界层则是指固体表面运动时形成的边界层 。 3.根据流体与固体表面的接触方式,边界层可以进一步细分为 光滑表面边界层和粗糙表面边界层。
边界层控制技术
1.边界层控制技术是通过改变边界层的流动特性来提高流体机 械效率、降低能耗和减少环境污染的一类技术。 2.常见的边界层控制技术包括流动诱导分离控制、湍流减阻技 术和热边界层控制等。 3.边界层控制技术在航空航天、能源、交通等领域具有广泛的 应用前景,对于推动相关行业的技术进步和可持续发展具有重 要作用。
空气动力学实验报告
实验一边界层流动测量实验摘要:边界层,又称为流动边界、附面层,它是流体流动过程中,紧贴壁面的粘性阻力不可忽略的一层薄薄的流体,它对主要流体运动的影响很大。
自普朗特提出该概念起,边界层研究就一直是流体力学研究中一个焦点和难点课题。
本实验通过热线风速仪测量距离凹口平板前缘不同位置点流体的速度分布情况,并对实验数据加以分析处理,从而确定出在不同工况中的边界层的厚度、位移厚度,以及避免粘性力等参数,最终分析边界层的特性。
关键词:边界层,热线风速仪,粘性力,雷诺数,拟合,标定1.实验简介此次实验是在一个开口式风洞中进行的,该风洞试验段截面尺寸为:500mm*500mm。
设置风洞风机的运行频率为20Hz和30Hz、,利用热线风速仪测量凹槽分离点20mm的边界层上的速度分布。
然后用两种不同的方法拟合热线风速仪实验前后标定曲线,得出标定误差值,从而分析比较这两种拟合方法的优缺点,并分析出实验中热线性能的稳定性。
2.实验步骤1)将皮托管固定在风洞试验段,轴线和来流速度方向平行。
记录皮托管标定系数k。
皮托管静压连接到压力传感器负压接口,皮托管总压连接到压力传感器通道1;2)热线风速仪探头安装在二位坐标架上,连接热线探头与恒温控制器输入、输出。
此时热线恒温控制器切勿通电!将热线探头移至和皮托管同一高度;3)热线输出连接到数据采集卡AI0,皮托管输出连接到数据采集卡AI1;4)将热线恒温控制器通电,打开MATLAB热线风速仪标定程序“hw calibration.m”,改变文件名运行程序;5)将热线移动至测量点(距离凹腔分离点X=20mm)上方自由来流中,调整风洞风速,风机运行频率f=30Hz, MATLAB运行热线速度分布测量程序“hw measurement.m”改变文件存储名称。
改变风洞风速,风机运行频率f=20Hz,重复步骤4;6)打开MATLAB热线风速仪标定程序’hw calibration.m’,改变标定参数存储文件名,重新运行标定程序。
流体力学中的层流边界层
流体力学中的层流边界层层流边界层是流体力学中的一个重要概念,它在各种工程和科学领域中都有广泛应用。
层流边界层是指在流动过程中,由于粘滞力的作用,流体贴近固体壁面的区域产生的流动状态。
本文将对层流边界层的定义、特征、形成原因以及应用进行阐述。
一、层流边界层的定义在流体运动中,当流体通过固体壁面时,靠近壁面的流体具有不同于远离壁面的流体的特殊运动状态。
这个靠近固体壁面的区域称为边界层。
边界层内的流动状态受到粘滞力的影响,呈现出较为平稳、有序的特征,这种流动状态被称为层流边界层。
二、层流边界层的特征1. 速度剖面层流边界层内,流体的速度垂直于壁面方向的分布规律可以用速度剖面表达。
速度剖面呈现出在壁面附近速度接近零,向边界层外逐渐增加的趋势。
2. 流体性质变化层流边界层内,由于粘滞力的作用,流体的速度梯度较大,温度和浓度剖面也会发生变化。
例如,流体靠近壁面处的温度较高,随着距离壁面的增加,温度逐渐接近远离壁面的流体的温度。
3. 可压缩性忽略在大多数情况下,层流边界层内的流动速度相对较低,压力梯度较小,因此可以忽略流体的可压缩性。
三、层流边界层的形成原因层流边界层的形成是由于流体与壁面之间的粘滞力。
当流体通过固体壁面时,由于粘滞力的作用,流体贴近壁面处的速度受到壁面的摩擦力约束,而远离壁面的流体则不受这种约束,导致边界层的形成。
四、层流边界层的应用层流边界层的研究对于各个领域都具有重要意义。
以下是几个典型的应用示例:1. 汽车空气动力学设计在汽车设计中,了解层流边界层的运动特征对于减小气动阻力、提高燃油效率至关重要。
通过优化车身的形状、降低边界层内压力梯度等方法,可以改善车辆的空气动力学性能。
2. 飞机气动设计在飞机设计中,减小层流边界层的粘性阻力,提高飞机的升力性能是一个重要的目标。
通过使用特殊材料、采用新的构造方法和减小边界层厚度等措施,可以改善飞机的气动性能。
3. 水力学工程设计在水力学领域,层流边界层的研究对于水流速度分布、压力分布和腐蚀等问题都有着重要的影响。
平板边界层试验
平板边界层实验(一)(一)实验目的1 .测定平板边界层内的流速分布,从而确定流速分布指数规律、边界层名义厚度3、 位移厚度3 ]、动量厚度32、能量厚度3 3。
2 .掌握毕托管和测压计的测速原理和量测技能。
(二)DQS 系列空气动力学多功能实验装置:该装置相当于小型风洞,为组装式结构。
由主机和多种易更换实验段组成,流量可以控 制。
风机提供气流,在压出段设有流量调节阀门,气流通过风道进稳压箱流速减慢进入阻尼 网,阻尼网由二层细密钢丝网构成,可将流体较大尺度的旋涡破碎,使气流均匀地进入收缩 段,经过收缩段可将收缩段进口的速度不均匀度缩小n 2倍,n 为收缩比,本收缩段的收缩比 较大。
收缩曲线应用波兰人维托辛斯基曲线。
收缩段出口接各种实验段,实验排放的气流由 实验台面的孔□进吸音箱回到风机入口,如图1所示。
多管测压计,设有可改变角度的测压排管及调平设置,当测某点压强时取与大气连通7.阻尼网(三)实验段简图稳压箱内的气流经过阻尼网及收缩段均匀进入实验段,在实验段轴心位置安装一块一 面光滑一面粗糙的平板,平板可沿轴线滑动,在实验段的出口装有精致的鸭咀形毕托管,其的测压管与该点测压管的读数差,即为测点的压强水头 如图2所示。
1. 4.联通管 5.通风机 5.输液管 6.吸音箱6.酒精库7.通气管1.测压2.收缩2.角度3.风3.支4.调节阀式(1 — 1 )、( 1-2 )中头部厚度仅有0.3 mm,并配有千分卡尺,灯光显示设置和多管测压计,见图1-1。
(三)实验原理及计算式1 .平板紊流边界层的流速分布实际流体因存在粘性,紧贴壁面的流体将粘附于固体表面,其相对速度为零,沿壁面离作为边界层的厚度。
平板足够长,则边界层可以过渡到紊流,判别过渡位置的特征值是雷诺数Re ,如图1-2所若量测断面坐标为X ,则该断面Re X 为(1-2 )法向随着与壁面距离的增加,流体的速度逐渐增大 当距离为8时,其速度达到未受扰动 的主流流速=这个厚度为8的薄层称为边界层,通常规定从壁面到u = 0.99u 处的距边界层的厚度沿平板长度方向是顺流渐增的, 在平板迎流的前段是层流边界层,如果ReX(本装置用u 代表u )其中V 为空气运动粘滞系数,VR 为动力粘滞系数,Pa 为空气密度。
平板边界层实验报告
平板边界层实验报告引言平板边界层实验是一种常见的流体力学实验方法,用于研究在流体与固体界面发生的各种现象和特性。
通过实验可以获取边界层厚度、速度剖面、摩擦系数等参数,对于理解流体边界层的特性具有重要意义。
本实验报告将详细介绍平板边界层实验的原理、实验装置、实验过程和实验结果,并对实验结果进行分析和讨论。
实验原理在实验中,我们使用平板边界层实验装置对流体的边界层进行研究。
其原理基于以下几点:1.边界层理论:边界层是指流体流动过程中处于流体与固体物体之间的一层流动区域,其特点是速度梯度较大、流动剪切应力较高。
边界层的特性对于流体的运动、传热和传质等过程具有重要影响。
2.平板边界层:平板边界层是指位于平板表面附近的边界层,它是边界层研究中最常见的情况之一。
通过对平板边界层的研究,可以深入理解边界层的结构、特性及其对流体流动的影响。
3.流动速度剖面:边界层中流体的速度随距离平板表面的距离而变化,一般呈现一定的速度剖面形态。
通过测量流体速度剖面,可以确定边界层的厚度和速度分布特性。
实验装置实验装置由以下几个主要部分组成:1.平板:平板用于产生平板边界层。
通常采用光滑的表面,材质多为金属或塑料。
2.流体:实验中常使用空气或水作为流体介质。
流体通过输送装置注入到实验装置中。
3.流量计:流量计用于精确测量流体的流量,以保证实验条件的准确性。
4.速度测量装置:速度测量装置用于测量流体在平板边界层中的速度。
常见的测量方法包括热线法、激光多普勒测速法等。
5.数据记录系统:数据记录系统用于记录实验过程中获得的各项数据,包括流体流量、速度剖面等。
实验步骤本实验的具体步骤如下:1.准备工作:清洁实验装置,确保平板表面光滑且无杂质。
2.实验装置搭建:按照实验要求搭建实验装置,包括安装平板、连接流体输送装置和速度测量装置。
3.流体注入:启动流体输送装置,将流体注入实验装置中,并调节流量控制阀以控制流体的流量。
4.测速:使用速度测量装置对流体在平板边界层中的速度进行测量。
平板湍流边界层课件
图 11 6 紊流边界层自由边界示意图
第20页/共49页
湍流平板边界层的湍动特性
为了深入理解边界层中的紊流结构,常对紊流中两 个相邻测点同时进行脉动流速的量测,以分析紊流 的空间特性。 空间相关函数(space correlation function):
层中间歇系数 的分布规律如图
11-5所示并可用下式表示:
1 2
1
erf
5
y
0.78
(11-11)
第19页/共49页
图 11 5 紊流平板边界层间歇系数[3]
湍流平板边界层的湍动特性
边界层内紊流与边界层外势流的交界面有时称为边界 层的自由(freeboundary)。图11-6为自由边界的示意 图。自由边界随时间而变动,具有随机的性质。光滑
中无量纲量采用 u' v' 表示单位质量切应力的无量纲量。在紧靠壁面处未
U2
能量测到有关数据。
在边界层的外边界,即紊流边界 层与上部势流的交界面处紊流具 有间歇性质。克莱巴诺夫[3]测得 的资料显示,在 y 0.8 处,平
板紊流边界层即具有明显的间歇 性质,而当 y 1.2 时则流速基本 上不再呈现脉 动。平板紊流边界
一般用y 表示x2 ,认为:
粘性底层: 0 y 5 10 过渡区:5 10 y 30 70
对数区: 30 70 y , y 0.2
以上三个区域统称内区。 尾流区(外区): 0.2 y 1.0
第8页/共49页
湍流平板边界层的流速分布与分区结构
第9页/共49页
平板边界层内的流速分布实验
平板边界层内的流速分布实验(一).实验目的测定平板上离前缘某一定点处边界层内的流速分布及其厚度。
(二)仪器设备吸入式风洞~大气压强计~温度计~微压计~U形测压管~平板模型~总压探针及三维坐标架。
(三)实验原理1.边界层外为理想流体(总压P0=P a和速度V无穷不变)。
2.边界层内为实际流体(P0和u x都在变化,Po<Pa,u x<V无穷)3.对平板而言:⊿P/⊿x=0,⊿P/⊿y=0,各点静压相同)4.任一点的总压,静压,速度之间的关系为:P o=P j+u x^2*ρ/25.任一点的速度:ux=(2*g*⊿h(ρ水-ρ)/ρ)^0.56.边界层厚度δ的定义:在外边界上的速度ux与来流速度V无穷相差1%的点,该点据平板壁面的垂直距离为边界层厚度)(四)数据处理(1)当x=150mm时,Re=2.031*10^5,可以认为是层流,当X=250mm时,Re=3.38*10^5,为紊流(2)在图一和图二中,X=150mm,实际曲线与紊流理论曲线更接近,因此为紊流在图二和图三中,X=250mm,实际曲线与紊流理论曲线更接近,因此为紊流(3)计算得X=150mm时,层流边界层为14.35mm,紊流边界层为2.125mm根据实验数据分析得实际边界层厚度约5.15mm,接近紊流X=250mm时,层流边界层厚度为18.527mm,紊流边界层为3.92mm,实验得实际边界层厚度约6.80mm,接近紊流。
(4)数据记录及分析如下5 56 182 93 99 35 91159 8 8.4526.3221.3120.9998 21.4271.00420.6110.96620.8570.9771 0 99.4525.621.3411.0008 21.4271.00421.2450.99621.1930.993图一X为150毫米时的速度分布曲线图二X为250mm时的速度分布曲线图三X为250mm时的速度分布曲线图四X为250mm时的速度分布曲线。
流体力学平板边界层内的流速分布实验报告电子版
平板边界层内的流速分布实验实验日期 2011-5-21 小组成员:李超,郭静文(93班)等 报告人 周楠 能动95 09031125实验目的1) 测量离平板前缘任意截面边界层内的速度分布; 2) 根据速度分布确定边界层厚度; 3) 了解风洞结构及测量仪器。
仪器设备吸入式风洞、大气压强计、温度计、微压计、U 型测压管、平板模型、总压探针及三维坐标架。
其中仪器的重要参数包括:(1)吸入式低速风洞P max =P a , 工作截面尺寸300mm ×300mm;(2)风洞的气体流速u max <25m/s, M<0.3,所以风洞内气体流动可以看成二维不可压缩流动即ρ=ρa(3)平板尺寸325mm ×200mm (4)总压探针头部直径:d=0.9mm实验原理1 流体在大雷诺数下绕物体流动时,由于流体粘性的作用,与物体表面接触的流体速度为零,然后沿法向很快增至主流速度,这层贴近物体表面,沿着法向有很大速度梯度的流动薄层,称为边界层;2 在边界层内,速度梯度很大,不能忽略流体的粘性,因此流动作实际流动u x 和p o 都在变化且u x <v ∞,p o <p a ;而在边界层外,流体粘性对流动的影响很小,可作理想流体分析,即总压p o =p a ,来流速度v ∞不变;3 对于平板而言,各点静压相同;4 对平板模型解N-S 方程可得总压与静压之关系22x o j u p p ρ=+5 任意点速度为x u =其中Δh 为总压与静压的压差水柱高度,本次实验中采用电测法测量静压和总压的压差Δp ,所以x u =6 边界层的厚度由下列条件确定,在该点边界层的流速与主流速相差1%时规定为边界层的边界,该点距平板的距离为边界层的厚度δ。
7 空气的密度ρ可以根据理想气体状态方程以及测量得到的实验室温度和大气压可得,pM RT ρ=。
实验步骤1 调整U型测压管和微压计,使管内两液面保持水平。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学综合实验报告
流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。
二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。
2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。
3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。
4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。
5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。
四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。
2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。
3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。
4.计算阻力:根据流速、流量和压力计算出阻力。
五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。
2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。
3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。
4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。
六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。
实验结果验证了贝尔劳定律和弗侖定律的准确性。
流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。
平板边界层实验报告
X 层= 340mm
Re层
v1x层
83096.18
风
风速管静压 风速管总压 h1 h静 h总
2
速
v1 h1 sin
管
h初
102
96
6
数
h末
136
102
34
据 h=h 末-h 初
34
6
28
由已知:
v1
2 h1 sin =
2 800 0.028 sin10 =8.01m/s 0.1212
小要比层流边界层的减小慢些; (4)在同一 下,紊流边界的摩擦阻力比层流边界层的大得多,这是因为层流中的
摩擦阻力只是由不同流层之间发生相对运动而引起的,紊流还有流体微团的很剧烈的横向 掺混,因而产生更大的摩擦阻力。
3. 用边界层厚度的经验公式求出δ层和δ紊 ,再与实验求得的δ层和δ紊作比较,分析产
生误差的原因。
2.实验曲线:
(自备坐标纸画出 vi f ( yi ) 曲线)
v1
1.
计算出各
yi 点处的
vi v1
,并求出δ层,δ紊。
2. 在坐标纸上画出 vi v1
f ( yi ) ,用曲线板连成光滑曲线,并比较层流边界层和紊流边
界层速度分布的差别。
层流边界层速度分布: 紊流边界层速度分布:
通过上面两图的比较,我们结合所学知识发现层流边界层和紊流边界层速度分布的差别: (1)紊流边界层沿平板壁面法向截面上的速度比层流边界层的速度增加得快,也即
答:因为垂直于板面方向的静压梯度等于零,即 p 0 ,所以只需在平板表面开一 y
静压孔,所测的静压就等于该点所在的平板法线方向上各点的静压。
总压排管
流体力学实验报告
流体力学实验报告海洋环境学院流体力学实验室二零零七年九月不可压缩流体恒定流能量方程(伯努力方程)实验一、 实验目的要求1、 验证流体恒定总流的能量方程;2、 通过对动水力学现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特性;3、 掌握流速、流量、压强等动水力学水力要素的实验量测技能。
二、 实验装置 本仪器测压管有两种:1、毕托管测压管(表2.1中标*的测压管),用以测读毕托管探头对准点的总水头'H(22pu Z gγ=++),须注意一般情况'H 于断面总水头H (22pv Z gγ=++)不同(因一般u v ≠),它的水头线只能定性表示总水头变化趋势;2、普通测压管(表2.1未标*者),用以定量量测测压管水头。
实验流量用阀13调节,流量由体积时间法(量筒、秒表另备)、重量时间法(电子称另备)或电测法测量。
三、 实验原理在实验管路中沿管内水流方向取n 个过水断面。
可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,……,n )122111122i ii i i w p v p v Z Z h ggααγγ-++=+++取12n 1ααα===…=,选好基准面,从已设置的各断面的测压管中读出pZ γ+值,测出通过管路的流量,即可计算出断面平均流速v 及22v gα,从而即可得到各断面测管水头和总水头。
四、 实验方法与步骤1、 熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。
2、 打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。
如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。
1.自循环供水器2. 实验台3.调速器4.溢流板5.稳水孔板6.恒压水箱7.测压计8.滑动测量尺 9.测压管10.实验管道 11.测压点 12.毕托管 13.流量调节阀3、 打开阀13,观察思考1)测压管水头线和总水头线的变化趋势;2)位置水头、压强水头之间的相互关系;3)测点(2)(3)测管水头同否?为什么?4)测点(12)(13)测管水头是否不同?为什么?5)当流量增加或减少时测管水头如何变化?4、 调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管供演示用,不必测记读数)。
平板边界层实验报告
平板边界层实验报告一、实验目的本次实验旨在通过测量平板边界层的速度分布、压力分布和阻力系数等参数,了解平板边界层的特性及其对流体运动的影响。
二、实验原理平板边界层是指流体在与固体表面接触时,由于黏性作用而形成的一层极薄的流动区域。
在平板上方,流体速度逐渐增大,而在靠近平板表面处,由于黏性作用,流体速度减小并趋于零。
因此,在平板表面附近会形成一个速度梯度很大的区域,即平板边界层。
本次实验采用热线法测量平板边界层速度分布,并利用静压法测量压力分布。
根据这些数据可以计算出阻力系数等参数。
三、实验装置本次实验所使用的装置如下:1. 平板:宽300mm,长600mm,厚10mm。
2. 电源:直流电源。
3. 流量计:利用热线法测量气流速度。
4. 压力传感器:利用静压法测量气流压力。
5. 数据采集系统:将测得的数据传输到计算机上进行处理。
四、实验步骤1. 将平板放置在风洞中央,并调整风洞风速为指定值。
2. 开始测量速度分布。
将热线传感器插入平板上,并通过电源对其加热,使其温度高于周围空气。
当气流通过热线时,由于黏性作用,会导致热线周围的空气速度发生变化。
通过测量热线电阻的变化,可以计算出气流速度。
3. 测量压力分布。
将静压传感器插入平板上,并记录不同位置处的静压值。
4. 根据测得的数据计算出阻力系数等参数。
五、实验结果及分析1. 速度分布图根据测得的数据绘制出平板边界层内的速度分布图如下:从图中可以看出,在与平板表面距离较远处,气流速度基本保持不变;而在距离平板表面较近处,由于黏性作用,气流速度逐渐减小并趋于零。
因此,在平板表面附近会形成一个速度梯度很大的区域,即平板边界层。
2. 压力分布图根据测得的数据绘制出平板表面上的压力分布图如下:从图中可以看出,在平板表面附近,气流静压较高;而在距离平板表面较远处,气流静压逐渐减小。
这是由于在平板表面附近,由于黏性作用,气流速度减小,因此气流静压会增大。
3. 阻力系数计算根据测得的数据可以计算出阻力系数等参数。
平板湍流边界层
当
时 Re2
U2
5000
。0.55
图 11-2 尾流强度
湍流平板边界层的流速分布与分区结构
下图给出由斯坦福大学的伦斯塔德勒 (P.W.Runstandler)[2]等人制作的一组表示湍流边界层 各分区中流动特性的照片。这组照片是使用氢气泡技术 以显示不同流区的某一高度上边界层内流动状况,同时 还给出在该高度测量的瞬时流速过程线。
湍流平板边界层
§湍流平板边界层的流速分布与分区结构
湍流边界层微分方程式可由雷诺方程出发:考虑边界 层近似,而得到二维湍流边界层方程。
定常,二维雷诺方程:
u 1 u x 1 1 u 2 x u 2 1 1 x p 1 2 x u 1 2 1 x 2 u 2 2 1 u x 1 '1 2 u x 1 'u 2 2 ' u 1 u x 1 2 u 2 u x 2 2 1 x p 2 2 x u 1 2 2 2 x u 2 2 2 u x '2 1 u 1 ' u x '2 2 2
湍流平板边界层的流速分布与分区结构
图 11 3(a)流动显示图 , y 8
图 11 3(a)流动显示图 , y 8 2
图 11 3(c)流动显示图 , y 407
图 11 3(d)流动显示图 , y 531
湍流平板边界层的流速分布与分区结构
图11-3(a)表示y 处8 平面上流动显示,此处位于粘 性底层上部或过渡区下部。由照片可见此处流速具有 大小相间的流速带,湍动剧烈,但湍动的三维性不明 显。
中无量纲量采用 u ' v ' 表示单位质量切应力的无量纲量。在紧靠壁面处未
U
2
能量测到有关数据。
平板湍流边界层
L
d 2
0
R r dr
(11-13)
表示紊流结构中一个特征长度,称 为紊流长度比尺(length scale of turbulence)。紊流长度比尺 表示在 紊流中旋涡的平均尺度,流体中某 一范围内的流体质点作为一个旋涡 而运动。图11-7所表示的流动可得
法向动量湍流边界层方程:
p 0 x2
p 0 x2 1 0
' ' u1 u2 U 2
x
0 1
0
u'2 2 U 2
0 x2
0 1
与层流边界层中结论相同,即在湍流边界层中同样压 强沿y轴是均匀分布的,与边界层外边缘处势流压强 相同。 边界条件:
上式如无量纲化,则除 项外,其余各项量级均为1, u u 因此要保留 项,则必须: x
' 1 ' 2 ' ' u1 u2 x2
' ' u1 u2 U 2 0 x2
2
0 1
所以:
即无量纲雷诺应力的量级为 的量级, 为当地势流 U 流速。
' ' u1 u2 U2
0
湍流平板边界层的流速分布与分区结构
2
图 11 4 紊流平板边界层紊流度沿断面分布[3]
湍流平板边界层的湍动特性
图11-4中还示出了紊流切应力 u' v' 在平板紊流边界层内的分布,图 中无量纲量采用 u' v' 表示单位质量切应力的无量纲量。在紧靠壁面处未 能量测到有关数据。
U 2
在边界层的外边界,即紊流边界 层与上部势流的交界面处紊流具 有间歇性质。克莱巴诺夫[3]测得 y 的资料显示,在 0.8 处,平
流体力学流动演示实验
流体力学流动演示实验流体力学演示实验包括流线流谱演示实验、流动演示实验两部分。
各实验具体内容如下:第1部分流线流谱演示实验1.1 实验目的1)了解电化学法流动显示原理。
2)观察流体运动的流线和迹线,了解各种简单势流的流谱。
3)观察流体流经不同固体边界时的流动现象和流线流谱特征。
1.2 实验装置实验装置见图1.1。
图1.1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演示机翼绕流流线分布,Ⅱ型演示圆柱绕流流线分布,Ⅲ型演示文丘里管、孔板、突缩、突扩、闸板等流段纵剖面上的流谱。
流谱仪由水泵、工作液体、流速调节阀、对比度调节旋钮与正负电极、夹缝流道显- 1 -示面、灯光、机翼、圆柱、文丘里管流道等组成。
1.3 实验原理流线流谱显示仪采用电化学法电极染色显示技术,以平板间夹缝式流道为流动显示平面,工作液体在水泵驱动下从显示面底部流出,工作液体是由酸碱度指示剂配制的水溶液,在直流电极作用下会发生水解电离,在阴极附近液体变为碱性,从而液体呈现紫红色。
在阳极附近液体变为酸性,从而液体呈现黄色。
其他液体仍为中性的橘黄色。
带有一定颜色的流体在流动过程中形成紫红色和黄色相间的流线或迹线。
流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了文丘里管、孔板、突缩、突扩、闸板等流道内流动特性。
流体自下而上流过夹缝流道显示面后经顶端的汇流孔流回水箱中,经水泵混合,中和消色,循环使用。
实验指导与分析如下:1)Ⅰ型演示仪。
演示机翼绕流的流线分布。
由流动显示图像可见,机翼右侧即向天侧流线较密,由连续方程和能量方程可知,流线密,表明流速大、压强低;而机翼左侧即向地侧流线较稀疏,表明速低、压强较高。
这表明机翼在实际飞行中受到一个向上的合力即升力。
本仪器通过机翼腰部孔道流体流动方向可以显示出升力方向。
此外,在流道出口端还可以观察到流线汇集后,并无交叉,从而验证流线不会重和的特性。
2)Ⅱ型演示仪。
演示圆柱绕流流线分布。
平板流动粘性附面层测定实验指导书
平板流动粘性附面层测定实验指导书(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--低速气流平板边界层速度分布测量实验指导书郑州航空工业管理学院航空工程实验中心一、实验目的1. 测量低速气流在平板上形成的边界层速度分布,加深认识气流的粘性特征和粘性作用强弱范围。
2. 熟悉皮托管结构,掌握其测速方法。
3. 熟悉倾斜测压计结构,掌握其测压方法,能够正确使用千分尺。
二、实验通用规范1.按时按地点参加实验,实验分组进行,爱护实验室实验仪器和设备,不准碰撞或任意移动仪器或设备,不许乱跑乱动和大声喧哗。
2.实验前,各组学生必须认真预习,阅读实验指导书和教材、书籍等有关资料,了解实验目的、原理方法、操作步骤及注意事项。
3.实验开始前,服从实验指导教师的安排,认真听讲,仔细了解实验设备和仪器的操作方法和注意事项,确定组长及组内人员实验分工。
4.实验中,严格按照相应实验操作规程,集中精力,有条不紊,认真操作,如实观察和记录各种实验数据和有关实验现象,初步进行一定数据处理和分析。
5.实验过程,如出现异常情况,应及时向指导教师汇报。
6.实验后,实验记录数据交指导教师检查,并按要求将实验仪器设备装置复位。
7.在规定时间内,按要求编写完成并上交实验报告,注意报告除原始记录数据外,实验数据的处理和分析等内容不得相互抄袭。
三、平板流体边界层概念当匀直气流u0流向平板时,由于粘性作用使紧贴平板表面处的流速为零,离开板面速度逐渐增大,最后恢复到相当于无粘势流的速度,对平板来说即等于前方来流的速度u0了,见图1。
由于空气粘性很小,只要来流速度不是很小时,流速变化大的区域只局限在靠近板面很薄的气流层内,层中粘性切应力对流动影响不能忽略,这一薄层气流通常叫作边界层或附面层气流。
自板面起沿着它的法线方向,至达到99%无粘流速度u 0处的距离,人为规定为边界层厚度(δ)。
图1 平板流动边界层增加来流势流的湍流度或板面的粗糙度,将会改变板面上边界层的形成和分布特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平板边界层内的流速分布实验
实验日期 2011-5-21 小组成员:李超,郭静文(93班)等 报告人 周楠 能动95 09031125
实验目的
1) 测量离平板前缘任意截面边界层内的速度分布; 2) 根据速度分布确定边界层厚度; 3) 了解风洞结构及测量仪器。
仪器设备
吸入式风洞、大气压强计、温度计、微压计、U 型测压管、平板模型、总压探针及三维坐标架。
其中仪器的重要参数包括:
(1)吸入式低速风洞P max =P a , 工作截面尺寸300mm ×300mm;
(2)风洞的气体流速u max <25m/s, M<0.3,所以风洞内气体流动可以看成二维不可压缩流动即ρ=ρa
(3)平板尺寸325mm ×200mm (4)总压探针头部直径:d=0.9mm
实验原理
1 流体在大雷诺数下绕物体流动时,由于流体粘性的作用,与物体表面接触的流体速度为零,然后沿法向很快增至主流速度,这层贴近物体表面,沿着法向有很大速度梯度的流动薄层,称为边界层;
2 在边界层内,速度梯度很大,不能忽略流体的粘性,因此流动作实际流动u x 和p o 都在变化且u x <v ∞,p o <p a ;而在边界层外,流体粘性对流动的影响很小,可作理想流体分析,即总压p o =p a ,来流速度v ∞不变;
3 对于平板而言,各点静压相同;
4 对平板模型解N-S 方程可得总压与静压之关系2
2
x o j u p p ρ=+
5 任意点速度为x u =
其中Δh 为总压与静压的压差水柱高度,本次实验中
采用电测法测量静压和总压的压差Δp ,所以x u =
6 边界层的厚度由下列条件确定,在该点边界层的流速与主流速相差1%时规定为边界层的
边界,该点距平板的距离为边界层的厚度δ。
7 空气的密度ρ可以根据理想气体状态方程以及测量得到的实验室温度和大气压可得,
pM RT ρ=。
实验步骤
1 调整U型测压管和微压计,使管内两液面保持水平。
2 校正平板模型与气流平行
3 调整总压探针使它头部与平板接触,并读出测量板法向上坐标的初读数
4 改变总压探针高度并读数,其与初读数之差加上探针半径即为总压探针的坐标Y,并依次读出微压计的读数Δh,直到Δh不随Y改变为止。
5 改变距离X,重复上述3和4步骤。
6 记下室内温度和大气压,整理数据绘出曲线。
实验数据整理
1 记录数据
大气压强
atm
p=97.3KPa, 大气温度t=22.8o c=296.0k 静压真空度271.0Pa
对于气体在该状态下的动力粘性系数γ查表计算
20o c时1atm下值为1.81*10^-5, 30o c时1atm下值为1.86*10^-5,近似认为1atm,线性插值可得22.8o c时γ=1.824*10^-5 Ns/m2
2 实验记录
首先计算大气密度ρ=pM/(RT)=97.3*1000*29/(8.314*296)=1146.593 3
/
g m=1.147
3
/
kg m
由此根据实验中测得的来流动压Δp=pa 算得来流速度v∞= =sqrt(2*181.2/1.147)=17.78 m/s
NO
边界层内
距离y mm
总压真空
度Pa
静压真
空度Pa
压差Δp
Pa
流速m/s速度比
1 0.45 169.9 271.0 101.1 13.28 74.68%
2 1.45 143.
3 271.0 127.7 14.92 83.93%
3 2.45 137.2 271.0 133.8 15.27 85.91%
4 3.4
5 124.2 271.0 146.8 16.00 89.98%
5 4.45 11
6 271.0 155 16.44 92.46%
6 5.45 10
7 271.0 164 16.91 95.11%
7 6.45 101 271.0 170 17.22 96.83%
8 7.45 95.7 271.0 175.3 17.48 98.33%
9 8.45 92.3 271.0 178.7 17.65 99.28%
10 9.45 90.2 271.0 180.8 17.76 99.86% 11 10.45 90.1 271.0 180.9 17.76 99.89% 12 11.45 89.9 271.0 181.1 17.77 99.94% 13
12.45 89.8 271.0 181.2 17.78 99.97%
紊流
NO
边界层内距离y mm 总压真空度Pa 静压真空度Pa 压差Δp
Pa
流速m/s 速度比
1 0.45 172.0 271.0 99.0 13.14 0.739
2 1.45 158.1 271.0 112.9 14.0
3 0.789 3 2.45 146.2 271.0 124.8 14.75 0.830
4 3.4
5 138.1 271.0 132.9 15.22 0.85
6 5 4.45 127.8 271.0 143.2 15.80 0.889 6 5.45 122.0 271.0 149.0 16.12 0.90
7 7 6.45 115.0 271.0 156.0 16.49 0.92
8 8 7.45 106.6 271.0 164.4 16.93 0.952
9 8.45 101.8 271.0 169.2 17.18 0.966 10 9.45 97.0 271.0 174.0 17.42 0.980 11 10.45 93.3 271.0 177.7 17.60 0.990 12 11.45 90.9 271.0 180.1 17.72 0.997 13 12.45 90.2 271.0 180.8 17.76 0.999 14
13.45 89.8 271.0 181.2 17.78 1.000
实验分析
1 根据雷诺数判断流态(临界雷诺数为3*10^5~3*10^6)
2 根据边界层内的数据分布判断流态 32
(3)2V y
u y σ
σ
∞=
-
层流的理论分速度布;1
7(
)y
u V σ
∞=紊流的理论速度分布
用excel 软件对该两曲线进行插值拟合可得近似的曲线,其中边界层厚度取12mm
计算,图线如下
通过分析对比实验实际流动的速度分布曲线和理论情况下的层流、紊流分布曲线可知,实验两种工况下的流动情况都属于紊流情况。
3 奖实例的边界层厚度与近似计算式进行比较
层流σ=紊流
1
5
0.37()X
X V
γ
σ
∞
=
若x=150mm处的流动为层流,根据公式可算理论边界层厚度为1.96mm;
若为紊流,根据公式可算理论厚度为4.87mm
若x=250mm处的流动为紊流,则可根据公式分别计算出层流和紊流的理论边界层厚度分别为 2.53mm和7.32mm
根据理论边界层厚度这一判据可以判断出两工况下边界层内的流动情况都为紊流。
小结。