18届高考数学二轮复习第一部分论方法专题训练作业5理

合集下载

2018届高考数学(理)二轮专题复习:规范练5-2-1 Word版含答案.doc

2018届高考数学(理)二轮专题复习:规范练5-2-1 Word版含答案.doc

大题规范练(一)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin 2C cos C -sin 3C =3(1-cos C ).(1)求角C ;(2)若c =2,且sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 解:(1)由2sin 2C cos C -sin 3C =3(1-cos C ), 得sin 2C cos C -cos 2C sin C =3-3cos C , 化简得sin C =3-3cos C ,即sin C +3cos C =3,所以sin ⎝ ⎛⎭⎪⎫C +π3=32, 又C 为△ABC 的内角, 所以C +π3=2π3,故C =π3.(2)由已知可得,sin(A +B )+sin(B -A )=2sin 2A , 可得sin B cos A =2sin A cos A . 所以cos A =0或sin B =2sin A .当cos A =0时,A =π2,则b =23,S △ABC =12·b ·c =12×23×2=233.当sin B =2sin A 时,由正弦定理得b =2a .由cos C =a 2+b 2-c 22ab =a 2+4a 2-42·a ·2a =12,得a 2=43,所以S △ABC =12·b ·a ·sin C =12·2a ·a ·32=32a 2=233.综上可知,S △ABC =233.2.(本小题满分12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.8 8 0 18 1 2 6 6 79 5 5 2 19 0 0 3 4 5 8 9 9 6 6 3202 2 3(1)列出2×2列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(2)(ⅰ)按照分层抽样的方法,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为X ,求X 的分布列(概率用组合数算式表示);(ⅱ)若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取50株,求取出的高茎玉米株数的数学期望和方差.附:(K 2=a +bc +d a +cb +d,其中n =a +b +c +d )解:(1)根据统计数据得2×2列联表如下:由于K 2=19×26×25×20≈7.287>6.635,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(2)(ⅰ)按照分层抽样的方法抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4. P (X =0)=C 416C 420,P (X =1)=C 14·C 316C 420,P (X =2)=C 24·C 216C 420,P (X =3)=C 34·C 116C 420,P (X =4)=C 44C 420,所以X 的分布列为(ⅱ)在抗倒伏的玉米样本中,高茎玉米有10株,占5,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,则ξ~B ⎝ ⎛⎭⎪⎫50,25,即E (ξ)=np =50×25=20,D (ξ)=np (1-p )=50×25×35=12.3.(本小题满分12分)如图(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 为AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图(2)所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.解:(1)证明:在直角梯形ABCD 中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,BE ∥CD ,故BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC . 又因为CD ∥BE , 所以CD ⊥平面A 1OC .(2)如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B ⎝⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0, A 1⎝⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 所成的锐二面角为θ,则⎩⎨⎧ n 1·BC →=0n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0y 1-z 1=0,取x 1=1得n 1=(1,1,1);由⎩⎨⎧n 2·CD →=0n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0y 2-z 2=0,取y 2=1得n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=23×2=63,即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. 4.(本小题满分12分)已知中心在原点,左焦点为F 1(-1,0)的椭圆C 的左顶点为A ,上顶点为B ,F 1到直线AB 的距离为77|OB |. (1)求椭圆C 的方程;(2)若椭圆C 1:x 2m 2+y 2n 2=1(m >n >0),椭圆C 2=x 2m 2+y 2n2=λ(λ>0且λ≠1),则称椭圆C 2是椭圆C 1的λ倍相似椭圆.已知C 2是椭圆C 的3倍相似椭圆,若椭圆C 的任意一条切线l 交椭圆C 2于M ,N 两点,求弦长|MN |的取值范围.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则A (-a ,0),B (0,b ),∴直线AB 的方程为x-a +y b=1,整理得-bx +ay -ab =0,∴F 1(-1,0)到直线AB 的距离d =|b -ab |a 2+b 2=77b ,整理得a 2+b 2=7(a -1)2, 又b 2=a 2-c 2,故a =2,b =3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知,椭圆C 的3倍相似椭圆C 2的方程为x 212+y 29=1,①若切线l 垂直于x 轴,则其方程为x =±2,易求得|MN |=2 6. ②若切线l 不垂直于x 轴,可设其方程为y =kx +d , 将y =kx +d 代入椭圆C 的方程中, 整理得(3+4k 2)x 2+8kdx +4d 2-12=0, ∵直线l 与椭圆C 相切,∴Δ=(8kd )2-4(3+4k 2)(4d 2-12)=48(4k 2+3-d 2)=0,即d 2=4k 2+3.记M ,N 两点的坐标分别为(x 1,y 1),(x 2,y 2), 将y =kx +d 代入椭圆C 2的方程,得 (3+4k 2)x 2+8kdx +4d 2-36=0, x 1+x 2=-8kd 3+4k 2,x 1x 2=4d 2-363+4k 2,∴|x 1-x 2|=x 1+x 22-4x 1x 2=4k 2+9-d 23+4k2把d 2=4k 2+3代入得|x 1-x 2|=463+4k2,∴|MN |=1+k 2·|x 1-x 2|=4 6 1+k23+4k2= 2 61+13+4k2. ∵3+4k 2≥3,∴1<1+13+4k 2≤43,即26<2 61+13+4k2≤4 2. 综上,弦长|MN |的取值范围为[26,42].5.(本小题满分12分)已知函数f (x )=a (x 2-1)-ln x . (1)若f (x )在x =2处取得极小值,求a 的值;(2)若f (x )≥0在[1,+∞)上恒成立,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=2ax -1x,∵f (x )在x =2处取得极小值,∴f ′(2)=0,a =18.经验证,x =2是f (x )的极小值点,故a =18.(2)f ′(x )=2ax -1x,①当a ≤0时,f ′(x )<0,∴f (x )在[1,+∞)上单调递减, ∴当x >1时,f (x )<f (1)=0,这与f (x )≥0矛盾. ②当a >0时,令f ′(x )>0,得x >12a;令f ′(x )<0,得0<x <12a. (ⅰ)若12a>1,即0<a <12,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )<0,∴f (x )在⎝⎛⎭⎪⎫1,12a 上单调递减,∴f (x )<f (1)=0,与f (x )≥0矛盾. (ⅱ)若12a≤1,即a ≥12,当x ∈[1,+∞)时,f ′(x )≥0,∴f (x )在[1,+∞)上单调递增,∴f (x )≥f (1)=0,满足题意. 综上,a ≥12.请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知曲线C :⎩⎨⎧x =3cos a y =sin a(a 为参数),直线l :x -y -6=0.(1)在曲线C 上求一点P ,使点P 到直线l 的距离最大,并求出最大值;(2)过点M (-1,0)且与直线l 平行的直线l 1交C 于A ,B 两点,求点M 到A ,B 两点之间的距离之积.解:(1)设点P (3cos a ,sin a ),则点P 到直线l 的距离d =|3cos a -sin a -6|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π3-a -62,∴当sin ⎝ ⎛⎭⎪⎫π3-a =-1时,d max =42,此时,3cos a =-32,sin a =12,P 点坐标为⎝ ⎛⎭⎪⎫-32,12.(2)曲线C 的普通方程为x 23+y 2=1,即x 2+3y 2=3,由题意知,直线l 1的参数方程为⎩⎪⎨⎪⎧x =-1+22t y =22t(t 为参数),代入x 2+3y 2=3中化简得,2t 2-2t -2=0,得t 1t 2=-1,由参数的几何意义得|MA |·|MB |=|t 1t 2|=1. 7.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|2x -1|+|2x -3|. (1)解不等式f (x )≤5;(2)若不等式m 2-m <f (x )对任意x ∈R 都成立,求实数m 的取值范围.解:(1)∵f (x )=⎩⎪⎨⎪⎧4-4x ,⎝ ⎛⎭⎪⎫x <122,⎝ ⎛⎭⎪⎫12≤x ≤324x -4,⎝ ⎛⎭⎪⎫x >32∴原不等式等价于⎩⎪⎨⎪⎧x <124-4x ≤5或⎩⎪⎨⎪⎧12≤x <322≤5或⎩⎪⎨⎪⎧x ≥324x -4≤5,解得-14≤x <12或12≤x≤32或32≤x ≤94, ∴不等式f (x )≤5的解集为⎣⎢⎡⎦⎥⎤-14,94.(2)∵f (x )=|2x -1|+|2x -3|≥|2x -1-(2x -3)|=2, ∴m 2-m <f (x )min =2,即m 2-m -2<0, ∴-1<m <2.故m 的取值范围是(-1,2).。

高考数学二轮专题复习 第一部分 论方法 专题5 选择题、填空题解法2课件 理

高考数学二轮专题复习 第一部分 论方法 专题5 选择题、填空题解法2课件 理
第一部分 论方法
专题5 选择题、填空题解法
类型二 等价转化法
等价转化就是把未知解的问题转化到在已知知识范围内可 解的问题.通过不断的转化,把不熟悉、不规范、复杂的问题转 化为熟悉、规范甚至模式化、简单的问题.在转化过程中,一定 要注意转化前后的等价性,如出现不等价转化,则需附加约束条 件.
【典例 1】 (2015·保定模拟)设命题 p:|4x-3|≤1;命题 q: x2-(2a+1)x+a(a+1)≤0,若綈 p 是綈 q 的必要不充分条件,则
实数 a 的取值范围是( A.(0,21) C.[0,12]
) B.(0,12] D.(0,12)∪(21,+∞)
【解析】 设 A={x||4x-3|≤1},B={x|x2-(2a+1)x+a(a +1)≤0}.
解|4x-3|≤1,得12≤x≤1,故 A={x|12≤x≤1}; 解 x2- (2a+ 1)x+ a(a+ 1)≤0,得 a≤x≤a+ 1, 故 B= {x|a≤x≤a+1}.
=x,则|A→F1|=3x.由椭圆的定义可知|AF2|=2a-3x,|BF2|=2a-x,
在 Rt△ABF2 中有(4x)2+(2a-3x)2=(2a-x)2,整理得 x(3x-a)=0,
即 x=a3.在 Rt△AF1F2 中有|F1F2|=2c,(3x)2+(2a-3x)2=4c2,将 x
=a3代入得
由綈 p 是綈 q 的必要不充分条件,可得 p 是 q 的充分不必要
条件,从而 A B,所以a≤21, a+1≥1,
解得 0≤a≤21.
故所求实数 a 的取值范围是[0,12].故选 C.
【答案】 C
【典例 2】 如图,在正三棱柱 ABC-A1B1C1 中,AB=2, AA1=3,点 M 是 BB1 的中点,则三棱锥 C1-AMC 的体积为( )

2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题5 第13讲 圆锥曲线中的综合问题 含答案 精品

2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题5 第13讲 圆锥曲线中的综合问题 含答案 精品

第13讲 圆锥曲线中的综合问题题型1 圆锥曲线中的定值问题(对应学生用书第43页)■核心知识储备………………………………………………………………………·解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.■典题试解寻法………………………………………………………………………·【典题】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.[类题通法] 定值问题的常见方法 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. ■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-6,0),e =22.图13­1(1)求椭圆C 的方程;(2)如图13­1,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.[解] (1)由题意得,c =6,e =22,解得a =23, ∴椭圆C 的方程为x 212+y 26=1.(2)由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12.(3)|OP |2+|OQ |2是定值18.设P (x 1,y 1),Q (x 2,y 2),联立得⎩⎪⎨⎪⎧y =k 1x x 212+y26=1,解得⎩⎪⎨⎪⎧x 21=121+2k 21y 21=12k211+2k21,∴x 21+y 21=+k 211+2k 21, 同理,可得x 22+y 22=+k 221+2k 22. 由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=+k 211+2k 21++k 221+2k 22=+k 211+2k 21+12⎣⎢⎢⎡⎦⎥⎥⎤1+⎝⎛⎭⎪⎫-12k 121+2⎝ ⎛⎭⎪⎫-12k 12=18+36k 211+2k 21=18.综上:|OP |2+|OQ |2=18.■题型强化集训………………………………………………………………………·(见专题限时集训T 3)题型2 圆锥曲线中的最值、范围问题(对应学生用书第44页)■核心知识储备………………………………………………………………………· 1.解决圆、圆锥曲线范围问题的方法(1)圆、圆锥曲线自身范围的应用,运用圆锥曲线上点的坐标的取值范围. (2)参数转化:利用引入参数法转化为三角函数来解决.(3)构造函数法:运用求函数的值域、最值以及二次方程实根的分布等知识. 2.求最值的方法(1)代数法:设变量、建立目标函数、转化为求函数的最值.注意灵活运用配方法、导数法、基本不等式法等.(2)几何法:若题中的条件与结论有明显的几何特征和意义,则考虑利用图形的几何性质来解决.■典题试解寻法………………………………………………………………………·【典题】 如图13­2,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图13­2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【导学号:07804094】[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0. ①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2,代入直线方程y =mx +12,解得b =-m 2+22m 2. ②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.[类题通法]在研究直线与圆锥曲线位置关系时,常涉及弦长、中点、面积等问题.一般是先联立方程,再根据根与系数的关系,用设而不求,整体代入的技巧进行求解.易错警示:在设直线方程时,若要设成y =kx +m 的形式,注意先讨论斜率是否存在;若要设成x =ty +n 的形式,注意先讨论斜率是否为0.■对点即时训练………………………………………………………………………·如图13­3,点F 1为圆(x +1)2+y 2=16的圆心,N 为圆F 1上一动点,且F 2(1,0),M ,P 分别是线段F 1N ,F 2N 上的点,且满足MP →·F 2N →=0,F 2N →=2F 2P →.图13­3(1)求动点M 的轨迹E 的方程;(2)过点F 2的直线l (与x 轴不重合)与轨迹E 交于A ,C 两点,线段AC 的中点为G ,连接OG 并延长交轨迹E 于点B (O 为坐标原点),求四边形OABC 的面积S 的最小值. [解] (1)由题意,知MP 垂直平分F 2N , 所以|MF 1|+|MF 2|=4.所以动点M 的轨迹是以F 1(-1,0),F 2(1,0)为焦点的椭圆, 且长轴长为2a =4,焦距2c =2, 所以a =2,c =1,b 2=3. 轨迹E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),C (x 2,y 2),G (x 0,y 0). 设直线AC 的方程为x =my +1,与椭圆方程联立, 可得(4+3m 2)y 2+6my -9=0,所以y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m2.由弦长公式可得|AC |=1+m 2|y 1-y 2|=+m 24+3m2,又y 0=-3m 4+3m 2,所以G ⎝ ⎛⎭⎪⎫44+3m2,-3m 4+3m 2.直线OG 的方程为y =-3m 4x ,与椭圆方程联立得x 2=164+3m 2,所以B ⎝ ⎛⎭⎪⎫44+3m 2,-3m 4+3m 2.点B 到直线AC 的距离d 1=4+3m 2-11+m 2, 点O 到直线AC 的距离d 2=11+m2. 所以S 四边形OABC =12|AC |(d 1+d 2)=613-1+3m2≥3,当且仅当m =0时取得最小值3. ■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 4)题型3 圆锥曲线中的探索性问题(答题模板)(对应学生用书第45页)圆锥曲线中的存在性(探索性)问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否存在.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(2015·全国Ⅰ卷T20、2015·全国Ⅱ卷T20) ■典题试解寻法………………………………………………………………………· 【典题】 (本小题满分12分)(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a a >交于M ,N 两点.①(1)当k =0时,分别求C 在点M 和N 处的切线方程②;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ③?说明理由. [审题指导]或M (-2a ,a ),N (2a ,a ).2分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,④C 在点(2a ,a )处的切线方程为 y -a =a (x -2a ),即ax -y -a =0.4分y =x 24在=-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0或ax +y +a =0.⑤6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 8分故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2⑥=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.[阅卷者说][类题通法] 1.定点问题的解法:(1)直线过定点:化为y -y 0=k (x -x 0), 当x -x 0=0时与k 无关.(2)曲线过定点:利用方程f (x ,y )=0对任意参数恒成立得出关于x ,y 的方程组,进而求出定点.2.存在性问题的解题步骤:一设:设满足条件的元素(点、直线等)存在;二列:用待定系数法设出,列出关于待定系数的方程组;三解:解方程组,若方程组有实数解,则元素(点、直线等)存在;否则,元素(点、直线等)不存在.■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得EA →2+EA →·AB →为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.【导学号:07804095】[解] (1)由e =63,得c a =63,即c =63a , ① 又以原点O 为圆心,椭圆C 的长半轴长为半径的圆为x 2+y 2=a 2,且该圆与直线2x -2y +6=0相切, 所以a =|6|22+-22=6,代入①得c =2,所以b 2=a 2-c 2=2,所以椭圆C 的标准方程为x 26+y 22=1.(2)由⎩⎪⎨⎪⎧x 26+y 22=1,y =k x -,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2.根据题意,假设x 轴上存在定点E (m,0),使得EA →2+EA →·AB →=(EA →+AB →)·EA →=EA →·EB →为定值,则EA →·EB →=(x 1-m ,y 1)·(x 2-m ,y 2)=(x 1-m )(x 2-m )+y 1y 2=(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2)=m 2-12m +k 2+m 2-1+3k2,要使上式为定值,即与k 无关,只需3m 2-12m +10=3(m 2-6),解得m =73,此时,EA →2+EA →·AB →=m 2-6=-59,所以在x 轴上存在定点E ⎝ ⎛⎭⎪⎫73,0使得EA →2+EA →·AB →为定值,且定值为-59.■题型强化集训………………………………………………………………………·(见专题限时集训T 2) 三年真题| 验收复习效果 (对应学生用书第46页)1.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程.(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.∴动圆圆心M 的轨迹C 的方程为y 2=4x .(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧ y =k x -,x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3. 所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN || PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).。

(通用版)(新课标)高考数学二轮复习作业手册 专题综合训练(五) 专题五 立体几何 理

(通用版)(新课标)高考数学二轮复习作业手册 专题综合训练(五) 专题五 立体几何 理

[专题五 立体几何](时间:60分钟 分值:100分)一、选择题(每小题5分,共40分)1.设m ,n 是两条不同的直线,α,β是两个不同的平面.则下列结论中正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β2.一个几何体的三视图如图Z5-1所示,则该几何体的表面积是( )A .6+8 3B .12+C .12+8 3D .18+图Z5-1图Z5-23.网格纸中的小正方形边长为1,一个正三棱锥的侧视图如图Z5-2所示,则这个正三棱锥的体积为( )A. 3 B .3 3 C.92 D.9234.如图Z5-3所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的( )Z5-3图Z5-4Z5-55.某长方体被一个平面所截,得到的几何体的三视图如图Z5-5所示,则这个几何体的体积为( )A.4 B.4 2C.6 2 D.86.已知m,n是空间两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真的是( )A.若α∥β,m⊂α,n⊂β,则m∥nB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊂β,α⊥β,则m⊥αD.若m⊥β,m∥α,则α⊥β7.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD =2AB=6,则该球的表面积为( )A.16πB.24πC.32 3πD.48π8.已知Rt△ABC,其三边分别为a,b,c(a>b>c).分别以三角形的边a,b,c所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为S1,S2,S3和V1,V2,V3.则它们的大小关系为( )A.S1>S2>S3,V1>V2>V3B.S1<S2<S3,V1<V2<V3C.S1>S2>S3,V1=V2=V3D.S1<S2<S3,V1=V2=V3二、填空题(每小题5分,共20分)9.空间直角坐标系中,已知点P(1,2,3),P点关于平面xOy的对称点为P0,则|PP0|=________.10.若一个球的体积为4 3π,则它内接正方体的表面积是________.11.如图Z5-6所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为________.12.已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上.若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.三、解答题(共40分)13.(13分)如图Z5-7所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.14.(13分)如图Z5-8所示,在三棱锥P-ABC中,AB=BC=6,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD= 3.(1)证明:△PBC为直角三角形;(2)求直线AP与平面PBC15.(14分)如图Z5-9所示,在多面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.(1)求证:BE⊥平面DEFG;(2)求证:BF∥平面ACGD;(3)求二面角F-BC-A的余弦值.专题综合训练(五)1.C [解析] 直线m ,n 同时与平面α平行时,m ,n 可能平行,也可能相交,也可能异面;只要直线m 平行于平面α,β的交线,就满足选项B 中的已知,但此时α,β不平行;根据直线与平面垂直的性质定理,当两条平行线中的一条垂直于一个平面时,另一条也垂直于这个平面,选项C 中的结论正确;α⊥β时,与平面α平行的直线m 可能与平面β垂直,也可能斜交,也可能平行,也可能在平面β内.2.C [解析] 该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 3,两个底面三角形的面积之和是2 3,侧面积是(2+2+2 3)×3=12+6 3,故其表面积是12+8 3.3.B [解析] 该三棱锥的底面三角形的高为3,故底面边长a 满足32a =3,即a =2 3.又三棱锥的高为3,则体积为13×12×2 3×3×3=3 3.4.D [解析] 这个空间几何体是一个一条侧棱垂直于底面的四棱锥,其直观图为选项D 中的图形.5.D [解析] 割补可得其体积为2×2×2=8.6.D [解析] 分别位于两个平行平面内的两条直线有平行与异面两种位置关系,选项A 中的命题为假;相交的两个平面与第三个平面相交时,只要第三个平面与前面两个平面的交线平行,就符合选项B 中的已知,但此时两个平面相交,选项B 中的命题为假;当m ⊂β,α⊥β时,m 可能与α平行,垂直,相交,也可能在平面α内,C 不正确;根据平面与平面垂直的判定定理可知,选项D 中的命题为真.7.D [解析] 如图所示,O E 为AD 中点.|OE |=|O ′A |=23×3×32=3,|AE |=3,所以球的半径|OA |=2 3,所以所求的球的表面积为4π(2 3)2=48π.8.B [解析] S 1=π⎝ ⎛⎭⎪⎫bc a (b +c ),V 1=13π⎝ ⎛⎭⎪⎫bc a 2a ,S 2=πac +πc 2,V 2=13πbc 2,S 3=πab +πb 2,V 3=13πb 2c .由于a >b >c ,可得S 1<S 2<S 3,V 1<V 2<V 3.9.6 [解析] 易知P 点关于平面xOy 的对称点为P 0(1,2,-3),所以|PP 0|=(1-1)2+(2-2)2+(3+3)2=6.10.24 [解析] 根据球的体积公式43πr 3=4 3π,得r 3=3 3,故r =3,该球的内接正方体的体对角线长为2 3,设正方体的棱长为a ,则3a =2 3,即a =2,故球的内接正方体的表面积是6×22=24.11.23[解析] 折成的四面体是正四面体,画出立体图形,根据中点找平行线,把所求的异面直线所成角转化为一个三角形的内角.如图所示,联结HE ,取HE 的中点K ,联结GK ,PK ,则GK ∥DH ,故∠PGK 即为所求的异面直线所成角或其补角.设这个正四面体的棱长为2,在△PGK中,PG =3,GK =32,PK =12+⎝ ⎛⎭⎪⎫322=72,故cos ∠PGK =(3)2+⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫7222×3×32=23,即异面直线PG 与DH 所成的角的余弦值是23.12.33[解析] 本题主要考查球的概念与性质.解题的突破口为解决好点P 到截面ABC 的距离.由已知条件可知,以PA ,PB ,PC 为棱的正三棱锥可以补充成球的内接正方体,故而PA 2+PB 2+PC 2=()2R 2, 由已知PA =PB =PC, 得到PA =PB =PC =2, 因为V P -ABC =V A -PBC ⇒13h ·S△ABC=13PA ·S △PBC, 得到h =23 3,故而球心到截面ABC 的距离为R -h =33. 13.解:设AB =a ,PA =b A (0,0,0),B (a ,0,0),P (0,0,b ),C (2a ,2a ,0),D (0,2a ,0),E⎛⎪⎫a ,a ,b 2.(1)证明:BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a ,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,又BE⊄平面PAD ,AD ⊂平面PAD ,AP ⊂平面PAD ,故BE ∥平面PAD .(2)∵BE ⊥平面PCD ,∴BE ⊥PC ,即BE →·PC →=0,PC →=(2a ,2a ,-b ),∴BE →·PC →=2a 2-b 22=0,即b =2a .在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a ,0),BC →=(a ,2a ,0), 所以平面BDE 的一个法向量为n 1=(2,1,-1),平面BDC 的一个法向量为n 2=(0,0,1).cos 〈n 1,n 2〉=-66,所以平面EBD 与平面BDC 夹角的余弦值为66.14.解:(1)证明:取AC 中点E ,联结BE ,以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图所示的空间直角坐标系E -xyz ,则B (2,0,0),C (0,2,0),P (0,-1,3).于是BP →=(-2,-1,3),BC →=(-2,2,0).因为BP →·BC →=(-2,-1,3)·(-2,2,0)=0,所以BP →⊥BC →, 所以BP ⊥BC ,所以△PBC 为直角三角形.(2)由(1)可得,A (0,-2,0).于是AP →=(0,1,3),PB →=(2,1,-3),PC →=(0,3,-3). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·PC →=0,即⎩⎨⎧2x +y -3z =0,3y -3z =0.取y =1,则z =3,x = 2.所以平面PBC 的一个法向量为n =(2,1,3). 设直线AP 与平面PBC 所成的角为θ,则sin θ=|cos 〈AP →,n 〉|=|AP →·n ||AP →|·|n |=42×6=63,所以直线AP 与平面PBC 所成角的正弦值为63. 15.解:(1)证明:∵平面ABC ∥平面DEFG ,平面ABC ∩平面ADEB =AB ,平面DEFG ∩平面ADEB =DE ,∴AB ∥DE .又∵AB =DE ,∴四边形ADEB 为平行四边形,∴BE ∥AD . ∵AD ⊥平面DEFG ,∴BE ⊥平面DEFG .(2)证明:设DG 的中点为M ,联结AM ,MF ,则DM =12DG =2,∵EF =2,EF ∥DG ,∴四边形DEFM ∴MF =DE 且MF ∥DE ,由(1)知,四边形ADEB 为平行四边形,∴AB =DE 且AB ∥DE ,∴AB =MF 且AB ∥MF ,∴四边形ABFM 是平行四边形,即BF ∥AM ,又BF ⊄平面ACGD ,AM ACGD .(3)由已知,AD ,DE ,DG 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,4),B (2,0,4),C (0,1,4),F (2,2,0),故BF →=(0,2,-4),BC →=(-2,1,0). 设平面FBC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·BF →=2y -4z =0,n 1·BC →=-2x +y =0,令z =1,则n 1=(1,2,1),而平面ABC 的法向量可为n 2=DA →=(0,0,4),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=41+4+1×4=66,由图形可知,二面角F -BC -A 的余弦值为-66.。

2018届高考数学(理)二轮专题复习:规范练5-2-5(含答案)

2018届高考数学(理)二轮专题复习:规范练5-2-5(含答案)

大题规范练(五)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (n ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)若b n =(1-an )log 3(a 2n ·a n +1),求数列{1b n}的前n 项和T n .解:(1)∵6S n =3n +1+a (n ∈N *),∴当n =1时,6S 1=6a 1=9+a , 当n ≥2时,6a n =6(S n -S n -1)=(3n +1-a )-(3n +a )=2×3n,即a n =3n -1,∵{a n }是等比数列,∴a 1=1,则9+a =6,得a =-3, ∴数列{a n }的通项公式为a n =3n -1(n ∈N *).(2)由(1)得b n =(1-an )log 3(a 2n ·a n +1)=(3n -2)(3n +1), ∴1b n =1n -n +=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =1b 1+1b 2+…+1b n=11×4+14×7+…+1n -n +=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1 =n3n +1. 2.(本小题满分12分)如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBE =60°,设AC 与BD 相交于点O ,且FA =FC .(1)求证:平面FBC ∥平面EAD ; (2)求二面角A ­FC ­B 的余弦值.解:(1)因为四边形ABCD 与BDEF 均为菱形,所以AD ∥BC ,DE ∥BF .因为AD ⊄平面FBC ,DE ⊄平面FBC ,所以AD ∥平面FBC ,DE ∥平面FBC .又AD ∩DE =D ,AD ⊂平面EAD ,DE ⊂平面EAD ,所以平面FBC ∥平面EAD .(2)如图所示,连接FO ,FD ,因为四边形BDEF 为菱形,且∠DBF =60°,所以△DBF 为等边三角形.因为O 为BD 的中点,所以FO ⊥BD .因为O 为AC 的中点,且FA =FC ,所以AC ⊥FO . 又AC ∩BD =O ,所以FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,则以O 为坐标原点OA ,OB ,OF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AB =2,因为四边形ABCD 为菱形,∠DAB =60°,则BD =2,OB =1,OA =OF =3,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),F (0,0,3),CF →=(3,0,3),CB →=(3,1,0).设平面BFC 的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·CF →=0,n ·CB →=0,所以⎩⎨⎧3x +3z =0,3x +y =0,令x =1,则n =(1,-3,-1)为平面BFC 的一个法向量.因为OB ⊥平面AFC ,所以平面AFC 的一个法向量为OB →=(0,1,0). 因为二面角A ­FC ­B 为锐二面角,设其平面角为θ, 则cos θ=|cos 〈n ,OB →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·OB →|n |·|OB →|=⎪⎪⎪⎪⎪⎪-35=155. 所以二面角A ­FC ­B 的余弦值为155. 3.(本小题满分12分)某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望; (2)请分析比较甲、乙两人谁面试通过的可能性大?解:(1)设甲正确完成面试的题数为ξ,则ξ的可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15;P (ξ=2)=C 24C 12C 36=35;P (ξ=3)=C 34C 02C 36=15.应聘者甲正确完成题数ξ的分布列为E (ξ)=1×15+2×35+3×15=2.设乙正确完成面试的题数为η,则η的可能取值为0,1,2,3.P (η=0)=C 03⎝ ⎛⎭⎪⎫133=127; P (η=1)=C 13⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫132=627; P (η=2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫13=1227;P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827. 应聘者乙正确完成题数η的分布列为E (η)=0×127+1×627+2×27+3×27=2.(或因为η~B ⎝⎛⎭⎪⎫3,3,所以E (η)=3×23=2)(2)因为D (ξ)=(1-2)2×15+(2-2)2×35+(3-2)2×15=25,D (η)=3×23×13=23.所以D (ξ)<D (η).综上所述,从做对题数的数学期望考查,两人水平相当; 从做对题数的方差考查,甲较稳定;从至少完成2道题的概率考查,甲面试通过的可能性大.4.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM →·PN →的最小值.解:(1)由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,则直线MN 的方程为:y =x -p2,代入y 2=2px (p >0)中,得x 2-3px +p 24=0,设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=3p ,∵|MN |=8,∴x 1+x 2+p =8,即3p +p =8,解得p =2, ∴抛物线的方程为y 2=4x . (2)设l 的方程为y =x +b ,代入y 2=4x 中,得x 2+(2b -4)x +b 2=0,∵l 为抛物线C 的切线,∴Δ=0, 即(2b -4)2-4b 2=0, 解得b =1,∴l :y =x +1. 由(1)可知:x 1+x 2=6,x 1x 2=1,设P (m ,m +1),则PM →=(x 1-m ,y 1-(m +1)),PN →=(x 2-m ,y 2-(m +1)),∴PM →·PN →=(x 1-m )(x 2-m )+[y 1-(m +1)][y 2-(m +1)]=x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2.∵x 1+x 2=6,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16,y 1y 2=(x 1-1)(x 2-1)=-4, ∴y 21-y 22=4(x 1-x 2),∴y 1+y 2=4·x 1-x 2y 1-y 2=4, ∴PM →·PN →=1-6m +m 2-4-4(m +1)+(m +1)2= 2(m 2-4m -3)=2[(m -2)2-7]≥-14,当且仅当m =2,即点P 的坐标为(2,3)时,PM →·PN →取得最小值-14.5.(本小题满分12分)已知函数f (x )=x -a ln x ,g (x )=-1+ax,其中a ∈R .(1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,求a 的取值范围. 解:(1)h (x )=x +1+a x-a ln x ,h ′(x )=1-1+a x 2-a x =x 2-ax -+ax2=x +x -+ax 2,①当a +1>0,即a >-1时,在(0,1+a )上h ′(x )<0,在(1+a ,+∞)上h ′(x )>0, 所以h (x )在(0,1+a )上单调递减,在(1+a ,+∞)上单调递增. ②当1+a ≤0,即a ≤-1时,在(0,+∞)上h ′(x )>0,所以函数h (x )在(0,+∞)上单调递增.(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,即存在x 0∈[1,e],使得h (x 0)=f (x 0)-g (x 0)<0成立,即函数h (x )=x +1+ax-a ln x 在[1,e]上的最小值小于零.由(1)可知:①当1+a ≥e ,即a ≥e -1时,h ′(x )<0,h (x )在[1,e]上单调递减,所以h (x )在[1,e]上的最小值为h (e),由h (e)=e +1+a e -a <0可得a >e 2+1e -1,因为e 2+1e -1>e -1,所以a >e 2+1e -1.②当1+a ≤1,即a ≤0时,h (x )在[1,e]上单调递增, 所以h (x )的最小值为h (1),由h (1)=1+1+a <0可得a <-2.③当1<1+a <e ,即0<a <e -1时,可得h (x )的最小值为h (1+a ),因为0<ln(1+a )<1,所以0<a ln(1+a )<a ,故h (1+a )=2+a -a ln(1+a )>2>0,不合题意.综上可得,所求a 的取值范围是()-∞,-2∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程是ρ=2a sin θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-35t +a y =45t(t 为参数).(1)若a =2,M 为直线l 与x 轴的交点,N 是圆C 上一动点,求|MN |的最大值;(2)若直线l 被圆C 截得的弦长为26,求a 的值.解:(1)由ρ2=4ρsin θ得圆C 的直角坐标方程为x 2+y 2-4y =0,即x 2+(y -2)2=4. 将直线l 的参数方程化为普通方程,得y =-43(x -2),令y =0,得x =2,即点M 的坐标为(2,0).又圆C 的圆心坐标为(0,2),半径r =2,则|MC |=22, 所以|MN |的最大值为|MC |+r =22+2.(2)因为圆C :x 2+(y -a )2=a 2,直线l :4x +3y -4a =0, 所以圆心C 到直线l 的距离d =|3a -4a |5=|a |5,所以2 a 2-a 225=26,即465|a |=26, 解得a =±52.7.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为{x |0≤x ≤2},1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式f (x )≥4-|x -1|即为|x -2|≥4-|x -1|, ①当x ≤1时,原不等式化为2-x ≥4+(x -1),得x ≤-12,故x ≤-12;②当1<x <2时,原不等式化为2-x ≥4-(x -1),得2≥5,故1<x <2不是原不等式的解; ③当x ≥2时,原不等式化为x -2≥4-(x -1),得x ≥72,故x ≥72.综合①②③知,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞.(2)证明:由f (x )≤1得|x -a |≤1,从而-1+a ≤x ≤1+a ,∵f (x )≤1的解集为{x |0≤x ≤2},∴⎩⎪⎨⎪⎧-1+a =0,1+a =2,得a =1,∴1m +12n=a =1.又m >0,n >0,∴m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n =2+⎝ ⎛⎭⎪⎫2n m +m 2n ≥2+22n m ·m 2n =4,当且仅当2n m =m 2n ,即m =2n 时,等号成立,此时,联立1m +12n =1,得⎩⎪⎨⎪⎧m =2,n =1,则m +2n =4,故m +2n ≥4,得证.。

高考数学 二轮专题复习 第一部分 论方法 专题5 选择题、填空题解法3 理

高考数学 二轮专题复习 第一部分 论方法 专题5 选择题、填空题解法3 理

①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②若 k 与 b 都是无理数,则直线 y=kx+b 不经过任何整点;
③直线 l 经过无穷多个整点,当且仅当 l 经过两个不同的整
点;
④直线 y=kx+b 经过无穷多个整点的充分必要条件是 k 与 b


a与
b 的夹角为锐角,所以
0< 51·-12+λ λ2<1,解得 λ<12,且 λ≠-2,故实数 λ 的取值范围是(-
∞,-2)∪(-2,12). 【答案】 A
第11页
第一部分 专题5 类型三
高考调研
二轮重点讲练 ·数学 ·理
第12页
第一部分 专题5 类型三
高考调研
二轮重点讲练 ·数学 ·理
【解析】 方法一 特殊点法:将(1,0)点代入各选项,知选 D.
方法二 设圆 C 的方程为(x-a)2+(y-b)2=r2(r>0).则由题 意可得(1-a)2+(0-b)2=r2,|a|=r,r2=b2+1,解得 a=2,r=2, b=± 3,所以圆 C 的方程为(x-2)2+(y± 3)2=4.
高考调研
二轮重点讲练 ·数学 ·理
【解析】 展开式(x2-1x)n 的通项为 Tk+1=Ckn·(x2)n-k·(-1x)k= Cnk(-1)kx2n-3k,因为含 x 的项为第 6 项,所以 k=5,2n-3k=1, 解得 n=8.令 x=1,得 a0+a1+…+a8=(1-3)8=28.又因为 a0=1, 所以 a1+a2+…+a8=28-1=255.
正确命题的个数为( )
A.1
B.2
C.3
D.4
第15页
第一部分 专题5 类型三
高考调研

【配套K12】2018-2019学年数学高考(理)二轮专题复习:第一部分专题五立体几何1-5-1-含

【配套K12】2018-2019学年数学高考(理)二轮专题复习:第一部分专题五立体几何1-5-1-含

限时规范训练十二空间几何体的三视图、表面积及体积限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.(2017·山东烟台模拟)一个三棱锥的正(主)视图和俯视图如图所示,则该三棱锥的侧(左)视图可能为( )解析:选D.分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故其侧(左)视图应为D.2.如图是一个空间几何体的三视图,则该几何体的表面三角形中为直角三角形的个数为( )A.2 B.3C.4 D.5解析:选C.作出三棱锥的直观图如图所示,由三视图可知AB=BD=2,BC=CD=2,AD=22,AC=6,故△ABC,△ACD,△ABD,△BCD均为直角三角形,故选C.3.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π解析:选B.旋转体是两个圆锥,其底面半径为直角三角形斜边的高2,高即斜边的长的一半2,故所得几何体的体积V =13π(2)2×2×2=42π3.4.(2017·厦门质检)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E 是棱BC 上的一点,则三棱锥D 1­B 1C 1E 的体积等于( )A.13 B.512C.36D.16解析:选D.VD 1­B 1C 1E=VE ­B 1C 1D 1=13S △B 1C 1D 1·CC 1=13×12×12×1=16,故选D.5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ­ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P ­ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π解析:选C.将三棱锥P ­ABC 放入长方体中,如图,三棱锥P ­ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,依题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π.故选C.6.某几何体的三视图如图所示,若该几何体的体积为37,则侧(左)视图中线段的长度x 的值是()A.7 B .27 C .4D .5解析:选 C.分析题意可知,该几何体为如图所示的四棱锥P ­ABCD ,故其体积V =13×32+32×4×CP =37,所以CP =7,所以x =32+72=4.7.(2017·山东青岛二模)如图,正四棱锥P ­ABCD 的底面边长为6 cm ,侧棱长为5 cm ,则它的侧(左)视图的周长等于( )A .17 cmB .(119+5)cmC .16 cmD .14 cm解析:选 D.由题意可知,侧(左)视图是一个三角形,底边长等于正四棱锥底面正方形的边长,高为正四棱锥的高的一个等腰三角形.因为侧棱长5 cm ,所以斜高h =52-32=4(cm),又正四棱锥底面正方形的边长为6 cm ,所以侧(左)视图的周长为6+4+4=14(cm).8.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310解析:选C.因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.9.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C.由三视图可知,半球的半径为22,四棱锥底面正方形边长为1,高为1, 所以该组合体的体积=43π·⎝ ⎛⎭⎪⎫223×12+13×1×1×1=13+26π.10.(2017·吉林长春模拟)某四面体的三视图如图所示,该四面体的六条棱中,长度最长的棱的长是( )C .27D .4 2解析:选C.由三视图可知该四面体的直观图如图所示,其中AC =2,PA =2,△ABC 中,边AC 上的高为23,所以BC =42+32=27,而PB =PA 2+AB 2=22+42=25,PC =PA 2+AC 2=22,因此在四面体的六条棱中,长度最长的棱是BC ,其长为27,选C.11.(2017·甘肃兰州三模)某四棱锥的三视图如图所示,则该几何体的表面积为( )A .17B .22C .14+213D .22+213解析:选D.可借助长方体,作出该四棱锥的直观图,如图中的四棱锥V ­ABCD 所示.则BC ⊥平面VAB ,AB ⊥平面VAD ,CD ⊥平面VAD ,VD =5,VB =13,所以四棱锥V ­ABCD 的表面积S 表=S △VAB +S △VBC +S △VCD +S △VAD +S 四边形ABCD =12×(2×3+4×13+2×5+3×4)+2×4=22+213.故选D.12.(2017·河北衡水模拟)一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为( )C .4πD .2π解析:选B.题中的几何体是三棱锥A ­BCD ,如图所示,其中底面△BCD 是等腰直角三角形,BC =CD =2,AB ⊥平面BCD ,BC ⊥CD ,AB =2,BD =2,AC ⊥CD .取AD 的中点M ,连接BM ,CM ,则有BM =CM =12AD =1222+22=62.从而可知该几何体的外接球的半径是62.故该几何体的外接球的表面积为4π×⎝⎛⎭⎪⎫622=6π,应选B. 二、填空题(本题共4小题,每小题5分,共20分)13.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析:利用圆锥、圆柱的体积公式,列方程求解. 设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7. 答案:714.三棱锥P ­ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ­ABE 的体积为V 1,P ­ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面PAB 的距离为h ,△PAB 的面积为S ,则V 2=13Sh ,V 1=V E ­ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:1415.(2017·山东临沂模拟)某几何体的三视图如图所示,则该几何体的体积为________.解析:根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π.答案:16+8π16.(2017·高考全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:如图,连接OD ,交BC 于点G , 由题意,知OD ⊥BC ,OG =36BC . 设OG =x ,则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2=25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积 V =13S △ABC ·h =3x 2·25-10x=3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4.令f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.∴三棱锥体积的最大值为415 cm 3. 答案:415。

2018届高考数学(理)二轮专题复习:规范练5-2-1(含答案)

2018届高考数学(理)二轮专题复习:规范练5-2-1(含答案)

大题规范练(一)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin 2C cos C -sin 3C =3(1-cos C ).(1)求角C ;(2)若c =2,且sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 解:(1)由2sin 2C cos C -sin 3C =3(1-cos C ), 得sin 2C cos C -cos 2C sin C =3-3cos C , 化简得sin C =3-3cos C ,即sin C +3cos C =3,所以sin ⎝ ⎛⎭⎪⎫C +π3=32, 又C 为△ABC 的内角, 所以C +π3=2π3,故C =π3.(2)由已知可得,sin(A +B )+sin(B -A )=2sin 2A , 可得sin B cos A =2sin A cos A . 所以cos A =0或sin B =2sin A .当cos A =0时,A =π2,则b =23,S △ABC =12·b ·c =12×23×2=233.当sin B =2sin A 时,由正弦定理得b =2a .由cos C =a 2+b 2-c 22ab =a 2+4a 2-42·a ·2a =12,得a 2=43,所以S △ABC =12·b ·a ·sin C =12·2a ·a ·32=32a 2=233.综上可知,S △ABC =233.2.(本小题满分12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.抗倒伏易倒伏 7 7 3 149 7 3 3 1 15 1 9 6 4 0 16 7 5 5 4175 88 8 0 18 1 2 6 6 79 5 5 2 19 0 0 3 4 5 8 9 9 6 6 3202 2 3(1)列出2×2列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(2)(ⅰ)按照分层抽样的方法,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为X ,求X 的分布列(概率用组合数算式表示);(ⅱ)若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取50株,求取出的高茎玉米株数的数学期望和方差.附:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828(K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d )解:(1)根据统计数据得2×2列联表如下:抗倒伏 易倒伏 合计 矮茎 15 4 19 高茎 10 16 26 合计252045由于K 2=45×219×26×25×20≈7.287>6.635,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(2)(ⅰ)按照分层抽样的方法抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4. P (X =0)=C 416C 420,P (X =1)=C 14·C 316C 420,P (X =2)=C 24·C 216C 420,P (X =3)=C 34·C 116C 420,P (X =4)=C 44C 420,所以X 的分布列为X 0 1 2 3 4 PC 416C 420C 14·C 316C 420C 24·C 216C 420C 34·C 116C 420C 44C 420(ⅱ)在抗倒伏的玉米样本中,高茎玉米有10株,占5,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,则ξ~B ⎝ ⎛⎭⎪⎫50,25,即E (ξ)=np =50×25=20,D (ξ)=np (1-p )=50×25×35=12.3.(本小题满分12分)如图(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 为AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图(2)所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.解:(1)证明:在直角梯形ABCD 中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,BE ∥CD ,故BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC . 又因为CD ∥BE , 所以CD ⊥平面A 1OC .(2)如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B ⎝⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0, A 1⎝⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 所成的锐二面角为θ,则⎩⎨⎧ n 1·BC →=0n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0y 1-z 1=0,取x 1=1得n 1=(1,1,1);由⎩⎨⎧n 2·CD →=0n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0y 2-z 2=0,取y 2=1得n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=23×2=63,即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. 4.(本小题满分12分)已知中心在原点,左焦点为F 1(-1,0)的椭圆C 的左顶点为A ,上顶点为B ,F 1到直线AB 的距离为77|OB |. (1)求椭圆C 的方程;(2)若椭圆C 1:x 2m 2+y 2n 2=1(m >n >0),椭圆C 2=x 2m 2+y 2n2=λ(λ>0且λ≠1),则称椭圆C 2是椭圆C 1的λ倍相似椭圆.已知C 2是椭圆C 的3倍相似椭圆,若椭圆C 的任意一条切线l 交椭圆C 2于M ,N 两点,求弦长|MN |的取值范围.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则A (-a ,0),B (0,b ),∴直线AB 的方程为x-a +y b=1,整理得-bx +ay -ab =0,∴F 1(-1,0)到直线AB 的距离d =|b -ab |a 2+b 2=77b ,整理得a 2+b 2=7(a -1)2, 又b 2=a 2-c 2,故a =2,b =3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知,椭圆C 的3倍相似椭圆C 2的方程为x 212+y 29=1,①若切线l 垂直于x 轴,则其方程为x =±2,易求得|MN |=2 6. ②若切线l 不垂直于x 轴,可设其方程为y =kx +d , 将y =kx +d 代入椭圆C 的方程中, 整理得(3+4k 2)x 2+8kdx +4d 2-12=0, ∵直线l 与椭圆C 相切,∴Δ=(8kd )2-4(3+4k 2)(4d 2-12)=48(4k 2+3-d 2)=0,即d 2=4k 2+3.记M ,N 两点的坐标分别为(x 1,y 1),(x 2,y 2), 将y =kx +d 代入椭圆C 2的方程,得 (3+4k 2)x 2+8kdx +4d 2-36=0, x 1+x 2=-8kd 3+4k 2,x 1x 2=4d 2-363+4k 2,∴|x 1-x 2|=x 1+x 22-4x 1x 2=4312k 2+9-d23+4k2把d 2=4k 2+3代入得|x 1-x 2|=463+4k2,∴|MN |=1+k 2·|x 1-x 2|=4 6 1+k23+4k2= 2 61+13+4k2. ∵3+4k 2≥3,∴1<1+13+4k 2≤43,即26<2 61+13+4k2≤4 2. 综上,弦长|MN |的取值范围为[26,42].5.(本小题满分12分)已知函数f (x )=a (x 2-1)-ln x . (1)若f (x )在x =2处取得极小值,求a 的值;(2)若f (x )≥0在[1,+∞)上恒成立,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=2ax -1x,∵f (x )在x =2处取得极小值,∴f ′(2)=0,a =18.经验证,x =2是f (x )的极小值点,故a =18.(2)f ′(x )=2ax -1x,①当a ≤0时,f ′(x )<0,∴f (x )在[1,+∞)上单调递减, ∴当x >1时,f (x )<f (1)=0,这与f (x )≥0矛盾. ②当a >0时,令f ′(x )>0,得x >12a;令f ′(x )<0,得0<x <12a. (ⅰ)若12a>1,即0<a <12,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )<0,∴f (x )在⎝⎛⎭⎪⎫1,12a 上单调递减,∴f (x )<f (1)=0,与f (x )≥0矛盾. (ⅱ)若12a≤1,即a ≥12,当x ∈[1,+∞)时,f ′(x )≥0,∴f (x )在[1,+∞)上单调递增,∴f (x )≥f (1)=0,满足题意. 综上,a ≥12.请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知曲线C :⎩⎨⎧x =3cos a y =sin a(a 为参数),直线l :x -y -6=0.(1)在曲线C 上求一点P ,使点P 到直线l 的距离最大,并求出最大值;(2)过点M (-1,0)且与直线l 平行的直线l 1交C 于A ,B 两点,求点M 到A ,B 两点之间的距离之积.解:(1)设点P (3cos a ,sin a ),则点P 到直线l 的距离d =|3cos a -sin a -6|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π3-a -62,∴当sin ⎝ ⎛⎭⎪⎫π3-a =-1时,d max =42,此时,3cos a =-32,sin a =12,P 点坐标为⎝ ⎛⎭⎪⎫-32,12.(2)曲线C 的普通方程为x 23+y 2=1,即x 2+3y 2=3,由题意知,直线l 1的参数方程为⎩⎪⎨⎪⎧x =-1+22t y =22t(t 为参数),代入x 2+3y 2=3中化简得,2t 2-2t -2=0,得t 1t 2=-1,由参数的几何意义得|MA |·|MB |=|t 1t 2|=1. 7.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|2x -1|+|2x -3|. (1)解不等式f (x )≤5;(2)若不等式m 2-m <f (x )对任意x ∈R 都成立,求实数m 的取值范围.解:(1)∵f (x )=⎩⎪⎨⎪⎧4-4x ,⎝ ⎛⎭⎪⎫x <122,⎝ ⎛⎭⎪⎫12≤x ≤324x -4,⎝ ⎛⎭⎪⎫x >32∴原不等式等价于⎩⎪⎨⎪⎧x <124-4x ≤5或⎩⎪⎨⎪⎧12≤x <322≤5或⎩⎪⎨⎪⎧x ≥324x -4≤5,解得-14≤x <12或12≤x≤32或32≤x ≤94, ∴不等式f (x )≤5的解集为⎣⎢⎡⎦⎥⎤-14,94.(2)∵f (x )=|2x -1|+|2x -3|≥|2x -1-(2x -3)|=2, ∴m 2-m <f (x )min =2,即m 2-m -2<0, ∴-1<m <2.故m 的取值范围是(-1,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档