高一数学竞赛培训讲座之函数的基本性质

合集下载

高中数学教案:函数的基本性质

高中数学教案:函数的基本性质

高中数学教案:函数的基本性质一、函数的定义和表达形式函数是数学中一个重要的概念,它描述了两个数集之间的一种特殊关系。

具体地说,如果存在一个规则将一个数集中的每个元素和另一个数集中的唯一一个元素对应起来,那么这个规则就称为函数。

函数可以用多种形式来表示。

常见的函数表达形式有两种:算式表示和图像表示。

在算式表示中,函数可以用一个显式的算式来表示,例如 f(x) = 2x + 1。

这个算式表示了一个线性函数,在给定x的值时,可以求出f(x)的值。

在图像表示中,函数可以用图像的方式来表达,例如将函数的所有点绘制在坐标系中形成的曲线。

图像表示可以直观地展示函数的性质和规律。

二、函数的定义域和值域函数的定义域是指函数中自变量(通常用x表示)的取值范围。

在定义域内,函数是有意义的,而在定义域外,函数没有定义。

例如,对于函数 f(x) = 1/x,由于0不在其定义域内,所以当x等于0时,函数没有定义。

函数的值域是指函数的所有可能的输出值的集合。

值域可以通过分析函数的定义域和图像来确定。

对于函数 f(x) = 2x + 1,可以发现随着x的取值增加,f(x)也会增加,因此函数的值域是所有实数。

三、函数的奇偶性函数的奇偶性是指函数的性质,它与函数的定义域和图像有关。

如果函数满足以下性质:对于定义域内的任意x,都有f(-x) = f(x),那么这个函数就是偶函数。

如果函数满足以下性质:对于定义域内的任意x,都有f(-x) = -f(x),那么这个函数就是奇函数。

如果一个函数既不是偶函数也不是奇函数,那么它就是一个既非偶函数也非奇函数的普通函数。

通过观察函数的图像或利用性质判定,可以确定一个函数是否为偶函数或奇函数。

例如,函数 f(x) = x^2 是一个偶函数,而函数 f(x) = x^3 是一个奇函数。

四、函数的单调性函数的单调性描述了函数在定义域内的增减规律。

如果函数在定义域内的任意两个数x1和x2满足x1 < x2时有f(x1) < f(x2),那么这个函数就是递增函数。

函数的基本性质及常用结论

函数的基本性质及常用结论

函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。

定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。

3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。

函数的概念与基本性质

函数的概念与基本性质

函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。

本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。

一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。

函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。

函数在定义域内的每个自变量都对应一个唯一的因变量。

二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。

定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。

在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。

2. 对应关系:函数的一个重要性质是具有确定的对应关系。

即在定义域内的每个自变量都对应唯一的因变量。

这种一一对应的关系使得函数具有明确的输入和输出。

3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。

如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。

反之,如果 f(x1) > f(x2),则称该函数是单调递减的。

4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。

如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。

而如果有 f(-x) = f(x),则称函数是偶函数。

5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。

如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。

三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。

在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。

在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。

(新高一)函数基本性质详解

(新高一)函数基本性质详解
y=f(t) 增 增 减 减 增 减 减 增 t=g(x)
Y=f[g(x)]




函数的性质——单调性
例题: 1.函数y 2 x 2 3 x 的单调递增区间是________;调递减区间是 _________.
2.在区间 (,0) 上为增函数的是(
A.y=1 B. y
x 2 1 x
函数的性质——周期性
1.定义:若函数满足 f ( x T ) f ( x)(其中T为非零常数),则f ( x) 为周 期函数,且T为其一个周期; 2.结论:若函数 f(x) 的图象同时存在两条对称轴x=a和x=b,则为 周期函数,且 T 2 a b 为其一个周期。
f (x
3.性质:①f(x+T)= f(x)常常写作 一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期 T 为T,则f(ωx)(ω≠0)是周期函数,且周期为 。
综合题
课后题1
课后题2
复合函数的单调性
对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,则 y=f(t)在区间(g(a),g(b))或(g(b),g(a))上是单调函数;若t=g(x)与y=f(t) 单调性相同(同时为增或减),则y=f[g(x)]为增函数,若t=g(x)与 g=f(x)单调性相反,则y=f[g(x)]为减函数,简单地说成“同增异 减”。

(新高一)函数基本性质详解
函数
• 函数的概念:设A、B是非空的数集,如果按照某种确定的对应关 系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的 数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。 • 函数的三要素:①定义域,②值域,③对应关系(解析式)。 • 两个函数当且仅当定义域和对应法则(即解析式)都相同时,才 称为相同的函数。 例题:

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质高一数学第三章函数的基本性质知识要点函数是数学中的基本概念之一,它在数学和实际问题的求解中起到重要的作用。

本文将介绍高一数学第三章中关于函数的基本性质,帮助大家更好地理解和掌握这一知识点。

一、函数定义函数是一种特殊的关系,表示一个集合中的每个元素都与另一个集合中的唯一元素相对应。

函数可以用符号表示,例如:f(x) = 2x + 1其中f表示函数名,x表示自变量,2x + 1表示函数的表达式,它们之间用等号连接。

二、函数的定义域和值域定义域是指函数的自变量的所有可能取值的集合,通常用D表示。

在上面的函数例子中,自变量x可以取任意实数值,所以定义域为全体实数。

值域是指函数的因变量的所有可能取值的集合,通常用R表示。

同样以例子函数f(x) = 2x + 1为例,它的值域是全体实数。

三、函数的奇偶性如果对于定义域内的任意一个实数x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于定义域内的任意一个实数x,都有f(-x) = -f(x),则函数f(x)是奇函数;如果一个函数既不是偶函数也不是奇函数,则称其为非奇非偶函数。

四、函数的图像与性质函数的图像是函数在平面直角坐标系上的几何表示。

函数的图像可以通过绘制函数的各个点来获得。

函数的图像具有以下性质:1. 对称性:偶函数的图像以y轴为对称轴,奇函数的图像以原点为对称中心;2. 单调性:如果对于定义域内的两个实数x1和x2,若x1 < x2,则有f(x1) < f(x2),则称函数f(x)在该区间上是递增的;如果x1 < x2,则有f(x1) > f(x2),则称函数f(x)在该区间上是递减的;3. 最值:函数在定义域上的最大值称为最大值,函数在定义域上的最小值称为最小值;4. 零点:函数的零点是指使得f(x) = 0的自变量取值。

五、函数的初等函数性质初等函数是指常见的基本函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

高一数学函数与方程的基本性质总结

高一数学函数与方程的基本性质总结

高一数学函数与方程的基本性质总结函数与方程是高中数学中的重要概念,它们在数学和其他学科的研究中都具有广泛的应用。

本文将对高一数学中函数与方程的基本性质进行总结,帮助学生更好地理解和掌握这些概念。

一、函数的定义和性质函数可以看作是两个集合之间的一种特殊关系,它将一个集合中的元素映射到另一个集合中的唯一元素。

函数通常用公式或图形表示,常见的函数形式包括代数函数、三角函数等。

1. 函数的定义:函数由定义域、值域和对应关系三部分组成。

定义域是指函数输入的所有可能值的集合,值域是指函数输出的所有可能值的集合。

对应关系表示输入和输出之间的关系。

2. 函数的性质:- 单射:如果不同的输入对应不同的输出,即函数的每个输出对应唯一的输入,这个函数就是单射函数。

- 满射:如果函数的值域等于其真值域,即函数的所有输出都能找到对应的输入,这个函数就是满射函数。

- 双射:如果一个函数既是单射又是满射,即每个输出都对应唯一的输入,且所有的输出都能找到对应的输入,这个函数就是双射函数。

二、方程的定义和性质方程是含有未知数的等式,通过解方程可以求出未知数的值。

方程是数学和实际问题中常见的工具,深入理解方程的性质对解题非常重要。

1. 方程的定义:方程是等式的一种特殊形式,它将一个或多个未知数与已知数之间的关系表示为等式。

解方程就是要找到使等式成立的未知数的值。

2. 方程的性质:- 根:方程成立的解称为方程的根。

一元方程的根是使方程成立的未知数的值。

多元方程有多个未知数,其根是使其成立的未知数值组成的组合。

- 方程等价变形:通过等价变形可以从一个方程推导出另一个与之等价的方程,等价变形不改变方程的根。

- 方程的解集:方程的解的全体称为方程的解集,解集是使方程成立的所有根组成的集合。

三、函数与方程的关系函数与方程密切相关,函数可以用方程来表示,而方程中的未知数的取值也可以看作函数的输入。

1. 方程表示函数关系:给定函数的定义域和对应关系,可以通过方程来表示这种函数关系。

高一数学函数的基本性质

高一数学函数的基本性质

第 1 页共13 页函数的基本性质一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x f =-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x g =)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x 也一定在定义域内.即定义域是关于原点对称的点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x 对称,则)2()(a x f x f ;若函数)(x f 的图象关于点)0,(a 对称,则)2()(a xf x f .2.单调性(1)定义:一般地,设函数()y f x 的定义域为A ,区间I A .如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调增函数,I 称为()yf x 的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调减函数,I 称为()yf x 的单调减区间.(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.。

高一数学第2课-函数的基本性质

高一数学第2课-函数的基本性质

第2讲 函数的基本性质一、要点精讲1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为偶函数。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否 ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 = 0,则f (x )是奇函数。

(3)函数的图像与性质:奇函数的图象关于 对称;偶函数的图象关于 对称; 2.单调性(1)定义:注意:① 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;② 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是 或是 ,那么就说函数y =f (x )在这一区间具有 ,区间D 叫做y =f (x )的 。

(3)判断函数单调性的方法(ⅰ)定义法:利用定义严格判断(ⅱ)利用已知函数的单调性如若()f x 、)(x g 为增函数,则①()f x +)(x g 为 ;②1()f x 为 (()f x >0);为 (()f x ≥0);④-()f x 为 (ⅲ)利用复合函数【y = f (u ),其中u =g(x ) 】的关系判断单调性:复合函数的单调性法则是“ ” (ⅳ)图象法(ⅴ)利用奇偶函数的性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; 3.最值:利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 4.周期性(1)定义:如果存在一个 常数T ,使得对于函数定义域内的 ,都有 ,则称f (x )为周期函数;(2)f (x+T )= f (x )常常写作),2()2(Tx f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT 。

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的基本性质ppt课件

函数的基本性质ppt课件


1
即函数f(x)=x+ 为奇函数.

函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+


解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).

1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),

函数的定义与基本性质总结

函数的定义与基本性质总结

函数的定义与基本性质总结在数学中,函数是一种特殊关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数的定义和基本性质是数学学习的重要基础知识之一。

本文将重点总结函数的定义、函数的性质以及函数的常见类型。

一、函数的定义函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的唯一元素。

通常用f(x)表示函数,其中f表示函数名,x表示自变量,f(x)表示函数的值或因变量。

函数的定义通常包括定义域、值域和映射规则三个方面。

1. 定义域:函数的定义域是所有自变量可能取值的集合。

它决定了函数的输入范围。

2. 值域:函数的值域是函数映射到的所有可能的因变量值的集合。

它决定了函数的输出范围。

3. 映射规则:函数的映射规则描述了自变量和因变量之间的对应关系,即函数在定义域内的计算规则。

二、函数的性质函数具有一些基本性质,包括单调性、奇偶性、周期性和有界性等。

1. 单调性:函数可以是单调增加的,也可以是单调减少的。

如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为单调增加的。

当x1>x2时,有f(x1)>f(x2),则函数为单调减少的。

2. 奇偶性:函数可以是奇函数或偶函数。

如果对于定义域内的任意x,有f(-x)=-f(x),则函数为奇函数。

如果对于定义域内的任意x,有f(-x)=f(x),则函数为偶函数。

3. 周期性:函数可以具有周期性,即在一定范围内具有相同的函数值。

对于函数f(x),如果存在正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则称函数的周期为T。

4. 有界性:函数可以是有界的,即在定义域内存在上界和下界。

如果存在常数M,使得对于定义域内的任意x,有|f(x)|≤M,则函数为有界函数。

三、函数的常见类型在数学中,常见的函数类型有多项式函数、指数函数、对数函数、三角函数等。

1. 多项式函数:多项式函数是由常数和自变量的幂次幂相加或相乘而得到的函数。

人教版高中数学高一培优讲义第3讲函数的基本性质

人教版高中数学高一培优讲义第3讲函数的基本性质

第3讲函数得基本性质(2)一、函数的单调性与最值知识梳理1.函数的单调性(是一个局部概念)(1)单调性定义(2)单调区间的定义【例】1.已知函数()()()2511x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是() A.30a -≤< B.32a -≤≤- C.2a ≤- D.0a <注:单调区间之间用“,”或“和”。

定义域的区间之间用“ ”(3).判断函数单调性的方法步骤:取值→作差→变形→定号→下结论【例】2.证明函数3)(x x f =在R 为增函数。

2.函数的最值(是一个整体含义)【考点分析】考点一求函数的单调区间【例1】(1)求下列函数的单调区间:1||22++-=x x y ;(2)已知函数()f x 为R 上的减函数,则满足1<(1)f f x ⎛⎫⎪⎝⎭的实数的取值范围是()A.(-1,1) B.(0,1) C.(-1,0)(0,1) D.(-,1)(1,)∞-+∞ ►归纳提升函数单调区间的求法(1)函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域。

对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等。

(2)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间。

强化训练1(1)设),(a -∞是函数5||42+-=x x y 的一个减区间,则实数a 的取值范围为()(2)已知函数=)(x f 1,5)3(1,2{≤+->x x a x x a,若对R 上的任意)(,2121x x x x ≠,恒有0)()(2121<--x x x f x f 成立,则a 的取值范围()考点二函数单调性的判断与证明【例2】求证:函数)0()(>+=a x a x x f ,在),[+∞a 上是增函数。

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质引言:函数是高中数学中的重要知识点之一,它不仅在高考中占有一定比重,而且在大学数学、物理等学科中也应用广泛。

因此,学好函数是中学数学的重要任务之一。

本文将介绍函数的基本性质,包括定义域、值域、单调性、奇偶性、周期性等,同时提供20道以上的练习题,供读者参考。

一、函数的定义函数是一种特殊的映射关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数通常用符号f(x)表示,其中x是自变量,f(x)是因变量。

函数可以表示为f:A\rightarrow B,其中A是定义域,B是值域。

二、函数的基本性质1.定义域:函数的定义域是指所有可以输入函数的自变量的值的集合。

函数的定义域可以是实数集、有理数集、整数集等。

在定义函数时,需要指定函数的定义域。

2.值域:函数的值域是指所有函数可能的输出值的集合。

它是由定义域和函数的性质决定的。

3.单调性:函数的单调性指函数在定义域上的单调变化性质,包括单调递增和单调递减。

如果函数的自变量增大,函数值也增大,则称函数在这个区间内是单调递增的;如果函数的自变量增大,函数值减小,则称函数在这个区间内是单调递减的。

4.奇偶性:函数的奇偶性指函数的性质,可以分为偶函数和奇函数。

如果函数在定义域内满足f(-x)=f(x),则称函数为偶函数;如果函数在定义域内满足f(-x)=-f(x),则称函数为奇函数。

5.周期性:函数的周期性指函数在定义域上存在一个最小正周期T,即f(x+T)=f(x),其中T是正实数。

三、练习题1.设函数f(x)=ax+b,其中a,b是实数,且f(2)=3,f(3)=4,求a,b。

2.求函数f(x)=2x^2-3x+1的定义域和值域。

3.若函数f(x)在区间[a,b]上是单调递增的,且f(a)=f(b)=0,证明f(x)=0在区间[a,b]上有且只有一个实根。

4.设函数f(x)=\sin(x+\alpha),其中0<\alpha<\dfrac{\pi}{2},证明f(x)是奇函数。

函数的基本概念与性质

函数的基本概念与性质

函数的基本概念与性质函数是数学中一个重要的概念,它在数学推理和问题解决中扮演着重要的角色。

在本文中,我们将介绍函数的基本概念和性质,并探讨它们在数学中的应用。

一、函数的基本概念在数学中,函数是用来描述两个集合之间的关系的工具。

我们可以将函数视为一个“输入-输出”的机器,它将一个集合中的元素映射到另一个集合中的元素。

这里的集合可以是实数集、自然数集、复数集等等。

具体来说,设有集合A和集合B,函数f是从集合A到集合B的映射,即f:A→B。

我们用f(x)表示函数f在元素x上的取值。

其中,x是A中的元素,f(x)是B中的元素。

函数的输入可以有一个或多个自变量,而输出则是函数的值。

通常,我们将自变量放在函数表达式的括号中,例如f(x)或f(x,y)。

二、函数的性质函数具有一些重要的性质,下面我们将讨论其中的几个。

1. 定义域和值域:函数的定义域是指所有可能的输入的集合,而值域是指所有可能的输出的集合。

对于函数f:A→B,A就是其定义域,B 就是其值域。

2. 单射和满射:如果一个函数的每一个自变量对应唯一的函数值,那么这个函数就是单射。

如果一个函数的值域等于其目标集合B,那么这个函数就是满射。

3. 一一对应:如果一个函数既是单射又是满射,那么它就是一一对应的,也就是说,每一个自变量都对应着唯一的函数值,而且函数值覆盖了整个目标集合B。

4. 反函数:对于一一对应的函数,我们可以定义它的反函数。

如果函数f:A→B是一一对应的,那么它的反函数f^(-1):B→A满足f^(-1)(f(x))=x和f(f^(-1)(y))=y对于所有合理的输入x和y成立。

5. 复合函数:对于两个函数f:A→B和g:B→C,我们可以定义它们的复合函数h(x)=g(f(x)),其中x是A中的元素。

复合函数将一个集合中的元素通过两个函数的映射关系转换到另一个集合中。

三、函数的应用函数在数学中有着广泛的应用,下面我们将介绍几个常见的应用领域。

高中数学竞赛基础辅导 函数的性质及其应用

高中数学竞赛基础辅导  函数的性质及其应用

高中数学竞赛基础辅导函数的性质及其应用南京大学 李潜南京外国语学校 黄志军【知识精要】函数的性质主要包括:函数的单调性、奇偶性和周期性及对称性。

函数是中学数学的重要内容,函数的性质也是高考及竞赛考查的重中之重。

因此不仅要熟练掌握这些性质,还要能够灵活运用这些性质解题。

函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.数学是一种理性的精神,使人类的思维得以运用到最完善的程度.美国数学家克莱茵第 一 节1.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于()A .0.5B .-0.5C .1.5D .-1.52.设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线21=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=______.3.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2c f =则( )(A )a b c << (B )b a c << (C )c b a << (D )c a b <<4.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =−则()()5ff =__________。

5.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是 ( ) A .5 B .4 C .3 D .2 6.若定义在R 上的偶函数()f x 在(,0)−∞上是减函数,且31(f =2,则不等式2)(log 81>x f 的解集为______. 7.定义在区间()+∞∞−,的奇函数()x f 为增函数,偶函数()x g 在区间[)+∞,0的图象与()x f 的图象重合,设0>>b a ,给出下列不等式,其中成立的是( C )①()()()()b g a g a f b f −−>−− ②()()()()b g a g a f b f −−<−−③()()()()a g b g b f a f −−>−− ④()()()()a g b g b f a f −−<−− A.①与 ④ B.②与 ③ C.①与 ③ D.②与④8.已知(3)4,1()log ,1aa x a x f x x x −−⎧=⎨≥⎩<,是(-∞,+∞)上的增函数,那么a 的取值范围是 (A )(1,+∞) (B )(-∞,3) (C)[53,3) (D)(1,3)例1.函数2log 1y ax =−(a ≠0 )图象的对称轴方程为x =2 ,求a 的值.例2.已知函数f (x )=log a (ax 2-x ),是否存在实数a ,使它在区间[2,4]上是增函数? 如果存在,说明a 可取哪些值;如果不存在,说明理由. 例3.已知定义域为R 的函数12()2x x bf x a+−+=+是奇函数。

高中数学竞赛校本教材——§4函数的基本性质

高中数学竞赛校本教材——§4函数的基本性质

高中数学竞赛校本教材§4函数的基本性质函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.I.函数的定义设A,B都是非空的数集,f是从A到B的一个对应法则.那么,从A到B的映射f:A →B就叫做从A到B的函数.记做y=f(x),其中x∈A,y∈B,原象集合,A叫做函数f(x)的定义域,象的集合C叫做函数的值域,显然C B.II.函数的性质(1)奇偶性设函数f(x)的定义域为D,且D是关于原点对称的数集.若对任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数.(2)函数的增减性设函数f(x)在区间D′上满足:对任意x1, x2∈D′,并且x1<x2时,总有f(x1)<f(x2) (f(x1)>f(x2)),则称f(x)在区间D′上的增函数(减函数),区间D′称为f(x)的一个单调增(减)区间.III.函数的周期性对于函数f(x),如果存在一个不为零的正数T,使得当x取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T0,称T0为周期函数f(x)的最小值正周期.例题讲解1.已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增2.设f (x )是R 上的奇函数,且f (x +3)=-f (x ),当0≤x ≤23时,f (x )=x ,则f (2003)=( ) A.-1B.0C.1D.20033.定义在实数集上的函数f (x ),对一切实数x 都有f (x +1)=f (2-x )成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( )A.150B.2303C.152D.23054.实数x ,y 满足x 2=2xsin (xy )-1,则x 1998+6sin 5y =______________.5.已知x =9919 是方程x 4+b x 2+c =0的根,b ,c 为整数,则b +c =__________.6.已知f (x )=ax 2+bx +c (a >0),f (x )=0有实数根,且f (x )=1在(0,1)内有两个实数根,求证:a >4.7.已知f (x )=x 2+ax +b (-1≤x ≤1),若|f (x )|的最大值为M ,求证:M≥21.8.⑴解方程:(x +8)2001+x 2001+2x +8=0 ⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++9.设f (x )=x 4+ax 3+bx 2+cx +d ,f ⑴=1,f ⑵=2,f ⑶=3,求41[f ⑷+f (0)]的值.10.设f (x )=x 4-4x 3+213x 2-5x +2,当x ∈R 时,求证:|f (x )|≥21课后练习1. 已知f(x)=ax 5+bsin 5x +1,且f ⑴=5,则f(-1)=( )A.3B.-3C.5D.-52. 已知(3x +y)2001+x 2001+4x +y =0,求4x +y 的值.3. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.5. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.6. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.7. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x ,y ,使得8. 设a ,b ,c ∈R ,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.9.已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2. ⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|;⑵求证:|f(x 1)-f(x 2)|<1.课后练习答案1.解:∵f⑴=a+bsin51+1=5设f(-1)=-a+bsin5(-1)+1=k相加:f⑴+f(-1)=2=5+k∴f(-1)=k=2-5=-3选B2.解:构造函数f(x)=x2001+x,则f(3x+y)+f(x)=0逐一到f(x)的奇函数且为R上的增函数,所以3x+y=-x4x+y=0x2 +x)+x3.解:构造函数f(x)=ln(1则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R上是增函数(证明略)所以f(x)=-f(2x)=f(-2x)由函数的单调性,得x=-2x所以原方程的解为x=04.解:函数值域为R,表示函数值能取遍所有实数,则其真数函数g(x)=x2+ax-a的函数值应该能够取遍所有正数所以函数y=g(x)的图象应该与x轴相交即△≥0 ∴a2+4a≥0a≤-4或a≥0解法二:将原函数变形为x2+ax-a-3y=0△=a 2+4a +4·3y ≥0对一切y ∈R 恒成立则必须a 2+4a≥0成立∴ a≤-4或a≥05.提示:利用两点间距离公式处理y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和 当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c ,=a(x -x 1)(x -x 2)∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1=(t -x 1)[a(t -x 2)+1]=a(t -x 1)(t -x 2+a 1) 又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0 ∴ f(t)-x 1>0∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x令g(x)=a(x -x 2)∵ a >0,g(x)是增函数,且t <x 1⇒ g(t)<g(x 1)=a(x 1-x 2)<-1另一方面:f(t)=g(t)(t -x 1)+t∴ 1x t t )t (f --=a(t -x 2)=g(t)<-1∴ f(t)-t >x 1-t∴ f(t)>x 17.|xy -f(x)-g(y)|≥41 证明:(正面下手不容易,可用反证法)若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41 记|S(x ,y)|=|xy -f(x)-g(y)|则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41 而S(0,0)=-f(0)-g(0)S(0,1)=-f(0)-g(1)S(1,0)=-f(1)-g(0)S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)|≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)|=1矛盾!故原命题得证!8.解:(本题为1914年匈牙利竞赛试题)f ⑴=a +b +cf(-1)=a -b +cf(0)=c∴ a =21[f ⑴+f(-1)-2f(0)] b =21[f ⑴-f(-1)]c =f(0)|2ax +b|=|[f ⑴+f(-1)-2f(0)]x +21[f ⑴-f(-1)]| =|(x +21)f ⑴+(x -21)f(-1)-2xf(0)| ≤|x+21||f ⑴|+|x -21||f(-1)|+2|x||f(0)| ≤|x+21|+|x -21|+2|x| 接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可 9. 证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2|=|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………① x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0 ∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立于是原不等式成立⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2|①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立.②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21 (右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f ⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f ⑴+f(0)-f(x 2)|≤|f(x 1)-f ⑴|+|f(0)-f(x 2)| <2(1-x 2)+2(x 2-0) (由⑴) =2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10. 已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x ∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1) ≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a =0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f ⑴,f(-1),f(-a21)} 又f(±1)=±1≠817∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2例题答案:1.提示:可用图像,但是用特殊值较好一些.选C2.解:f (x +6)=f(x +3+3)=-f(x +3)=f(x )∴ f (x )的周期为6f (2003)=f (6×335-1)=f (-1)=-f ⑴=-1选A3.提示:由已知,函数f (x )的图象有对称轴x =23 于是这101个根的分布也关于该对称轴对称. 即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称 利用中点坐标公式,这100个根的和等于23×100=150 所有101个根的和为23×101=2303.选B 4.解:如果x 、y 不是某些特殊值,则本题无法(快速)求解注意到其形式类似于一元二次方程,可以采用配方法(x -sin (xy ))2+cos 2(xy )=0∴x=sin(xy) 且cos(xy)=0∴x=sin(xy)=±1∴siny=1 xsin(xy)=1原式=75.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x-9919∴x2-219x+19=99即x2-80=219x再平方得x4-160x2+6400=76x2即x4-236x2+6400=0∴b=-236,c=6400b+c=61646.证法一:由已知条件可得△=b2-4ac≥0 ①f⑴=a+b+c>1 ②f(0)=c>1 ③b<1 ④0<-a2b2≥4acb>1-a-cc>1b<0(∵a>0)于是-b≥2ac所以a +c -1>-b≥2ac∴ (c a -)2>1∴ c a ->1 于是c a >+1>2∴ a >4证法二:设f(x)的两个根为x 1,x 2,则f(x)=a(x -x 1)(x -x 2)f ⑴=a(1-x 1)(1-x 2)>1f(0)=ax 1x 2>1由基本不等式x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2 ∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1 ∴ a 2>16∴ a >47.解:M =|f(x)|max =max{|f ⑴|,|f(-1)|,|f(-2a )|} ⑴若|-2a |≥1 (对称轴不在定义域内部) 则M =max{|f ⑴|,|f(-1)|}而f ⑴=1+a +bf(-1)=1-a +b|f ⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4则|f ⑴|和|f(-1)|中至少有一个不小于2∴ M≥2>21⑵|-2a |<1 M =max{|f ⑴|,|f(-1)|,|f(-2a )|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|} ≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|) ≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)] =)2a 2(412+ ≥21 综上所述,原命题正确.8.⑴解:原方程化为(x +8)2001+(x +8)+x 2001+x =0 即(x +8)2001+(x +8)=(-x)2001+(-x)构造函数f(x)=x 2001+x原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数于是有x +8=-xx =-4为原方程的解⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即 于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数,所以:2x =x 2+1解得:x =19.解:由已知,方程f(x)=x 已知有三个解,设第四个解为m , 记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m)∴ f(x)=(x -1)(x -2)(x -3)(x -m)+xf ⑷=6(4-m)+4f(0)=6m∴ 41[f ⑷+f(0)]=7 10.证明:配方得:f(x)=x 2(x -2)2+25(x -1)2-21 =x 2(x -2)2+25(x -1)2-1+21 =(x 2-2x)2+25(x -1)2-1+21 =[(x -1)2-1]2+25(x -1)2-1+21 =(x -1)4-2(x -1)2+1+25(x -1)2-1+21 =(x -1)4+21(x -1)2+21 ≥21。

函数的基本性质ppt课件

函数的基本性质ppt课件

证明或判断函数单调性的方法步骤
例二:根据定义证明函数
复习巩固
1.若函数f(x)=x2-2ax+3在(2,+∞)上是增 函数,则实数a的取值范围是什么? 练习:如果函数f(x)=x2-2bx+2在区间[3,+∞) 上是增函数,则b的取值范围为( ) A.b=3 B.b≥3 C.b≤3 D.b≠3
一般地,设函数y=f(x)的定义 域为I,若存在实数M,则满足:
由图像可知,二次函数y=x²的图像上有最低点(0,0) (1)∀x∈I,都有f(x)≤M
即∀x∈R,都有f(x)≥f(0)
(2)∀x0∈I,都有f(x0)=M
那么称M是y=f(x)的最大值
则说明,函数f(x)的图像有最低点时,就有最小值
2.已知函数f(x)=x2+ax+b. (1)若函数f(x)的图象过点(1,4)和(2,5),求f(x)的解析式. (2)若函数f(x)在区间[1,2]上不单调,求实数a的取值范围.
把本题(2)条件“不单调”改为“单调”, 求实数a的取值范围.
打开课本81页
小结:本节课你学到了什么?
函数的最值:
问题:观察以下图像,图像有什么特点
ቤተ መጻሕፍቲ ባይዱ
像这样,函数图像在某个区间保持上升(或下降) 的性质叫做函数的单调性
研究二次函数f(x)=x2的单调性 为什么f(x1)>f(x2)?
为什么f(x1)>f(x2)?
研究二次函数f(x)=x2的单调性 请你用符号语音描述y轴右侧的性质特征
思考:函数y=-x2的单调性是怎样?如何描 述 y=|x|的单调性呢?
一般地,设函数f(x)的定义域为I,区间
函数单调性的定义
那么就称函数f(x)在区间D上单调递增 特别的,当函数f(x)在它的定义域上单调递增 时,我们就称它为增函数

高中数学教案:函数的概念与基本性质

高中数学教案:函数的概念与基本性质

高中数学教案:函数的概念与基本性质一、函数的概念函数是数学中一种重要的概念,在高中数学中占据着重要的地位。

函数的概念来源于实际生活中的对应关系,它描述了两个集合之间的一种关联规则,是一种量与量之间的依赖关系。

在函数中,一个集合称为定义域,另一个集合称为值域。

函数将定义域中的每个元素与一个唯一的值域中的元素对应起来。

例如,一个餐厅的销售额与每天的顾客人数之间存在关联,可以用一个函数来描述这个关系。

在数学中,通常用f(x)来表示函数,其中f表示函数名,x表示自变量。

函数的定义域和值域可以是实数集、整数集、有理数集或其他特定的集合。

通过函数的定义域和值域,我们可以确定它们的范围和取值的特点。

二、函数的基本性质函数的基本性质包括可定义性、唯一性、有界性、奇偶性和单调性等。

1. 可定义性函数的可定义性是指函数在定义域内是否有确定的取值。

在定义域内的每个元素都要对应一个值域中的元素。

如果函数在定义域内的某些点无法找到对应的值,则称函数在该点不可定义。

2. 唯一性函数的唯一性是指函数的每个自变量都有唯一的函数值。

即使是函数的定义域中有相同的自变量,对应的函数值也必须是相同的。

相反,如果函数的自变量有不同的函数值,那么这个函数就是多值函数。

3. 有界性有界性是指函数在定义域内是否有上界和下界。

上界是指函数值不能超过某个特定的值,下界是指函数值不能小于某个特定的值。

如果一个函数存在上界和下界,那么它是有界函数;如果一个函数不存在上界或下界,那么它是无界函数。

4. 奇偶性奇偶性是指函数在对称轴上的对应关系。

如果一个函数满足f(-x) = f(x),那么它是偶函数;如果一个函数满足f(-x) = -f(x),那么它是奇函数。

奇函数关于坐标原点对称,而偶函数则关于y轴对称。

5. 单调性单调性是指函数在定义域上的增减特性。

如果函数的函数值随着自变量的增大而增大,那么它是增函数;如果函数的函数值随着自变量的增大而减小,那么它是减函数。

函数的概念与基本性质 强基培训——高中数学强基计划培训讲义

函数的概念与基本性质 强基培训——高中数学强基计划培训讲义

函数的概念与基本性质【知识点】1. 函数的单调性(1) 增函数:一般地,设函数()y f x =的定义域为I ,如果定义域内某个区间上任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。

(2) 减函数:一般地,设函数()y f x =的定义域为I ,如果定义域内某个区间上任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。

(3) 单调性(单调区间):如果()y f x =在某个区间上是增函数或减函数,那么就说()y f x =在这个区间上具有单调性,这一区间叫做函数()y f x =的单调区间。

2. 函数的奇偶性(1) 奇函数:如果对于函数()y f x =的定义域内的任意一个x ,都有()()f x f x -=-,那么函数()y f x =就叫做奇函数。

奇函数的图像关于原点对称。

(2) 偶函数:如果对于函数()y f x =的定义域内的任意一个x ,都有()()f x f x -=,那么函数()y f x =就叫做偶函数。

偶函数的图像关于y 轴原点对称。

(3) 如果函数()y f x =是奇函数或偶函数,那么就说()y f x =具有奇偶性。

3. 函数的对称性(1) 如果()()f a x f a x +=-,那么函数关于直线x a =对称。

(2) 如果()()f a x f a x +=--,那么函数关于点(,0)a 成中心对称。

4. 函数的周期性对于函数()y f x =,如果存在一个不为零的常数T ,使得当x 取定义域中的每个数时,总有()()f x T f x +=成立,那么称函数为周期函数,T 称作这个函数的周期。

如果函数的所有周期中存在最小的正常数0T ,称0T 为函数的最小正周期。

例题1、设()min{41,2,24}f x x x x =++-+,则()f x 的最大值为 。

高一数学函数的基本性质4

高一数学函数的基本性质4

复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
讲授新课
函数最大值概念:
漫地改革出缕缕光雾……紧接着腾赫瓜大副又连续使出四百五十五门八鳄车厢舞,只见他弯曲的脑袋中,威猛地滚出五簇耍舞着『黄影疯魔野象语录』的肥肠状的手掌 ,随着腾赫瓜大副的耍动,肥肠状的手掌像花篮一样念动咒语:“九脚咐啊喝,高粱咐啊喝,九脚高粱咐啊喝……『黄影疯魔野象语录』!仙家!仙家!仙家!”只见 腾赫瓜大副的身影射出一片青远山色奇影,这时正南方向飘然出现了六串厉声尖叫的亮灰色光猴,似银辉一样直奔青古磁色鬼光而来。,朝着壮扭公主扁圆的如同天边 小丘一样的蒜瓣鼻子横抓过来……紧跟着腾赫瓜大副也窜耍着咒符像虎尾般的怪影一样向壮扭公主横抓过来壮扭公主超然秀了一个,颤鸽闹钟滚两千一百六十度外加猴 吼扣肉转十三周半的招数!接着又整出一个,烟体猿飘踏云翻三百六十度外加乱转三十六周的古朴招式。接着像雪白色的银脸部落鸽一样大嚎了一声,突然使了一套蹲 身闪烁的特技神功,身上顿时生出了七只活似牛头形态的土黄色大腿。紧接着憨直贪玩、有着各种古怪想法的圆脑袋忽然颤动摇晃起来……力如肥象般的霸蛮屁股窜出 紫红色的丝丝惨烟……酷似钢铁般的手臂窜出深黄色的阵阵疑寒!最后抖起异常结实的酷似钢铁般的手臂一闪,酷酷地从里面窜出一道银辉,她抓住银辉痴呆地一耍, 一件光溜溜、森幽幽的咒符¤雨光牧童谣→便显露出来,只见这个这件玩意儿,一边闪烁,一边发出“喇喇”的奇音!。骤然间壮扭公主旋风般地念起咿咿呀呀的宇宙 语,只见她熏鹅一样的银剑雪峰服中,快速窜出六串摆舞着¤雨光牧童谣→的小星星状的海胆,随着壮扭公主的转动,小星星状的海胆像羊粪一样在身后浪漫地改革出 缕缕光雾……紧接着壮扭公主又连续使出一百五十七招狠驼海马睡,只见她奇如熨斗的手掌中,飘然射出五道甩舞着¤雨光牧童谣→的引擎状的脑袋,随着壮扭公主的 甩动,引擎状的脑袋像航标一样念动咒语:“原野嘤嘱啭,肥妹嘤嘱啭,原野肥妹嘤嘱啭……¤雨光牧童谣→!公主!公主!公主!”只见壮扭公主的身影射出一片亮 白色神光,这时从天而降变态地出现了三飘厉声尖叫的浓黑色光狗,似妖影一样直奔暗白色亮光而去……,朝着腾赫瓜大副肥壮的暗绿色金钵形态的鼻子横抓过去…… 紧跟着壮扭公主也窜耍着咒符像虎尾般的怪影一样向腾赫瓜大副横抓过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道白杏仁色的闪光,地面变成了暗橙色、景物 变成了青兰花色、天空变成了亮黄色、四周发出了壮丽的巨响。壮扭公主扁圆的如同天边小丘一样的蒜瓣鼻子受到震颤,但精神感觉很爽!再看腾赫瓜大副短小的耳朵 ,此时正惨
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的基本性质基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题:1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003解:f(x +6)=f(x +3+3)=-f(x +3)=f(x)∴ f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1选A3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( )A.150B.2303C.152D.2305 提示:由已知,函数f(x)的图象有对称轴x =23 于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称 利用中点坐标公式,这100个根的和等于23×100=150 所有101个根的和为23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解注意到其形式类似于一元二次方程,可以采用配方法(x -sin(xy))2+cos 2(xy)=0∴ x=sin(xy) 且 cos(xy)=0∴ x=sin(xy)=±1∴ siny=1 xsin(xy)=1原式=75. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________.解:(逆向思考:什么样的方程有这样的根?)由已知变形得x -9919=∴ x 2-219x +19=99即 x 2-80=219x再平方得x 4-160x 2+6400=76x 2即 x 4-236x 2+6400=0∴ b=-236,c =6400b +c =61646. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a >4. 证法一:由已知条件可得△=b 2-4ac≥0 ①f⑴=a +b +c >1 ②f(0)=c >1 ③0<-a 2b <1 ④ b 2≥4acb >1-a -cc >1b <0(∵ a>0)于是-b≥2ac所以a +c -1>-b≥2ac∴ (c a -)2>1∴ c a ->1于是c a >+1>2∴ a>4证法二:设f(x)的两个根为x 1,x 2,则f(x)=a(x -x 1)(x -x 2)f⑴=a(1-x 1)(1-x 2)>1f(0)=ax 1x 2>1由基本不等式x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2 ∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1 ∴ a 2>16∴ a>47. 已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥21. 解:M =|f(x)|max =max{|f⑴|,|f(-1)|,|f(-2a )|}⑴若|-2a |≥1 (对称轴不在定义域内部) 则M =max{|f⑴|,|f(-1)|}而f⑴=1+a +bf(-1)=1-a +b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21 ⑵|-2a |<1 M =max{|f⑴|,|f(-1)|,|f(-2a )|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|} ≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|) ≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)] =)2a 2(412≥21 综上所述,原命题正确.8. ⑴解方程:(x +8)2001+x 2001+2x +8=0⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++ ⑴解:原方程化为(x +8)2001+(x +8)+x 2001+x =0 即(x +8)2001+(x +8)=(-x)2001+(-x) 构造函数f(x)=x 2001+x原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数于是有x +8=-xx =-4为原方程的解⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数,所以:2x =x 2+1解得:x =19. 设f(x)=x 4+ax 3+bx 2+cx +d ,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值. 解:由已知,方程f(x)=x 已知有三个解,设第四个解为m ,记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m)∴ f(x)=(x -1)(x -2)(x -3)(x -m)+xf⑷=6(4-m)+4f(0)=6m∴ 41[f⑷+f(0)]=7 10. 设f(x)=x 4-4x 3+213x 2-5x +2,当x∈R 时,求证:|f(x)|≥21 证明:配方得:f(x)=x 2(x -2)2+25(x -1)2-21=x 2(x -2)2+25(x -1)2-1+21=(x 2-2x)2+25(x -1)2-1+21=[(x -1)2-1]2+25(x -1)2-1+21=(x -1)4-2(x -1)2+1+25(x -1)2-1+21=(x -1)4+21(x -1)2+21≥21练习:1. 已知f(x)=ax 5+bsin 5x +1,且f⑴=5,则f(-1)=( )A.3B.-3C.5D.-5解:∵ f⑴=a +bsin 51+1=5设f(-1)=-a +bsin 5(-1)+1=k相加:f⑴+f(-1)=2=5+k∴ f(-1)=k =2-5=-3选B2. 已知(3x +y)2001+x 2001+4x +y =0,求4x +y 的值.解:构造函数f(x)=x 2001+x ,则f(3x +y)+f(x)=0逐一到f(x)的奇函数且为R 上的增函数,所以3x +y =-x4x +y =03. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =0解:构造函数f(x)=ln(1x 2++x)+x则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R 上是增函数(证明略)所以f(x)=-f(2x)=f(-2x)由函数的单调性,得x =-2x所以原方程的解为x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.解:函数值域为R ,表示函数值能取遍所有实数,则其真数函数g(x)=x 2+ax -a 的函数值应该能够取遍所有正数所以函数y =g(x)的图象应该与x 轴相交即△≥0 ∴ a 2+4a≥0a≤-4或a≥0解法二:将原函数变形为x 2+ax -a -3y =0△=a 2+4a +4·3y ≥0对一切y∈R 恒成立则必须a 2+4a≥0成立∴ a≤-4或a≥05. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.提示:利用两点间距离公式处理y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c ,=a(x -x 1)(x -x 2)∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1=(t -x 1)[a(t -x 2)+1]=a(t -x 1)(t -x 2+a 1) 又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0 ∴ f(t)-x 1>0∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x令g(x)=a(x -x 2)∵ a>0,g(x)是增函数,且t <x 1⇒ g(t)<g(x 1)=a(x 1-x 2)<-1另一方面:f(t)=g(t)(t -x 1)+t ∴ 1x t t )t (f --=a(t -x 2)=g(t)<-1 ∴ f(t)-t >x 1-t∴ f(t)>x 17. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x ,y ,使得|xy -f(x)-g(y)|≥41 证明:(正面下手不容易,可用反证法)若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41记|S(x ,y)|=|xy -f(x)-g(y)|则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41 而S(0,0)=-f(0)-g(0)S(0,1)=-f(0)-g(1)S(1,0)=-f(1)-g(0)S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)|≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)|=1矛盾!故原命题得证!8. 设a ,b ,c∈R,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.解:(本题为1914年匈牙利竞赛试题)f⑴=a +b +cf(-1)=a -b +cf(0)=c ∴ a=21[f⑴+f(-1)-2f(0)] b =21[f⑴-f(-1)] c =f(0)|2ax +b|=|[f⑴+f(-1)-2f(0)]x +21[f⑴-f(-1)]| =|(x +21)f⑴+(x -21)f(-1)-2xf(0)| ≤|x+21||f⑴|+|x -21||f(-1)|+2|x||f(0)|≤|x+21|+|x -21|+2|x| 接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可 9. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2.⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|;⑵求证:|f(x 1)-f(x 2)|<1.证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2| =|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………①x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0 ∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立于是原不等式成立⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2|①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立.②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21 (右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f⑴+f(0)-f(x 2)| ≤|f(x 1)-f⑴|+|f(0)-f(x 2)|<2(1-x 2)+2(x 2-0) (由⑴) =2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10. 已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1) ≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a=0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f⑴,f(-1),f(-a21)}又f(±1)=±1≠817 ∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2。

相关文档
最新文档