隧道衬砌地质雷达无损检测技术

合集下载

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用1. 引言1.1 地质雷达技术概述地质雷达技术是一种利用电磁波探测地下结构的无损检测技术。

通过发送电磁波到地下,根据波的反射和传播特性来获取地下结构的信息。

地质雷达技术在地质勘探、环境监测、建筑检测等领域有着广泛的应用。

地质雷达设备一般包括发射器和接收器两部分,发射器向地下发送电磁波,接收器接收反射回来的信号并将数据传输到处理系统进行分析和成像。

地质雷达技术具有高分辨率、快速获取数据、非破坏性检测等优点,能够有效地获取地下结构的信息并用于工程勘测和质量检测等领域。

随着技术的不断发展,地质雷达技术在工程领域的应用将会进一步扩大,为工程建设提供更加可靠的技术支持。

1.2 铁路隧道衬砌质量检测的重要性铁路隧道作为重要的交通设施,在运行过程中需要经常进行维护和检修,其中铁路隧道衬砌质量的检测就显得至关重要。

铁路隧道衬砌是为了增强隧道结构的稳定性和承载能力而设置的,如果衬砌质量存在问题,将直接影响隧道的使用安全和运行效率。

铁路隧道衬砌质量的检测可以保障铁路运输的安全。

不同材质、质量不同的衬砌在承载能力上存在差异,合格的衬砌可以有效提升铁路隧道的安全系数,减少事故发生的概率。

通过地质雷达技术进行衬砌质量检测,可以及时发现衬砌的裂缝、空洞等质量问题,提前采取修复措施,避免发生意外事故。

铁路隧道衬砌质量的检测可以延长隧道的使用寿命。

隧道衬砌作为隧道结构的重要组成部分,质量问题一旦发生将直接影响隧道的使用寿命,甚至引发隧道结构的倒塌。

通过定期使用地质雷达技术进行衬砌质量检测,可以及时发现和修复衬砌的质量问题,延长隧道的使用寿命,节约维修成本,提高铁路设施的整体运行效率。

铁路隧道衬砌质量检测的重要性不言而喻。

地质雷达技术的应用为铁路隧道衬砌质量检测提供了一种高效、准确的方法,对于保障铁路运输安全、延长隧道使用寿命具有重要意义。

2. 正文2.1 地质雷达在铁路隧道衬砌质量检测中的原理地质雷达在铁路隧道衬砌质量检测中的原理是基于其工作原理和特点实现的。

隧道检测中的地质雷达无损探测技术

隧道检测中的地质雷达无损探测技术

隧道检测中的地质雷达无损探测技术摘要:隧道施工是公路、铁路建造过程中较为常见的重、难点问题,其隐蔽工程量大、作业空间狭窄,部分地区受天然地质条件制约,还可能出现泥石流、滑坡等状况,危险性相对较高,因此必须通过有效的检测手段,实时监控拱顶下沉、围岩支撑等参数,以防安全事故的发生。

本文聚焦隧道检测必要性及难点问题,引入地质雷达检测技术,对其原理、应用及注意事项进行了展开论述。

关键词:隧道检测;地质雷达;无损检测技术前言:雷达技术具有显著的高效性、精准性特征,最早广泛应用于军事领域,并衍生出了脉冲雷达、连续波雷达等多种形式,可以满足不同场景下的探测需求。

当前伴随科技手段的进步,雷达技术融合发展趋势愈发明显,与激光、红外光等探测方案相互协同,应用领域也进一步扩展,地质雷达的出现,更是为交通基建无损检测提供了较为可行、高效的思路,有必要就其应用要点进行深入探究。

1地质雷达无损检测技术工作原理概述隧道工程危险系数高、施工难度大,拱顶、围岩等构造随时可能在不可预见因素的干扰下,出现坍塌、松动等状况,所以实践操作时,通常会结合超前支护、超前灌浆等方法技进行术辅助加固,施工结束后也要经过严谨、细致的检查验收,防止安全事故发生。

在这一过程中,地质雷达无损检测技术尤为关键,它可以在106至109Hz无线电的帮助下,对地下介质分布状况进行客观描述,为超前支护、二次衬砌等的质量、强度分析提供依据,方便后续施工的开展,也为验收工作提供依据。

从检测原理上看,电磁波是地质雷达探测的主要依托,当天线完成定向发射操作后,电磁波会在目标体、地层中,发生投射、反射作用,进而返回接收天线,在滤波器、解码器等的作用下进行数字化处理,并直接转化、显示为波形结构,技术人员通过波幅、传播时间等,就可以快速获知相关信息,实现参数采集。

需要注意的是,电磁波本身是存在衰减问题的,目标体埋深、电性差异等,均会对其传送过程造成影响,电位差越大,相关界面就会越清晰,分析准确性也就更有保障。

地质雷达法TB10223-2004铁路隧道衬砌质量无损检测规程

地质雷达法TB10223-2004铁路隧道衬砌质量无损检测规程

不连续 ,较分散 ; 3 空 洞 :衬砌界面反 射信号强 ,三 振相 明显 ,在其下 部仍
有强 反射界面信 号 ,两组信号 时程差较大
4.3.9 衬砌 内部钢架 、钢筋 位置分布 的主要判定 特征应符 合下
列要求 :
1 钢架 :分散的月牙形强反射信号 ; 2 钢筋 :连续的小双 曲线形强反射信 号〔)
1m ; 6 应 随 时记 录可 能对测量 产生 电磁 影响 的物体 (如渗水 、
电缆、铁架 等)及其位置 ;
7 应 准 确标记测量位 置。
.bzfxw
4.3 数据处理与解释
4.3.1 原始数据处理前应回放检验,数据记录应完整、信号清 晰,里程标 记准确。不合格的原始数据不得进行处理与解释。 4.3.2 数据处理与解释软件应使用正式认证的软件或经鉴定合 格的软件 。 4.3.3 数据处理与解释可采用下列流程 :
1) 在 已 知 厚 度部 位或材料 与隧道相 同的其他预制件 上测
量 ; 2) 在 洞 口 或 洞 内避车洞处使 用双天线 直达波法测量 ;
3) 钻 孔 实 测 3 求 取 参数时应具备以下条件:
功 标 定 目 标 体 的厚 度一般不小 于 巧 cm,且厚度己知 ; 2) 标 定 记 录中 界面反射信号应清晰、准确 4 标 宁 结果 应按下式计算
。={()竺3t)
\ 2d /
(4.2.2- 1)
。一2dtX 109
(4.2.2-2)
式中 。— 相对介电常数; 二— 电 磁 波 速 (m/s); t— 双 程 旅 行时间 (ns); d— 标 定 目 标体厚度或距离 (m)o
· 6
4.2.3 测量 时窗由下 式确定 : 2d抵
.bzfxw

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用【摘要】地质雷达技术在铁路隧道衬砌质量检测中具有重要应用价值。

本文首先介绍了地质雷达的技术原理,然后阐述了地质雷达在铁路隧道检测中的优势,包括非破坏性、高效率和高精度等特点。

接着详细描述了地质雷达在铁路隧道衬砌质量检测中的具体步骤,包括数据采集、分析和结果展示等过程。

然后对地质雷达检测结果进行了分析,指出其对提高铁路隧道衬砌质量的作用。

总结指出,地质雷达技术为铁路隧道衬砌质量检测提供了一种高效、准确的方法,可以提高监测的效率和精度,具有广阔的应用前景。

通过本文的介绍,读者将对地质雷达在铁路隧道衬砌质量检测中的重要性有更深入的认识。

【关键词】地质雷达,铁路隧道,衬砌质量检测,应用,技术原理,优势,具体步骤,结果分析,提高,效率,精度,监测,应用前景。

1. 引言1.1 地质雷达在铁路隧道衬砌质量检测中的应用地质雷达在铁路隧道衬砌质量检测中起到了关键作用,为铁路隧道工程质量的监测提供了一种高效、准确的方法。

隧道衬砌是保证隧道结构稳定性和安全性的重要组成部分,其质量直接影响着隧道的使用寿命和运行安全。

传统的衬砌质量检测方法通常需要破坏性的检测手段,不仅耗费时间成本,而且对隧道结构造成一定的损坏。

而地质雷达技术的应用为解决这一难题提供了有效途径。

2. 正文2.1 地质雷达技术原理介绍地质雷达是一种通过发送电磁波信号并接收反射信号来探测地下结构和特征的技术。

其原理基于电磁波在不同介质中传播速度不同的特性。

当电磁波穿过不同介质边界时会发生反射和折射,通过检测和分析这些反射信号,可以揭示地下结构的信息。

地质雷达技术在地下勘探和工程探测中有广泛的应用,其原理简单直观,操作方便灵活,适用于不同地质环境的勘探工作。

通过地质雷达可以实现对地下结构的快速探测和准确识别,为工程项目的规划和设计提供重要参考信息。

在铁路隧道衬砌质量检测中,地质雷达技术的应用可以有效提高检测效率和准确性,为铁路隧道的安全运行和维护提供重要支持。

地质雷达在公路隧道衬砌质量检测中的应用

地质雷达在公路隧道衬砌质量检测中的应用

地质雷达在公路隧道衬砌质量检测中的应用摘要:地质雷达是一种利用高频电磁脉冲波反射原理来实现探测目的的工程探测技术,结合宁安高速隧道工程实际,阐述了地质雷达在高速公路隧道复合式衬砌质量无损检测中的应用,并对典型的雷达图像进行分析,得出隧道初期支护厚度、钢拱架数量以及二衬厚度、环向钢筋数量。

现场使用结果表明地质雷达技术能够有效地运用于高速公路隧道质量无损检测之中。

关键词:地质雷达;隧道;复合式衬砌;无损检测1 引言随着我国经济的不断发展,人们对于交通的需求日益提高。

隧道作为高速公路穿越山岭的最优选择在近些年得到日益广泛的应用,而隧道在运营中出现的质量问题也屡见不鲜。

如隧道在使用过程中常出现二砌裂损、厚度不够,初期支护拱架间距过大、数量不足,初支与原岩不耦合等问题,严重影响了隧道的正常使用,从而引起更大的安全问题。

因此,对隧道进行全面质量检测显得尤为重要[1-3]。

目前,对于隧道质量检测多采用传统的方法,即开孔或开槽取样检测,该方法不仅效率低、代表性差、偶然性大,而且破坏了衬砌的整体性[4]。

所以,人们一直在寻找一种高效、全面、快速的检测方法,使这些缺点能够得到解决。

地质雷达法以其高分辨率、无损性、高效率和强抗干扰能力等优点,正逐渐成为隧道工程质量检测的一种有效手段[5-6]。

2地质雷达的工作基本原理地质雷达作为一种无损检测技术,自上世纪70 年代开始应用至今已有40多年的历史,在工程各个领域都有重要的应用,主要解决场地勘查、线路选择、工程质量检测、病害诊断、地质超前预报和地质构造等问题。

探地雷达的基本原理如下图1所示。

地质雷达是利用高频电磁脉冲波的反射探测目的体及地质现象的。

其探测过程如下:地质雷达通过发射天线向地下发射高频电磁脉冲,此脉冲在向地下传播过程中遇到地下介质分界面时会产生反射。

反射波传播回地表后被接收天线所接收,并将其传入主机进行记录和显示,每一测点接收到一道雷达波形,一条测线上全部测点的雷达波形排列在一起,形成完整的雷达剖面,经过资料的后处理,进行反演解释便可得到地下地层或目的体的位置、分布范围、埋深等[7]。

隧道衬砌地质雷达无损检测技术

隧道衬砌地质雷达无损检测技术

隧道衬砌地质雷达无损检测技术引言近年来,随着城市建设和交通网络的不断扩张,隧道在交通和地下工程中扮演着重要的角色。

然而,由于隧道的地下环境复杂多变,隧道的衬砌状况无法直接观测和评估,给隧道的安全运行带来潜在风险。

因此,开发一种准确、高效的无损检测技术对于保障隧道的安全运行至关重要。

本文将介绍一种基于地质雷达的隧道衬砌无损检测技术,该技术能够在不破坏隧道结构的情况下,对隧道衬砌的状况进行非接触式检测和评估。

地质雷达技术简介地质雷达技术是一种利用电磁波原理进行非接触探测的技术。

它能够通过测量电磁波在地下介质中的传播时间、反射和衰减情况来获取地下物体的信息。

地质雷达可以探测地下的岩体、土层、管线等物体,因此在地质勘探、矿山勘查、地质灾害预警等领域有着广泛的应用。

隧道衬砌无损检测技术原理隧道衬砌无损检测技术基于地质雷达技术,通过在隧道壁面布设接收天线和发射天线,发射和接收地质雷达信号。

隧道衬砌无损检测技术主要包括以下几个步骤:1.信号发射:通过发射天线向隧道衬砌发射地质雷达信号。

2.信号传播和反射:地质雷达信号在衬砌中传播,部分信号会因为界面反射而返回接收天线。

3.信号接收:接收天线接收到反射信号,并将信号送入接收系统进行处理。

4.数据处理和分析:通过处理和分析接收信号,提取出衬砌的信息,如衬砌的位置、变形情况等。

5.结果展示和评估:将处理得到的信息进行可视化展示,并进行评估和判断。

隧道衬砌无损检测技术优势相比于传统的检测方法,隧道衬砌无损检测技术具有以下几个优势:1.非接触式检测:地质雷达技术是一种非接触式探测技术,可以在不破坏隧道结构的情况下进行检测。

2.高效快速:隧道衬砌无损检测技术可以实现较快的检测速度,大大提高了检测的效率。

3.多参数信息获取:通过地质雷达技术,可以获取到衬砌的位置、变形情况等多个参数信息,为后续评估和维护提供详细数据支持。

隧道衬砌无损检测技术应用案例隧道衬砌无损检测技术已经在实际工程中得到了广泛的应用。

隧道衬砌质量地质雷达法检测论析

隧道衬砌质量地质雷达法检测论析

隧道衬砌质量地质雷达法检测论析隧道工程的地质条件一般情况下较为复杂,其施工难度大、环境恶劣,对施工工艺和施工工序要求较为严格,一旦卡控不严就很容易导致隧道质量缺陷。

铁路建设单位为保证行车安全,越来越重视隧道的施工质量,由于地质雷达无损检测技术,具有操作简便、检测效率高、检测结果准确等优点,被广泛地应用于铁路隧道衬砌质量检测中。

本文首先介绍了地质雷达无损检测的基本原理,然后结合隧道施工、检测的实际情况给出了几种常见的隧道衬砌缺陷类型,并从施工角度分析了衬砌缺陷的形成原因,同时针对每种缺陷类型给出了对应的典型的地质雷达检测图像,分析了缺陷图像特征,为隧道衬砌质量检测数据分析工作提供指导,最后给出了地质雷达应用于隧道衬砌检测的实例。

1 地质雷达缺陷检测的基本原理1.1 地质雷达隧道检测理论基础地质雷达检测隧道衬砌质量是利用工程介质不同介质的电性差异来实现的。

地质雷达系统将高频电磁波向工程介质发射,当电磁波穿透工程介质时,由于不同的工程介质或者工程介质与缺陷介质存在着电性差异,电磁波将在电性不同的介质界面发生反射。

地质雷达就是根据介质的反射波特性以及电磁学性质来揭示工程介质内部结构和缺陷的,地质雷达的工作原理如图1所示:1.2 电磁波在衬砌不同介质中的反射特性电磁波在传播过程中遵循波的反射和折射定律,一般雷达电磁波被认为是近垂直入射,对于非磁性介质而言(如混凝土等),反射系数R可简化为:式中,、为反射界面两侧介质的相对介电常数,由式(1)可知,相邻介质的介电常数差异越大,则反射信号超强烈。

而对于金属良导体(如钢筋、钢架等),反射系数R则简化为另一种形式:式中,为电磁波的角频率;为金属的电导率。

从式(2)可以看出,由于金属的电导率趋于,即当电磁波传播至钢筋、钢架时,电磁波将发生全反射。

2 衬砌缺陷的形成机制及雷达图像形态特征分析隧道衬砌缺陷形成原因,研究不同缺陷在地质雷达图像中的形态特征,对于隧道衬砌缺陷的辨识有很大的帮助,下面就四种常见的隧道缺陷进行分析:2.1 各种衬砌空洞衬砌空洞可能存在于隧道衬砌的任何部位,衬砌空洞不仅会造成衬砌混凝土开裂,严重者还会使衬砌产生掉块,危及行车安全,更有甚者会使围岩失稳。

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用地质雷达是一种利用地球物理原理进行探测和测量的无损检测技术,常用于地下结构和地质构造的探测。

铁路隧道作为交通工程的重要组成部分,其衬砌质量的好坏直接关系到隧道的安全稳定和使用寿命,因此对其质量进行检测是十分必要的。

本文将介绍地质雷达在铁路隧道衬砌质量检测中的应用。

一、地质雷达技术简介地质雷达是利用电磁波在地下反射传播的特性,通过接收波形图和响应曲线反映地下构造和介质的变化,从而对地下结构进行探测和测量的高科技无损检测技术。

其原理是利用发射的高频电磁波在地下传播并反射,接收反射波后再通过波形图和响应曲线反映地下构造和介质的变化,对地下结构进行探测和测量。

地质雷达具有探测深度浅、分辨率高、非接触式测量、速度快等优点,被广泛应用于地质构造探测、土层结构分析、水文地质调查等领域。

地质雷达在铁路隧道衬砌质量检测中的应用主要包括衬砌材料的类型、衬砌结构的缺陷和衬砌接缝的探测。

1.衬砌材料的类型地质雷达能够探测到铁路隧道内部的结构和材料类型,可用于检测隧道内部供水、排水、电缆等管线的位置和情况。

同时,由于石材和混凝土的电磁波特性不同,地质雷达也能够分辨出使用的材料类型,从而判断衬砌的材料是否符合规范要求。

2.衬砌结构的缺陷地质雷达能够探测到隧道衬砌内部的空洞、裂缝、渗漏等缺陷,判断衬砌结构的完整性和稳定性是否存在隐患。

同时,地质雷达还能够发现由于地质环境和施工工艺等原因导致的衬砌结构不良,从而为后期的维修和加固提供线索。

3.衬砌接缝的探测隧道衬砌的接缝能够导致水、土壤和岩石等因素进入衬砌内部,从而对衬砌结构造成损坏和不稳定的影响。

地质雷达能够探测到衬砌接缝的位置和情况,以便及时检查和维修。

三、结论地质雷达技术在铁路隧道衬砌质量检测中的应用,对于提高铁路隧道的安全性和使用寿命具有重要意义。

各种缺陷和问题在判断后,可通过加固和维护,保证铁路隧道的正常使用和长期稳定。

随着技术的不断发展和完善,地质雷达技术在隧道衬砌质量检测中的应用将会得到更广泛的应用和推广,从而促进铁路交通行业的进一步发展和进步。

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用

地质雷达在铁路隧道衬砌质量检测中的应用地质雷达(Ground Penetrating Radar,GPR)是一种利用电磁波进行地下隐蔽目标探测的技术。

通过发射探测信号并接收地下目标反射回来的信号,地质雷达可以实现对地下目标的高分辨率成像,从而实现对地下结构的无损检测。

在铁路隧道衬砌质量检测中,地质雷达技术可以发挥重要作用,其应用具有如下特点:1. 非破坏性检测。

地质雷达技术无须对隧道结构进行任何破坏性操作,仅需通过地面或轨道面进行信号的发射和接收,即可实现对地下结构的检测。

这一特点使得地质雷达检测可以在不影响隧道结构安全的前提下,对隧道衬砌的质量进行实时监测和评估。

2. 高精度成像。

地质雷达技术能够对地下结构进行高分辨率的成像,可以清晰地显示隧道衬砌的内部结构和缺陷。

通过地质雷达成像,可以准确识别隧道衬砌中的裂缝、空洞、松散等缺陷,为后续的维护和修复工作提供重要的数据支持。

3. 快速便捷的检测过程。

相比传统的检测手段,地质雷达技术具有检测速度快、便捷的特点。

检测人员只需在地面或轨道面操作地质雷达设备,即可对隧道衬砌进行全面而快速的检测,大大提高了检测效率和工作效果。

4. 数据处理和分析工具完善。

地质雷达检测设备配备了专业的数据处理和分析软件,可以对检测到的数据进行二次加工和分析,进一步挖掘数据背后蕴含的信息。

通过对地质雷达检测数据的分析,可以得出隧道衬砌质量的评估报告,为后续的维护和管理工作提供科学依据。

在实际的铁路隧道衬砌质量检测中,采用地质雷达技术可以实现对隧道衬砌的全面检测和评估。

地质雷达技术在铁路隧道衬砌质量检测中的应用主要包括以下几个方面:1. 裂缝检测。

隧道衬砌的裂缝是常见的缺陷之一,严重的裂缝可能会影响隧道结构的稳定性和安全性。

地质雷达技术通过对隧道衬砌的成像,可以发现隧道衬砌中微小的裂缝,为隧道维护人员提供裂缝的分布情况和规模,为后续的维护工作提供重要数据支持。

2. 空洞和松散检测。

隧道衬砌质量检测与雷达探测技术应用

隧道衬砌质量检测与雷达探测技术应用

隧道衬砌质量检测与雷达探测技术应用隧道施工中的地质、水文情况复杂,不可预见因素较多,且其主体部分为隐蔽工程,工程质量检测较为困难。

衬砌施工质量的检测是隧道工程质量控制的重要环节。

衬砌施工完成后,以常规手段无法进行检验,开挖检测又会对防水、支护系统造成损伤。

探地雷达可以透视隧道衬砌与岩层,测出施工质量检验所需的数据。

目前,该项技术在一些隧道工程中进行了实际应用,取得了较为理想的效果。

一、隧道衬砌施工中最为常见的质量缺陷1.空洞。

一是在开挖中,由于发生超挖、洞顶洞壁塌落等问题,造成围岩表面的凹陷。

按规定应以混凝土进行回填,但有时施工单位为了节省材料和人工,用片石、竹片等填塞,表面再喷以喷射混凝土,由于回填不密实而形成空洞。

二是在二次衬砌模筑混凝土施工时,由于初衬表面凸凹不平和防水板不密贴的影响,会形成空洞。

尤其在拱顶部位,由于混凝土在浇筑中振捣坍落,往往容易出现空洞。

空洞的出现会造成衬砌结构不能有效密贴围岩形成共同承载的结构,从而加大衬砌结构的荷载。

在地下水发育的地区,空洞中存水还会对衬砌结构形成侵蚀,在寒冷地区会造成冻害。

2.锚杆、钢拱架缺失。

由于施工人员疏忽或为降低造价擅自减少锚杆、钢拱架的用量。

其危害是降低了支护、衬砌结构的承载能力,容易发生塌方等事故,并且给业主造成经济损失。

3.衬砌厚度不足。

由于开挖施工中存在欠挖现象,或围岩松动变形较大,超过了预留量,将造成隧道断面尺寸减小。

为保证隧道衬砌完工后的净空,施工单位往往会减小衬砌的厚度。

衬砌厚度不足会影响其承载能力,并且导致防渗水、抗冻能力的降低。

4.模筑混凝土质量缺陷。

包括混凝土拌和、运输及浇筑振捣施工不当造成的蜂窝、离析、混凝土不密实|来源|考试|大|等质量缺陷。

还有由于围岩松动变形等原因造成的衬砌裂缝等。

这些质量缺陷会降低衬砌结构的承载能力,并且引发钢筋锈蚀、漏水等病害。

上述衬砌施工质量缺陷如果不能被及时发现并进行处理,都会给隧道的运营埋下安全隐患,产生病害,增加养护工作困难,降低隧道的使用性能,减少使用寿命。

地质雷达检测隧道衬砌原理

地质雷达检测隧道衬砌原理

地质雷达检测隧道衬砌原理Geological radar is a useful tool for detecting tunnel lining. It works by transmitting electromagnetic pulses into the ground, which then bounce off of different materials and return to the surface. These pulses are then analyzed to create an image of the subsurface, allowing engineers to assess the condition of the tunnel lining without having to physically inspect it.地质雷达是检测隧道衬砌的一种有用工具。

它通过向地面发送电磁脉冲,然后脉冲会反弹不同的材料并返回到地表。

然后这些脉冲被分析,以创建地下的图像,让工程师能够评估隧道衬砌的情况,而不必进行实际的检查。

One of the key principles behind the use of geological radar for detecting tunnel lining is that different materials have different electromagnetic properties. For example, concrete will reflect electromagnetic pulses differently than soil or rock. By analyzing the way that these pulses are reflected, engineers can gain valuable insights into the condition of the tunnel lining and identify any areas that may be at risk of deterioration.地质雷达用于检测隧道衬砌的一个关键原理之一是不同的材料有不同的电磁特性。

小议地质雷达在隧道衬砌检测中的应用

小议地质雷达在隧道衬砌检测中的应用

小议地质雷达在隧道衬砌检测中的应用摘要:21世纪,随着我国基础建设的发展非常迅速,隧道工程也在蓬勃兴起,人们对隧道的地质和质量问题也逐渐重视起来。

隧道衬砌质量是隧道稳定及安全运营的关键因素,而衬砌结构受力特性较为复杂,容易出现病害,因此隧道衬砌施工质量尤为重要。

采用地质雷达法重点对隧道衬砌质量进行快速检测,得到衬砌内部空洞或不密实等异常部位,并对隧道衬砌厚度进行检测,对隧道衬砌混凝土施工质量进行评价。

关键词:隧道衬砌;地质雷达;质量检测;应用;施工质量引言:新时期下,由于社会在不断的进步发展,我国对于各类基础设施的建设力度也在逐步加大,铁路、公路等产业均得到了极为良好的发展。

而在这些基础建设中,隧道工程的比重极大。

运用雷达方式对隧道最终的衬砌状况进行检测能够获得较高的精度,但也不可否认存在着一定的问题,影响其最终检测效果。

本文采用地质雷达快速无损检测方法对某高速隧道衬砌施工质量进行检测评定,取得了较好的效果。

1、地质雷达简要介绍众所周知,地质雷达技术是一门新兴的检测技术,其优势特点为能够实现长时间的检测,且获得较好的检测效果。

因此,雷达检测手段已广泛应用于隧道衬砌及路面的检测工作中。

在对隧道衬砌进行科学检测时,还需应用到升降机。

在将工作人员抬升至指定位置后,工作人员需将雷达上的天线与隧道中的衬砌面相互贴合,而其具体的检测速度是每小时3~5 千米。

整体的检测效率极为低下。

而由于铁路的天窗时间受到一定程度上的限制,因此,上述所说的检测方法无法对现场类的检测工作需求进行充分满足。

为铁路隧道进行相关检测车辆的配置,对其具体的技术状况进行科学检测成当务之急。

运用专属的雷达检测车辆进行隧道检测,应着重关注两方面的问题:第一,使地质雷达上配备的天线与隧道衬砌保持适宜的距离,以此将整体的检测速率进一步提升;第二,配备多个雷达天线并完成相应的安装工作,以此实现对多条线路的检测工作。

2、地质雷达无损检测技术传统隧道病害检测方法基于人工视觉已不能满足隧道工程发展要求,建立一种既不破坏隧道结构又能快速有效检测隧道质量的方法成为一个亟待解决的问题。

隧道衬砌地质雷达无损检测技术.

隧道衬砌地质雷达无损检测技术.

隧道衬砌质量地质雷达无损检测技术1 前言1.1工艺概况铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。

1.2工艺原理电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。

根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。

图1 地质雷达基本原理示意图电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H:H V T=∙∆2 (1)式中,V 是电磁波在介质中的传播速度,其大小由下式表示:V C =ε (2)式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ;ε为相对介电常数,不同的介质其介电常数亦不同。

雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为:2121εεεε+-=r (3)反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。

雷达波的穿透深度主要取决于地下介质的电性和波的频率。

电导率越高,穿透深度越小;频率越高,穿透深度越小。

2 工艺特点电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。

利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ;采用宽带短脉冲和高采样率,分辨率较高;采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。

(1)操作简单,对工作环境要求不高;(2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上;(3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。

运营线隧道衬砌无损检测车载探地雷达检测方案

运营线隧道衬砌无损检测车载探地雷达检测方案

西安铁路局既有线隧道质量无损检测车载雷达检测实施方案西安铁路局科研所技术部二〇一三年五月三日西安铁路局既有线隧道衬砌质量无损检测车载雷达无损检测实施方案一、检测工作内容及方法1 任务来源根据铁道部《关于开展运营铁路隧道衬砌质量专项整治工作的通知》(铁报[2012]9-505号)、铁路总公司《关于开展铁路隧道路基工程质量专项整治的通知》(铁总办函[2013]11号)要求,我局拟进行管内太中银、包西、襄渝、西康线既有线隧道质量无损检测。

局科研所受工务处委托采用隧道车载探地雷达法进行隧道质量无损检测任务。

2 检测内容及项目根据局工务处要求,本次隧道质量无损检测工程总计检测隧道245座、检测里程356.167公里。

其中:太中线检测31座隧道75610m(补测2条测线),包西线检测隧道62座39010m,襄渝线检测隧道149座238986m,西康线检测隧道3座2561m。

检测内容包括:a、隧道衬砌厚度;b、隧道衬砌破损;c、隧道衬砌背后空洞及回填密实度情况;3 检测依据《铁路隧道工程施工质量验收标准》TBl0417—2003《铁路隧道衬砌质量无损检测规程》TBl0223—2004《铁路工程物理勘探规程》TBl0013—2004隧道地质资料、隧道设计和施工、竣工等资料二、隧道衬砌检测设备及技术方案1 检测设备检测采用铁路隧道衬砌检测六通道车载探地雷达系统,该系统是针对我国目前既有线铁路隧道检测低效、安全性低研制的铁路隧道检测设备。

系统安装在试验车上,可加挂在正常运营客车上,检测速度可达120km/h。

系统设备及雷达天线都安装在车辆限界内,隧道断面最多可一次布置9道测线,检测工作在正常运输条件下就可以完成。

检测系统技术性能如下:①、六通道检测系统,六个通道相互独立,每个通道扫描速率均为976道/秒,在隧道两侧边墙和拱腰各布置一道测线,拱顶在接触网两侧各布置一道测线;②、雷达天线为空气耦合屏蔽天线,频率为300兆赫兹;③、检测速度为120km/h,测点密度为5cm/道;④、隧道衬砌检测最大深度大于2m;⑤、系统采用编码器及GPS定位双重定位,数据定位准确、重复性良好;⑥、数据采集实现自动化,数据分析软件有芬兰Road Doctor和西科所RailwayRadarSys两套分析软件,处理功能强大。

地质雷达无损检测方案隧道

地质雷达无损检测方案隧道

地质雷达无损检测方案(隧道) 1检测目的:检测隧道衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢 筋等分布,评价隧道衬砌施工质量。

2检测仪器:隧道衬砌质量检测用美国SIR-4000型地质雷达系统(见下图), 其特点与路基挡墙检测雷达相同。

2.1地质雷达主机技术指标应符合下列要求:系统增益不低于150dB;信噪比不低于60dB ;模/转换不低于16位;信号叠加次数可选择;采样间隔一般不大于0. 5ns ;SIR-4000便携式高性能I S 地质透视仪I美国SIR-20型地质雷达系统实时滤波功能可选择;具有点测与连续测量功能;具有手动或自动位置标记功能;具有现场数据处理功能。

2. 2地质雷达天线可采用不同频率天线组合,技术指标应符合下列要求:具有屏蔽功能;最大探测深度应大于2m;垂直分辨率应高于2cm o3检测方法及原理:地质雷达是采用无线电波检测地下介质分布和对不可见目标体或地下界面进行扫描,以确定其内部结构形态或位置的电磁技术。

其工作原理为:高频电磁波以宽频带脉冲形式通过发射天线发射,经目标体反射或透射,被接受天线所接收。

高频电磁波在介质中传播时,其路径、电磁场强度和波形将随所通过介质的电性质及集合形态而变化,由此通过对时域波形的采集、处理和分析,可确定地下界面或目标体的空间位置或结构状态。

地质雷达具有高分辨率、无损性、高效率、抗干扰能力强等特点。

现场检测时地质雷达的发射天线和接收天线密贴于待检表面,雷达波通过天线进入混凝土以及相应介质中,遇到钢筋、钢质拱架、材质有差别的混凝土、混凝土中间的不连续面、混凝土与空气分界面、混凝土与岩石分界面等产生反射,接收天线收到反射波,测出反射波的入射、反射双向走时,就可以算出反射波走过的路程长度,从而求出天线距反射面的距离D。

D= V ×∆t∕2式中:D——天线到反射面的距离;V一一雷达波的行走速度;∆t一一雷达波从发射至接收到反射波的走时,用ns计。

隧道衬砌质量无损检测地质雷达交底

隧道衬砌质量无损检测地质雷达交底

隧道衬砌质量无损检测地质雷达法技术交底1 引用标准TB10223-2004 《铁路隧道衬砌质量无损检测规程》TB10753-2010 《高速铁路隧道工程施工质量验收标准》TB10417-2003 《铁路隧道工程施工质量验收标准》2 检测原理地质雷达是一种宽带高频电磁波信号检测介质分布的非破坏性的检测仪器。

它通过天线的连续拖动方式获得断面的扫描图像。

雷达利用移动天线发射高频电磁波,电磁波信号在物体内部传播时遇到不同介质的界面时,就会反射、透射和折射。

介质的介电常数差异越大,反射的电磁波能量也越大;反射的电磁波被与发射天线同步移动的接收天线接收后,通过雷达主机精确记录反射回的电磁波的运动特征,再通过数据的技术处理,形成断面的扫描图,通过对图像的判读,判断出地下目标物的实际情况。

3技术资料3.1、提供检测段落的隧道工程地质资料、施工图纸、设计变更资料和施工记录等相关基础资料。

3.2、提供检测段落隧道衬砌参数。

4 检测细则4.1基本规定4.1.1、适用范围:地质雷达法适用于检测隧道衬砌厚度、衬砌的密实度和衬砌内部钢架、钢筋等分步。

4.1.2、地质雷达技术指标要求:a.系统增益不低于150dB。

b.信噪比不低于60dB。

c、模/数转换不低于16位。

d、信号迭加次数可选择。

e、采样间隔一般不大于0.5ns。

f、实时滤波功能可选择。

g、具有手动/自动位置标记功能。

h、具有点测与连续测量功能。

i、具有现场数据处理功能。

j、具有屏蔽功能。

k、最大探测深度应大于2m。

l、垂直分辨率应高于2cm。

4.1.3、测线布置:a、单线隧道布置测线6条:拱顶1条,左右拱腰各1条,左右边墙各1条,隧底1条。

b、双线隧道布置测线7条:拱顶1条,左右拱腰各1条,左右边墙各1条,左右隧底各1条。

c、三线隧道布置测线10条:是拱部3条,左右拱腰各1条,左右边墙各1条,左中右隧底各1条。

d、必要情况下,可根据实际要求增加测线。

4.1.4、检测要求及环境条件:a、无损检测前准备好地质雷达检测台车,检测台车采用脚手架搭设,放置在自卸汽车上,与自卸汽车的箱体固定牢固;检测台车应设置供检测人员上下的带有护栏的固定梯道,检测台车顶部的平台四周应设置防护栏杆,检测台车在运行时必须确保检测架平稳;检测台车的高度和侧向宽度均应满足检测人员能检测到拱顶和拱腰部位,并能满足隧道净空要求;驾驶搭有检测台车的司机应选派驾驶经验丰富、驾驶平稳的人员担任,要求车辆变速平稳、行驶均速,无急刹车或速度忽高忽低现象。

隧道衬砌厚度及内部缺陷检测(雷达法))

隧道衬砌厚度及内部缺陷检测(雷达法))
2
9
The antenna test position should be smooth and flat, with no apparent defects, and no interferences such as metal and water on the surface (2 points).
2
10
During the thickness and internal defect test, the antenna should be moved along the corresponding test line, otherwise 3 points will be deducted.
6
6
18
测试结果准确性:
厚度及内部缺陷测试得分=(|测试厚度H-实际厚度H0|/实际厚度H0)*100
厚度及内部缺陷测试满分20分,偏差在5%及以内不扣分,偏差在5%~15%,扣10分,偏差大于或等于15%不得分。
30
19
原始数据文件及解析结果、原始记录表提交。
4
20
试验结束后的整理(4分)
设备归位:关闭电源,取下天线、信号线、设备清洁、装箱。
2
2
Equipment connection and assembly: The antenna is connected to the host, and 2 points will be deducted for wrong insertion.
2
3
Before the official start of the test, the machine should be turned on to check to make sure that the signal line is unobstructed, and 1 point will be deducted if there is no such behavior.

地质雷达法检测隧道衬砌混凝土质量

地质雷达法检测隧道衬砌混凝土质量
76
相位为衬砌混凝土和围岩之间界面的反射波 。
5 结 语
综上所述 ,在对测试资料进行分析处理的基础 上 ,地质雷达能较好地对隧道衬砌的实际情况作出 除强度外的检测 ,但由于其探测精度与所取的波速 有关 。因此 ,需要在现场测取足够点数的雷达波 ,而 混凝土中的雷达波有一定的离散性 ,有时可达 5 % ~10 %。因此 ,在注意波速测取的情况下 ,计算出的 衬砌厚度误差可在 2~4 cm 。若要精确得出实测厚 度 ,需作发 - 收距的校正 ,工作量很大 。对于脱空 区 ,由于其中充满潮湿的空气 ,含水率不可知 ,其波 速也不可测 ,因而无法准确确定脱空的高度 ,只能给 出一个概略值 。这些都是方法本身客观存在的问 题 ,需进一步地进行完善 。雷达检测不仅用于铁路 隧道 ,对于公路路基和隧道 ,水利水电工程的大坝 、 交通洞 、引水隧道 ,地下管线 ,地基加固效果检测 ,岩 溶 ,滑坡 ,探测和维护古建筑物结构及进行考古研究 等方面也同样可以应用 。
测深度的 50 % ,那么地质雷达方法就要被排除 。 分辨率决定了地球物理方法分辨最小异常介质
的能力 。分辨率分为垂直分辨率和水平分辨率 。研
究表明地质雷达在垂直方向可探测到目标体的厚度
为雷达子波波长的 1/ 4 倍 。可用下式估算测试成果
的垂直分辨率 :
b
=
λ 4
=
v 4f
水平分辨率与测点距离 、Fresnel 带直径有关 。
图 7 脱空体的地质雷达剖面图
(3) 衬砌混凝土厚度的解释 :一般情况下 ,雷达 波经发射天线发射后 ,最先到达接收天线的雷达波 为空气直达波 ,紧接着为表面直达波 ,再为混凝土和 围岩胶结面的反射波 。反射波能量与围岩和衬砌混 凝土之间的物性差异有关 ,两者物性差异越大 ,反射 波能量就越强 ,反之 ,其能量就越弱 。图 8 为判定的 厚度典型地质雷达剖面图 ,图中存在多条连续的同 相轴 ,沿时间轴方向 ,11~13 ns 处强能量连续的同

铁路隧道衬砌质量检测中地质雷达法的应用

铁路隧道衬砌质量检测中地质雷达法的应用

铁路隧道衬砌质量检测中地质雷达法的应用摘要:隧道衬砌的质量检测对于确保铁路隧道的长期稳定运营至关重要。

本论文研究通过地质雷达法来应用于铁路隧道衬砌质量检测中,以提高检测效率和准确性。

介绍了地质雷达技术的原理和应用优势。

分析了地质雷达法在隧道衬砌质量检测方面的可行性和适用性。

然后,详细阐述了地质雷达法的检测流程和数据处理方法。

通过实验和案例研究,验证了地质雷达法在铁路隧道衬砌质量检测中的有效性。

关键词:铁路隧道;衬砌质量检测;地质雷达;应用引言随着铁路建设的不断发展,铁路隧道作为重要的交通基础设施,扮演着连接城市和地区的重要角色。

然而,铁路隧道衬砌的质量问题一直是影响隧道安全和使用寿命的关键因素之一。

传统的质量检测方法存在效率低、准确性差等问题。

因此,寻找一种高效、准确的检测方法对于保障隧道衬砌质量具有重要意义。

1.研究背景和动机铁路隧道作为重要交通基础设施,其衬砌质量对安全和使用寿命至关重要。

传统的质量检测方法效率低、准确性差。

因此,本研究旨在探索地质雷达法在隧道衬砌质量检测中的应用,以提高检测效率和准确性,为隧道质量监管提供可靠解决方案。

2.地质雷达技术原理及应用优势2.1地质雷达技术原理地质雷达技术利用高频电磁波在地下的传播和反射,通过接收和分析反射波信号来获取地下构造信息。

这种技术基于电磁波在不同介质中传播速度不同的原理,通过测量反射波的强度和时间延迟来揭示地下隧道衬砌的结构和物性参数,实现对衬砌质量的非破坏性检测。

2.2地质雷达在工程领域的应用地质雷达在工程领域有广泛的应用。

它可以用于地下管线和电缆的检测,包括确定其位置、深度和状态。

此外,地质雷达也被应用于地下桩基和隧道的勘察,通过检测地下的岩层结构和土壤条件来评估工程的可行性。

在隧道施工中,地质雷达可用于监测隧道的衬砌质量,及时发现缺陷和损坏。

3.地质雷达法在隧道衬砌质量检测中的可行性和适用性分析3.1隧道衬砌质量检测需求和挑战隧道衬砌质量检测需求主要包括:保证隧道结构的安全稳定运行、延长使用寿命、减少维修和维护成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道衬砌质量地质雷达无损检测技术1 前言工艺概况铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。

工艺原理电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。

根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。

图1 地质雷达基本原理示意图电磁波在特定介质中的传播速度是不变的 ,因此根据地质雷达记录的电磁波传播时间ΔT ,即可据下式算出异常介质的埋藏深度H :H V T =•∆2 (1)式中,V 是电磁波在介质中的传播速度,其大小由下式表示:V C =ε (2)式中,C 是电磁波在大气中的传播速度,约为×108m/s ;ε为相对介电常数,不同的介质其介电常数亦不同。

雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为:2121εεεε+-=r (3)反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。

雷达波的穿透深度主要取决于地下介质的电性和波的频率。

电导率越高,穿透深度越小;频率越高,穿透深度越小。

2 工艺特点电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在~左右。

利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz;采用宽带短脉冲和高采样率,分辨率较高;采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。

(1)操作简单,对工作环境要求不高;(2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上;(3)通过专业的RADAN 分析软件,专业的技术人员可以迅速的完成数据处理等。

3 适用范围地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性差异,是探测工作是否有效的前提,这种电性差异就是介电常数;应根据不同的检测对象和检测要求选用不同的天线类型;适用条件,探测的目标体与周围介质有较大的介电常数差异并具有较好的反射条件;上覆层导电性较弱;目标体具有一定的体积,引起的异常有一定的强度;具有一定的探测对比资料。

该技术适用于隧道衬砌质量施工过程控制和竣工验收的无损检测。

4 主要引用标准《高速铁路隧道工程施工质量验收标准》(TB 10753-2010)《铁路隧道工程施工质量验收标准》TBl0417-2003《铁路隧道衬砌质量无损检测规程施工规范》(TB10223-2004)《铁路工程物理勘探规程》(TB10013-2004)《岩土工程勘察规范》(GB50021-2001)《云桂铁路石林隧道地质雷达无损检测实施细则》云桂铁路石林隧道相关设计图纸以及相关施工资料。

5 施工方法1、检测前的准备工作:收集隧道工程地质资料、施工图、设计变更资料和施工记录;进行现场调查,做好测量里程标记。

检测时应遵守有关安全规定,配备必要的安全防护人员及设备。

2、检测设备、照明机具工作电源要保证电量充足,能够保证一天的正常使用。

3、雷达主机、显示器、天线、电缆等设备之间连接良好,设备工作正常。

4、需要分段测量时,相邻测量段接头重复长度不应小于1m。

5、提前准确标记检测位置里程,提前采用红油漆每隔5m做一个标记,标记高度为轨面或路面上1m左右;现场检测时标记为5m/单标的里程标记方式;记录标记里程与现场标记里程允许误差±10cm。

6、测线布置应符合下列规定:隧道施工过程中质量检测应以纵向布线为主,环向布线为辅(存在问题地段需要加密检测时布置环向测线)。

雷达测线横断面布置如图2。

纵向布线的位置应在隧道拱顶、左右拱腰、左右边墙和隧底各布1条;环向布线可按检测内容和要求布设线距,一般情况线距5~10m;采用点测时每断面不少于6个点。

检测中发现不合格地段应加密测线或测点;三线隧道应在隧道拱顶部位增加2条测线。

7、检测前,应先搭建隧道衬砌雷达检测台车或采用检测车,以便天线能到达检测测线位置。

雷达检测台车现场检测方式见图3。

8、现场要求准确记录检测测线的高度和水平位置,准备受检隧道设计衬砌厚度(其中边墙衬砌设计厚度按内轨顶面以上1.0m计),格栅、拱架设计区段及间距,围岩类型等资料,供现场数据采集参数设置和后期资料处理使用。

9、雷达天线频率的选择及测线的布置根据以往进行地质雷达检测的经验,采用高频天线检测精度较高,但测量范围较小,采用低频天线检测精度较低,但测量范围较大。

因此,针对本次检测的内容,决定采用400MHz或900MHz的雷达线6条测线。

在现场利用工程检测车以小于5公里/小时的车速进行检测。

对于有疑问处,采用钻芯取样进行破检检测。

图2 雷达测线横断面布置图图3 现场检测方式示意图10、介质参数的标定1)检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道应不小于1处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。

当隧道长度大于3km、衬砌材料或含水量变化较大时,应适当增加标定点数。

2)标定可采用下列方法:在已知厚度部位或材料与隧道相同的其他预制件上测量;在洞口或洞内避车洞处使用双天线直达波法测量;钻孔实测。

3)求取参数时应具备以下条件标定目标体的厚度一般不小于15cm,且厚度已知;标定记录中界面反射信号应清晰、准确。

4)标定结果应按下式计算:——相对介电常数式中rv——电磁波速(m/s)t——双程旅行时间(ns)d——标定目标体厚度或距离(m)。

6 工艺流程及操作要点工艺流程衬砌质量地质雷达无损检测工艺流程如图4。

图4 衬砌质量地质雷达无损检测工艺流程操作要点1、现场检测人员要保证雷达天线密贴衬砌表面行进。

2、现场检测人员密切配合,保证天线实际检测位置与标记线位置吻合。

3、检测天线应移动平稳、速度均匀、考虑仪器扫描速度与实测条件,天线移动速度宜为3~5km/h匀速前进。

4、现场记录要保证记录测线号、方向、标记间隔及天线类型等,随时记录现场产生电磁波干扰的物体(如渗水、电缆、铁架等)及其位置。

5、纵向布线应采用连续测量方式,扫描速度不得小于40道(线)/s;特殊地段或条件不允许时可采用点测方式,测量点距不得大于20 cm。

6、建立完善的衬砌质量无损检测工作管理制度,按照建设标准化管理体系、招标文件、技术指南以及相关规范规定的要求和现场实际情况,开展检测工作。

7、定期对检测设备、仪表性能进行检查,确保在使用过程中一切设备运转正常。

8、地质雷达无损检测资料是反映工程质量的重要依据之一,现场检测技术资料应随施工进度同步整理,按类型、时间归类,并保证及时、准确、真实,不得私自涂改、仿造、随意抽换、销毁、丢失,资料应做到内容齐全真实,书写字迹端正清楚。

9、检测人员员对各种原始记录都要认真保存,对上级主管部门发给的质量标准和有关安全、质量方面的通知,应及时转发给现场工程技术负责人。

10、隧道衬砌中各类缺陷判析1) 衬砌背后回填密实度的主要判别特征:密实:信号幅值较弱,甚至没有界面反射信号;空洞:衬砌界面反射信号强,三振相明显,在其下部仍有强反射界面信号,两组信号时程差较大。

不密实:衬砌界面的强反射信号同相轴呈绕射弧形,且不连续,较分散;2) 钢架、钢筋位置分布的主要判别特征:钢架:分散的月牙形强反射信号;钢筋:分散的倒”V”字型反射信号;3、地质雷达法的采集数据质量检查为检测总工作量的5%,检查资料与被检查资料的雷达图像应具有良好的重复性、波形基本一致、异常没有明显位移。

4、检测资料质量评定应符合下列规定:衬砌背后回填密实度和空洞的检查点相对误差小于10%为合格,衬砌混凝土厚度的检查点相对误差小于15%为合格;合格的检查点数大于总检查点数量的90%为合格。

7 劳动力组织衬砌质量地质雷达无损检测组劳动力组织见表1。

表1 衬砌质量地质雷达无损检测组劳动力组织表8 主要机具设备主要设备配置见表2。

表2 综合地质雷达无损检测主要设备配置表9 质量控制易出现的质量问题(1)现场检测准备工作准备不充分,障碍物过多,导致检测过程中易出现漏检;(2)里程标记有较大误差,导致检测结果和实际不相符;(3)衬砌检测结果判释人员经验不足,资料分析有偏差;(4)检测结果的反馈渠道不畅通、不及时。

保证措施(1)实现对建设单位的质量承诺,严格按照合同条款要求及现行规范标准组织开展工作。

(2)在施工过程中,以设计文件、技术指南以及现行规范标准为依据,按《建设标准化管理体系》通过对地质雷达无损检测要素和关键程序的控制,切实落实检测责任制。

检测工作要责任到人,对地质雷达无损检测方法按工序严加施做,保证工程施工质量合格。

(3)定期对各种仪器、仪表等进行标定,专人负责管理。

严格按仪器说明进行现场操作,确保数据的可靠性。

(4)对采集数据及时处理,形成的检测成果及时汇报,对质量问题较大的地段要第一时间上报,密切关注现场验证情况,确保检测成果的准确性和指导性,保证施工适量。

(5)对各种检测原始数据,现场照片,会议记录等重要资料分门别类汇总归档,以利于检测工作的验收。

10 安全措施检测台车的防护措施(1)检测车上搭建的临时作业平台,为确保检测人员、机械和设备在检测台车行走过程中的安全,临时作业平台要有足够的刚度、强度和稳定性,并和检测车连接牢固;(2)检测车不可以急行、急停,要听从检测人员的统一指挥,慢起、慢停;(3)在路面凹凸不平的地段,在确保检测车安全通过后,方可进行下一步的检测工作;(4)检测工作完成后,现场为检测目的所搭建的临时设施应全部拆除,辅助材料应统一收集、处理,使检测现场恢复原状,确保安全;检测现场应急措施(1)检测现场应配备应急照明灯和应急通讯设备;(2)检测现场发生意外时,应迅速采取救援措施,并立即向上级单位报告情况,力争将损失降到最低。

11 应用实例地质雷达无损检测典型图例图5 衬砌背后脱空图6 衬砌背后不密实图7 衬砌背后脱空图8 衬砌背后不密实脱空图9 衬砌背后不密实脱空图10 衬砌欠挖(初期支护有钢筋网片)图11 衬砌欠挖(初期支护有钢筋网片和拱架)图12 衬砌欠挖(素混凝土)图13 仰供下部不密实(素混凝土)图14 仰供下部有钢筋和无钢筋过渡段图15 衬砌钢筋保护层厚度不足图16 衬砌钢筋(典型探测数据)图17 初期支护拱架探测(典型探测数据)12工程结果评价云桂铁路石林隧道衬砌施工过程中,通过地质雷达无损检测及时发现问题,及时处理,确保交付一个合格的工程实体。

相关文档
最新文档