12工程数学试卷A
《工程数学-线性代数》试卷(A)
安徽矿业职业技术学院 2011-2012学年第二学期期末考试《工程数学-线性代数》试卷(A)(时间:120分钟)课程所在系部:公共课教学部 适用专业:矿井建设与相关专业 考试形式: 闭卷(闭卷/开卷) 命 题 人:马万早说明:在本卷中,T A 表示矩阵A 的转置矩阵,A*表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式. 1A -表示方阵A 的逆矩阵,R (A )表示矩阵A 的秩。
一、填空题 ( 每小题2分,共20分)1. 行列式任意两行互换行列式 。
2. 设D 为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6,24,则D= 。
3. 关于线性方程组的克莱姆法则结论是 。
4. n 阶矩阵A 可逆的充要条件是 。
5. 若n 阶矩阵满足2240A A E --=,则A -1= 。
6. ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛43214321= , ()43214321⎪⎪⎪⎪⎪⎭⎫⎝⎛= 。
7. 设向量组321,,ααα线性相关,则向量组332211,,,,,βαβαβα一定线性 。
8. 设A 为三阶矩阵,若A=3,则1-A = ,*A = 。
9. n 阶可逆矩阵A 的列向量组为n αααΛ,,21,则r(n αααΛ,,21)= 。
10. 非齐次线性方程组A n m ⨯X=b 有解的充要条件是 。
二、选择题(10分,每题2分)1.1221--k k 0≠的充要条件是( )。
(a ) k ≠1(b ) k ≠3(c ) k ≠1且k ≠3(d )k ≠1或k ≠3 2. A,B,C 为n 阶方阵,则下列各式正确的是( )(a) AB=BA (b) AB=0,则A=0或B=0 (c) (A+B )(A-B )=A 2-B2(d) AC=BC 且C 可逆,则A=B3. 设A 为n 阶可逆矩阵,则下述说法不正确的是( )(a) A ,0≠ (b) 1-A 0≠ (c) r(A)=n (d) A 的行向量组线性相关4. 设矩阵A =(a ij )n m ⨯,AX=0仅有零解的充要条件是( ) (a) A 的行向量组线性无关 (b) A 的行向量组线性相关 (c) A 的列向量组线性无关 (d) A 的列向量组线性相关5. 向量组s αααΛ,,21的秩为r,则下述说法不正确的是( )(a) s αααΛ,,21中至少有一个r 个向量的部分组线性无关(b) s αααΛ,,21中任何r 个向量的线性无关部分组与s αααΛ,,21可互相线性表示 (c) s αααΛ,,21中r 个向量的部分组皆线性无关 (d)s αααΛ,,21中r+1个向量的部分组皆线性相关三、判断题(正确的划√,错误的划х,共10分,每题2分)1.1112111221222122ka ka a ak ka ka a a =。
工程数学试卷及标准答案
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
工程数学试题A及答案
工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学2012年科学计算考试试题
一、 填空题 (每空2分, 共16分)
1. 为提高计算精度,当x
改为 进行计算.
2. 已知矩阵⎥⎦
⎤⎢⎣⎡-=2212A ,则A ∞= , 2A = . 3. 对函数2()31f x x x =-+, 差商[0,1,2]f -= .
4. 积分()b
a f x dx ⎰的Simpson 公式为 , 其代数
精确度为 .
5. 求解常微分方程⎩
⎨⎧=-='1)0(5y y y 的Euler 格式为 , 要使该方法绝对稳定,则步长h 的取值范围是 .
二、 计算题 (共34分)
1. (8分) 用列主元Gauss 消去法求解下列方程组
123232112243145x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥-⎣⎦⎣⎦⎣⎦, 2. (8分) 写出求解下列方程组的Gauss-Seidel 迭代格式,并分析其收敛性。
123223013021213x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎣⎦⎣⎦⎣⎦, 3. (10分) 已知函数()y f x =满足如下数值表
(1) 求其二次插值多项式。
(2) 求其线性最小二乘拟合多项式y a bx =+。
4. (8分) 已知二次Legendre 多项式221()(31)2
P x x =-,写出11()f x dx -⎰的两点Gauss-Legendre 求积公式,并由此导出()b
a f x dx ⎰的两点Gauss-Legendre 求积公式。
工程数学试题及答案
工程数学试题及答案《工程数学试题及答案》1. 数列与级数问题:找出以下等差数列的通项公式,并计算前n项和。
1) 3, 6, 9, 12, ...2) 1, 5, 9, 13, ...答案:1) 通项公式为a_n = 3 + 3(n-1),前n项和为S_n = n(6 + 3(n-1))/2。
2) 通项公式为a_n = 1 + 4(n-1),前n项和为S_n = n(2 + 4(n-1))/2。
2. 三角函数问题:求解以下方程在给定区间内的所有解。
1) sin(x) = 0.5,其中0 ≤ x ≤ 2π。
2) cos(2x) = 0,其中0 ≤ x ≤ π。
答案:1) 解为x = π/6, 5π/6。
根据周期性,可加2πn得到无穷解。
2) 解为x = π/4, 3π/4。
根据周期性,可加πn得到无穷解。
3. 极限与连续性问题:计算以下极限。
1) lim(x→0) (3x^2 + 2x) / x。
2) lim(x→∞) (e^x + 2x) / e^x。
答案:1) 极限等于2。
2) 极限等于2。
4. 微分与积分问题:求以下函数的导数和不定积分。
1) f(x) = 3x^2 + 4x + 1。
2) g(x) = sin(x) + cos(x)。
答案:1) f'(x) = 6x + 4,∫f(x)dx = x^3 + 2x^2 + x + C。
2) g'(x) = cos(x) - sin(x),∫g(x)dx = -cos(x) - sin(x) + C。
5. 偏导数与多重积分问题:计算以下偏导数和二重积分。
1) 求f(x, y) = x^3 + 2xy - y^2的偏导数∂f/∂x和∂f/∂y。
2) 计算∬(x^2 + y^2)dA,其中积分范围为R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}。
答案:1) ∂f/∂x = 3x^2 + 2y,∂f/∂y = 2x - 2y。
工程数学期末考试试题和标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ).A.2;B. 1;C.1-;D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-1024d )(x x x π; B. ⎰-142d )(x x x π;C. ⎰-102d )(y yy π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 earcsin xy =.3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee ,=x y d d __________.2.已知y x x y '+=求,cos sin 22. 三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e2y x y x求=4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( ). .A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a ⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点.2. 复合而成和是由函数函数 sin xey =.3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bty at ,=dx dy __________. 三、计算题(共42分,共6小题,每小题7分)1.xx x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=. 3. 已知.dy ,2sin 求x x y = 4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y uarcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x-=+=4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2e xdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ,x x x x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y usin ,==;3、29,23=-=b a ;4、x cos ;5、a bt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+= 4. .7(4()(''分)分)C e xe dx e x xe dx e x dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
工程数学单元测试参考答案
工程数学单元测试参考答案工程数学单元测试参考答案一、选择题1.答案:B。
根据题意,两个向量相加的结果是另一个向量,所以选项B正确。
2.答案:C。
根据题意,两个向量的数量积等于它们的模长乘积与它们夹角的余弦值,所以选项C正确。
3.答案:A。
根据题意,两个向量的叉积是一个向量,所以选项A正确。
4.答案:D。
根据题意,两个向量的叉积的模长等于它们的模长乘积与它们夹角的正弦值,所以选项D正确。
5.答案:C。
根据题意,两个向量的数量积等于它们的模长乘积与它们夹角的余弦值,所以选项C正确。
二、填空题1.答案:2。
根据题意,由方程组的系数矩阵的行列式不等于0可知,方程组有唯一解,所以填2。
2.答案:(1, 2)。
根据题意,由方程组的系数矩阵的行列式等于0可知,方程组有无穷多解,所以填(1, 2)。
3.答案:-1/2。
根据题意,由方程组的系数矩阵的行列式等于0可知,方程组无解,所以填-1/2。
三、计算题1.答案:(2, -1)。
根据题意,对于二维向量的加法,将两个向量的对应分量相加即可,所以计算结果为(2+0, -1+(-1))=(2, -1)。
2.答案:(3, 0, -4)。
根据题意,对于三维向量的加法,将两个向量的对应分量相加即可,所以计算结果为(1+2, 0+0, (-1)+(-3))=(3, 0, -4)。
3.答案:(1, -1, -1)。
根据题意,对于两个向量的数量积,将两个向量的对应分量相乘再相加即可,所以计算结果为(1×1+(-1)×(-1)+(-1)×(-1))=(1, -1, -1)。
四、证明题1.答案:证明:设向量a=(a1, a2, a3),向量b=(b1, b2, b3),向量c=(c1, c2, c3)。
根据向量的数量积的性质,有:a·(b+c) = a1(b1+c1) + a2(b2+c2) + a3(b3+c3)= a1b1 + a1c1 + a2b2 + a2c2 + a3b3 + a3c3= (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3)= a·b + a·c所以,向量的数量积满足分配律。
2012湖南大学研究生工程数学试卷
S1309W3009
历艳琨
电气与信息工程学院
20
S1309W3012
吕状状
电气与信息工程学院
21
S1309W3015
肖剑波
电气与信息工程学院
22
S1309W3018
李美菊
电气与信息工程学院
23
S1309W3020
罗志成
电气与信息工程学院
24
S1309W3023
戴洋洋
电气与信息工程学院
25
S1309W4001
22
S1302W2042
黄俊锟
机械与运载工程学院
23
S1302W2047
曾波
机械与运载工程学院
24
S1302W2066
许东阳
机械与运载工程学院
25
S1302W2092
徐伟
机械与运载工程学院
26
S1302W2100
孙文
机械与运载工程学院
27
s1302w2101
潘能贵
机械与运载工程学院
28
S1302W2109
石虹璐
设计艺术学院
42
S1308W1012
刘金山
设计艺术学院
43
S1309W2005
唐庆
电气与信息工程学院
44
45
《工程数学》课程考试安排(潘)
(综合楼506)
序号
学号
姓名
所属院系
签名
1
s1309w2011
白纯
电气与信息工程学院
2
S1309W2019
李亚雄
电气与信息工程学院
3
S1309W2055
黄根
工程数学考试试卷A
广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程号: (2015-2016-1)-16621001x2 -163006-1√ 考试 √ A 卷 √ 闭卷 □ 考查 B 卷 □ 开卷(每题2分,共20分)1、事件表达式B A ⋂的意思是( ) (A)事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C)事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2、投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A)5/18 (B)13 (C)12 (D)以上都不对 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) 。
(A) P (A)=1- P(B) (B) P(AB)=P(A)P(B) (C)P(B A )=1 (D) P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= ( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、=⎰=-12z ( ) (A)2πi (B)0 (C)4πi (D)以上都不对 6、下列说法正确的是( ) (A)如果)(0z f '存在,则f (z)在z 0处解析 (B)如果u (x,y)和v(x,y)在区域D 内可微,则),(),()(y x iv y x u z f +=在区域D 内解析 (C)如果f (z)在区域D 内解析,则)(z f 在区域D 内一定不解析 (D)如果f (z)在区域D 内处处可导,则f (z)在区域D 内解析 7、解析函数f(z)的实部为u=e x siny ,根据柯西-黎曼方程求出其虚部为( )。
(A) e x cosy+C (B) -e x cosy+C (C) e -x cosy+C (D)e x siny+C 8、单位脉冲函数δ(t)的Fourier 变换为( ) (A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)9、设f(t)=cosat(其中a 为常数),则f(t)的Lapalace 变换为( )(A)1/(s 2+a) (B) 1/(s 2+a 2) (C) s/(s 2+a 2) (D)1/(s+a)10、若f(t)的Fourier 变换为F(ω),则f (t+1)的Fourier 变换为( ) 班级:姓名: 学号: 试题共 2页加白纸1张密封线GDOU-B-11-302(A)e j ωF(ω) (B)e -j ωF(ω) (C)F(ω+1) (D)F(ω-1)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。
工程数学A卷答案及评分标准
临沂大学2011—2012学年度第二学期《工程数学》A 卷答案及评分标准(适用于2009级机械设计制造及其自动化专业2+2、2011 级3+2专升本学生,开卷考试,时间120分钟)一、选择题:(共10小题,每小题2分,共20分)请将下列各题正确的答案填入下表中。
二、填空题:(共10空,每空2分,共20分)1、-125 2、-2 3、2 4、4 5、13a =,0b =6、0.187、0.18、67\49、 8 三、计算题:(共5小题,第1题8分,第2、3、4题各10分,第5题12分,共50分)1、解:对系数矩阵作初等行变换,有:110011*********~001010011100010⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭得:1253540x x x x x x =--⎧⎪=-⎨⎪=⎩ 4分 令251,0x x == 得:()11,1,0,0,0Tη=- 1分 令250,1x x == 得:()11,0,1,0,1Tη=-- 1分 基础解系为12,ηη 1分 通解为1122k k ηη+ k 1,k 2为任意常数 1分2、解:(1)()1f x dx +∞-∞=⎰所以2221cx dx +-=⎰则316c =2分 (2)()()22323016E X x f x dx x dx +∞+-∞-===⎰⎰2分()()22242312165E X x f x dx x dx +∞+-∞-===⎰⎰()()()22125D XE X E X =-=⎡⎤⎣⎦ (3)()(){}12||||15P X E X D X P X ⎧⎫-<=<=⎨⎬⎩⎭ 2分3、解:()12341122112202150215~203100111104000r A αααα⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭4分一个最大无关组为:123,,ααα 2分41233αααα=+- 2分4、(1) 由()F x 右连续性得()()00F F +=,即0A B +=, 又由()1F +∞=得,1A =,解得1,1A B ==- 5分(2) ()22,0()0,xxe x f x F x -⎧⎪>'==⎨⎪⎩其它, 3分 (3) )2PX <<()2F F=-12ee --=- 2分5、解:(1)因为A~B ,故其特征多项式相同。
工程数学试题及参考答案
工程数学试题B一、单项选择题(每小题3分,本题共21分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ).(A) BA AB = (B) T T T )(B A AB =(C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1(C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值(C) x 是B A +的特征向量 (D) λ是AB 的特征值4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+(C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-5.随机事件A B ,相互独立的充分必要条件是( ).(A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ).(A) ⎰b a x x F d )( (B) ⎰ba x x f d )( (C) )()(a fb f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B) ∑=31i i X(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X 二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计.三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
中国矿业大学11-12(上)《工程数学A》试题(A)卷
11-12学年第一学期《工程数学A 》试题(A )卷一、填空题(每空4分,共40分)1) ()()f t u t =的傅氏变换为 .2) 函数3232()(3)f z my nx y i x xy =++−为解析函数,则m = .3) 201lim(sin d )t t t t i t t j e k →++=∫ . 4) 矢量场k z j y i x A ++=从下向上通过有向曲面22z x y =+(02)z <<的通量为 .5) 函数()sin t f t e t =的拉氏变换为 .6) 矢量场222A xi x y j yzk =−+ 在点)1,2,1(−M 处散度为 . 7) 设()tan f z z =则Res[(),]2f z π= . 8) 函数20()sin 2d t t f t te t t −=∫的拉氏变换为 . 9) C 是直线OA ,O 为原点,A 为i +2, 则d C z z =∫ .10) 复数ln i i = .二、(10分)求矢量场22()A x i y j x y zk =+++ 通过点)1,1,2(−M 的矢量线方程. 三、(10分)求常系数二阶线性微分方程t e t y t y t y −=+′−′′2)()(2)(满足条件0)0(,0)0(=′=y y 的解.四、(10分)求函数222()(413)s F s s s +=++的拉氏逆变换.五、(10分)证明矢量场k yz x j y z x i xyz A 22222)cos (2+++=为保守场,并求积分∫⋅B Al A d ,其中(1,0,1),(2,1,3)A B . 六、(10分)将函数21()(1)f z z z =−在圆环域1|1|z <−<+∞展开成洛朗级数. 七、(10分)用留数计算积分201d 5cos t tπ+∫.。
2020-2021大学《工程数学》期末课程考试试卷A(含答案)
第 1 页 共2页 第 1 页 共2页2020-2021《工程数学》期末课程考试试卷 A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题(每题3分,共计3⨯8=24分)1、设二次型()f x =222123232334x x x x x +++ , 则二次型f 矩阵A =2、设,9,3,A B A B ==三阶方阵有则 1AB -=3、设向量,101,121⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=βα 则T αβ⋅=4、设向量111,0,11αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则内积[],αβ=5、已知2BA B E =+,2112A ⎛⎫= ⎪-⎝⎭, 则 B =6、设矩阵A =220210⎛⎫⎪⎝⎭,则矩阵A 的秩为7. 设A 为n 阶方阵,若行列式50E A -=,则A 必有一特征值为8、设123012111D =,则111213A A A ++=二.选择题(3分⨯4=12分)1、 设α是矩阵A 对应于λ的特征向量,则1P AP -对应的特征向量为( )(A )1P α- (B )P α (C ) T P α (D ) α 2、 设n 阶矩阵A 可逆,下列说法错误的是( )(A )存在B 使AB I = (B )0A ≠ (C )A 能相似于对角阵 (D) ()r A n = 3、设四阶方阵A ,B 有秩()4,()3R A R B ==,则()R AB =( )。
(A ) 1 (B ) 2 (C ) 3 (D ) 4 4、设n 阶矩阵,A B 有0AB =,则下列正确的有 ( )(A )0A = (B )B=0 (C )()R A n = (D )()()R A R A n +≤三. 设矩阵方程25461321X -⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵X (10分)四、设四元非齐次线性方程组AX b =的系数矩阵A 的秩()3R A =,且已知解123,,ηηη,其中1232132,4354ηηη⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 求方程组AX b =的所有解 (10分)第 2 页 共2页第 2 页 共2页五、已知向量组123423240,1,1,22100αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(1)求向量组的秩;(2)向量组的一个最大无关组;(3)将其余向量用最大无关组线性表示。
工程数学试题及答案
一、选择题(每小题3分,共15分)
1、B2、C3、D4、A5、A
二、填空题(每小题3分,共15分)
6、97、18、1–(1–P)39、3/410、12
三、计算题(每题10分,共50分)
1、解答:函数f(t)的付氏变换为:
F(w)= (3分)
= (2分)
由付氏积分公式有
f(t)= F(w)]= (2分)
7、设A= ,则 =。
8、设有3个元件并联,已知每个元件正常工作的概率为P,则该系统正常工作的概率为。
9、设随机变量 的概率密度函数为 ,则概率 。
10、设二维连续型随机变量 的联合概率密度函数为 ,则系数 。
三、计算题(每小题10分,共50分)
1、求函数 的傅氏变换(这里 ),并由此证明:
2、发报台分别以概率0、6和0、4发出信号“1”和“0”。由于通讯系统受到干扰,当发出信号“1”
(3)A对称,故A必相似于对角阵Λ,
Λ=diag(║a║2, 0,…,0) (2分)
五、应用题(共10分)
解答:
设y为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z表示国家的收益(万元),(1分)
则有 (4分)
因 X服从R(2000,4000), 故有
(1分)
所以
=–( y2–7000y + 4•106) /1000(3分)
时,收报台未必收到信号“1”,而是分别以概率0、8和0、2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0、9和0、1收到信号“0”和“1”。求
(1)收报台收到信号“1”的概率;
(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镇 江 高 等 专 科 学 校 2012-2013学年第二学期期末考试试卷
12 级 专业 试卷(A 卷)
命题 曹京辉 审核 审批 班级 学号 姓名 考试形式:闭卷
一、填空(10×3ˊ=30ˊ)
1.三个事件A ,B 恰有一个发生可以表示为_____ ____. 2.若()()()P
AB P A P B =,则两事件A 与B ____ _____.
3.设A 、B 为两随机事件,且A 与B 为互斥事件,P (A )=0.2,P (B )=0.5,则=)(AB P _________,=+)(B A P _________.
4.设离散型随机变量X 的分布律为
,则常数C=________.
5.已知随机变量X 的期望E (X )=-,-2,则E (3X +7)=___________.
6.已知随机变量X ~()0,10U ,则期望E (X )=________,方差D (X )
=_________.
7.盒中有5个棋子,其中白子2个,黑子3个,今有1人随机地从盒中取出2子,则这2 个
子颜色相同的概率为_________.
8.设随机变量X ~B ⎪⎭
⎫
⎝⎛31,18,Y 服从参数为3的泊松分布,且X 与Y 相互独立,则
D (X +Y )=___ ___.
9.设A 、B 为两随机事件,且A 与B 互斥事件,P (A )=0.3,P (B )=0.4,则 P (A B +)=_________.
10.设m 是n 次独立重复试验中A 发生的次数,p 是事件A 的概率,则对任意正数ε,
有⎭
⎬⎫
⎩⎨⎧ε<-∞
→p n m P n lim =____________. 二、选择(6×3ˊ=18ˊ)
1.设有两事件A ,B ,且()()()111
,,326
P A P B P AB ===,则下列结论成立 的是( ) A .A 与B 互斥
B .A 包含B
C . A 与B 相互独立
D .A 与B 构成完备事件组
2.投掷两颗质量均匀的骰子,出现点数之和等于6的概率为( )
A .61
B .
31 C .36
5
D .36
1
3.下列各表中可作为某离散型随机变量分布律的是( ) A. B.
C. D.
4
品的概率为( )
A.601
B.45
7 C.51 D.157
5.设随机变量X ~B ⎪⎭
⎫
⎝⎛31,3,则P{X ≥1}=( )
A .271
B .27
8
C .
27
19 D .
27
26
6.下列各式中成立的是( )
A .)(2)32(X E X E =+
B .)(4)32(X E X E =+
C .)(4)32(X
D X D =+
D .)(2)32(X D X D =+
三、应用题(3×10ˊ=30ˊ)
1. 8把钥匙中有3把能打开某门锁。
从中任取两把,求能打开该门锁的概率是多少?
2.设某仓库有10箱同样规格的产品。
其中,有5箱、3箱、2箱依次是甲厂、乙厂、丙厂生产的。
并且,甲厂、乙厂、丙厂生产的该种产品的次品率依次为1/10、1/15、1/20。
从这10箱产品的任取1箱,再从这箱中任取1件产品,求取得正品的概率。
如果抽到的产品是正品,求所抽到的产品是甲厂生产的概率。
3.某计算机系统有150个终端,各终端使用与否相互独立。
若每个终端都有40%
的时间在使用,求同一时间使用终端个数在60~70个之间的概率。
Φ(0)=0.5,Φ(1.667)=0.9525,Φ(2.33)=0.99
四、综合题(8ˊ+8ˊ+6ˊ=22ˊ)
1. 设随机变量X 的概率密度为
(1)试确定常数A ;
(2)求X 在区间(1,1.5)上的概率。
2. 设X 的概率分布如下表所示:
求E(X)、E(2X -1)、D(X)。
⎩⎨⎧<<-=)(0
)21()()(2其他x x x A x ϕ
3.掷一枚硬币两次,观察正面朝上的次数X,试求:(1)X的分布函数F(x);
(2)概率P{0 ≤X<1};
(3)概率P{X>2}。