用数学归纳法证明不等式 课件
数学归纳法课件
3.在第二步的证明过程中一定要用上归纳假设,否则这样的证明
就不再是数学归纳法.
变式训练2 用数学归纳法证明:1+3×2+5×22+…+(2n-1)×2n1=2n(2n-3)+3(n∈N ).
+
证明:(1)当n=1时,左边=1,右边=2(2-3)+3=1,左边=右边,命题成
=
1
1 +1
1- 2
2
1
1-2
=1-
1 +1
,
2
1
1 1
正解(1)当 n=1 时,左边= ,右边=12
2
=
1
,命题成立.
2
(2)假设当 n=k(k≥1)时命题成立,
1
1
即 + 2
2 2
当
+
1
1
2
2
3 +…+ =1-
1
1
n=k+1 时, + 2
2 2
1
1
1
=1-
2
+
+
1
,
2
1
1
2
2
3 +…+
反思感悟用数学归纳法证明整除问题时,首先从要证的式子中拼
凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除.其
中的关键是“凑项”,可采用增项、减项、拆项和因式分解等方法分
析出因子,从而利用归纳假设使问题得到解决.
变式训练1 用数学归纳法证明:an+1+(a+1)2n-1能被a2+a+1整除,
5.3数学归纳法证明不等式 课件(人教A版选修4-5)(2)
1 1 1 1 1 1 1 2 2 2 2 2 2 3 k ( k 1) k ( k 1)2
2.当 n≥ 2 时,求证: 1
1 2
1
1 3
1 n
n
2 . 证明: (1) 当n 2时,左式 1 1 17 2 右式 2 2 当n 2时,不等式成立
练习:用数学归纳法证明不等式 sin n ≤ n sin
练习:用数学归纳法证明不等式 sin n ≤ n sin
证明:⑴当 n 1 时,上式左边 sin 右边,不等式成立.
⑵设当 n k(k ≥1) 时,不等式成立,即有 sin k ≤ k sin . 那么,当 n k 1 时, sin(k 1) =
(2)假设当n k( 2) 时,不等式成立,即 1 则当n k 1时, 左式 1
k 1 k 1
1 2
1 3
k
k 1
k
k (k 1) 1 k 1
kk 1 k 1
k 1 k 1
k 1 右式
证明贝努利不等式你有第二种方法吗?
答案
例4、已知x> 1,且x0,nN*,n≥2.
求证:(1+x)n>1+nx.
证明:(1)当n=2时,左=(1+x)2=1+2x+x2
∵ x0,∴ 1+2x+x2>1+2x=右,∴n=2时不等式成立 (2)假设n=k(k≥2)时,不等式成立,即 (1+x)k>1+kx
答案接上见课本(或见板书)
1 1 1 1 1.求证: 1 2 2 2 2 ( n N , n ≥ 2). 2 3 n n
4.4 数学归纳法课件ppt
1×4 4×7 7×10
(3-2)(3+1)
根据计算结果,猜想 Sn 的表达式,并用数学归纳法进行证明.
解
1
S1=1×4
1
S2=
4
2
S3=
7
=1;ຫໍສະໝຸດ 4=2;
7
+
1
4×7
+
1
7×10
3
S4=10
+
=
1
10×13
3
;
10
=
4
.
13
可以看出,上面表示四个结果的分数中,分子与项数 n 一致,分母可用项数 n
(+1)
所以
()
=
(2+1)(2+2)
=2(2k+1).
+1
(2)证明 ①当 n=1
12
时,
1×3
=
1×2
成立.
2×3
②假设当 n=k(k∈N*)时等式成立,
12
即有1×3
+
22
2
+…+(2-1)(2+1)
3×5
则当 n=k+1
12
时,
1×3
+
=
(+1)
,
2(2+1)
22
取值是否有关,由n=k变化到n=k+1时等式两边会增加(或减少)多少项.(2)
利用归纳假设,将n=k时的式子经过恒等变形转化到n=k+1时的式子中得
到要证的结论.
变式训练 1
1
求证:12
4.2 用数学归纳法证明不等式 课件(人教A选修4-5)
考查学生推理论证的能力.
[解]
(1)用数学归纳法证明:2≤xn<xn+1<3.
①当 n=1 时,x1=2,直线 PQ1 的方程为 f2-5 y-5= (x-4), 2-4 11 令 y=0,解得 x2= ,所以 2≤x1<x2<3. 4 ②假设当 n=k 时,结论成立,即 2≤xk<xk+1<3. 直线 PQk+1 的方程为 fxk+1-5 y-5= (x-4), xk+1-4 3+4xk+1 令 y=0,解得 xk+2= . 2+xk+1
则当 n=k+1 时,有 1 1 1 1 1 + +„+ + + + k+1+1 k+1+2 3k+1 3k+2 3k+3 1 3k+1+1 1 1 1 1 1 1 =( + +„+ )+( + + - k+1 k+2 3k+1 3k+2 3k+3 3k+4 1 25 1 1 2 )> +[ + - ]. k+1 24 3k+2 3k+4 3k+1 6k+1 1 1 2 ∵ + = 2 > , 3k+2 3k+4 9k +18k+8 3k+1
lg3 lg3 =k(k+1)· +2(k+1)· 4 4 1 k+1 >lg(1· 3· k)+ lg3 2· „· 2 1 >lg(1· 3· k)+ lg(k+1)2 2· „· 2 =lg[1· 3· k· 2· …· (k+1)].命题成立. 由上可知,对一切正整数 n,命题成立.
本课时考点常与数列问题相结合以解答题的形式考 查数学归纳法的应用.2012年全国卷将数列、数学归纳法 与直线方程相结合考查,是高考模拟命题的一个新亮点.
(1)当n=1时,由f(x)为增函数,且f(1)<1,得
a1=f(b1)=f(1)<1, b2=f(a1)<f(1)<1, a2=f(b2)<f(1)=a1, 即a2<a1,结论成立. (2)假设n=k时结论成立,即ak+1<ak. 由f(x)为增函数,得f(ak+1)<f(ak)即bk+2<bk+1,
第3章 3.2 用数学归纳法证明不等式,贝努利不等式
3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式1.会用数学归纳法证明简单的不等式.2.会用数学归纳法证明贝努利不等式;理解贝努利不等式的应用条件.[根底·初探]教材整理1用数学归纳法证明不等式在不等关系的证明中,有多种多样的方法,其中数学归纳法是最常用的方法之一,在运用数学归纳法证不等式时,推导“k+1〞成立时其他的方法如比拟法、分析法、综合法、放缩法等常被灵敏地运用.教材整理2贝努利不等式1.定理1(贝努利不等式)设x>-1,且x≠0,n为大于1的自然数,那么(1+x)n>1+nx.2.定理2(选学)设α为有理数,x>-1,(1)假如0<α<1,那么(1+x)α≤1+αx;(2)假如α<0或者α>1,那么(1+x)α≥1+αx.当且仅当x=0时等号成立.事实上,当α是实数时,也是成立的.,那么2n与n的大小关系是()设n∈N+A.2n>nB.2n<nC.2n=nD.不确定【解析】2n=(1+1)n,根据贝努利不等式有(1+1)n≥1+n×1=1+n,上式右边舍去1,得(1+1)n>n,即2n>n.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们〞讨论交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]数学归纳法证明不等式S n =1+12+13+…+1n (n >1,n ∈N +),求证:S 2n >1+n2(n ≥2,n ∈N +). 【精彩点拨】 求S n 再证明比拟困难,可运用数学归纳法直接证明,注意S n 表示前n 项的和(n >1),首先验证n =2,然后证明归纳递推.【自主解答】 (1)当n =2时,S 22=1+12+13+14=2512>1+22,即n =2时命题成立.(2)假设n =k (k ≥2,k ∈N +)时命题成立,即S 2k =1+12+13+…+12k >1+k2. 当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12.故当n =k +1时,命题也成立.由(1)(2)知,对n ∈N +,n ≥2,S 2n >1+n2都成立.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为12k +1,实际上应为12k +1;二是12k +1+12k +2+…+12k +1共有多少项之和,实际上 2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k .[再练一题]1.假设在本例中,条件变为“设f (n )=1+12+13+…+1n (n ∈N +),由f (1)=1>12,f (3)>1,f (7)>32,f (15)>2,…〞 .试问:你能得到怎样的结论?并加以证明.【解】 数列1,3,7,15,…,通项公式为a n =2n -1,数列12,1,32,2,…,通项公式为a n =n2,∴猜测:f (2n -1)>n2.下面用数学归纳法证明:①当n =1时,f (21-1)=f (1)=1>12,不等式成立.②假设当n =k (k ≥1,k ∈N +)时不等式成立, 即f (2k -1)>k2, 那么f (2k +1-1)=f (2k-1)+12k +12k +1+…+12k +1-2+12k +1-1>f (2k-1)+=f (2k-1)+12>k 2+12=k +12.∴当n =k +1时不等式也成立.据①②知对任何n ∈N +原不等式均成立.利用数学归纳法比拟大小设P n =(1+x )n ,Q n =1+nx +n (n -1)2x 2,n ∈N +,x ∈(-1,+∞),试比拟P n 与Q n 的大小,并加以证明.【导学号:38000059】【精彩点拨】 此题考察数学归纳法的应用,解答此题需要先对n 取特殊值,猜测P n 与Q n 的大小关系,然后利用数学归纳法证明.【自主解答】 (1)当n =1,2时,P n =Q n .(2)当n ≥3时,(以下再对x 进展分类). ①假设x ∈(0,+∞),显然有P n >Q n . ②假设x =0,那么P n =Q n . ③假设x ∈(-1,0),那么P 3-Q 3=x 3<0,所以P 3<Q 3.P 4-Q 4=4x 3+x 4=x 3(4+x )<0,所以P 4<Q 4. 假设P k <Q k (k ≥3),那么P k +1=(1+x )P k <(1+x )Q k =Q k +xQ k =1+kx +k (k -1)x 22+x +kx 2+k (k -1)x 32=1+(k +1)x +k (k +1)2x 2+k (k -1)2x 3 =Q k +1+k (k -1)2x 3<Q k +1, 即当n =k +1时,不等式成立. 所以当n ≥3,且x ∈(-1,0)时,P n <Q n .1.利用数学归纳法比拟大小,关键是先用不完全归纳法归纳出两个量的大小关系,猜测出证明的方向,再用数学归纳法证明结论成立.2.此题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探究大小关系时,不能只顾“n 〞,而无视其他变量(参数)的作用.[再练一题]2.数列{a n },{b n }与函数f (x ),g (x ),x ∈R ,满足条件:b 1=b ,a n =f (b n )=g (b n+1)(n ∈N +),假设函数y =f (x )为R 上的增函数,g (x )=f -1(x ),b =1,f (1)<1,证明:对任意x ∈N +,a n +1<a n .【证明】 因为g (x )=f -1(x ),所以a n =g (b n +1)=f -1(b n +1),即b n +1=f (a n ).下面用数学归纳法证明a n +1<a n (n ∈N +). (1)当n =1时,由f (x )为增函数,且f (1)<1,得 a 1=f (b 1)=f (1)<1, b 2=f (a 1)<f (1)<1, a 2=f (b 2)<f (1)=a 1, 即a 2<a 1,结论成立.(2)假设n =k 时结论成立,即a k +1<a k .由f (x )为增函数,得f (a k +1)<f (a k ),即b k +2<b k +1. 进而得f (b k +2)<f (b k +1),即a k +2<a k +1. 这就是说当n =k +1时,结论也成立. 根据(1)和(2)可知,对任意的n ∈N +,a n +1<a n .利用贝努利不等式证明不等式设n 为正整数,记a n =⎝ ⎛⎭⎪⎫1+1n n +1,n =1,2,3,….求证:a n +1<a n .【精彩点拨】 用求商比拟法证明a n +1<a n ,其中要用贝努利不等式. 【自主解答】 由a n 的意义知对一切n =1,2,3,…都成立. ∴只需证明a na n +1>1,n =1,2,3,….由于a n a n +1=⎝ ⎛⎭⎪⎫1+1n n +1⎝ ⎛⎭⎪⎫1+1n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+1n 1+1n +1n +1×⎝ ⎛⎭⎪⎫1+1n +1-1 =⎣⎢⎢⎡⎦⎥⎥⎤(n +1)(n +1)n (n +2)n +1×n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+n (n +2)n (n +2)n +1×n +1n +2=⎣⎢⎡⎦⎥⎤1+1n (n +2)n +1×n +1n +2,因此,根据贝努利不等式, 有a na n +1>⎣⎢⎡⎦⎥⎤1+(n +1)×1n (n +2)×n +1n +2>⎝ ⎛⎭⎪⎪⎫1+n +1n 2+2n +1×n +1n +2 =⎝ ⎛⎭⎪⎫1+1n +1×n +1n +2=1. ∴a n >a n +1对于一切正整数n 都成立.此题在证明的过程中,综合运用了求商比拟法,放缩法,进而通过贝努利不等式证明不等式成立.[再练一题]3.设a 为有理数,x >-1.假如0<a <1,证明:(1+x )a ≤1+ax ,当且仅当x =0时等号成立.【证明】 0<a <1,令a =mn ,1≤m <n ,其中m ,n 为正整数,那么由平均值不等式,得(1+x )a=(1+x )mn≤m (1+x )+(n -m )n =mx +n n =1+m n x =1+ax ,当且仅当1+x =1,即x =0时,等号成立.[探究共研型]放缩法在数学归纳法证明不等式中的应用探究【提示】 放缩法是不等式证明中最重要的变形方法之一,放缩必须有目的.而且要恰到好处,目的往往要从证明的结论考虑.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用不等式、利用函数的性质进展放缩等.比方:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122;将分子或分母放大(缩小):1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1(k ∈R ,k >1)等.证明:2n +2>n 2(n ∈N +). 【精彩点拨】验证n =1,2,3时不等式成立⇒假设n =k 成立,推证n =k +1⇒n =k +1成立,结论得证【自主解答】 (1)当n =1时,左边=21+2=4;右边=1,左边>右边; 当n =2时,左边=22+2=6,右边=22=4, 所以左边>右边;当n =3时,左边=23+2=10,右边=32=9,所以左边>右边. 因此当n =1,2,3时,不等式成立.(2)假设当n =k (k ≥3且k ∈N +)时,不等式成立,即2k +2>k 2(k ∈N +). 当n =k +1时,2k +1+2=2·2k +2 =2(2k +2)-2>2k 2-2 =k 2+2k +1+k 2-2k -3=(k 2+2k +1)+(k +1)(k -3)≥k 2+2k +1=(k +1)2.(因为k ≥3,那么k -3≥0,k +1>0)所以2k+1+2>(k+1)2,故当n=k+1时,原不等式也成立.根据(1)(2)知,原不等式对于任何n∈N+都成立.1.本例中,针对目的k2+2k+1,由于k的取值范围(k≥1)太大,不便于缩小.因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,到达目的.2.利用数学归纳法证明数列型不等式的关键是由n=k到n=k+1的变形.为满足题目的要求,常常要采用“放〞与“缩〞等手段,但是放缩要有度,这是一个难点,解决这个难题一是要仔细观察题目构造,二是要靠经历积累.[再练一题]4.设x>-1,且x≠0,n为大于1的自然数,用数学归纳法证明(1+x)n>1+nx.【证明】(1)当n=2时,由x≠0,知(1+x)2=1+2x+x2>1+2x,因此n=2时命题成立.(2)假设n=k(k≥2为正整数)时命题成立,即(1+x)k>1+kx,那么当n=k+1时,(1+x)k+1=(1+x)k(1+x)>(1+kx)(1+x)=1+x+kx+kx2>1+(k+1)x.即n=k+1时,命题也成立.由(1)(2)及数学归纳法知原命题成立.不等式中的探究、猜测、证明探究2【提示】 利用数学归纳法解决探究型不等式的思路是先通过观察、判断,猜测出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探究型问题时.假设不等式1n +1+1n +2+1n +3+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.【导学号:38000060】【精彩点拨】 先通过n 取值计算,求出a 的最大值,再用数学归纳法进展证明,证明时,根据不等式特征,在第二步,运用比差法较方便.【自主解答】 当n =1时,11+1+11+2+13×1+1>a 24,那么2624>a24,∴a <26. 又a ∈N +,∴取a =25. 下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)n =1时,已证.(2)假设当n =k 时(k ≥1,k ∈N +),1k +1+1k +2+…+13k +1>2524, ∴当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +1+13k +2+13k +3+13(k +1)+1=⎝⎛⎭⎪⎫1k +1+1k +2+…+13k +1+⎝ ⎛ 13k +2+13k +3+⎭⎪⎫13k +4-1k +1 >2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23(k +1). ∵13k +2+13k +4=6(k +1)9k 2+18k +8>23(k +1),∴13k +2+13k +4-23(k +1)>0,∴1(k +1)+1+1(k +1)+2+…+13(k +1)+1>2524也成立.由(1)(2)可知,对一切n ∈N +, 都有1n +1+1n +2+…+13n +1>2524,∴a 的最大值为25.1.不完全归纳的作用在于发现规律,探究结论,但结论必须证明.2.此题中从n =k 到n =k +1时,左边添加项是13k +2+13k +3+13k +4-1k +1,这一点必须清楚.[再练一题]5.设a n =1+12+13+…+1n (n ∈N +),是否存在n 的整式g (n ),使得等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)对大于1的一切正整数n 都成立?证明你的结论.【解】 假设g (n )存在,那么当n =2时, 由a 1=g (2)(a 2-1),即1=g (2)⎝ ⎛⎭⎪⎫1+12-1,∴g (2)=2; 当n =3时,由a 1+a 2=g (3)(a 3-1), 即1+⎝ ⎛⎭⎪⎫1+12=g (3)⎝ ⎛⎭⎪⎫1+12+13-1,∴g (3)=3,当n =4时,由a 1+a 2+a 3=g (4)(a 4-1), 即1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+13=g (4)⎝ ⎛⎭⎪⎫1+12+13+14-1,∴g (4)=4,由此猜测g (n )=n (n ≥2,n ∈N +).下面用数学归纳法证明:当n ≥2,n ∈N +时,等式a 1+a 2+a 3+…+a n -1=n (a n -1)成立.(1)当n =2时,a 1=1,g (2)(a 2-1)=2×⎝ ⎛⎭⎪⎫1+12-1=1, 结论成立.(2)假设当n =k (k ≥2,k ∈N +)时结论成立,即a 1+a 2+a 3+…+a k -1=k (a k -1)成立,那么当n =k +1时,a 1+a 2+…+a k -1+a k=k (a k -1)+a k =(k +1)a k -k=(k +1)a k -(k +1)+1=(k +1)⎝ ⎛⎭⎪⎫a k +1k +1-1=(k +1)(a k +1-1), 说明当n =k +1时,结论也成立,由(1)(2)可知,对一切大于1的正整数n ,存在g (n )=n 使等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)成立.[构建·体系]1.用数学归纳法证不等式:1+12+14+…+12n -1>12764成立,起始值至少取( )A.7B.8C.9D.10【解析】 左边等比数列求和S n =1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n >12764, 即1-⎝ ⎛⎭⎪⎫12n >127128,⎝ ⎛⎭⎪⎫12n<1128,∴⎝ ⎛⎭⎪⎫12n <⎝ ⎛⎭⎪⎫127,∴n >7, ∴n 取8,选B.【答案】 B2.用数学归纳法证明2n ≥n 2(n ≥5,n ∈N +)成立时第二步归纳假设的正确写法是( )A.假设n =k 时命题成立B.假设n =k (k ∈N +)时命题成立C.假设n =k (k ≥5)时命题成立D.假设n =k (k >5)时命题成立【解析】 由题意知n ≥5,n ∈N +,故应假设n =k (k ≥5)时命题成立.【答案】 C3.用数学归纳法证明不等式1n +1+1n +2+…+12n >1314(n ≥2,n ∈N +)的过程中,由n =k 递推到n =k +1时不等式左边( )【导学号:38000061】A.增加了一项12(k +1)B.增加了两项12k +1,12k +2 C.增加了两项12k +1,12k +2,但减少了一项1k +1D.以上各种情况均不对【解析】 ∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2, ∴增加了两项12k +1,12k +2,少了一项1k +1.【答案】 C4.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)〞时,第一步的验证为________.【解析】 当n =1时,21+1≥12+1+2,即4≥4成立.【答案】 21+1≥12+1+25.试证明:1+12+13+ (1)<2n (n ∈N +). 【证明】 (1)当n =1时,不等式成立.(2)假设n =k (k ≥1,k ∈N +)时,不等式成立,即1+12+13+ (1)<2k . 那么n =k +1时,⎝⎛⎭⎪⎫1+12+13+…+1k +1k +1 <2k +1k +1=2k (k +1)+1k +1< k +(k +1)+1k +1=2k +1. 这就是说,n =k +1时,不等式也成立.根据(1)(2)可知,不等式对n ∈N +成立.我还有这些缺乏:(1)(2) 我的课下提升方案:(1)(2)。
数学课件:3.2 用数学归纳法证明不等式贝努利不等式
1 + 3(������ + 1) + 1 =
������
1 +
1
+
������
1 +
2
+
…
+
1 3������ +
1
1
1
1
1
+ 3������ + 2 + 3������ + 3 + 3������ + 4 - ������ + 1
25
1
1
2
> 24 + 3������ + 2 + 3������ + 4 - 3(������ + 1) .
1
1
1 25
������ + 1 + ������ + 2 + ⋯ + 3������ + 1 > 24,
则当 n=k+1 时,
1
1
1
1
1
(������ + 1) + 1 + (������ + 1) + 2 + ⋯ + 3������ + 1 + 3������ + 2 + 3������ + 3
题型一 题型二 题型三
用数学归纳法证明数列型不等式
【例 1】
已知数列{an}满足
a1
=
3 2
,
且an=
3������������������-1 2������������-1+������-1
(n≥2,n∈
N*).
用数学归纳法证明不等式 课件
2k+2 ·2k+1
=
2
2k+2 2k+1
=
4k2+8k+4 2 2k+1 Nhomakorabea>
4k2+8k+3 2 2k+1
=
2k2+· 32·k+2k1+1=
2k+1+1
2
.
∴n=k+1 时,不等式也成立.
由①,②知,对一切大于 1 的自然数 n,不等式都成立.
方法二:①当 n=2 时,左边=1+13=43,右边= 25,左边 >右边,∴不等式成立.
② 假 设 当 n = k(k≥2 , k ∈ N*) 时 , 命 题 成 立 , 即 1+13
1+15 … 1+2k-1 1 >
2k+1 2
,
那
么
当
n=k+1
时 , 1+13
1+15…1+2k-1 11+2k+1 1> 2k2+11+2k+1 1= k2+k+1 1,要
证不等式成立,只需证明 k2+k+1 1> 2k+2 1+1,只要证明 4k2
用数学归纳法证明与数列有关的不等式问题,要注意用 到递推关系式 xn=38+12x2n-1,通过正确的放缩来达到目的.
1.使用数学归纳法证明不等式,难点在于由n=k时命题 成立推出n=k+1时命题成立,为完成这步证明,不仅要正确 使用归纳假设,还要灵活利用问题中的其他条件和相关知 识.其中,比较法、分析法、综合法、放缩法等常被灵活地应 用.
用数学归纳法证明不等式
1.贝努利不等式:如果x是实数且x>-1,x≠0,n为大于 1的自然数,则____(_1_+__x_)n_>__1_+__n_x.
2.设α为有理数,x>-1,如果0<α<1,则(1+x)α____1 + αx ≤; 如 果 α < 0 或 α > 1 , 则 (1 + x)α______1 + αx , 当≥且 仅 当 ____________时,等x=号0成立.
高中数学人教A版选修课件:4.1 数学归纳法
(k-3)(k≥4).
2
当 n=k+1 时,凸 k+1 边形是在凸 k 边形的基础上增加了一条边,
增加了一个顶点 Ak+1,增加的对角线是顶点 Ak+1 与不相邻顶点的连
线再加上原凸 k 边形的一边 A1Ak,共增加的对角线条数为
(k+1-3)+1=k-1.
题型一
题型二
题型三
1
题型四
1
1
f(k+1) = 2 (k-3)+k-1 = 2 (k2-k-2) = 2 (k+1)(k-2) =
即(3n+1)·7n-1能被9整除(n∈N+).
题型一
题型二
题型三
题型四
反思利用数学归纳法证明整除时,关键是整理出除数因式与商数
因式积的形式.这往往要涉及“添项”与“减项”“因式分解”等变形技
巧,凑出当n=k时的情形,从而利用归纳假设使问题得证.
题型一
题型二
题型三
题型四
【变式训练1】 求证:x2n-y2n(n∈N+)能被x+y整除.
结构的变化特点.并且一定要记住:在证明当n=k+1成立时,必须使
用归纳假设.
题型一
题型二
题型三
题型四
1
1
=
1
1+1
1
【变式训练 2】 用数学归纳法证明: 1 − 2 + 3 − 4 + ⋯ +
1
2
1
1
1
= +1 + +2 + ⋯ + 2 (n∈N+).
1
证明:(1)当 n=1 时,左边=1 − 2
用数学归纳法证明不等式课件 选修4-5
2k+1 2k+3 357 ··· „· · 246 2k 2k+1 2k+3 > k+1· = 2k+1 = k+2 2k+32 4k+1
4k2+12k+9 > k+2. 4k2+12k+8
2n+1 357 因此不等式2··· 2n > n+1 4 6 „· 对于一切 n∈N*都成立.
n+1(n∈N*).
[思维启迪] 由条件第一问可通过数列的有关知识来证明进而 求出an通项公式,然后求bn的通项公式,最后用数学归纳法 证明要证的结论即可.
解 (1)由an+1=an+2n+1得 (an+1-2n+1)-(an-2n)=1, 因此{an-2n}成等差数列.
(2)an-2n=(a1-2)+(n-1)=n-1,即an=2n+n-1,
任意n都成立.n=1、2时也成立即可解得第一问,并归纳出
通项公式,然后用数学归纳法证明之.第二问列出式子发现 用裂相法与放缩法即可证明.比用数字归纳法简便.
(1)解 由条件得 2bn=an+an+1,a2+1=bnbn+1. n 由此可得 a2=6,b2=9,a3=12,b3=16,a4=20,b4=25. 猜测 an=n(n+1),bn=(n+1)2. 用数学归纳法证明: ①当 n=1 时,由上可得结论成立. ②假设当 n=k 时,结论成立, 即 ak=k(k+1),bk=(k+1)2,那么当 n=k+1 时,
自学导引 1.贝努利不等式:设x>-1,且x≠0,n为大于1的自然数, 则 (1+x)n>1+nx . 2.贝努利不等式的更一般形式: 当α为实数,并且满足α>1或者α<0时,有(1+x)α≥1+ αx(x>-1);
当α为实数,并且满足0<α<1时,有(1+x)α≤1+αx(x>
-1).
基础自测 1.用数学归纳法证明3n≥n3(n≥3,n∈N)第一步应验证 ( ).
5.3数学归纳法证明不等式2 课件(人教A版选修4-5)
数学归纳法主要步骤:
找准起点 奠基要稳
数学归纳法是一种证明与正整数有关的数学命题的重要方法。 主要有两个步骤、一个结论:
第一步:验证当n取第一个值n0(如 n0=1或2等)时结论正确 第二步:假设n=k (k∈N+ , 且k≥ n0)时结论正确, 证明n=k+1时结论也正确
结论:由(1)、(2)得出结论正确
如何解决不完全归纳法 存在的问题呢?
必须寻找一种用有限个步骤,就 能处理完无限多个对象的方法。
问题情境三
多米诺骨牌操作实验
数学归纳法
(1)证明当n取第一个值n0(例如n0=1) 时命题成立
(2)假设当n=k(k ∈ N+ ,k≥ n0 )时命题成立 k=2,k+1=2+1=3 证明当n=k+1时命题也成立。 k=3,k+1=3+1=4 … 这种证明方法叫做 数学归纳法 k=10,k+1=10+1=1 1 我们常采用数学归纳法来证明:由不完全归纳法 … 得到的某些与正整数有关的数学命题的正确性.
是否成立.
当n=k+1时
等式左边= -1+3-5+ …+(-1)k(2k-1)
从n=k到n=k+1 有什么变化
+(-1)k+1 [2(k+1)-1]
利用 假设
=(-1)k k +(-1)k+1 [2(k+1)-1] =(-1)k+1 [-k+2(k+1)-1] = (-1)k+1 (k+1)=右边 所以当n=k+1时等式(*)成立。
1×4+2×7+3×10+…+k(3k+1)=k(k+1)2
3)当n=k+1时,命题的形式是
5.3数学归纳法证明不等式 课件(人教A版选修4-5)
思考 1:证明贝努利不等式 如果 x 是实数,且 x 1 , x 0 , n 为大于 n 1 的自然数,那么有 (1 x) 1 nx .
注: 事实上, 把贝努利不等式中的正整数 n 改为实数 仍有 类似不等式成立. 当 是实数,且 或 0 时,有 (1 x ) ≥ 1 x ( x 1) 当 是实数,且 0 1 时,有 (1 x ) ≤ 1 x ( x 1)
1 1 1 1 1 1 1 2 2 2 2 2 2 3 k ( k 1) k ( k 1)2
2.当 n≥ 2 时,求证: 1
1 2
1
1 3
1 n
n
2 . 证明: (1) 当n 2时,左式 1 1 17 2 右式 2 2 当n 2时,不等式成立
当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1 =(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.
这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
当n k 1时,不等式成立。 由(1)(2)可知,对一切n N,且n 2,不等式都成立。
3. 用 数学 归 纳法 证明 : An 5n 2 3n1 1(n N * )
能被 8 整除.
证:(1)当 n=1 时,A1 =5+2+1=8,命题显然成立. (2)假设当 n=k 时,Ak 能被 8 整除,即 Ak 5k 2 3k 1 1 是 8 的倍数.那么: Ak 1 5k 1 2 3k 1
第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
bk 1
a
… a k a k 1 ≤a1b1+a2b2+…+akbk+ak+1bk+1,
故当 n=k+1 时,③成立. 由(1)(2)可知,对一切正整数 n,所推广的命题成立. 说明:(3)中如果推广形式中指出③式对 n≥2 成立,则后续证明 中不需讨论 n=1 的情况.
不完全归纳的作用在于发现规律,探求结论,但结论
a4=S3=a1+a2+a3=5+5+10=20,
猜想an=5×2n-2(n≥2,n∈N+). (2)①当n=2时,a2=5×22-2=5,公式成立. ②假设n=k时成立,即ak=5×2k-2(k≥2.k∈N+), 当n=k+1时,由已知条件和假设有
ak+1=Sk=a1+a2+…+ak =5+5+10+…+5×2k
反复运用③式,得 c-xn≤(1- c)n-1( c-x1)<(1- c)n-1. xn<1- c和 c-xn<(1- c)n-1 两式相加, 知 2 c-1<(1- c)n-1 对任意 n≥1 成立. 根据指数函数 y=(1- c)n 的性质,得 2 c-1≤0, 1 1 c≤ ,故 0<c≤ . 4 4 1 (ii)若 0<c≤ ,要证数列{xn}为递增数列, 4 即 xn+1-xn=-x2 +c>0. n 即证 xn< c对任意 n≥1 成立.
考情分析
通过分析近三年的高考试题可以看出,不但考查用数
学归纳法去证明现成的结论,还考查用数学归纳法证明新 发现的结论的正确性.数学归纳法的应用主要出现在数列
解答题中,一般是先根据递推公式写出数列的前几项,通
过观察项与项数的关系,猜想出数列的通项公式,再用数 学归纳法进行证明,初步形成“观察—归纳—猜想—证明”
b1
b2
-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:因为 f(4)=25>42,所以对于 k≥4,均有 f(k)≥k2.仅 有 D 选项符合题意.
答案:D
3.设等差数列{an}的前 n 项和为 Sn,a3=4,a4=S3,数列{bn}
(2)cn= 2abnn= 2n2nn-+21= 下面用数学归纳法证明:
nnn-+11,n∈N*.
①当 n=1 时,c1=0<2,不等式成立; ②假设 n=k(k∈N*)时,不等式成立,即 c1+c2+…+ck<2 k, 那么,当 n=k+1 时,
c1+c2+…+ck+ck+1<2 k+
k k+1k+2<2
贝努利不等式的一般形式:当 α 是实数,并且满足 α>1 或 者 α<0 时,有_(_1_+__x_)α_≥__1_+__α_x_(_x_>_-__1_)_;当 α 是实数,并且满足 0<α<1 时,有__(1_+__x_)_α_≤__1_+__α_x_(x_>_-__1_)___.
(4)如果 n(n 为正整数)个正数 a1,a2,…,an 的乘积 a1a2…an =1,那么它们的和 a1+a2+…+an≥__n___.
用数学归纳法证明不等式举例
1.本节的有关结论 (1)n2<2n(n∈N+,__n_≥_5___). (2)|sin nθ|≤_n_|_s_in__θ_| _(n∈N+). (3)贝努利不等式: 如果 x 是实数,且 x>-1,x≠0,n 为大于 1 的自然数,那 么有__(1_+__x_)_n_>_1_+__n_x__.
∴n 的第一个取值应是 3.
答案:C
2.已知 f(x)是定义域为正整数集的函数,对于定义域内任 意的 k,若 f(k)≥k2 成立,则 f(k+1)≥(k+1)2 成立,下列命题成 立的是( )
A.若 f(3)≥9 成立,且对于任意的 k≥1,均有 f(k)≥k2 成 立
B.若 f(4)≥16 成立,则对于任意的 k≥4,均有 f(k)<k2 成 立
知识点一 用数学归纳法证明不等式
1.用数学归纳法证明 2n>2n+1,n 的第一个取值应是( )
A.1
B.2
C.3
D.4
解析:∵n=1 时,21=2,2×1+1=3,2n>2n+1 不成立;
n=2 时,22=4,2×2+1=5,2n>2n+1 不成立;
n=3 时,23=8,2×3+1=7,2n>2n+1 成立;
想成立.
②假设当 n=k(k∈N+)时猜想成立,即
1×1 4+4×1 7+…+3k-213k+1=3k+k 1成立.
则当 n=k+1 时,
1 1×4
+
1 4×7
+
…
+
1 3k-23k+1
+
[3k+1-2]1[3k+1+1]=3k+k 1+[3k+1-2]1[3k+1+1]
=33kk+2+143kk++14=33kk++113kk++14=3k+k+11+1. 所以当 n=k+1 时,猜想也成立. 根据①②可知猜想对任何 n∈N*都成立.
k+
k k+1
<2
k+
2 k+1+
=2 k
k+2(
k+1-
k)=2
k+1.
∴当 n=k+…+cn<2 n对任意 n∈N*成立.
知识点二 归纳、猜想、证明
4.设 0<θ<π2,已知 a1=2cos θ,an+1= 2+an,则猜想 an 为( )
A.2cos2θn
解:S1=1×1 4=14,S2=14+4×1 7=27,S3=27+7×110=130,
S4=130+10×1 13=143.
上面四个结果中,分子与项数 n 一致,分母可用项数 n 表
示为 3n+1,于是可以猜想 Sn=3nn+1.
证明:①当 n=1 时,左边=S1=14,右边=3×11+1=14,猜
-2 个连续正整数的和,右边是项数的平方,得出的一般结论是:
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
6.已知数列1×1 4,4×1 7,7×110,…,3n-213n+1,…,计 算数列和 S1,S2,S3,S4,根据计算结果,猜想 Sn 的表达式,并 用数学归纳法进行证明.
满足:对每个 n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn 成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)记 cn= ∈N*.
2abnn,n∈N*,证明:c1+c2+…+cn<2 n,n
解:(1)设数列{an}的公差为 d, 由题意,得 a1+2d=4,a1+3d=3a1+3d, 解得 a1=0,d=2. 从而 an=2n-2,Sn=n2-n, 由 Sn+bn,Sn+1+bn,Sn+2+bn 成等比数列, 得(Sn+1+bn)2=(Sn+bn)(Sn+2+bn). 解得 bn=1d(S2n+1-SnSn+2)=n2+n.
2.数学归纳法证明不等式的步骤 (1)证明当 n 取__第__一__个__值___n_0___(如 n0=1 或 n0=2 等)时, 命题正确; (2)证明如下事实:假设 n=k(k∈N+,且 k≥n0)时,命题正 确,由此推出当 n=__k_+__1___时命题也正确. 完成了以上两步后,就可以判定命题对于从 n0 开始的 __所__有__正__整__数____都正确.
B.2cos2nθ-1
C.2cos2nθ+1
D.2sin2θn
解析:∵a1=2cos θ,an+1= 2+an,0<θ<π2,
∴a2= 2+a1= 2+2cos θ= 2+22cos2θ2-1=2cos2θ,
a3= 2+a2= 2+2cos2θ= 2+22cos2θ4-1=2cos4θ,
a4= 2+a3= …
2+2cos4θ=
2+22cos2θ8-1=2cos8θ.
以此类推,可猜想 an=2cos2nθ-1,故选 B. 答案:B
5.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5
+ 6 + 7 + 8 + 9 + 10 = 72 , … , 则 得 出 的 结 论
是
.
解析:观察各等式知,左边是从第 n 个正整数开始到第 3n