三角函数-定义练习题
三角函数的概念(精练)(解析版)
5.2 三角函数的概念【题组一 三角函数的定义】1.(2020·河南高三其他(理))若角α的终边过点8,6cos ()60P m --,且4cos 5α=-则实数m 的值为( )A .12-B .C .12D 【答案】C【解析】6cos603-=-,则点P 的坐标为(8,3)P m --, 因为4cos 5a =-.所以角a 的终边在第二象限或第三象限,故0m >.45=-,即214m =,解得12m =-(舍)或12m =.故选:C . 2.(2020·内蒙古通辽·高一期中(理))点(,)A x y 是300︒角终边上异于原点的一点,则yx值为( ).A B .C .3D .3-【答案】B 【解析】tan 300yx==-3.(2020·浙江丽水·高一期末)已知角α的终边经过点()1,P m ,且sin 10α=-,则cos α=( )A .B .CD .13【答案】C【解析】由三角函数定义得sin 0,310m m α==-<=-由三角函数定义得cos 10α==C4.(2020·全国高一课时练习)已知角α的终边上有一点P ⎝⎭,则sin cos αα+ ________.【答案】5-【解析】因为角α的终边上有一点P ⎝⎭,则221⎛+= ⎝⎭⎝⎭所以sin α=,cos α=所以sin cos αα⎛+=+= ⎝⎭-5.(2020·浙江高一课时练习)已知角α的终边上一点的坐标为33sin ,cos 44ππ⎛⎫ ⎪⎝⎭,则角α的最小正值为________. 【答案】74π【解析】∵角α的终边上一点坐标为33sin ,cos 44M ππ⎛⎫ ⎪⎝⎭,即22M ⎛- ⎝⎭, 故点M在四象限,且tan 12α==-,则角α的最小正值为74π.故答案为:74π6.(2020·全国高一课时练习)已知角α的终边过点P (-3a,4a )(a ≠0)”,求2sin α+cos α. 【答案】1或-1.【解析】因为r5a =. ①若a >0,则r =5a ,角α在第二象限,sin α=y r=4455a a =,cos α=3355x a r a -==-, 所以2sin α+cos α=83155-=,②若a <0,则r =-5a ,角α在第四象限.sin α=4455a a =--,cos α=3355a a -=-, 所以2sin α+cos α=83155-+=-.7.(2020·全国高一课时练习)已知θ终边上一点()(),30P x x ≠,且cos 10x θ=,求sin θ、tan θ. 【答案】当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-.【解析】由题意知r OP ==cos x x r θ===,0x ≠,解得1x =±.当1x =时,点()1,3P,由三角函数的定义可得sin 10θ==,3tan 31θ==;当1x =-时,点()1,3P -,由三角函数的定义可得sin θ==,3tan 31θ==--. 综上所述,当1x =时,sin 10θ=,tan 3θ=;当1x =-时,sin 10θ=,tan 3θ=-. 【题组二 三角函数值正负判断】1.(2019·上海中学高一期中)若cos 0tan 0>,<,αα则α在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】由于cos 0α>,故角α为第一、第四象限角.由于tan 0α<,故角α为第二、第四象限角.所以角α为第四象限角.故选D.2.(2019·安徽省舒城中学高一月考)若sin 0tan αα>且cos tan 0αα⋅<,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】D【解析】由题,因为sin 0tan αα>,则α的终边落在第一象限或第四象限; 因为cos tan 0αα⋅<,则α的终边落在第三象限或第四象限;综上,α的终边落在第四象限故选D3.(2020·南昌市新建一中高一期末)已知角α满足sin 0α<且cos 0α>,则角α是第( )象限角 A .一 B .二C .三D .四【答案】D【解析】由题意,根据三角函数的定义sin y r α=<0,cos xrα=>0 ∵r >0,∴y <0,x >0.∴α在第四象限,故选:D .4.(2020·上海高一课时练习)已知tanα>0,且sinα+cosα>0,那么角α是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】A【解析】tan 0α>则角为第一或第三象限,而sin cos 0αα+>,故角为第一象限角. 5.(2020·甘肃高一期末)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B【解析】由题意可得00cos tan αα<⎧⎨<⎩,则0sin cos αα>⎧⎨<⎩,所以角α的终边在第二象限,故选B.6.(2019·广东越秀·高一期末)若cos θ0>,sin θ0<,则角θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】D【解析】根据三角函数的定义有()sin ,cos 0y xr r rθθ==>,所以0,0x y ><, 所以θ在第四象限,故选D .7.(2020·辽河油田第二高级中学高一期中)如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限+【答案】C【解析】因为点(sin ,cos )P θθ位于第三象限,所以sin 0cos 0θθ<⎧⎨<⎩,因此角θ在第三象限.故选:C.8.(2020·全国高一课时练习)“点(tan ,cos )P αα在第三象限”是“角α为第二象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】∵(tan ,cos )P αα为第三象限,∴tan 0α<,cos 0α<,∴α为第二象限角,反之也成立. 故选:C.9.(2020·山西平城·大同一中高一月考)已知第二象限角α的终边上一点()sin ,tan P ββ,则角β的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】因为点()sin ,tan P ββ在第二象限,所以有sin 0,tan 0,ββ<⎧⎨>⎩所以β是第三象限角.故选:C 【题组三 三角函数线】1.(2020·灵丘县豪洋中学高一期中)设5sin 12a π=,5cos 12b π=,5tan 12c π=,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<【答案】D 【解析】设512π的终边与单位圆相交于点P ,根据三角函数线的定义可知5sin 12a MP π==,5cos 12b OM π==,5tan 12c AT π==,显然AT MP OM >>所以b a c <<故选:D2.(2020·全国高一课时练习)若02θπ≤<,且不等式cos sin θθ<和tan sin θθ<成立,则角θ的取值范围是( )A .3,44ππ⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫ ⎪⎝⎭【答案】B【解析】由三角函数线知,在[)0,2π内使cos sin θθ<的角5,44πθπ⎛⎫∈⎪⎝⎭,使tan sin θθ<的角3,,222πθπππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,故θ的取值范围是,2ππ⎛⎫⎪⎝⎭.故选:B.3.(2020·全国高一课时练习)如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<【答案】C【解析】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.4.(2020·全国高一课时练习)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1)sin α≥2(2)cos α≤-12. 【答案】(1)作图见解析;22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣;(2)作图见解析;2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣.【解析】(1)作直线y A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足要求的角α的集合为22k 2k ,k Z 33ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. (2)作直线x =-12交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(如图所示的阴影部分,包括边界),即为角α的终边的范围.故满足条件的角α的集合为2422,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭∣. 【题组四 同角三角函数】1.已知sin θ=a−11+a ,cos θ=−a1+a ,若θ是第二象限角,则tan θ的值为 A .−12 B .−2C .−34D .−43【答案】C【解析】由sin 2θ+cos 2θ=1,得:(a−11+a )2+(a1+a )2=1,化简,得: a 2−4a =0,因为θ是第二象限角,所以,a =4, tan θ=sin θcos θ=a−11+a ×(−1+a a)=1−a a=1a −1=−34,故选C.2.(2020·甘肃省岷县第一中学高二月考)若角α的终边落在直线0x y +=上,cos α+的值等于( )A .0B .2-C .2D .2-或2【答案】A【解析】由题意,若角α的终边落在直线0x y +=上,则角α的终边落在第二象限或第四象限,当角α的终边在第二象限时,根据三角函数的定义,可得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,0cos α+=;当角α的终边在第四象限时,根据三角函数的定义,可得sin 2cos 2αα⎧=-⎪⎪⎨⎪=⎪⎩,0cos α+=,故选A.3.(2019·江西高三月考(文))已知tan 2α,其中α为三角形内角,则cos α=()A.D. 【答案】A【解析】因为tan 2α,所以sin 2cos αα=-,又因为22sin cos 1αα+=,所以解得:sin 5cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,因为α为三角形内角,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩.故答案为:A.【题组五 弦的齐次】1.(2020·山西平城·大同一中高一月考)已知tan 3α=,则3sin cos 5cos sin αααα-=-( )A .2B .4C .6D .8【答案】B 【解析】由已知3sin cos 3tan 133145cos sin 5tan 53αααααα--⨯-===---.故选:B .2.(2020·辽宁高一期末)若3sin 5cos 1sin 2cos 5αααα+=--,则tan α的值为( )A .32B .﹣32C .2316D .﹣2316【答案】D 【解析】因为3sin 5cos 3tan 51sin 2cos tan 25αααααα++==---,解得23tan 16α=-.故选:D3.(2019·黄梅国际育才高级中学高一月考)已知θ是第二象限角,(),2P x 为其终边上一点且cos θ5x =,则2sin cos sin cos θθθθ-+的值A .5B .52C .32D .34【答案】A【解析】由题意得cos 5θ==1x =±.又θ是第二象限角,∴1x =-.∴tan 2θ=-.∴2sin cos 2tan 1415sin cos tan 121θθθθθθ----===++-+.选A .4.(2020·内蒙古集宁一中高一期末(理))已知sin αα=,则2sin sin cos 1ααα++=( )A B C .1 D .3【答案】B【解析】由sin αα=可得tan α=22222222sin sin cos cos 2tan tan 1sin sin cos 1sin cos tan 1αααααααααααα++++++====++. 故选:B .5.(2020·科尔沁左翼后旗甘旗卡第二高级中学高一期末)已知4tan 3α=,求下列各式的值. ①222sin 2sin cos 2cos sin ααααα+⋅-; ②sin cos αα. 【答案】①20;②1225. 【解析】①原式2222442tan 2tan 33202tan 423ααα⎛⎫+⨯ ⎪+⎝⎭===-⎛⎫- ⎪⎝⎭. ②原式22224sin cos tan 123sin cos tan 125413αααααα====++⎛⎫+ ⎪⎝⎭. 6.(2020·内蒙古通辽·高一期中(理))(1)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+ 的值 .(2)已知3tan 4θ=-,求22sin cos cos θθθ+-的值. 【答案】(1)57;(2)2225. 【解析】(1)∵tan 3α= ∴cos 0α≠∴原式=1(4sin 2cos )4tan 24325cos =153tan 5337(5cos 3sin )cos αααααααα-⨯-⨯-==++⨯+⨯.(2)()2222222sin cos sin cos cos 2sin cos cos sin cos θθθθθθθθθθ++-+-=+=2222222sin sin cos cos 2tan tan 1sin cos 1tan θθθθθθθθθ++++=++ =223393211224484925311164⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪⎝⎭⎝⎭==⎛⎫++- ⎪⎝⎭. 7.(2020·山东潍坊·高一期末)已知角α的顶点与坐标原点O 重合,始边落在x 轴的正半轴上,终边经过点()04,A y ,其中00y ≠.(1)若cos 5α=,求0y 的值; (2)若04y =-,求2sin 3cos cos 4sin αααα+-的值. 【答案】(1)2±;(2)15. 【解析】(1)由题意知,OA =cos α==. 解得02y =±,所以02y =±.(2)当04y =-时,0tan 14y α==-,所以2sin 3cos 2tan 31cos 4sin 14tan 5αααααα++==--. 8.(2020·四川凉山·高一期末)已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,且32ππα<<,求cos sin αα+的值【答案】【解析】由题意,tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, 可得21tan 31tan k αα⋅=-=,解得2k =±, 又由32ππα<<,则1tan 2tan k αα+==,解得tan 1α=,则sin cos 2αα==-,所以cos sin αα+= 【题组六 sinacosa 与sina±cosa 】1.(2020·浙江高三专题练习)已知sin θ+cos θ=43,θ∈(0,)4π,则sin θ-cos θ的值为( ) AB .13 CD .-13【答案】A【解析】∵sinθ+cosθ=43,∴(sinθ+cosθ)2=sin 2θ+cos 2θ+2sinθcosθ=1+2sinθcosθ=169 ,所以2sinθcosθ=79 又因为0<θ<4π,所以0<sinθ<cosθ∴sinθ﹣cosθ<0,∴(sinθ﹣cosθ)2=sin 2θ+cos 2θ﹣2sinθcosθ=1﹣2sinθcosθ=29 ,则sinθ﹣cosθ=﹣3 .故选A .2.(2020·山西应县一中高三开学考试(文))若cosα+2sinα,则tanα=________.【答案】2【解析】由2221cos sin sin cos αααα⎧⎪⎨+=⎪⎩+sin α,cos α=,∴tanα=sin αcos α=2, 故答案为2.3.(2019·石嘴山市第三中学高一期中)已知sinθ−cosθ=15(1)求sinθcosθ的值;(2)当0<θ<π时,求tanθ的值.【答案】(1) sinαcosα=1225 (2) tanθ=43【解析】(1)(sin θ−cos θ)2=1−2sin θcos θ =(15)2=125⇒sin αcos α=1225.(2)∵0<θ<π且sin αcos α>0,∴0<θ<π2.由{sinθ−cosθ=15sinθcosθ=1225 ⇒{sinθ=45cosθ=35 得tanθ=sin θcos θ=43.。
高中数学必修第一册5.2三角函数的概念练习题
,cos sin
.
18. 已知角 的终边在直线
上,则 th
的值为________.
1 . 已知 t 4 ,且 sin 1,则 的值为________.
. h sin
, cos
, tan
是________.
三、解答题(本大题共 2 小题,共 24.0 分)
,则 a,b,c 按从小到大的顺序排列
1. 已知角 的终边经过点 h
sin 4.6 。
因为 sin 4.6 t cos 4.6 ,因而 sin 114.6 t cos 114.6 ,
因此,h t t
21.【答案】解: 1 由三角函数定义可知 sin
,
h8
解得 h 1,
为第一象限角,
则 h 1;
由 1 知 tan
,
第 1 页,共 14页
sin cos
cos
cos
sin
【解析】
【分析】
本题考查三角函数的的基本概念和诱导公式,只需要确定 所对应的角度所在的范围,
然后运用诱导公式确定具体函数值的范围即可求解。
【解答】
解:
114.6 ,即 为第三象限角,所以 h t , t , 。
又因为 sin 114.6 sin
4.6
cos 4.6 ,
且 cos 114.6 sin
4.6
A. sin1 tan1 cos1
C. tan1 sin1 cos1
1 . th1 的值等于
A. 1
B. 1
B. sin1 tan1 cos1 D. tan1 cos1 sin1
C.
D.
14. 如果 sin t 且 tan t ,那么角 的终边位于
三角函数的概念及习题
三角函数的概念及习题角的概念的推广(基础班)知识点:1 正角:按逆时针方向旋转形成的角叫做正角,负角:按顺时针方向旋转的角叫负角象限角:第一象限{a|k·360o<a<a<="" 第二象限{a|+k·360o="">第三象限{a|180o +k·360o <a<="">+k·2π<a<="" p="">例1、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°例2、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°例4、终边在第二象限的角的集合可以表示为:()A.{α∣90°<α<180°}B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}例5、已知角是第二象限角,求:(1)角是第几象限的角;(2)角终边的位置。
三角函数练习题目初三
三角函数练习题目初三1.已知直角三角形中一条直角边的长度为3cm,另一条直角边的长度为4cm。
求其两条直角边上的正弦、余弦和正切值。
解析:已知直角边 a = 3cm、直角边 b = 4cm。
根据三角函数的定义可知:正弦(sin) = 直角边a / 斜边c余弦(cos) = 直角边b / 斜边c正切(tan) = 直角边a / 直角边b其中,斜边c可以通过勾股定理求得:斜边c = √(a² + b²) = √(3² + 4²) = √(9 + 16) = √25 = 5代入计算得:正弦(sin) = 3 / 5 = 0.6余弦(cos) = 4 / 5 = 0.8正切(tan) = 3 / 4 = 0.75所以,该直角三角形的正弦值为0.6,余弦值为0.8,正切值为0.75。
2.已知角度θ的正弦值为0.5,求角度θ的余弦值和正切值。
解析:已知正弦(sin) = 0.5,要求余弦(cos)和正切(tan)。
根据正弦函数的定义可得:正弦(sin) = 直角边a / 斜边c已知正弦(sin) = 0.5,令直角边a = 0.5,斜边c = 1。
根据勾股定理可得:直角边b = √(c² - a²) = √(1² - 0.5²) = √(1 - 0.25) = √0.75 ≈ 0.866所以,余弦(cos) = 直角边b / 斜边c = 0.866 / 1 = 0.866正切(tan) = 直角边a / 直角边b = 0.5 / 0.866 ≈ 0.577所以,角度θ的余弦值为0.866,正切值为0.577。
3.已知角度α的正切值为2,求角度α的正弦值和余弦值。
解析:已知正切(tan) = 2,要求正弦(sin)和余弦(cos)。
根据正切函数的定义可得:正切(tan) = 直角边a / 直角边b已知正切(tan) = 2,令直角边a = 2,直角边b = 1。
三角函数的定义域与值域题库(精)
专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、 B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、 B、C、 D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、 B、 C、 D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z} 故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当 x∈[,]时,f(x)∈[﹣1,];当 x∈[﹣,]时,f (x)∈[﹣1,]可求得其值域为.故选D.13、函数的值域为()A、 B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x ﹣sin2x=cos (2x+)∴函数的值域为[﹣1,1] 故选C .14、若≥,则sinx 的取值范围为( ) A 、 B 、 C 、∪D 、∪解答:∵≥,∴解得x ∈[,)∪(,] ∴sinx ∈故选B15、函数y=sin2x+2cosx 在区间[﹣,]上的值域为( )A 、[﹣,2]B 、[﹣,2)C 、[﹣,]D 、(﹣,] 解答:∵x ∈[﹣,] ∴cosx ∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx ﹣1)2+2 则y ∈[﹣,2] 故选A 二、填空题(共7小题) 16、已知,则m 的取值范围是 .解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2 故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2 在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin (cosx)>0,这里的cosx以它的值充当角。
三角函数练习题
三角函数练习题一、三角函数定义 如图:在Rt △ABC 中,∠C=90°,sinA= ,cosA=tanA= .sinB= ,cosB= ,tanB= . 1、如图,点P 是∠α的边OA 上一点,P 点的坐标为(12,5),则tan α等于( )A.513B. 1213C.512D.1252、如图,1l ∥2l ∥3l ,相邻两条平行直线间的距离相等,若等腰直角三角形ABC 的三个顶点分别在这三条平行线上,则sin α的值是( )A.13B.617C.55D.103、如图,在△ABC 中,AB=AC=5,BC=8,若∠BPC=12∠BAC ,则tan ∠BPC=. 4、如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值为 。
5、如图,在R t △ABC 中,CD 是斜边AB 上的中线,已知CD=5,AC=6,则tanB 的值为 。
6、在R t △ABC 中,CA=CB ,AB=9 2 ,点D 在BC边上,连接AD ,若tan ∠CAD =13 ,则BD 的长为 。
7、在R t △ABC 中,∠C=90°,若AB=4,sinA=35 ,则斜边AB 上的高为 。
8、如图,在平行四边形ABCD 中,对角线AC ,BD 相交成锐角α,若AC=a ,BD=b ,则平行四边形ABCD 的面积为 。
9、如图,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于 。
1、计算:(1)6tan45°-2cos60°(2)2330tan 627322--+-⎪⎭⎫⎝⎛-(3) 60cos 12)12(30tan 3201++-+--(4)2)60tan 1(45tan 30cos 2 ---2、在△ABC 中,若∣sinA-12 ∣+(cosaB-12 )2=0,则∠C的度数为 。
3、已知α是锐角,且sin(23)15=+α,计算: 1031tan )14.3(cos 48-⎪⎭⎫⎝⎛++---απα第1题图αC A B1l2l 3l 第2题图 第3题图AO B 第4题图 第5题图 第8题图 A E B C D F第9题图4、如图,小明站在点A处放风筝,风筝飞到点C处时的线长为20m,这时测得∠CBD=60°,若牵引线底端点B离地面1.5m,求此风筝离地面的高度.(计算结果精确到0.1m, 3 ≈1.732)5、如图所示,在△ABC中,∠B=30°,∠C=45°,AB-AC=2- 2 ,求BC的长。
三角函数的定义域与值域题库
专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、B、 C、D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、B、 C、D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z}故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当x∈[,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,] 可求得其值域为.故选D.13、函数的值域为()A、B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x﹣sin2x=cos(2x+)∴函数的值域为[﹣1,1] 故选C.14、若≥,则sinx的取值范围为()A、 B、C、∪D、∪解答:∵≥,∴解得x∈[,)∪(,] ∴sinx∈故选B15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()A、[﹣,2]B、[﹣,2)C、[﹣,]D、(﹣,]解答:∵x∈[﹣,] ∴cosx∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2则y∈[﹣,2] 故选A二、填空题(共7小题)16、已知,则m的取值范围是.解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x ﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。
5.2.1三角函数的概念同步练习-2021-2022学年高一上学期数学人教A版(2019)必修第一册
答案5.2.1 三角函数的概念 必备知识基础练1.解析:∵α的终边经过点P (1,-1),∴sin α=-112+-12=-22.答案:D2.解析:当a >0时,sin α=35,cos α=-45,2sin α+cos α=25;当a <0时,sin α=-35,cos α=45,2sin α+cos α=-25.故2sin α+cos α的值是25或-25. 答案:B3.解析:cos α=-513<0,则α的终边在第二或第三象限,又点P 的纵坐标是正数,所以α是第二象限角,所以m <0,由5m 25m 2+144=-513,解得m =-1.答案:-14.解析:因为点P 在第四象限,所以有⎩⎪⎨⎪⎧tan α>0,cos α<0,由此可判断角α的终边在第三象限. 答案:C5.解析:因为α是第三象限角,所以2k π+π<α<2k π+3π2,k ∈Z .所以k π+π2<α2<k π+3π4,所以α2在第二、四象限.又因为⎪⎪⎪⎪cos α2=-cos α2,所以cos α2<0,所以α2在第二象限. 答案:B6.解析:∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 答案:C7.解析:cos 405°=cos(45°+360°)=cos 45°=22.答案:C8.解析:sin 25π3+tan ⎝⎛⎭⎫-15π4=sin ⎝⎛⎭⎫π3+8π+tan ⎝⎛⎭⎫π4-4π=sin π3+tan π4=32+1. 答案:32+19.解析:原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°) =sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64. 答案:1+64关键能力综合练1.解析:cos 1 110°=cos(3×360°+30°)=cos 30°=32.答案:B2.解析:因为cos α=-32<0,所以x <0,又r =x 2+22,由题意得x x 2+22=-32,所以x =-2 3.故选D. 答案:D3.解析:因为r =2sin 22+-2cos 22=2,由任意三角函数的定义,得sin α=y r=-cos 2.故选D. 答案:D4.解析:因为-π2<α<0,所以cos α>0,且sin α<0,所以点Q (cos α,sin α)在第四象限,选D. 答案:D5.解析:当角α的终边在第一象限时,可设直线上一点P (1,2),sin α=25=255;当角α的终边在第三象限时,可设直线上一点P (-1,-2),此时sin α=-25=-255,∴sin α=±255.答案:C6.解析:由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .答案:B7.解析:由三角函数的定义得r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=14+34=1,则sin α=y r =-32,cos α=12.答案:-32 128.解析:原式=cos ⎝⎛⎭⎫2π+π6+tan ⎝⎛⎭⎫2π-5π3=cos π6+tan π3=32+3=332. 答案:3329.解析:由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3. 答案:(-2,3]10.解析:当角α的终边在第一象限时,在角α的终边上取点P (1,1),由r =2,得sin α=22,cos α=22,tan α=1; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-1),由r =2,得sin α=-22,cos α=-22,tan α=1.学科素养升级练1.解析:对于A :由题意知,tan α<0且cos α<0,∴α是第二象限角,正确;对于B :A ,B ∈(0,π),∴sin A >0,cos B <0,正确;对于C :∵145°是第二象限角,∴sin 145°>0,∵-210°=-360°+150°,∴-210°是第二象限角,∴cos (-210°)<0,∴sin 145°cos(-210°)<0,C 错误;对于D :∵π2<3<π,π<4<32π,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0,sin 3·cos 4·tan 5>0.D 正确,故选A ,B ,D. 答案:ABD2.解析:由三角函数定义可得Q ⎝⎛⎭⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32. 答案:A3.解析:(1)由1|sin α|=-1sin α,可知sin α<0,由lg(cos α)有意义可知cos α>0, 所以角α是第四象限角.(2)∵|OM |=1,∴⎝⎛⎭⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知sin α=y r =m |OM |=-451=-45.。
三角函数练习题100题(Word版,含解析)
三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。
其中1-55为选择题,56-70为填空题,71-100为解答题。
)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。
三角函数试题及答案
三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。
以下是一些试题及相应的答案。
I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。
解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。
2. 求解方程 tan(x) + 1 = 0 的所有解。
解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。
在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。
因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。
根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。
通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。
不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。
希望本文能为读者提供帮助。
三角函数练习题及答案
三角函数练习题及答案三角函数是数学中的重要内容,它在几何、物理、工程等领域都有广泛的应用。
掌握好三角函数的概念和运用方法,对于解决实际问题具有重要意义。
本文将为大家提供一些三角函数练习题及其答案,希望能帮助读者更好地理解和掌握这一知识点。
一、正弦函数的练习题1. 计算角度为30°的正弦值。
解答:根据正弦函数的定义,正弦值等于对边与斜边的比值。
在一个单位圆上,角度为30°对应的三角形是一个等边三角形,因此对边与斜边的比值为1/2。
所以,角度为30°的正弦值为1/2。
2. 求解方程sin(x) = 1/2,其中x的取值范围为[0, 2π]。
解答:根据正弦函数的性质,可以知道sin(x) = 1/2的解有两个,分别是30°和150°。
由于x的取值范围为[0, 2π],所以需要将150°转换为弧度制,即150° *π/180 = 5π/6。
因此,方程sin(x) = 1/2的解为x = 30°和x = 5π/6。
二、余弦函数的练习题1. 计算角度为45°的余弦值。
解答:根据余弦函数的定义,余弦值等于邻边与斜边的比值。
在一个单位圆上,角度为45°对应的三角形是一个等腰直角三角形,邻边与斜边的比值为√2/2。
所以,角度为45°的余弦值为√2/2。
2. 求解方程cos(x) = √3/2,其中x的取值范围为[0, 2π]。
解答:根据余弦函数的性质,可以知道cos(x) = √3/2的解有两个,分别是30°和330°。
由于x的取值范围为[0, 2π],所以需要将330°转换为弧度制,即330°* π/180 = 11π/6。
因此,方程cos(x) = √3/2的解为x = 30°和x = 11π/6。
三、正切函数的练习题1. 计算角度为60°的正切值。
三角函数定义与诱导公式好题训练含详解
三角函数定义与诱导公式好题训练一、单选题1.已知角α的终边与单位圆交于点(P ,则sin cos αα⋅=( )A B .C .D 2.已知第三象限角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P m ⎛⎫ ⎪ ⎪⎝⎭,则221sin cos cos sin αααα-=-( )A .BC .13-D .1-3.在直角坐标系中,若角α与β终边互为反向延长线,α与β之间的关系是( ) A .αβ= B .()2k k Z απβ=+∈ C .D .()()21k k Z απβ=++∈4.sin570︒的值是( )A .12B .12-C D . 5.已知角(0360)αα≤<︒︒终边上A 点的坐标为(sin120,cos120)︒︒,则α=( ) A .330︒B .300︒C .120︒D .60︒6.已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知角α的终边上一点P 的坐标为55sin ,cos 66ππ⎛⎫ ⎪⎝⎭,则角α的最小正值为( ) A .6πB .23π C .76π D .53π 8.如果OM 、MP 分别是角5πα=的余弦线和正弦线,那么下列结论正确的是( ) A .0MP OM <<B .0MP OM <<C .0MP OM >>D .0OM MP >>9.()()cos585tan 585sin 570=-+-( )A B .C D .10.已知sin 2(2)33πα+=,则cos(2)6πα-=( )A B .23-C .23D .二、多选题 11.函数cos sin tan sin cos tan x x xy x x x=++的值可能为( ) A .-1 B .0 C .1D .312.下列结论正确的是( ) A .76π-是第三象限角 B .角α的终边在直线y x =上,则α=()4k k Z ππ+∈C .若角α的终边过点()3,4P -,则3cos 5α=-D .若角α为锐角,则角2α为钝角 13.下列不等式成立的是( ) A .15sin 60︒< B .()45s 0co 0-︒> C .17tan 08π⎛⎫-< ⎪⎝⎭D .19sin03π> 14.已知角α的终边经过点(sin120,tan120)P ︒︒,则( )A .cos α=B .sin α=C .tan 2αD .sin cos αα+=第II 卷(非选择题)请点击修改第II 卷的文字说明 三、双空题15.如图,若角α的终边与单位圆交于点03,5P y ⎛⎫⎪⎝⎭,则0y =________,tan α=________.16.在平面直角坐标系xOy 中,角均以x 轴正半轴为始边.已知角θ的终边在直线2y x =上,则tan θ=________;已知角α与角β的终边关于直线2y x =对称,且角α与单位圆的交点坐标为,则cos β=________. 四、填空题17.如图,单位圆上有一点0P ⎝⎭,点P 以点P 0为起点按逆时针方向以每秒π12弧度作圆周运动,5秒后点P 的纵坐标y 是_____________.18.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2017)的值为________. 19.函数sin cos sin cos x x y xx=+的值域是___________.20.不等式1cos 2x >在区间[],ππ-上的解集为______. 五、解答题21.确定下列三角函数值的符号: (1)sin186︒; (2)tan505︒; (3)sin7.6π; (4)23tan()4π-; (5)cos940︒;(6)59cos 17π⎛⎫-⎪⎝⎭. 22.已知角α的终边经过下列各点,求α的正弦、余弦、正切值:(1)(8,6)--; (2)1)-;(3)(1,1)-; (4)(0,2)-. 23.填表:24.用定义法、公式一求下列角的三个三角函数值(可用计算工具): (1)173π-; (2)214π; (3)236π-; (4)1500︒.25.已知角α的终边落在直线3y x =-上,求2sin 3cos αα+的值.26.在平面直角坐标系xOy 中,角α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,角α的终边经过点(,3)A a ,4cos 5α=-.(1)求a 和tan α的值;(2)求sin()2sin()233sin()sin()2πααπαπα-++++-的值.27.已知角α的终边上一点y),且求cosα,tanα的值. 28.化简求值:(1)已知cos α=,求()()()7sin cos cos tan 2sin cos 22ππαααπαππαα⎛⎫+-+- ⎪⎝⎭⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值;(2)tan 210sin 330sin120sin 240cos315sin135︒︒︒︒+︒︒︒.29.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,求53f π⎛⎫⎪⎝⎭的值. 30.分别作出下列各角的正弦线、余弦线和正切线. (1)3π; (2)54π. 31.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥2; (2)cos α≤12.32.利用公式求下列三角函数值: (1)cos 225︒; (2)8sin3π; (3)16sin 3π⎛⎫- ⎪⎝⎭;(4)()tan 2040︒-.33.计算:(1)()6sin 903sin 08sin 27012cos180︒︒︒︒-+-+;(2)10cos 2704sin 09tan 015cos360︒︒︒︒+++; (3)22332costantan sin cos cos 2446662ππππππ-+-++; (4)2423sincos tan 323πππ+- 34.求满足下列关系式的x 的集合.(1)10,x x R +=∈ (2)tan 10,x x R -=∈(3)cos()x x R π-=∈ (4)22sin 1,x x R =∈35.已知角α终边上一点45sin ,cos 36p ππ⎛⎫⎪⎝⎭(1)求tan α的值;(2)化简并求值:()()()()cos sin sin 2119sin 2cos cos sin 22παπαπαπππαααα⎛⎫+-- ⎪-⎝⎭-++-⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭. 36.化简求值:(1)234coscoscos cos 5555ππππ+++; (2)24sin 2cos ()33n n n ππππ⎛⎫⎛⎫-⋅+∈ ⎪ ⎪⎝⎭⎝⎭Z .37.已知()1cos 753α︒+=,求()(cos 105sin 15)αα︒-+︒-的值.38.已知、、A B C 为ABC 的内角, (1)证明:sin()sin A B C +=. (2)若cos()B C +=A , (3)证明:3tan tan 44A B Cπ++=-参考答案:1.B【解析】【详解】α的终边与单位圆交于点(P,故||1,r OP x y====,故33sin cos11y xr rαα====所以sin cosαα⋅=,故选:B.2.D【解析】【分析】根据任意角三角函数的定义即可求解.【详解】由题意得,221m⎛+=⎝⎭,解得m=,又α为第三象限角,所以m=,故sinαα==所以222211sin cos1cos sinαααα⎛⎛-⨯-⎝⎭⎝⎭==--⎛⎛-⎝⎭⎝⎭,故选:D.3.D【解析】【分析】由角α与β终边互为反向延长线得到角α与β关系进而求解.【详解】因为角α与β终边互为反向延长线, 所以()()21k k Z αβπ-=+∈, 即()()21k k Z απβ=++∈. 故选:D 4.B 【解析】 【分析】 利用诱导公式求解 【详解】1sin(360210)sin 210sin(18030sin 5)sin 30027︒=︒+︒=︒=︒+︒=-︒=-,故选:B 5.A 【解析】 【分析】根据特殊角的三角函数值求出点A 的坐标,再根据任意角三角函数的定义求出α的值. 【详解】sin120︒=1cos1202︒=-,即12A ⎫-⎪⎪⎝⎭,该点在第四象限,由0360α︒≤<︒,cos α= 得330α=︒. 故选:A. 6.B 【解析】 【分析】依据三角函数值的符号判断角α的终边所在象限即可解决. 【详解】由点(sin ,tan )P αα在第四象限,可知sin 0,tan 0αα><,则角α的终边在第二象限. 故选:B 7.D 【解析】 【分析】先根据角α终边上点的坐标判断出角α的终边所在象限,然后根据三角函数的定义即可求出角α的最小正值. 【详解】 因为5sin06π>,5cos 06π<, 所以角α的终边在第四象限, 根据三角函数的定义,可知5sin cos6πα==, 故角α的最小正值为5233ππαπ=-=. 故选:D . 8.D 【解析】 【分析】 作出5πα=的正弦线MP 和余弦线OM ,可得出结论.【详解】 作出5πα=的正弦线MP 和余弦线OM ,如下图所示:由于054ππ<<,由图可知,0OM MP >>.故选:D. 9.C 【解析】 【分析】利用诱导公式化简求值即可. 【详解】 原式()()()cos 36018045cos45tan45sin30tan 36018045sin 36018030++-==-+-+-----2112==-+, 故选:C. 10.C 【解析】 【分析】利用诱导公式即得. 【详解】∵sin 2(2)33πα+=,∵ 2cos(2)cos (2)sin(2)62333ππππααα⎡⎤-=-+=+=⎢⎥⎣⎦.故选:C. 11.AD 【解析】 【分析】根据角x 的象限分类讨论,结合三角函数的符号,即可求解. 【详解】当x 是第一象限角时,可得cos sin tan 1113sin cos tan x x xy x x x=++=++=; 当x 是第二象限角时,可得cos sin tan 1111sin cos tan x x xy x x x=++=--=-; 当x 是第三象限角时,可得cos sin tan 1111sin cos tan x x xy x x x=++=--+=-; 当x 是第四象限角时,可得cos sin tan 1111sin cos tan x x xy x x x=++=-+-=-, 故函数cos sin tan sin cos tan x x xy x x x=++的值域是{}1,3-. 故选:AD. 12.BC 【解析】 【分析】利用象限角的定义可判断A 选项的正误;利用终边相同角的表示可判断B 选项的正误;利用三角函数的定义可判断C 选项的正误;利用特殊值法可判断D 选项的正误. 【详解】 对于A 选项,75266πππ-=-且56π为第二象限角,故76π-为第二象限角,A 错;对于B 选项,根据终边相同角的表示可知角α的终边在直线y x =上, 则α=()4k k Z ππ+∈,B 对;对于C 选项,由三角函数的定义可得3cos 5α==-,C 对;对于D 选项,取6πα=,则角α为锐角,但23πα=,即角2α为锐角,D 错.故选:BC. 13.CD 【解析】根据角的象限与三角函数函数的关系,以及三角函数的诱导公式,逐项判定,即可求解. 【详解】因为角156︒为第二象限角,可得sin1560︒>,所以A 不正确; 由()450450cos(3cos co 6090)cos900s -︒︒=︒+︒=︒==,所以B 不正确; 由1717tan()tan tan(2)tan 08888πππππ-=-=-+=-<,所以C 正确;由19sinsin(6)sin 0333ππππ=+==>,所以D 正确. 故选:CD. 14.ACD 【解析】 【分析】求得P 点的坐标,根据三角函数的定义以及同角三角函数的基本关系式确定正确选项. 【详解】由题意可得P ⎝,则cos α==sin α==,sin tan 2cos ααα==-.sin cos αα+= 所以ACD 选项正确. 故选:ACD 15. 45##0.8 43【解析】 【分析】根据单位圆中的勾股定理和点03,5P y ⎛⎫⎪⎝⎭所在象限求出0y ,然后根据三角函数的定义求出tan α即可 【详解】如图所示,点03,5P y ⎛⎫ ⎪⎝⎭位于第一象限,则有:220315y ⎛⎫+= ⎪⎝⎭,且00y >解得:045y =004tan 3y x α==(其中035x =) 故答案为:45;4316. 2【解析】 【分析】设角θ终边上一点的坐标为(,2)P a a ,根据三角函数的定义,求得tan θ,设点A 关于2y x =的对称点为(,)B x y,求得点(B ,结合三角函数的定义,即可求解. 【详解】由题意,角均以x 轴正半轴为始边,且角θ的终边在直线2y x =上, 设角θ终边上一点的坐标为(,2)P a a ,根据三角函数的定义,可得2tan 2aaθ==, 又由角α与单位圆的交点坐标为A ,设点A 关于2y x =的对称点为(,)B x y ,可得101022212y x y ⎧⎪⎪=⨯⎪⎪⎨⎪=-,解得x y == 即角β的终边上一点的坐标为(B ,根据三角函数的定义,可得cos β= 故答案为:2;17【解析】 【分析】根据单位圆上点0P 的坐标求出0π4P Ox ∠=,从而求出2π3POx ∠=,从而求出点P 的纵坐标. 【详解】因为0P ⎝⎭位于第一象限,且0tan 1P Ox ∠=,故0π4P Ox ∠=,所以ππ2π54123POx ∠=+⨯=,故2πsin sin 3POx ∠==P 的纵坐标sin y POx =∠=18.-3 【解析】 【分析】由题设,结合诱导公式可得f (4)=a sin α+b cos β,再应用正余弦函数的周期性、诱导公式可得f (2017)=-a sin α-b cos β即可求值. 【详解】∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∵f (2017)=a sin(2017π+α)+b cos(2017π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-3.故答案为:-3. 19.2,0,2【解析】 【分析】分类讨论角x 的象限即可求y 的值域﹒ 【详解】当x 是第一象限角时,sin x >0,cos x >0,∵y =2; 当x 是第二象限角时,sin x >0,cos x <0,∵y =0; 当x 是第三象限角时,sin x <0,cos x <0,∵y =-2; 当x 是第四象限角时,sin x <0,cos x >0,∵y =0;∵y 的值域为{-2,0,2}. 故答案为:{-2,0,2}﹒ 20.,33ππ⎛⎫- ⎪⎝⎭【解析】 【分析】利用余弦函数的定义及三角函数线即得. 【详解】如图所示,由于1coscos 332ππ⎛⎫=-= ⎪⎝⎭,所以在[],ππ-上1cos 2x >的解集为,33ππ⎛⎫- ⎪⎝⎭. 故答案为:,33ππ⎛⎫- ⎪⎝⎭21.(1)负 (2)负 (3)负 (4)正 (5)负 (6)负 【解析】 【分析】由角的终边的位置和三角函数的符号规律逐个判断即可. (1)解:因为186︒为第三象限角,所以sin186︒为负; (2)解:因为505︒为第二象限角,所以tan505︒为负; (3)解:因为7.66 1.6πππ=+为第四象限角,所以sin7.6π为负; (4) 解:因为23644πππ-=-+为第一象限角,所以23tan()4π-为正; (5)解:因为940720220︒=︒+︒为第三象限角,所以cos940︒为负; (6) 解:因为59941717πππ-=-+为第二象限角,所以59cos 17π⎛⎫- ⎪⎝⎭为负. 22.答案见详解 【解析】 【分析】直接根据三角函数的定义sin ,cos ,tan y x yr r xααα===求解即可. 【详解】(110,则638463sin ,cos ,tan 10510584ααα;(22,则11313sin ,cos ,tan 22233ααα;(3=则12121sin ,cos ,tan 122122ααα;(42, 则20sin 1,cos 0,tan 22ααα不存在;23.答案见详解. 【解析】 【分析】利用特殊角的三角函数值即可求解. 【详解】24.(1)1717117sin ,tan 3323πππ⎛⎫⎛⎫⎛⎫--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)212121sintan 142424πππ=-=-=. (3)2312323sin ,cos tan 6266πππ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (4)1sin1500,tan15002︒︒︒=== 【解析】(1)根据任意角的表示,将173π-化为[)0,2π的角,即可求得三角函数值. (2)根据任意角的表示,将214π化为[)0,2π的角,再结合诱导公式即可求三角函数的值. (3)根据任意角的表示,将236π-化为[)0,2π的角,即可求得三角函数值. (4)根据任意角的表示,将1500︒化为)0,360⎡⎣的角,即可求得三角函数值.【详解】(1)根据任意角的表示,将173π-化为[)0,2π的角可得17633πππ-=-+,17sin sin 33ππ⎛⎫∴-== ⎪⎝⎭,171cos cos 332ππ⎛⎫-== ⎪⎝⎭,17tan tan 33ππ⎛⎫-== ⎪⎝⎭(2)根据任意角的表示,将214π化为[)0,2π的角可得215444πππ=+ 结合诱导公式可求得215sin sin sin 444πππ∴==-=215coscos cos 444πππ==-=215tan tan tan 1444πππ===(3)根据任意角的表示,将236π-化为[)0,2π的角可得23466πππ-=-+ 231sin sin 662ππ⎛⎫∴-== ⎪⎝⎭23cos cos 66ππ⎛⎫-= ⎪⎝⎭23tan tan 66ππ⎛⎫-==⎪⎝⎭(4)根据任意角的表示,将1500︒化为)0,360⎡⎣的角可得1500436060︒︒︒=⨯+sin1500sin 60︒︒=∴=1cos1500cos602︒︒==tan1500tan 60︒︒=【点睛】本题考查了任意角三角函数值的求法,将任意角化为[)0,2π或)0,360⎡⎣的角再求值,属于基础题.25. 【解析】 【分析】在3y x =-上任取两点,一点在二象限,一点在四象限,根据任意角三角函数的定义即可求解. 【详解】在y =-3x 上取点()11,3,P -111131OP r r r αα-=======2sin 3cos αα+==在y =-3x 上取()21,3,P -22OP r αα====2sin 3cos αα+=于是2sin 3cos αα+=. 26.(1)4a =-,3tan 4α=-;(2)1115-. 【解析】 【分析】(1)根据三角函数的定义求出a ,进而求出tan α;(2)先通过诱导公式对原式化简,进而进行弦化切,然后结合(1)求出答案. (1)由题意得:4cos 5α==-,解得4a =-,所以3tan 4α=-. (2)原式32sin 2cos tan 211433cos sin 3tan 1534αααααα+-+-+====--+-+--. 27.见解析 【解析】 【详解】试题分析:利用三角函数的定义,求得y=cosα,tanα的值.试题解析:sin yα==,即25y=,y=当y=cosα==,sintancosααα==;当y=cosα==sintancosααα==考点:三角函数的定义.28.【解析】【分析】(1)先用诱导公式化简,再用同角三角函数的平方关系求解;(2)先用诱导公式化简,再代入特殊三角函数值计算即可.(1)()()()7sin cos cos tan2sin cos22ππαααπαππαα⎛⎫+-+-⎪⎝⎭⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭()2 sin cos sin tan sin sinsin tan sincos sin cos cos ααααααααααααα--===⨯=2211coscosαα--==;(2)tan210sin330sin120sin240cos315sin135︒︒︒︒+︒︒︒()()()() tan18030sin3603018030sin18060=+︒︒-︒︒-︒︒-︒()()()sin18060cos36045sin18045++-︒︒︒-︒︒︒())()tan30sin30cos30sin60sin60cos45sin45 =︒-︒-︒︒+-︒︒︒12===.29【解析】【分析】 由函数周期性和奇偶性可得5523333f f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,从而可求出答案【详解】解:因为()f x 的最小正周期是π,且为偶函数, 所以5523333f f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 因为当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,所以sin 33f ππ⎛⎫== ⎪⎝⎭所以53f π⎛⎫= ⎪⎝⎭【点睛】此题考查了利用函数的周期性和奇偶性求值,属于基础题.30.(1)见解析(2)见解析【解析】根据正弦线、余弦线和正切线的定义作图.【详解】解:(1)设3π的终边与单位圆交于点P ,过1,0A 作垂直于x 轴的直线交3π的终边于点T ,过P 作PM x ⊥轴,交x 轴于M ,如图(1)所示,则MP 是正弦线,OM 是余弦线,AT 是正切线.(1) (2)(2)同(1),过1,0A 作垂直于x 轴的直线,交54π的终边的反向延长线于点T ,如图(2)所示,则MP 是正弦线,OM 是余弦线,AT 是正切线.【点睛】本题考查三角函数线,掌握三角函数线的定义是解题基础.注意正切线的起点是单位圆与x 轴正半轴交点.31.(1)3|22,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (2)5|22,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【解析】【分析】根据正余弦的函数值,在单位圆中画出对应角的范围即可知α的集合.(1)由下图知:当sin α≥2时,角α满足的集合为3|22,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)由下图知:当cos α≤12时,角α满足的集合为5|22,33k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭.32.(1)234)【解析】利用诱导公式将任意角的三角函数转化为锐角三角函数,即可得到答案.【详解】(1)()cos225cos 18045cos45︒︒︒︒=+=-=(2)822sin sin 2sin sin sin 33333πππππππ⎛⎫⎛⎫=+==-== ⎪ ⎪⎝⎭⎝⎭(3)1616sin sin sin 5sin 3333πππππ⎛⎫⎛⎫⎛⎫-=-=-+=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (4)()()()tan 2040tan2040tan 6360120tan120tan 18060︒︒︒︒︒︒︒-=-=-⨯-==-tan60︒=-=【点睛】本题考查诱导公式的应用,考查运算求解能力,求解时注意三角函数在各个象限的符号.33.(1)10-;(2)15;(3)12-;(4)94- 【解析】(1)根据三角函数定义,分别求得()sin 90,sin 0,sin 270,cos180︒︒︒︒-的值,代入即可求解.(2)根据三角函数定义,分别求得cos 270,sin 0,tan 0,cos360︒︒︒︒的值,代入即可求解. (3)根据三角函数定义,分别求得3cos,tan ,tan ,sin ,cos ,cos 246662ππππππ的值,代入即可求解.(4)根据三角函数定义,分别求得3sin,cos ,tan 323πππ的值,代入即可求解. 【详解】(1)根据三角函数定义可得()6sin 903sin 08sin 27012cos180︒︒︒︒-+-+6(1)308(1)12(1)10=⨯-+⨯-⨯-+⨯-=- (2)根据三角函数定义可得10cos 2704sin 09tan 015cos360︒︒︒︒+++100409015115=⨯+⨯+⨯+⨯=(3)根据三角函数定义可得22332cos tan tan sin cos cos 2446662ππππππ-+-++223112010422=⨯-+⨯-++=-⎝⎭⎝⎭ (4)根据三角函数定义可得2423sin cos tan 323πππ+- 242904=+-=-⎝⎭【点睛】本题考查了特殊角三角函数值的计算求值,属于基础题.34.(1)|,6x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭(2)|,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(3)|2,6x x k k Z ππ⎧⎫=±+∈⎨⎬⎩⎭(4)|,4x x k k Z ππ⎧⎫=±+∈⎨⎬⎩⎭【解析】(1)、(2)由正切函数的图象和性质,特殊角的三角函数值,可得(1)、(2)的解集;(3)运用诱导公式可得cos x =,再由余弦函数的图象和性质,可得所求集合;(4)求得sin x = 【详解】(1)由10x =得tan x =解得:,6x k k Z ππ=-∈ 所以所求集合为|,6x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭(2) tan 10x -=得tan 1x = 解得:+,4x k k Z ππ=∈ 所以所求集合为|,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(3) cos()x π-=得cos x = 解得:26x k ππ=±+所以所求集合为|2,6x x k k Z ππ⎧⎫=±+∈⎨⎬⎩⎭(4) 22sin 1x =得sin x = 解得:24x k ππ=+或324k ππ+或524k ππ+或724k ππ+. 所以所求集合为4|,{x x k ππ=+或4x k ππ=-+,}k Z ∈【点睛】 本题考查三角函数的方程的解法,注意运用特殊角的三角函数值和三角函数的周期,考查运算能力,属于基础题.35.(1)112;(2) 【解析】【分析】(1)由题得p ⎛ ⎝⎭,再由三角函数的坐标定义求tan α的值;(2)先化简得原式=tan tan tan 1ααα-+,再代入tan α的值即得解. 【详解】(1)由题得p ⎛ ⎝⎭,所以tan 1α=. (2)()()()()cos sin sin 2119sin 2cos cos sin 22παπαπαπππαααα⎛⎫+-- ⎪-⎝⎭-++-⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ sin sin sin tan =tan sin cos sin cos tan 1αααααααααα-⋅-=--⋅++ 11=122-=. 【点睛】本题主要考查三角函数的坐标定义,考查诱导公式的化简求值,意在考查学生对这些知识的理解掌握水平.36.(1)0;(2)答案见解析.【解析】【分析】(1)直接利用诱导公式化简计算即可,(2)分n 为奇数和n 为偶数,利用诱导公式化简计算即可【详解】(1)23422cos cos cos cos cos cos cos 5555555ππππππππ⎛⎫+++=++-+ ⎪⎝⎭ 22cos cos cos cos cos 055555ππππππ⎛⎫-=+--= ⎪⎝⎭. (2)∵当n 为奇数时,原式24sin cos 33ππ⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭ sin cos 33ππππ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭1sin cos 332ππ=-⋅==; ∵当n 为偶数时,原式24sin cos 33ππ=-⋅ sin cos 33ππππ⎛⎫⎛⎫=--⋅+ ⎪ ⎪⎝⎭⎝⎭sin cos 33ππ=⋅= 37.0【解析】【分析】直接利用三角函数的诱导公式化简求值.【详解】因为()()10575180αα︒-+︒+=︒,()()157590αα︒-++︒=︒, 所以()()cos 105cos 18075αα︒-=︒-︒+⎡⎤⎣⎦()1cos 753α=-︒+=-, ()()sin 15sin 9075αα︒-=︒-+︒⎡⎤⎣⎦()1cos 753α=︒+=. 所以()()11cos 105sin 15033αα︒-+︒-=-+=. 38.(1)证明见解析;(2)34π;(3)证明见解析. 【解析】【分析】利用A B C π++=和诱导公式即可获解.【详解】(1)在ABC 中,∵A B C π++=,∵A B C π+=-. ∵sin()sin()sin A B C C π+=-=(2)cos cos()cos()A A B C π=--=-+=,34A π∴= (3)3tan tan tan tan tan 44444A B C C C C πππππ+---+⎛⎫==-=-+=- ⎪⎝⎭。
第一章 三角函数复习题(一)-学生版
知识点部分:1.任意角的三角函数的定义定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=.2.三角函数值的符号记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,其中k∈Z.公式二:sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sinα,cos(﹣α)=cosα.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cosα.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.4.三角函数的周期性①一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.③函数y=Asin(ωx+φ),x∈R及函数y=Acos(ωx+φ);x∈R(其中A、ω、φ为常数,且A≠0,ω>0)的周期T=.5.正弦函数、余弦函数、正切函数的图象和性质函数y=sin x y=cos x y=tan x 图象定义域R R x≠2kπ+(k∈Z)值域[﹣1,1] [﹣1,1] R单调性递增区间:(2kπ﹣,2kπ+)(k∈Z);递减区间:(2kπ+,2kπ+)(k∈Z)递增区间:(2kπ﹣π,2kπ)(k∈Z);递减区间:(2kπ,2kπ+π)(k ∈Z)递增区间:(kπ﹣,kπ+)(k∈Z)最值x=2kπ+(k∈Z)时,ymax=1;x=2kπ﹣(k∈Z)时,ymin =﹣1x=2kπ(k∈Z)时,ymax=1;x=2kπ+π(k∈Z)时,ymin=﹣1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+,k∈Z 对称中心:(kπ+,0)(k∈Z)对称轴:x=kπ,k∈Z对称中心:(,0)(k∈Z)无对称轴周期2π2ππ6.函数y=Asin(ωx+φ)的图象变换函数y=sin x的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤练习题部分:1.(2020春•新余期末)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f()=()A.B.1 C.D.2.(2020春•驻马店期末)有以下变换方式:①先向右平移个单位长度,再将每个点的横坐标缩短为原来的倍;②先向左平移个单位长度,再将每个点的横坐标伸长为原来的2倍;③先将每个点的横坐标伸长为原来的2倍,再向左平移个单位长度;④先将每个点的横坐标缩短为原来的倍,再向右平移个单位长度.其中能将函数的图象变为函数y=2sinx的图象的是()A.①和④B.①和③C.②和④D.②和③3.(2020春•未央区校级期末)若函数f(x)=sinx+cosx﹣2sinxcosx+1﹣a在上有零点,则实数a的取值范围()A.[﹣,2] B.[﹣,] C.[﹣2,] D.[,]4.(2020春•驻马店期末)已知扇形AOB的圆心角为α,周长为4.那么当其面积取得最大值时,α的值是.5.(2020•江苏)将函数y=3sin(2x+)的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.6.(2019秋•新华区校级期末)若在区间[﹣a,a]上是增函数,则正实数a的最大值为;7.(2020春•沈阳期末)已知角α终边上一点坐标(1,﹣3),f(α)=.(1)求f(α)的值.(2)求f()的值.(3)求sin()cos()的值.8.(2020春•潍坊月考)已知cos(+θ)=,求+的值9.(2020春•吉林期末)已知.(1)求2+sinαcosα﹣cos2α的值;(2)求的值.10.(2019秋•遂宁期末)已知角α的终边经过点,且α为第二象限角.(1)求m、cosα、tanα的值;(2)若,求的值.11.(2019秋•上高县校级期末)已知函数.(1)化简f(x)并求的值.(2)设函数g(x)=1﹣2f(x)且,求函数g(x)的单调区间和值域.12.(2016秋•东安区校级月考)设函数f(x)=tan()(1)求函数f(x)的定义域、最小正周期、单调区间及对称中心.(2)求不等式﹣1≤f(x)≤的解集.13.(2020春•驻马店期末)已知函数的部分图象如图所示.(Ⅰ)求f(x)的解析式及对称中心坐标;(Ⅱ)先将f(x)的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到g(x)的图象,求函数y=g(x)在上的单调减区间和最值.14.(2020•宁波模拟)已知函数.(Ⅰ)求f(x)的振幅、最小正周期和初相位;(Ⅱ)将f(x)的图象向右平移个单位,得到函数y=g(x)的图象,当时,求g(x)的取值范围.15.(2016秋•福建月考)已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤),满足:最大值为2,其图象相邻两个最低点之间距离为π,且函数f(x)的图象关于点(,0)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若向量=(f(x﹣),1),=(,﹣2cosx),,设函数,求函数g(x)的值域.。
(完整版)三角函数定义练习含答案
课时作业3 三角函数的定义时间:45分钟 满分:100分一、选择题(每小题6分,共计36分)1.下列命题中正确的是( )A .若cos θ<0,则θ是第二或第三象限角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析:α是第三象限角,sin α<0,cos α<0,tan α>0,则sin αcos α>0且cos αtan α<0.答案:D2.若sin θ·cos θ<0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:因为sin θcos θ<0,所以sin θ,cos θ异号.当sin θ>0,cos θ<0时,θ在第二象限;当sin θ<0,cos θ>0时,θ在第四象限.答案:D3.若角α的终边经过点P (35,-45),则sin αtan α的值是( )A.1615 B .-1615C.1516 D .-1516解析:∵r =(35)2+(-45)2=1,∴点P 在单位圆上.∴sin α=-45,tan α=-4535=-43.∴sin αtan α=(-45)·(-43)=1615.答案:A4.若角α终边上一点的坐标为(1,-1),则角α为( )A .2k π+π4,k ∈Z B .2k π-π4,k ∈ZC .k π+π4,k ∈Z D .k π-π4,k ∈Z解析:∵角α过点(1,-1),∴α=2k π-π4,k ∈Z .故选B.答案:B5.已知角α的终边在射线y =-3x (x ≥0)上,则sin αcos α等于() A .-310 B .-1010 C.310 D.1010解析:在α终边上取一点P (1,-3),此时x =1,y =-3. ∴r =1+(-3)2=10. ∴sin α=y r =-310,cos α=x r =110 .∴sin αcos α=-310×110=-310.答案:A6.函数y =sin x +lgcos x tan x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π≤x <2k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 2k π<x <2k π+π2,k ∈Z C.{}x | 2k π<x <2k π+π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π-π2<x <2k π+π2,k ∈Z 解析:要使函数有意义,则有⎩⎪⎨⎪⎧ sin x ≥0 ①cos x >0 ②tan x ≠0 ③由①知:x 的终边在x 轴上、y 轴非负半轴上或第一、二象限内.由②知:x 的终边在第一、四象限或x 轴的正半轴.由③知x 的终边不能在坐标轴上.综上所述,x 的终边在第一象限,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x <2k π+π2,k ∈Z . 答案:B二、填空题(每小题8分,共计24分)7.用不等号(>,<)填空: (1)sin 4π5·cos 5π4·tan 5π3________0;(2)tan100°sin200°·cos300°________0.解析:(1)∵45π在第二象限,5π4在第三象限,5π3在第四象限,∴sin 4π5>0,cos 5π4<0,tan 5π3<0,∴sin 4π5·cos 5π4·tan 5π3>0.(2)∵100°在第二象限,200°在第三象限,300°在第四象限, ∴tan100°<0,sin200°<0,cos300°>0,∴tan100°sin200°·cos300°>0. 答案:(1)> (2)>8.函数f (x )=cos x 的定义域为__________________.解析:若使f (x )有意义,须满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z ,∴f (x )的定义域为{x |2k π-π2≤x ≤2k π+π2,k ∈Z }.答案:{x |2k π-π2≤x ≤2k π+π2,k ∈Z }9.下列说法正确的有________.(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零(2)若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为钝角三角形(3)对任意的角α,都有|sin α+cos α|=|sin α|+|cos α|(4)若cos α与tan α同号,则α是第二象限的角解析:对于(1)正角和负角的正弦值都可正、可负,故(1)错.对于(2)∵sin α·cos β<0,又α,β∈(0,π),∴必有sin α>0,cos β<0,即β∈(π2,π),∴三角形必为钝角三角形,故(2)对.对于(3)当sin α,cos α异号时,等式不成立.故(3)错.对于(4)若cos α,tan α同号,α可以是第一象限角,故(4)错.因此填(2).答案:(2)三、解答题(共计40分,其中10题10分,11、12题各15分)10.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求sin α+sin β的值.解:由题意,P (3,2),Q (3,-2),从而sin α=232+22=21313, sin β=-232+(-2)2=-21313,所以sin α+sin β=0.11.求下列函数的定义域.(1)y =cos x +lg(2+x -x 2);(2)y =tan x +cot x .解:(1)依题意有⎩⎨⎧ cos x ≥0,2+x -x 2>0,所以⎩⎪⎨⎪⎧ -π2+2k π≤x ≤π2+2k π(k ∈Z ),-1<x <2.取k =0解不等式组得-1<x ≤π2,故原函数的定义域为⎝ ⎛⎦⎥⎤-1,π2. (2)因为tan x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z },cot x 的定义域为{x |x ∈R ,且x ≠k π,k ∈Z },所以函数y =tan x +cot x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z }∪{x |x ∈R ,且x ≠k π,k ∈Z }={x |x ∈R ,且x ≠k π2,k ∈Z }.12.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:当角α的终边在第一象限时,在角α的终边上取点P (1,2),设点P 到原点的距离为r .则r =|OP |=12+22=5,所以sin α=25=255,cos α=15=55, tan α=21=2;当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2).则r =|OQ |=(-1)2+(-2)2=5,所以sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 综上所得,当α是第一象限角时,sin α=255,cos α=55,tan α=2; 当α是第三象限角时,sin α=-255,cos α=-55,tan α=2.。
三角函数练习题及答案简单
三角函数练习题及答案简单三角函数是高中数学中的重要内容,掌握好三角函数的概念和性质对于解决各种数学问题至关重要。
为了帮助学生更好地掌握三角函数,下面将给出一些简单的练习题及其答案。
1. 练习题:已知一条直角边的长度为3,斜边的长度为5,求另一条直角边的长度。
解答:根据勾股定理,直角三角形中直角边的平方和等于斜边的平方。
设另一条直角边的长度为x,则有3²+x²=5²。
解方程得到x=4,所以另一条直角边的长度为4。
2. 练习题:已知sinθ=0.6,求cosθ的值。
解答:根据三角函数的定义,sinθ=对边/斜边。
设对边的长度为a,斜边的长度为b,则有a/b=0.6。
根据勾股定理,可得a²+b²=1。
将a/b=0.6代入方程,得到0.36+b²=1。
解方程得到b=0.8。
所以cosθ=b=0.8。
3. 练习题:已知tanθ=1.5,求cotθ的值。
解答:根据三角函数的定义,tanθ=对边/邻边。
设对边的长度为a,邻边的长度为b,则有a/b=1.5。
根据勾股定理,可得a²+b²=1。
将a/b=1.5代入方程,得到2.25+b²=1。
解方程得到b=-√1.25。
所以co tθ=b=-√1.25。
4. 练习题:已知sinθ=1/2,cosθ<0,求θ的值。
解答:根据sinθ=1/2,可知θ=π/6或5π/6。
又因为cosθ<0,所以θ=5π/6。
5. 练习题:已知sinα=3/5,cosβ=4/5,求sin(α+β)的值。
解答:根据三角函数的和差公式,sin(α+β)=sinαcosβ+cosαsinβ。
将已知的sinα和cosβ代入公式,得到sin(α+β)=(3/5)(4/5)+(4/5)(3/5)=24/25。
通过以上的练习题,我们可以发现三角函数的运用在解决各种数学问题中起到了重要的作用。
掌握好三角函数的概念、性质以及运用方法,能够帮助我们更好地解决各种实际问题。
专题练 第12练 三角函数的概念与三角恒等变换
第12练 三角函数的概念与三角恒等变换1.(2021·北京)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为982.(2021·全国甲卷)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A.1515 B.55 C.53D.1533.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( ) A.53B.23C.13D.594.(2018·全国Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |等于( )A.15B.55C.255D .15.(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( ) A .tan(α-β)=1 B .tan(α+β)=1 C .tan(α-β)=-1D .tan(α+β)=-16.(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( )A .|OP 1―→|=|OP 2―→|B .|AP 1―→|=|AP 2―→| C.OA →·OP 3―→=OP 1―→·OP 2―→ D.OA →·OP 1―→=OP 2―→·OP 3―→7.(2022·北京)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =________;f ⎝⎛⎭⎫π12=________.8.(2020·江苏)已知sin 2⎝⎛⎭⎫π4+α=23,则sin 2α的值是________.9.(2022·枣庄模拟)已知sin ⎝⎛⎭⎫π6-α=23,则cos ⎝⎛⎭⎫2α-4π3等于( ) A .-59B.59 C .-13D.1310.(2022·南京师大附中模拟)已知sin x +cos x =-15,则cos 2x 等于( )A .-2425B.725 C .-725D .±72511.(2022·淄博模拟)cos 10°2sin 10°-2cos 10°等于( )A.32B. 2C. 3D .212.(2022·潍坊模拟)在平面直角坐标系Oxy 中,若角α的顶点在坐标原点,始边在x 轴的正半轴上,且终边经过点P (-1,2),则sin α(1+sin 2α)sin α+cos α等于( )A .-65B .-25C.25D.6513.(多选)(2022·重庆巴蜀中学模拟)已知f (x )=5sin x +12cos x (x ∈R )在x =x 0处取得最大值a ,则( )A .a =13B .f ⎝⎛⎭⎫x 0+π2=-13 C .sin x 0=513D .cos ⎝⎛⎭⎫2x 0+π4=-233814.(2022·潮汕模拟)小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos ∠BAC 等于( )A.1725B.437C.45D.5715.(2022·宜宾模拟)已知tan α+tan β=3,cos αcos β=14,则sin(α+β)=________.16.(2022·陕西宝鸡中学模拟)sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)=________.[考情分析] 三角函数的概念与三角恒等变换是高考常考内容,主要考查三角函数的概念、同角三角函数关系式、诱导公式,以及三角恒等变换的综合应用,给值求值问题.试题难度中等,常以选择题、填空题的形式出现. 一、三角函数的定义、诱导公式及基本关系式 核心提炼1.同角三角函数基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.(sin α±cos α)2=1±2sin αcos α.3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.练后反馈题目 4 8 9 10 13 正误错题整理:二、两角和与差的三角函数 核心提炼两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.练后反馈题目 5 6 7 11 15 16 正误错题整理:三、三角恒等变换 核心提炼1.二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,tan 2α=2tan α1-tan 2α.2.半角公式:sin α2=±1-cos α2,cos α2=±1+cos α2,tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α. 3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba .练后反馈题目 1 2 3 12 14 正误错题整理:1.[T3补偿](2022·西安模拟)已知θ∈⎝⎛⎭⎫3π2,2π,且cos 2θ+cos θ=0,则sin 2θ+sin θ等于( ) A .0 B. 3 C .- 3 D .22.[T4补偿](2022·郑州模拟)已知α∈⎝⎛⎭⎫0,π2,且sin 2α+sin 2α=710,则cos 2α等于( ) A.35 B.45 C .-35 D .-453.[T12补偿](2022·长春模拟)已知角α的终边与单位圆交于点P ⎝⎛⎭⎫63,-33,则sin ⎝⎛⎭⎫π2-α+cos(π-2α)等于( ) A .-33B.6+13 C.33D.6-134.[T10补偿](2022·毕节模拟)函数f (x )=sin x +cos x +sin 2x 的最大值为( ) A .1 B .1- 2 C .1+ 2D .35.[T9补偿](2022·衡水模拟)已知sin ⎝⎛⎭⎫α+π6=-13,则cos ⎝⎛⎭⎫4π3-α=________. 6.[T11补偿](2022·淄博模拟)sin 12°(2cos 212°-1)3-tan 12°=________.。
三角函数的概念(精讲)(解析版)
5.2 三角函数的概念考点一三角函数的定义-,则cosα=()【例1】(1)(2020·全国高一课时练习)已知角α的终边经过点(4,3)A .45B .35C .35D .45-(2)(2020·甘肃省岷县第一中学高二月考)若角600°的终边上有一点(-4,a ),则a 的值是( )A .B .±C .-D(3)(2020·应城市第一高级中学高一月考)已知角α的终边上一点的坐标为(sin 43π,cos 43π),则角α的最小正值为( ) A .76πB .116πC .56π D .43π 【答案】(1)D (2)C (3)A【解析】(1)∵已知角α的终边经过点(4,3)-,∴4,3,5x y r =-===.∴4cos 5x r α==-.故选:D .(2)∵角600︒的终边上有一点()4,a -,根据三角函数的定义可得tan 6004a︒=-,即()4tan 6004tan 540604tan 60a =-︒=-+=-︒=-,故选C.(3)由题意41sin cos32πα==-,又4sin 03π<,点(sin ,cos )33ππ44在第三象限,即α是第三象限角, ∴72,6k k Z παπ=+∈,最小正值为76π.故选:A .【一隅三反】1.(2020·辽宁沈河·沈阳二中高一期末)如果角α的终边过点(2sin 30,2cos30)P ︒︒-,那么sin α等于( )A .12-B .12C .D .【答案】C【解析】由题意得(1,P ,它与原点的距离为2,∴sin α=.故选:C.2.(2020·永州市第四中学高一月考)若一个α角的终边上有一点()4,P a -且sin cos αα⋅=,则a 的值为( )A .B .±C .-或D 【答案】C【解析】由已知,得()224sin44aaαα-==∴=-+,解得a=-C.3.(2020·河南高一期末)已知点()8,6cos60P m-在角α的终边上,且3tan4α=,则m的值为()A.2-B.2C.-D.【答案】A【解析】16cos60632m m m=⨯=,即点()8,3P m-,由三角函数的定义可得33tan84mα==-,解得2m=-.故选:A.考点二三角函数值正负判断【例3】(2020·辽宁高一期末)若sin tan0αα<,且costanαα<,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】2sinsin tan0cosαααα=<,cos0α∴<,又2cos costan sinαααα=<,则sin0α<.因此,角α为第三象限角.故选:C.【一隅三反】1.(2020·大连市普兰店区第一中学高一月考)已知点()tan,sinPαα在第三象限,则角α的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点()tan,sinPαα在第三象限,∴tan0α<,sin0α<,由tan0α<,知角α的终边所在的象限为第二象限或第四象限,由sin 0α<,知角α的终边所在的象限为第三象限或第四象限, 综上,角α的终边所在的象限为第四象限.故选:D. 2.(2020·昆明市官渡区第一中学高一月考)若-2π<α<0,则点P(tanα,cosα)位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】∵-2π<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选B 3.(2020·山东滨州·高二期末)“θ为第一或第四象限角”是“cos 0θ>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当θ为第一或第四象限角时,cos 0θ>,所以“θ为第一或第四象限角”是“cos 0θ>”的充分条件,当cos 0θ>时,θ为第一或第四象限角或x 轴正半轴上的角,所以“θ为第一或第四象限角”不是“cos 0θ>”的必要条件,所以“θ为第一或第四象限角”是“cos 0θ>”的充分不必要条件.故选:A考点三 三角函数线【例3】(1)(2020·辽宁沈阳·高一期中)下列关系式中,正确的是( ) A .sin1cos1tan1<< B .cos1sin1tan1<< C .tan1sin1cos1<<D .cos1tan1sin1<< (2)(2020·内蒙古通辽·高一期中(理))对于下列四个命题: ①sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭;②2517cos cos 44ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭; ③tan138tan143︒>︒; ④tan 40sin 40︒>︒. 其中正确命题的序号是( ) A .①③B .①④C .②③D .②④【答案】(1)B (2)B【解析】(1)画出1弧度的正弦线,余弦线和正切线,如图所示:则sin1,cos1,tan1MP OM AT ===,比较,,OM MP AT 的长度, 得cos1sin1tan1<< .故选:B.(2)根据正弦函数的性质,可知:sin y x =在,22ππ⎛⎫- ⎪⎝⎭上单调递增1810ππ->-,sin sin 1810ππ⎛⎫⎛⎫∴->- ⎪ ⎪⎝⎭⎝⎭,①正确; 由诱导公式,可得:2525cos cos 6cos 444ππππ⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1717cos cos 4cos 444ππππ⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2517cos cos 44ππ⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭,②错误; 根据正切函数的性质,可知:tan y x =在,2ππ⎛⎫⎪⎝⎭上单调递增,138143︒<︒,tan138tan143∴<︒︒,③错误;画出2409πα==的正弦线和正切线,如下: ︒=tan 40AT ,︒=sin 40MP ,所以tan 40sin 40︒>︒,故④正确.故选:B【一隅三反】1.(2019·重庆)sin4,cos4,tan4a b c===则,,a b c的的大小关系是( )A.a b c<<B.b a c<<C.a c b<<D.c b a<<【答案】A【解析】设4α=,则5π3π42α<<,作出角α的三角函数线,如下图,则sin0MPα=<,cos0OMα=<,tan0ATα=>,又在OMP中,ππ,42MOP⎛⎫∠∈ ⎪⎝⎭,则MP OM>,故sin cos0tanααα<<<,即sin4cos40tan4<<<.故选:A.2.(2020·湖南长沙·高一月考)设sin1,cos1,tan1a b c===,则,,a b c的大小关系为()A.a b c>>B.a c b>>C.c a b>>D.c b a>>【答案】C【解析】以O 为圆心作单位圆,与x 轴正半轴交于点A ,作1POA ∠=交单位圆第一象限于点P ,做PB x ⊥轴,作AT x ⊥轴交OP 的延长线于点T ,如下图所示:由三角函数线的定义知,cos1OB =,sin1BP =,tan1AT =, 因为ππ124>>,AT BP OB ∴>>∴tan1sin1cos1>>∴c a b >>故选:C 3.(2019·伊美区第二中学高一月考)已知点(sin cos ,tan )P ααα-在第一象限,则在[0,2]π内α的取值范围是( ). A .35,,244ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .5,,424ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .353,,2442ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ D .3,,424ππππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭【答案】B【解析】由已知点(sin cos ,tan )P ααα-在第一象限得:sin cos 0αα->,tan 0α>,即sin cos αα>,tan 0α>,当sin cos αα>,可得52244k k πππαπ+<<+,k Z ∈. 当tan 0α>,可得222k k ππαπ<<+或3222k k πππαπ+<<+,k Z ∈. ∴2242k k πππαπ+<<+或5224k k πππαπ+<<+,k Z ∈. 当0k =时,42ππα<<或54ππα<<.02απ,∴42ππα<<或54ππα<<.故选:B .考点四 同角三角函数【例4】(1)(2020·镇原中学高一期末)若1sin 2α=,π(,π)2α∈,则cos α= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的定义练习题
一、选择题
1.已知a 是第二象限角,5
sin ,cos 13
a a =
=则( ) A .1213 B .513- C .513 D .-1213
2.已知角的终边上一点(),且,则的值是( ) A. B. C. D. 3.已知点P(sin ,cos)落在角θ的终边上,且θ∈[0,2π),则θ值为( ) A. B. C. D.
4.把表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( ) A. B. C. D.
5.若α是第四象限角,则π-α是( )
A. 第一象限角
B. 第二象限角
C. 第三象限角
D. 第四象限角 6.cos ()-sin()的值是( ). A. B .- C .0 D.
7.4tan 3cos 2sin 的值( )
A .小于0
B .大于0
C .等于0
D .不存在 8.已知3α=-,则角α的终边所在的象限是()
A .第一象限
B .第二象限
C .第三象限
D .第四象限 9.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=( )
A .
15 B .15- C .2
5
- D .25
10.若0sin <α,且0tan >α,则α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角 11.若cos α=-,且角α的终边经过点P(x,2),则P 点的横坐标x 是( ) (A)2 (B)±2 (C)-2 (D)-2
12.若α是第四象限角,5
tan 12
α=-,则sin α= (A)15. (B)15-. (C)513. (D)513
-.
二、填空题
13.若点(),27a 在函数3x
y =的图象上,则tan
a
π
的值为 .
14.已知角α(0≤α≤2π)的终边过点P 22sin
,cos 33
ππ⎛
⎫
⎪⎝
⎭
,则α=__________.
15.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒尖位置P (x ,y ),其初始位置为P 0(1,3),当秒针从P 0(注此时t=0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为 .
三、解答题
17.已知任意角α的终边经过点(3,)P m -,且,5
3cos -=α (1)求m 的值.(2)求sin α与tan α的值.
18.如果点P(sin θ·cos θ,2cos θ)位于第三象限,试判断角θ所在的象限;
19.已知角α的终边经过点P(x ,-2),且cos α=3
x
,求sin α和tan α.
20.已知角α终边上一点P(y),且sin α=
4
y ,求cos α和tan α的值.
参考答案
1.D
试题分析:∵a 是第二象限角,∴cos a ==12
13
-
,故选D . 考点:同角三角函数基本关系.
2.B 【解析】由三角函数定义知,,当时,; 当时,,故选B
3.C 【解析】由sin>0,cos <0知角θ在第四象限, ∵,选C. 4.A
【解析】∵
∴与是终边相同的角,且此时=是最小的,选A. 5.C
【解析】∵α是第四象限角.∴2k π-<α<2k π(k ∈Z), ∴-2k π<-α<-2k π+.∴-2k π+π<π-α<-2k π+. ∴π-α是第三象限角,选C. 6.A
cos()=cos =cos ()=cos =,sin()=-sin =-sin ()=-sin =-.∴cos ()-sin()=+=.
7.A 试题分析:因为
32,
3,42
2
2
π
π
π
πππ<<<<<<
,所以sin 20,cos30,tan 40><>,从而sin 2cos3tan 40<,选A.
考点:任意角的三角函数. 8.C
试题分析:因为1≈57.3°,故3α=-≈-171.9°,所以α在第三象限. 考点:象限角、轴线角. 9.C
试题分析:根据三角函数的定义:sin ,cos y x
r r
θθ=
=(其中r =,由角θ的终
边经过点(3,4)P -,可得5r ==,43sin ,cos 55
θθ==-,所以
432
sin 2cos 2555
θθ+=-⨯=-,选C.
考点:任意角的三角函数.
10.C
试题分析:根据各个象限的三角函数符号:一全二正三切四余,可知α是第三象限角. 考点:三角函数符号的判定. 11.D
【解析】由cos α=-<0,又点(x,2)在α的终边上,故角α为第二象限角,故x<0. ∴r=,∴=-,
∴4x 2=3x 2+12,∴x 2
=12,∴x=-2或x=2(舍). 12.选D
【解析】根据22sin 5tan ,sin cos 1cos 12ααααα==-∴+=,5
sin 13
α∴=-.
13
试题分析:由题意知327a =,解得3a =,所以tan tan
3
a
π
π
==.
考点:1.幂函数;2.三角函数求值 14.
116
π
【解析】将点P 的坐标化简得12⎫-⎪⎪⎝
⎭,它是第四象限的点,r =|OP|=1,cos α=x
r =
.又0≤α≤2π,所以α=116
π
. 15.2sin 30
3y t π
π⎛⎫=-
+ ⎪⎝⎭(本题答案不唯一)
考点:由y=Asin (ωx+φ)的部分图象确定其解析式。
分析:求出转速ω 的值,再求出经过时间t ,秒针与x 正半轴的夹角以及秒针的长度为|OP|,即可求得点P 的纵坐标y 与时间t 的函数关系。
解答:
由于秒针每60秒顺时针转一周,故转速ω=-2π/60=-π/30,
由于初始位置为P 0(1,),故经过时间t ,秒针与x 正半轴的夹角为-πt /30+π/3, 再由秒针的长度为|OP|=2,可得点P 的纵坐标y 与时间t 的函数关系为y=2sin (-πt /30+π/3)。
故答案为y=2sin (-πt /30+π/3)。
点评:本题主要考查由函数y=Asin (ωx+∅)的部分图象求函数的解析式,属于中档题。
16.四
【解析】由题意,得tan α<0且cos α>0,所以角α的终边在第四象限. 17.(1) 4m =±; (2) 4sin 5α=
,4tan 3
α=-. 【解析】
试题分析:(1)由任意角的三角函数的定义可得关于m 的方程;(2)结合(1)由同角间的基本关系式可求.
求值过程中应注意角的围,从而判断三角函数值的符号. 试题解析:
解:(1)∵角α的终边经过点(3,)P m -, ∴ ||OP ==, 2分 又∵,
5
3
cos -=α∴3
cos ||5x OP α=
==-, 4分 得2
16m =, 6分∴4m =±. 7分
(2)解法一: 已知(
,)2π
απ∈,且3
cos 5
α=-,由22sin cos 1αα+=, 8分
得4
sin 5
α===, 11分(公式、符号、计算各1分) ∴454
tan ()cos 533shi ααα=
=⨯-=-. 14分(公式、符号、计算各1分) (2)解法二: 若(
,)2
π
απ∈,则4m =,得P(-3,4),||OP =5 9分
∴4sin ||5y OP α=
= , 11分 44
tan 33
y x α===--. 14分 (说明:用其他方法做的同样酌情给分)
考点:任意角的三角函数,同角间的基本关系式. 18.第二象限角
【解析】因为点P(sin θ·cos θ,2cos θ)位于第三象限,
所以sin θ·cos θ<0,2cos θ<0,即00sin cos θθ>⎧⎨<⎩
,
,所以θ为第二象限角.
19
因为r =|OP|
所以由cos α=3x ,
=3x ,解得x =0或x
当x =0时,sin α=-1,tan α不存在;当x
时,sin α=-
2
3
,tan
α=-
5;当x
sin α=-2
3
,tan
α=5. 20.cos α=-1,tan α=0.
【解析】r 2
=x 2
+y 2
=y 2
+3,由sin α=
y
r
=
4
y , ∴y
y =0.当y
α是第二象限角时,cos α=
x
r
=-4tan
α=-3;
当y
α是第三象限角时,
cos α=
x
r
=-4tan
α=3;当y =0时,P(
0),cos α=-1,tan α=0.。