数列通项公式的求法学生

合集下载

求数列通项公式方法(学生版)

求数列通项公式方法(学生版)

求数列通项公式方法(1).公式法(定义法)根据等差数列、等比数列的定义求通项 例:1已知等差数列}{n a 满足:26,7753=+=a a a , 求n a ;2.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式;3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;4.等比数列}{n a 的各项均为正数,且13221=+a a ,62239a a a =,求数列}{n a 的通项公式5.已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式;6.已知数列}{n a 满足2122142++=⋅==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式;7.已知数列}{n a 满足,21=a 且1152(5)n nn n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;8.已知数列}{n a 满足,21=a 且115223(522)n n n n a a +++⨯+=+⨯+(*∈N n ),求数列{}n a 的通项公式;9.数列已知数列{}n a 满足111,41(1).2n n a a a n -==+>则数列{}n a 的通项公式= (2)累加法1、累加法 适用于:1()n n a a f n +=+21321(1)(2) ()n n a a f a a f a a f n +-=-=-= 两边分别相加得 111()nn k a a f n +=-=∑例:1.已知数列{}n a 满足141,21211-+==+n a a a n n ,求数列{}n a 的通项公式。

2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

数列通项公式的求法

数列通项公式的求法

类型三:利用Sn与an关系求an
例.an 的前n和为sn , 求 an 的通项公式 (1) sn 2n 3n;(2) sn 2 1
2 n
s1 主要是公式an sn sn 1
( n 1) ( n 2)
的运用
类型四:类等差数列, 即an1 an f (n) (条件 : f (1) f (2) f (n)的和是可求的)
类型七:倒数法求通项
n1 nΒιβλιοθήκη 递 推 式 如 a pa qa a ( p, q为常数, pq 0) 型的数列通项的求法:
n1 n
例. 已知数列{an}中,a1=1,an+1+3an+1an-an=0, 求数列{an}的通项公式. 解: an1 3an1 an an 0 1 1 1 1 3 3 an an 1 an 1 an
2
n 1
故知a3与a8是方程x2 124x 512 0 的两根 128 与 4 ,又q是整数
a8 a3 4 ,a8 128, q 5 32 q 2 an a3 q n3 (2) n1 a3
本题也可以把a3,a 4,a7,a8 全部用 a1与 q表示,得出 a1与 q的方 程组,解出 a1 与 q,然后套公式。 等比 {an } a4 a7 a3 a8 512 ,
n+ 2 an+1 n+2 (2)由递推关系an+1= n an,a1=4,有 a = n , n an-1 a2 a3 4 a4 5 n 于是有 =3, = , = ,…, = , a1 a2 2 a3 3 an-2 n-2 an n + 1 an nn+1 = ,将这(n-1)个式子累乘,得 = . a1 2 an-1 n-1 nn+1 所以当n≥2时,an= a1=2n(n+1). 2 当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

高考数学冲刺专题复习之——求数列通项公式(学生版)

高考数学冲刺专题复习之——求数列通项公式(学生版)

高考数学(文)冲刺复习之——求数列的通项公式一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法.这种方法适用于已知数列类型的题目,此题目是必须掌握的基本运算,一般有“知二求一”的方程思想.例题 等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.训练【2017新课标1文】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.二、利用n S 和n a 的关系求{}n a 的通项公式解法:巧用1112n nn S n a S S n -=⎧=⎨-≥⎩,,.使用是根据具体条件和结论,正用、逆用或同时使用,对等式退(进)一步作差. 1、形如f(S n ,n)=0型可利用公式:⎩⎨⎧-=-11S S S a n n n )1()2(=≥n n 直接求出通项n a ;(讨论1a 能否被吸收) 例题1 已知数列{a n }的前n 项和为(1)S n =2n 2-n ;(2)S n =n 2+n+1,分别求数列{a n }的通项公式;例题2 已知数列{}n a 的前n 项和n S 满足2(1), 1.n n n S a n =+-≥求数列{}n a 的通项公式;变式1 数列}{n a 的前n 项和n S 满足:n a S n n 32-=(n ∈N +),求数列}{n a 的通项公式n α;变式2 已知数列{}n a 的前n 项和为11,4n S a =且1112n n n S S a --=++,数列{}n b 满足11194b =-且13n n b b n --=(2)n n N *≥∈且.(1)求{}n a 的通项公式;(2)求证:数列{}n n b a -为等比数列;变式3 若前n 项和为S n 且满足a n =)2(1222≥-n S S n n ,且a 1=1,求数列的通项公式;2、形如f(S n ,S n+1)=0型方法(i ).看成{S n }的递推公式,求S n 的通项公式,再由n S 求出n α.(ii ).(逆用)利用a n =S n -S n-1转化成关于a n 和a n-1的关系式再求。

构造法求数列通项的八种技巧(三)(学生版+解析版)

构造法求数列通项的八种技巧(三)(学生版+解析版)

构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n+1=ca n k,a n=ca n-1k或者a n+b=c(a n-1+b)k,b为常数.针对出现这种数列,为方便计算,两边通常取以c或首项为底的对数,就能找到突破口.什么情况取c为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n中, a1=2,a n+1=a n2,求数列a n的通项公式.【经典例题2】数列a n中,a1=1,a n+1=2a n2,求数列a n的通项公式.【经典例题3】已知a1=2,点a n,a n+1在函数f x =x2+2x的图像上,其中n∈N*,求数列a n的通项公式.【经典例题4】在数列a n中, a1=1,当n≥2时,有a n+1=a n2+4a n+2,求数列a n的通项公式.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n+1=Aa n+Ba n-1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n+1-a n=(A-1)a n-a n-1,利用a n+1-a n成等比数列,以及叠加法求出a n.还有一小部分题型可转化为a n+1+a n=(A+1)a n+a n-1,利用a n+1+a n成等比数列求出a n.【经典例题1】已知数列a n满足a1=1,a2=3,a n+2=3a n+1-2a n n∈N*,求数列a n的通项公式.【经典例题2】已知数列a n中,a1=1,a2=2,a n+2=23a n+1+13a n,求数列a n的通项公式。

【经典例题3】数列a n中,a1=1,a2=53,a n+2=53a n+1-23a n,求数列a n的通项公式。

此方法可以解决大多数的a n+1=Aa n+Ba n-1,A+B=1模型的试题.当然针对个别试题,单纯构造a n+1-a n成等比数列可能解决不了问题.我们需要学习更完整的方法来解决这种类型题.这就需要运用数列的特征方程理念来解决.当然我们不需要详细学习数列的特征方程,用高中的待定系数法也可以解决,接下来我们通过两道例题,来详细解释说明下这种方法.【经典例题4】已知数列a n满足a1=1,a2=4,a n+2=4a n+1-4a n n∈N*,求数列a n的通项公式.【经典例题5】已知数列a n满足a1=1,a2=43,a n+2=73a n+1-23a n n∈N*,求a n的通项公式.秒杀求法:a n+2=pa n+1+qa n(p,q≠0)类通项公式暴力秒杀求法a n+2=pa n+1+qa n(p,q≠0)对应的特征方程为:x2=px+q,设其两根为x1,x2当x1≠x2时, a n=Ax1n-2+Bx2n-2当x1=x2时, a n=(An+B)x1n-2其中A,B的值的求法,用a1,a2的值代入上面的通项公式中,建立方程组解之即可【秒杀例题1】已知数列a n满足a1=1,a2=43,a n+2=73a n+1-23a n n∈N*,求a n的通项公式.【秒杀例题2】已知数列a n满足a1=1,a2=4,a n+2=4a n+1-4a n n∈N*,求数列a n的通项公式.【练习1】在数列a n中,a1=1,a2=2,a n+1=3a n-2a n-1(n≥2),则a n=_______.【练习2】设数列a n的前n项和为S n,n∈N*.已知a1=1,a2=32,a3=54,且当n≥2时, 4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:a n+1-12a n为等比数列;(3)求数列a n的通项公式.【练习3】数列a n满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明b n是等差数列;(2)求a n的通项公式.◆构造八:数列不动点构造求数列(较难,能力强的同学可以学习)针对x n+1=ax n+bcx n+d这类题型,考题中并不多见,难度比较大,这类题型有特定的解题方法.我们需要学习“数列不动点”的知识点.接下来我们来学习下什么是“数列不动点”,它有什么性质.当然看不懂也没关系,可以通过例题,熟记掌握解题步骤就可以.对于函数f(x),若存在实数x0,使得f x0=x0,则称x=x0是函数f(x)的不动点.在几何上,曲线y=f(x)与曲线y=x的交点的横坐标即为函数f(x)的不动点.一般地,数列x n的递推式可以由公式x n+1=f x n给出,因此可以定义递推数列的不动点:对于递推数列x n,若其递推式为x n+1=f x n,且存在实数x0,使得f x0=x0,则称x0是数列x n的不动点。

数列通项公式的求法(较全)

数列通项公式的求法(较全)

常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和;④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-,求{}n a 的通项公式. 练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-,求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子: 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: 例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==,求{}n a 的通项公式. 练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.4、 奇偶分析法(1)对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式. 练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式. 例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式. 练习1:数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式. (2)对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项.例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式.例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1:数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式. 练习2:数列{}n a 满足111,2n n n a a a +=⋅=,求{}n a 的通项公式. 5、 待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n pn n nn n n n a a a pa tp t p t p p+++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列 例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例9、已知数列{}n a 中,1113,33n n n a a a ++==+,求{}n a 的通项公式. 练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅,求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+,求{}n a 的通项公式. 练习1:数列{}n a 中已知112,32n n a a a n +==-+,求{}n a 的通项公式. 练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+,求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式. 练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式. 练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=-。

数列通项公式的求法(较全)

数列通项公式的求法(较全)

欢迎阅读常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和;④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式. 练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子: 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: 例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式. 练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.4、 奇偶分析法(1)对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式. 练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式. 例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式. 练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式. 练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式.(2)对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项.例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式.例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式. 练习2:数列{}n a 满足111,2n n n a a a +=⋅=,求{}n a 的通项公式. 5、 待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n pn n nn n n na a a pa tp t p tp p +++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++(5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列 例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式. 练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式. 练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式. 练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式. 练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式. 练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

求数列的通项公式(学生版)

求数列的通项公式(学生版)

求数列的通项公式1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa n qa n +r的数列求通项可用倒数法; (3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法; (5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路: ①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n . 考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。

例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。

可用待定系数法求通项的主要有三种:①形如a n +1=ka n +b 的数列求通项,方法是:令a n +1+λ=k (a n +λ),整理后与a n +1=ka n +b 对比可求出λ的值,得出数列 是公比为 的等比数列;②形如a n +1=ka n +r ∙b n 的数列求通项,方法是:令a n +1+λ∙b n +1=k (a n +λ∙b n ),整理后与a n +1=ka n +r ∙b n 对比可求出λ的值,得出数列 是公比为 的等比数列;③形如a n +2=ka n +1+ba n 的数列求通项,方法是:a n +2+λa n +1=μ(a n +1+λa n ),整理后与a n +2=ka n +1+ba n 对比可求出λ、μ的值,得出数列 是公比为 的等比数列.变式1 已知数列{a n }的前n 项和为S n ,若S 1=1,S n +1=3S n +2,求数列的通项公式a n .例2—1 已知数列{a n }中,其中a 1=1,且当n ≥2时,a n =a n -12a n -1+1,求数列{a n }的通项公式。

数列求通项公式的9种方法

数列求通项公式的9种方法

m an (m pq 0) 的数列直接取倒数 pan q
例 8 已知数列 {an } 满足 a1 1 , an1
an ,求 {an } 的通项公式. 2 an 1
例 9:已知数列 {an } 满足 a1 1 , a n 1
an ,求 {an } 的通项公式. an 2
设 an1 A(n 1) B p(an An B) , 去括号整理对比 an1 pan A0 n B0 解出 A 、B 的值, 构造出 {an An B} 为等比数列.
例 13 已知数列 {an } 满足 a1 1 , an1 2an 3n 1,求 {an } 的通项公式.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
例 2 已知数列 {an } 的前 n 项和 S n
3 an 3 ,求 {an } 的通项公式. 2
变式训练1 =3n-2.
ቤተ መጻሕፍቲ ባይዱ
已知下面各数列{an}的前n项和Sn的公式,求an. (1)Sn=2n2-3n;(2)Sn
变式训练 14 已知数列 {an } 满足 a1 1 , an1 3an 2n 1,求 {an } 的通项公式.
九、奇偶分项求通项公式
核心思想: n为奇数时,设n=2k-1 n为偶数时,设n=2k
课堂小结
本课结束
变式训练 14 已知数列 {an } 满足 a1 2 , a n 1
1 a n 2 n ,求 {an } 的通项公式. 2
n1 变式训练 15 已知数列 {an } 满足 a1 1 , an1 2an 3 2 ,求 {an } 的通项公式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列通项公式的求法集锦非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。

一、累加法形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。

有时若不能直接用,可变形成这种形式,然后用这种方法求解。

例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。

例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。

二、累乘法形如1()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。

有时若不能直接用,可变形成这种形式,然后用这种方法求解。

例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

例4.已知数列{n a }满足1a =23,11n n n a a n +=+,求n a 。

三、构造等比数列法原数列{n a }既不等差,也不等比。

若把{n a }中每一项添上一个数或一个式子构成新数列,使之等比,从而求出n a 。

该法适用于递推式形如1n a +=n ba c +或1n a +=()n ba f n +或1n a += nn ba c +其中b 、c 为不相等的常数,()f n 为一次式。

例5、已知数列{n a }满足1a =1,1n a +=21n a + (n N *∈),求数列{n a }的通项公式。

例6、已知数列{n a }中,1a =1,1n a +=23n n a +,求数列的通项公式。

例7在数列{n a }中,1a =2,1n a +=431n a n -+ ,求数列的通项n a 。

四、构造等差数列法数列{n a }既不等差,也不等比,递推关系式形如11()n n n a ba b f n ++=++,那么把两边同除以1n b +后,想法构造一个等差数列,从而间接求出n a 。

例8.数列{n a }满足1221n n n a a -=+-(2)n ≥且481a =。

求(1)1a 、2a 、3a (2)是否存在一个实数λ,使此数列{}2n na λ+为等差数列?若存在求出λ的值及n a ;若不存在,说明理由。

五、取倒数法有些关于通项的递推关系式变形后含有1n n a a +项,直接求相邻两项的关系很困难,但两边同除以1n n a a +后,相邻两项的倒数的关系容易求得,从而间接求出n a 。

例9、已知数列{n a },1a = 1-,11n n na a a +=- n N *∈,求n a =?六.利用公式1(2)n n n a S S n -=-≥求通项有些数列给出{n a }的前n 项和n S 与n a 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n n a S S ++=-导出1n a +与n a 的递推式,从而求出n a 。

例9.已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N *求{n a }的通项公式。

例10已知各项全不为0的数列{k a }的前k 项和为k S ,且k S =112k k a a +(k ∈N *)其中1a =1,求数列{k a }的通项公式。

例11数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *),求{n a }的通项公式。

例12该数列{n a }的前n 项和14122333n n n S a +=-⨯+(n=1、2、3……) 求{n a }的通项公式。

七.重新构造新方程组求通项法有时数列{n a }和{n b }的通项以方程组的形式给出,要想求出n a 与n b 必须得重新构造关于n a 和n b 的方程组,然后解新方程组求得n a 和n b 。

例13:已知数列{n a },{n b }满足1a =2,1b =1且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥),求数列{n a },{n b }的通项公式。

例14.在数列{n a }、{n b }中1a =2,1b =1,且11267n n nn n na ab b a b ++=-⎧⎨=+⎩(n ∈N +)求数列{n a }和{n b }的通项公式。

数列求和的基本方法和技巧就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn 前n 项的和.练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aaan ,…练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。

五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n nn n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nn nn nnn n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.练习:求 1 3, 1 1 5, 1 3 5, 163之和。

六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 练习:求5,55,555,…,的前n 项和。

相关文档
最新文档