2016学年吉林省长春市中考数学模拟试卷(八)
长春市2016年中考数学模拟试卷
长春市2016年中考数学模拟试卷一、选择题1.计算﹣5+1的结果为()A.﹣6B.﹣4C.4D.62.据统计,长春市主城区2015年上半年机动车数量突破1000000辆大关,1000000这个数用科学记数法表示为()A.1×107B.0.1×107C.1×106D.10×1013.如图是由5个高和底面直径相等的圆柱体搭成的立体图形,这个立体图形的左视图是()A.B.C.D.4.不等式x+5≥1的解集在数轴上表示正确的是()A.B.C.D.5.下列方程没有实数根的是()A.x2﹣3x+4=0B.x2=2x C.2x2+3x﹣1=0D.x2+2x+1=06.如图,在△ABC中,点D、E、F分别在边AC、AB、BC上,EF∥AC,DF∥AB,若∠B=45°,∠C=65°,则∠EFD的大小为()A.45°B.70°C.80°D.100°7.如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25°,则∠AOC=()A.25°B.30°C.40°D.50°8.如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB 上任意一点(不与点A、B重合),CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE的中点,则四边形ODEF的周长为()A.4B.6C.8D.10二、填空题9.计算:÷=.10.分解因式:a2﹣4=.11.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为元.12.如图,在平面直角坐标系中,▱ABCD的顶点A在函数y=的图象上,顶点B、C在y轴正半轴上(点B在点C的上方),若点D的坐标为(3,1),▱ABCD 的面积为4,5,则k的值为.13.如图,在△ABC和△ADE中,∠C=∠AED=90°,点E在线段AB上,AD∥CB,若AC=AE=2,BC=3,则DE的长为.14.如图,在平面直角坐标系中,点P在第一象限,以P为顶点的抛物线经过原点,与x 轴正半轴相交于点A,⊙P与y轴相切于点B,交抛物线交于点C、点D.若点A的坐标为(m,0),CD=n,则△PCD的周长为(用含m、n的代数式表示).三、解答题四、15.先化简,再求值:(3a+2)2﹣9a(a+1),其中a=.16.有甲、乙两个不透明的盒子,甲盒里有3张卡片,分别写有字母A、B、C;乙盒里有2张卡片,分别写有字母C、D,这些卡片除所标字母不同外其余均相同,先从甲盒中随机抽取1张卡片,再从乙盒中随机抽取1张卡片,请用画树状图(或列表)的方法.求抽取的两张卡片中都含有字母C的概率.17.学校计划选购甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书的册数比单独购买乙种图书要少10册,求甲、乙两种图书的单价.18.如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF.求证:CD=EF.19.如图,一艘货轮位于灯塔P北偏东53°方向,距离灯塔100海里的A处,另一艘客轮位于货轮正南方向,且在灯塔P南偏东45°方向的B处,求此时两艘轮船之间的距离AB.(结果精确到1海里)【参考数据:sin53°=0.799,cos53°=0.602,tan53°=1.327】20.近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.21.十一期间,小明和小亮相约从长春出发到某市某游乐园游玩,小明乘私家车从长春出发1小时后,小亮乘“和谐号”动车从长春出发,先到某市火车站A,然后乘出租车去游乐园B(换车时间忽略不计),两人恰好同时到达游乐园,他们离开长春的距离y(千米)与小明乘车时间t(时)的函数图象如图所示.(1)求“和谐号”动车的速度.(2)当小亮到达某市火车站时,求小明距离游乐园的距离.(3)若小明乘私家车从长春到达游乐园的时间比原来要提前18分钟,则私家车速度应比原来增加多少?22.探究:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连结EF,求证:EF=BE+DF.应用:如图②,在四边形ABCD中,点E、F分别在BC、CD上,AB=AD,∠B+∠D=90°,∠EAF=∠BAD,若EF=3,BE=2,则DF=.23.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,D、E分别是边AB、BC的中点,点P从点C出发,沿线段CD方向以每秒1个单位长度的速度运动,当点P与点D不重合时,以EP、ED为邻边作▱EDFP,设点P的运动时间为t(秒).(1)求AB长.(2)当∠DPF=∠PFD时,求t的值.(3)当点P在线段CD上时,设▱EDFP与△ABC重叠部分图形的面积为y(平方单位),求y与t之间的函数关系式.(4)连结AF,当△AFD的面积与△PDE的面积相等时,直接写出t的值.24.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,1),直线AB∥x轴交抛物线于点B,点P是直线AB上一点(不与A、B重合),PQ∥y轴交抛物线于点Q,以PQ为斜边向左作等腰直角三角形PQM,设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)当线段PQ被x轴平分时,求m的值.(3)当等腰直角三角形PQM夹在x轴与直线AB之间的图形为轴对称三角形时,求m的取值范围.(4)直接写出当等腰直角三角形PQM的两条直角边与坐标轴有两个公共点时m的取值范围.。
2022——2023学年吉林省长春市中考数学专项突破仿真模拟试题(3月4月)含答案
2022-2023学年吉林省长春市中考数学专项突破仿真模拟试题(3月)一、选一选(每小题3分,共36分)1.若3(a +1)的值与1互为倒数,则a 的值为()A.﹣23B.﹣43C.0D.432.下列运算正确的是()A.(a +b )2=a 2+b 2B.(﹣1+x )(﹣x ﹣1)=1﹣x 2C.a 4•a 2=a 8D.(﹣2x )3=﹣6x 33.若代数式11x +-有意义,则实数x 的取值范围是()A.x ≠1B.x ≥0C.x ≠0D.x ≥0且x ≠14.某市测一周PM 2.5的月均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和405.已知在Rt △ABC 中,∠C =90°,sin A =12,AC =BC 的值为()A.2B.4C. D.66.从1,2,3,4这四个数中随机地取两个数,则其中一个数是另一个数的2倍的概率是()A.13B.12C.14D.167.关于x 的一元二次方程2(2)210m x x -++=有实数根,则m 的取值范围是()A.3m ≤ B.3m <C.3m <且2m ≠ D.3m ≤且2m ≠8.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是()A.320°B.40°C.160°D.80°9.化简2216a a 4a 2a 4a 42a 4a 4--+÷⋅++++,其结果是A.2- B.2C.()22a 2-+ D.()22a 2+10.有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个11.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,12) C.6535 D.1075712.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)13.某种计算机完成基本运算的时间约为0.000000001s,把0.000000001用科学记数法表示为_____.14.若x=3x2﹣6x+9的值为_____.15.计算:2cos45°﹣(π+1)011()2-=______.16.如图,□ABCD 的周长为20cm ,AC 与BD 相交于点O ,OE ⊥AC 交AD 于E ,则△CDE 的周长为_________cm.17.如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是 CF的中点,弦CF 交AB 于点E ,若⊙O 的半径为2,则CF =________.18.已知双曲线ky x=Rt △OAB 斜边OA 的中点D ,与直角边AB 相交于点C ,若S △OAC =3,则k =______.19.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为____.20.菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:(1)BF为∠ABE的角平分线;(2)DF=2BF;(3)2AB2=DF•DB;(4)sin∠BAE=EFAF.其中正确的结论为___(填序号)三、解答题(共6小题,满分60分)21.今年10月,某公司随机抽取所属的a家连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚没有完整的统计图表.根据以上信息解答下列问题:(1)求a的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩没有少于80分的连锁店中任选2家介绍营销,求其中至少有一家是A等级的概率.22.某市在新农村改造工程中需要修建一段东西方向全长1000米的道路(记作AB).已知C点周围350米范围内有一电力设施区域.在A处测得C在A的北偏东60°方向上,在B处测得C在B的北偏西45°方向上.(≈1.414)(1)道路AB是否穿过电力设施区域?为什么?(2)在施工250米后,为了尽量减少施工对城市交通所造成的影响,加快了施工进度,实际工作效率变成了原计划工作效率的1.5倍,结果提前5天完成了修路任务,则原计划每天修路多少米?23.我市某电器商场根据民众健康需要,代理某种家用空气净化器,其进价是200元/台.市场后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价没有能低于300元/台,代理商每月要完成没有低于450台的任务.(1)试确定月量y(台)与售价x(元/台)之间的函数关系式;(2)求出售价x的范围;(3)商场每月这种空气净化器所获得的利润为w(元),写出w关于x的关系?当售价x(元/台)定为多少时利润,是多少?24.如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为3cm,求 DE的长度.(结果保留π)25.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若没有成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,时,求线段BG的长.26.已知抛物线y=ax2+bx-3(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3102?若存在,求出k的值;若没有存在,请说明理由.2022-2023学年吉林省长春市中考数学专项突破仿真模拟试题(3月)一、选一选(每小题3分,共36分)1.若3(a +1)的值与1互为倒数,则a 的值为()A.﹣23B.﹣43 C.0D.43【正确答案】A【详解】解:由题意得:3(a +1)=1,解得:a =﹣23.故选A .2.下列运算正确的是()A.(a +b )2=a 2+b 2B.(﹣1+x )(﹣x ﹣1)=1﹣x 2C.a 4•a 2=a 8D.(﹣2x )3=﹣6x 3【正确答案】B【详解】解:A .(a +b )2=a 2+2ab +b 2,故本选项错误;B .(﹣1+x )(﹣x ﹣1)=1﹣x 2,故本选项正确;C .a 4•a 2=a 4+2=a 6,故本选项错误;D .(﹣2x )3=(﹣2)3x 3=﹣8x 3,故本选项错误.故选B .3.若代数式11x +-有意义,则实数x 的取值范围是()A.x ≠1 B.x ≥0C.x ≠0D.x ≥0且x ≠1【正确答案】D【分析】先根据分式及二次根式有意义的条件:二次根式被开方数必须是非负数和分式分母没有为0的条件,要使11x +-在实数范围内有意义必须100x x ì-¹ïí³ïî,据此列出关于x 的没有等式组,求出x 的取值范围即可.【详解】解:∵代数式11x -有意义,∴10xxì-¹ïí³ïî,解得x≥0且x≠1.故选D.本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.某市测一周PM2.5的月均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和40【正确答案】A【详解】试题分析:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次至多,所以50为众数;50处在第4位是中位数.故选A.考点:中位数;众数.5.已知在Rt△ABC中,∠C=90°,sin A=12,AC=BC的值为()A.2 B.4 C. D.6【正确答案】A【详解】解:∵sin A=12,∴∠A=30°,∴tan30°=33=BCAC ,∴BC=2.故选A.6.从1,2,3,4这四个数中随机地取两个数,则其中一个数是另一个数的2倍的概率是()A.13 B.12C.14 D.16【正确答案】A【详解】解:画树状图得:∵共有12种等可能的结果,其中一个数是另一个数两倍的有4种情况,∴其中一个数是另一个数2倍的概率是:412=13.故选A .7.关于x 的一元二次方程2(2)210m x x -++=有实数根,则m 的取值范围是()A.3m ≤ B.3m <C.3m <且2m ≠ D.3m ≤且2m ≠【正确答案】D【详解】解:∵关于x 的一元二次方程2(2)210m x x -++=有实数根,∴20m -≠且△≥0,即224(2)10m --⨯≥,解得3m ≤,∴m 的取值范围是3m ≤且2m ≠.故选:D .8.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是()A.320° B.40°C.160°D.80°【正确答案】C【详解】解:∵圆锥的底面直径是80cm ,∴圆锥的侧面展开扇形的弧长为:πd =80π,∵母线长90cm ,∴圆锥的侧面展开扇形的面积为:12lr =12×80π×90=3600π,∴290360n π⨯=3600π,解得:n =160.故选C .点睛:本题考查了圆锥的有关计算,解答此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.9.化简2216a a 4a 2a 4a 42a 4a 4--+÷⋅++++,其结果是A.2- B.2C.()22a 2-+ D.()22a 2+【正确答案】A【详解】试题分析:利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,各分子分母因式分解后,约分即可得到结果:()()()()222a 4a 42a 216a a 4a 2a 22a 4a 42a 4a 4a 4a 4a 2+-+--++÷⋅=-⋅⋅=-++++-++.故选A .10.有下列命题:①若x 2=x ,则x =1;②若a 2=b 2,则a =b ;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个【正确答案】B【详解】解:若x 2=x ,则x =1或x =0,所以①错误;若a 2=b 2,则a =±b ,所以②错误;线段垂直平分线上的点到线段两端的距离相等,所以③正确;相等的弧所对的圆周角相等,所以④正确.四个命题的逆命题都是真命题.故选B .点睛:本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论;命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为()A.(0,0)B.(1,12)C.6535D.10757【正确答案】D【详解】解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K.∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG=A 、C 关于直线OB 对称,∴PC +PD =PA +PD =DA ,∴此时PC +PD 最短.在RT △AOG 中,AG,∴AC =OA •BK =12•AC •OB ,∴BK =4,AK =3,∴点B 坐标(8,4),∴直线OB 解析式为12y x =,直线AD 解析式为115y x =-+,由12115y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:10757x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 坐标10757.故选D .12.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A.1个B.2个C.3个D.4个【正确答案】C 【分析】通过比较点(3,)P m -和(3,)Q n 到直线1x =-的距离大小可对①进行判断;利用对称轴方程得到2b a =,再利用1x =-时,3y =可对②进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点A 在点(0,0)和(1,0)之间,则利用当1x =时,0y <可对③进行判断;根据抛物线2y ax bx c =++的顶点为(1,3)-可对④进行判断.【详解】解: 抛物线2y ax bx c =++的顶点为(1,3)-,∴抛物线的对称轴为直线1x =-,而点(3,)P m -比(3,)Q n 到直线1x =-的距离小,m n ∴>;所以①错误;12b a-=- ,2b a ∴=,1x =- 时,3y =,3a b c ∴-+=,23a a c ∴-+=,即3c a =+,所以②正确;抛物线的对称轴为直线1x =-,抛物线与x 轴的一个交点A 在点(3,0)-和(2,0)-之间,∴抛物线与x 轴的另一个交点A 在点(0,0)和(1,0)之间,∴当1x =时,0y <,即0a b c ++<,所以③正确;抛物线2y ax bx c =++的顶点为(1,3)-,∴方程23ax bx c ++=有两个相等的实数根,所以④正确.故选:C .本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即0)ab >,对称轴在y 轴左;当a 与b 异号时(即0)ab <,对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,)c .抛物线与x 轴交点个数由△决定:△240b ac =->时,抛物线与x 轴有2个交点;△240b ac =-=时,抛物线与x 轴有1个交点;△240b ac =-<时,抛物线与x 轴没有交点.二、填空题(每小题3分,共24分)13.某种计算机完成基本运算的时间约为0.000000001s ,把0.000000001用科学记数法表示为_____.【正确答案】1×10﹣9.【详解】解:0.000000001=1×10﹣9.故答案为1×10﹣9.14.若x=3x 2﹣6x+9的值为_____.【正确答案】2.【详解】根据完全平方公式可得x 2﹣6x+9=(x ﹣3)2,当x=3时,原式=(3﹣3)2=2.15.计算:2cos45°﹣(π+1)011()2-=______.32+.【详解】解:原式=2121222⨯-++=3232.16.如图,□ABCD 的周长为20cm ,AC 与BD 相交于点O ,OE ⊥AC 交AD 于E ,则△CDE 的周长为_________cm.【正确答案】10【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE ,即可得出△CDE 的周长=AD+DC .【详解】解:∵四边形ABCD 是平行四边形,∴AB=DC ,AD=BC ,OA=OC ,∵ ABCD 的周长为20cm ,∴AD+DC=10cm ,又∵OE ⊥AC ,∴AE=CE ,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故答案是:10.本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.17.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是 CF的中点,弦CF交AB于点E,若⊙O的半径为2,则CF=________.【正确答案】【详解】试题解析:连接OC,∵DC切⊙O于点C,∴∠OCD=90°,∵BD=OB,∴OB=12 OD,∵OC=OB,∴OC=12 OB,∴∠D=30°,∴∠COD=60°,∵AB为⊙O的直径,点B是 CF的中点,∴CF⊥OB,CE=EF,∴CE=OC•sin60°=2×2∴CF=2考点:1.切线的性质;2.含30度角的直角三角形;3.垂径定理.18.已知双曲线k y x=Rt △OAB 斜边OA 的中点D ,与直角边AB 相交于点C ,若S △OAC =3,则k =______.【正确答案】﹣2.【详解】解:设D (m ,k m ).∵双曲线k y x=Rt △OAB 斜边OA 的中点D ,∴A (2m ,2k m ).∵S △OAC =3,∴12•(﹣2m )•2k m +12k =3,∴k =﹣2.故答案为﹣2.点睛:本题考查了反比例函数系数k 的几何意义:在反比例函数k y x =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.19.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为____..【详解】试题分析:先根据折叠的性质得DE=EF ,CE=EF ,AF=AD=2,BF=CB=3,则DC=2EF ,AB=5,再作AH ⊥BC 于H ,由于AD ∥BC ,∠B=90°,则可判断四边形ADCH 为矩形,所以AH=DC=2EF ,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.考点:翻折变换(折叠问题)..20.菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:(1)BF为∠ABE的角平分线;(2)DF=2BF;(3)2AB2=DF•DB;(4)sin∠BAE=EFAF.其中正确的结论为___(填序号)【正确答案】(1)(3)(4)【详解】试题分析:(1)正确.根据菱形性质即可判定.(2)错误.假设成立推出矛盾即可.(3)正确.由△ADO∽△FDA,得AD DODF AD,AD2=DO•DF,两边乘2即可得到证明(4)正确.由AD∥BC,得EFAF=BEAD=BEAB,又sin∠BAE=BEAB,由此即可证明.故答案为(1)(3)(4).【考点】相似三角形的判定与性质;菱形的性质.三、解答题(共6小题,满分60分)21.今年10月,某公司随机抽取所属的a家连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚没有完整的统计图表.根据以上信息解答下列问题:(1)求a的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩没有少于80分的连锁店中任选2家介绍营销,求其中至少有一家是A等级的概率.【正确答案】(1)2;(2)28°48′;(3)5 6.【详解】试题分析:(1)利用扇形统计图得到C等级所占的百分比,再用C等级的频数除以它所占的百分比得到样本容量,然后用样本容量分别减去A、C、D等级的频数即可得到a的值;(2)用B等级所占的百分比乘以360°可得到B等级所在扇形的圆心角的大小;(3)画树状图展示所有12种等可能的结果数,再找出至少有一家是A等级的结果数,然后根据概率公式求解.试题解析:解:(1)15÷60%=25,所以a=25﹣2﹣15﹣6=2;(2)B等级所在扇形的圆心角=225×360°=28°48′;(3)评估成绩没有少于80分的连锁店中A等级有2家,B等级有2家,画树状图为:共有12种等可能的结果数,其中至少有一家是A等级的结果数为10,所以其中至少有一家是A等级的概率=1012=56.22.某市在新农村改造工程中需要修建一段东西方向全长1000米的道路(记作AB).已知C点周围350米范围内有一电力设施区域.在A处测得C在A的北偏东60°方向上,在B处测得C在B的北偏西45°方向上.(≈1.414)(1)道路AB是否穿过电力设施区域?为什么?(2)在施工250米后,为了尽量减少施工对城市交通所造成的影响,加快了施工进度,实际工作效率变成了原计划工作效率的1.5倍,结果提前5天完成了修路任务,则原计划每天修路多少米?【正确答案】(1)没有穿过;(2)50.【详解】试题分析:(1)首先过点C 作CD ⊥AB 于点D ,设CD =x 米,然后利用三角函数,即可表示出AD 与BD +x =1000,求得CD 的长,与350米比较,即可得道路AB 没有穿过电力设施区域;(2)首先设原计划每天修路y 米,根据题意即可得分式方程,解分式方程即可求得答案.试题解析:解:(1)道路AB 没有穿过电力设施区域.如图,过点C 作CD ⊥AB 于点D ,设CD =x 米.由题意得:∠CAD =90°﹣60°=30°,∠CBD =90°﹣45°=45°.在Rt △ACD 中,AD =tan 30CD =(米).在Rt △BCD 中,BD =CD =x(米).∵AB =1000+x =1000,解得:x 500≈366.∵366米>350米,∴道路AB 没有穿过电力设施区域;(2)设原计划每天修路y 米,依题意得:100010002502505 1.5y y y--=+解得:y =50,经检验,y =50是原分式方程的解.答:原计划每天修路50米.点睛:本题考查了方向角问题与分式方程的应用.注意构造直角三角形并利用解直角三角形的知识是解答本题的关键.23.我市某电器商场根据民众健康需要,代理某种家用空气净化器,其进价是200元/台.市场后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价没有能低于300元/台,代理商每月要完成没有低于450台的任务.(1)试确定月量y (台)与售价x (元/台)之间的函数关系式;(2)求出售价x 的范围;(3)商场每月这种空气净化器所获得的利润为w (元),写出w 关于x 的关系?当售价x (元/台)定为多少时利润,是多少?【正确答案】(1)y=﹣5x+2200;(2)300≤x≤350;(3)W=﹣5(x ﹣320)2+72000,当售价定为320元/台时,商场每月这种空气净化器所获得的利润w ,利润是72000元.【详解】试题分析:(1)根据题中条件价每降低10元,月量就可多售出50台,即可列出函数关系式;(2)根据供货商规定这种空气净化器售价没有能低于300元/台,代理商每月要完成没有低于450台的即可求出x 的取值.(3)用x 表示y ,然后再用x 来表示出w ,根据函数关系式,即可求出w ;试题解析:解:(1)根据题中条件价每降低10元,月量就可多售出50台,则月量y (台)与售价x (元/台)之间的函数关系式:y =200+50×40010x -,化简得:y =﹣5x +2200;∴y 与x 之间的函数关系式为:y =﹣5x +2200;(2)供货商规定这种空气净化器售价没有能低于300元/台,代理商每月要完成没有低于450台,根据题意得:30052200450x x ≥⎧⎨-+≥⎩,解得:300≤x ≤350,∴售价x 的范围为:300≤x ≤350;(2)W =(x ﹣200)(﹣5x +2200),整理得:W =﹣5(x ﹣320)2+72000.∵x =320在300≤x ≤350内,∴当x =320时,值为72000,即售价定为320元/台时,商场每月这种空气净化器所获得的利润w ,利润是72000元.点睛:本题主要考查了二次函数的应用,还应用到将函数变形求函数最值的知识.24.如图,OA ,OD 是⊙O 半径.过A 作⊙O 的切线,交∠AOD 的平分线于点C ,连接CD ,延长AO 交⊙O 于点E ,交CD 的延长线于点B .(1)求证:直线CD 是⊙O 的切线;(2)如果D 点是BC 的中点,⊙O 的半径为3cm ,求 DE的长度.(结果保留π)【正确答案】(1)证明见解析;(2) DE的长度为π.【详解】(1)证明:∵AC是⊙O切线,∴OA⊥AC,∴∠OAC=90°,∵CO平分∠AOD,∴∠AOC=∠COD,在△AOC和△DOC中,∴△AOC≌△DOC,∴∠ODC=∠OAC=90°,∴OD⊥CD,∴直线CD是⊙O的切线.(2)∵OD⊥BC,DC=DB,∴OC=OB,∴∠OCD=∠B=∠ACO,∵∠B+∠ACB=90°,∴∠B=30°,∠DOE=60°,DE的长度=π.∴25.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若没有成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,时,求线段BG的长.【正确答案】解:(1)BD=CF 成立.理由见解析;(2)①证明见解析;②8105【分析】(1)△ABC 是等腰直角三角形,四边形ADEF 是正方形,易证得△BAD ≌△CAF ,根据全等三角形的对应边相等,即可证得BD=CF ;(2)①由△BAD ≌△CAF ,可得∠ABM=∠GCM ,又由对顶角相等,易证得△BMA ∽△CMG ,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD ⊥CF ;②首先过点F 作FN ⊥AC 于点N ,利用勾股定理即可求得AE ,BC 的长,继而求得AN ,CN 的长,又由等角的三角函数值相等,可求得1433AM AB ==,然后利用△BMA ∽△CMG ,求得CG 的长,再由勾股定理即可求得线段BG 的长.【详解】解(1)BD=CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB=AC ,AD=AF ,∠BAC=∠DAF=90°,∵∠BAD=∠BAC-∠DAC ,∠CAF=∠DAF-∠DAC ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB ACBAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAF (SAS ).∴BD=CF .(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM=∠GCM .∵∠BMA=∠CMG ,∴△BMA ∽△CMG .∴∠BGC=∠BAC=90°.∴BD ⊥CF .②过点F 作FN ⊥AC 于点N.∵在正方形ADEF 中,,2112AE AN FN AE ∴==∴===∵在等腰直角△ABC 中,AB=4,∴CN=AC-AN=3,BC ==∴在Rt △ABM 中,1tan 3FN FCN CN ∠==∴在Rt △ABM 中,1tan tan 3AM ABM FCN AB ∠==∠=1433AM AB ∴==484104,333CM AC AM BM ∴=-=-====∵△BMA ∽△CMG ,BM CMBA CG∴=8334CG ∴=5CG ∴=∴在Rt△BGC中,5BG==此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识.此题综合性很强,难度较大,注意数形思想的应用,注意辅助线的作法.26.已知抛物线y=ax2+bx-3(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3102?若存在,求出k的值;若没有存在,请说明理由.【正确答案】(1)y=x2﹣2x﹣3(2)当原点O为线段AB的中点时,k的值为﹣2,点A),点B的坐(3)没有存在,理由详见解析【分析】(1)令x=0求出y值即可得出C点的坐标,又有点(﹣1,0)、(3,0),利用待定系数法求抛物线的解析式即可;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A•x B=﹣3”,点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A•x B=﹣3”,即可得出关于k的一元二次方程,方程无解即可得出假设没有成立,从而得出没有存在满足题意的k值.【小问1详解】解:令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3),∵抛物线y=ax2+bx﹣3(﹣1,0),(3,0)两点,∴有03 0933a ba b=--⎧⎨=+-⎩,解得:12 ab=⎧⎨=-⎩,∴此抛物线的解析式为y=x2﹣2x﹣3;【小问2详解】解:将y=kx代入y=x2﹣2x﹣3中,得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2,当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣x B.∴y A=﹣2x A,y B=﹣2x B.故当原点O为线段AB的中点时,k的值为﹣2,点A,点B;【小问3详解】解:假设存在实数k使得△ABC的面积为310 2,由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△ABC=12OC•|x A﹣x B|()213103422A B A Bx x x x=⨯⨯+-⋅=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0,∵(2+k)2非负,无解,故假设没有成立,所以没有存在实数k使得△ABC的面积为310 2.本题考察了二次函数的应用,属于综合的题目,解题的关键是会求二次函数与坐标轴的交点,求直线与二次函数的交点.2022-2023学年吉林省长春市中考数学专项突破仿真模拟试题(4月)一、选一选(每小题4分,共10题、共40分)1.下列运算正确的是()A.a+a=a2B.a2•a=2a3C.a3÷a2=aD.(a2)3=a52.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A.6.7×10−5B.0.67×10−6C.0.67×10−5D.6.7×10−63.下列根式中是最简根式的是()A.2ab B.2a b+ C.b a D.222a ab b++4.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的俯视图是()A. B. C. D.5.下列命题中正确的是()A.平分弦的直径垂直于弦;B.与直径垂直的直线是圆的切线;C.对角线互相垂直的四边形是菱形;D.连接等腰梯形四边中点的四边形是菱形.6.如图,在宽度为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m2,求道路的宽.如果设小路宽为xm,根据题意,所列方程正确的是()A.(20+x)(32﹣x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20+x)(32﹣x)=5407.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法没有正确的是().A.△CDH的周长等于AD+CDB.FC平分∠BFDC.AC2+BF2=4CD2 D.DE2=EF.CE8.学校准备从甲、乙、丙、丁四个科技创新小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x(单位:分)及方差2s如表所示:甲乙丙丁x78872s1 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标没有可能是A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数,“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少,如图描述了甲、乙、丙三辆汽车在没有同速度下的燃油效率情况,下列说法中,正确的是()A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油至多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油至少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本大题共4小题每小题5分,共20分)11.掷一枚质地均匀的正方形骰子,骰子的六面分别标有1到6的点数,那么掷两次的点数之和等于5的概率是___________12.函数y x 2=-的定义域为:_x 3x 2≥-≠且________13.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①2log 164=,②5log 255=,③21log 12=-.其中正确的是_________.14.如图,在△ABC 中,∠ACB=90°,AB=9,co=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E,则点A、E 之间的距离为______.三、计算题(本大题共3小题,每小题8分,满分24分)15.分解因式:(x ﹣8)(x+2)+6x=_______________________.16.观察下列等式:①sin30°=12,cos60°=12;②sin45°=2,cos45°=2;③sin60°=32,cos30°=32.(1)根据上述规律,计算sin 2α+sin 2(90°-α)=.(2)计算:sin 21°+sin 22°+sin 23°+…+sin 289°.17.如图,点C 在⊙O 上,连接CO 并延长交弦AB 于点D , =AC BC,连接AC 、OB ,若CD=40,AC=(1)求弦AB 的长;(2)求sin ∠ABO 的值.四、解答题(本大题共6小题,共66分)18.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图(图1)和扇形统计图(图2);(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史?(3)若该校共有学生540人,请估算全校有多少学生选修篮球课?19.某校计划在暑假两个月内对现有的教学楼进行加固改造,经发现,甲、乙两个工程队都有能力承包这个项目,已知甲队单独完成工程所需要的时间是乙队的2倍,甲、乙两队合作12天可以完成工程的23;甲队每天的工作费用为4500元,乙队每天的工作费用为10000元,根据以上信息,从按期完工和节约资金的角度考虑,学校应选择哪个工程队?应付工程队费用多少元?20.图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)图①中△MON 的面积=________;(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD 的面积等于(1)中△MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 的面积没有剩余(在图②、图③中画出的图形没有能是全等形)21.某大型购物商场在一楼和二楼之间安装自动扶梯AC ,截面如图所示,一楼和二楼地面平行(即AB 所在的直线与CD 平行),层高AD 为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时没有至于碰头,A 、B 之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时没有碰头,那么A 、B 之间的距离至少要多少米?(到0.1米)(2)如果自动扶梯改为由AE 、EF 、FC 三段组成(如图中虚线所示),中间段EF 为平台(即EF ∥DC ),AE 段和FC 段的坡度i=1:2,求平台EF 的长度.(到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.直线y=-3x+3与x 轴、y 轴分别交于A、B 两点,点A 关于直线x=-1的对称点为点C.(1)求点C 的坐标;(2)若抛物线23y mx nx m =+-(m≠0)A、B、C 三点,求抛物线的表达式;(3)若抛物线23y ax bx =++(a≠0)A,B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求a 的取值范围.。
2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)
吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为 5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=2,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×=t , ∴CD=AC ﹣AD=2﹣t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。
2024-2025学年吉林省长春市南关区东北师大附中明珠学校九年级(上)期初数学试卷+答案解析
2024-2025学年吉林省长春市南关区东北师大附中明珠学校九年级(上)期初数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在平面直角坐标系中,若点A坐标为,且,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.人体内一种细胞的直径约为,数据用科学记数法表示为()A. B. C. D.3.如图,,,,,则EF的长为()A.5B.C.D.4.已知一次函数的图象如图所示,则m、n的取值范围是()A.,B.,C.,D.,5.已知点,是反比例函数图象上的两点,若,则有()A. B. C. D.6.根据图象,可得关于x的不等式的解集是()A. B. C. D.7.如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,,则下列结论错误的是()A.B.C.D.8.如图,在平面直角坐标系中,点A在反比例函数的图象上,过点A作轴,与反比例函数的图象交于点B,点C为y轴上一点,连结AC、BC,若的面积为4,则k的值为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
9.若分式有意义,则实数x的取值范围是______.10.关于x的一元二次方程没有实数根是常数,则c的取值范围是______.11.若点与点关于y轴对称,则______.12.如图,线段CD两个端点的坐标分别为、,以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为,则点A的坐标为______.13.如图,已知,CD和BE相交于点O,::25,则______.14.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴正半轴上,点A在点B的左侧,直线经过点和点P,且,将直线沿y轴向下平移得到,若点P落在矩形ABCD的内部不含边界,则b的取值范围是______.三、解答题:本题共10小题,共78分。
解答应写出文字说明,证明过程或演算步骤。
【中考数学】2023-2024学年吉林省吉林市质量检测仿真模拟卷2套(含解析)
2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(一模)一、选一选:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为()A.5tan40°B.5cos40°C.5sin40°D.°5cos 40 2.在△ABC 中,∠C=90°,sinA=32,则co 的值为()A.1B.2 C.2D.123.对于函数y =5x 2,下列结论正确的是()A.y 随x 的增大而增大B.图象开口向下C.图象关于y 轴对称D.无论x 取何值,y 的值总是正的4.如图,D 、E 分别是AB 、AC 的中点,则S △ADE :S △ABC =()A.1:2B.1:3C.1:4D.2:35.在△ABC 中,∠A ,∠B 都是锐角,tanA =1,si =2,你认为△ABC 最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形6.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A.a b c d >>>B.a b d c >>>C.b a c d>>> D.b a d c>>>7.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为()A.1B.2C.3D.138.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,4cos 5A =,则下列结论中:①DE=3cm ;②EB=1cm ;③215ABCD S cm =菱形.正确的个数为()A.0个B.1个C.2个D.3个二、填空:(共18分,每小题3分)9.若22(2)32my m x x -=++-是二次函数,则m 的值是________.10.已知点A (–3,y 1),B (–1,y 2),C (2,y 3)在抛物线y=23x 2上,则y 1,y 2,y 3的大小关系是__________(用“<”连接).11.△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.12.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.13.如果某人沿坡度i=4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.14.已知在△ABC中,BC=6,AC=6A=30°,则AB的长是________.三、解答题:(共78分)15.计算:(1)2cos60°﹣(2009﹣π)0+tan45°.(2)2sin60°﹣3tan30°+2sin45°.16.如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似,将△OAB放大,使得放大后的△OA1B1,与△OAB对应线段的比为2:1,画出△OA1B1,(所画△OA1B1与△OAB在原点两侧);(2)直接写出点A1、B1的坐标_____;(3)直接写出tan∠OA1B1.17.如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角α和坝底宽AD .(结果保留根号)18.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3(1)求证:BN =DN ;(2)求△ABC 的周长.19.如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式;(2)连结OC ,求出AOC ∆的面积.20.如图,在矩形ABCD中,DE⊥AC于E,cos∠ADE=35,AB=3.(1)求AD的值;(2)直接写出S△DEC的值是_____.21.如图,在△ABC中,AD是BC边上的高,ta=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=34,直接写出AD的长是_____.22.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图11①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图10②).若已知CD为10米,请求出雕塑AB的高度.(结果到0.13.73)23.在矩形ABCD 中,AD =3,CD =4,点E 在边CD 上,且DE =1.(1)感知:如图①,连接AE ,过点E 作EF AE ⊥,交BC 于点F ,连接AF ,易证:ADE ECF ≅ (没有需要证明);(2)探究:如图②,点P 在矩形ABCD 的边AD 上(点P 没有与点A 、D 重合),连接PE ,过点E 作EF PE ⊥,交BC 于点F ,连接PF .求证:PDE ECF 和∆∆相似;(3)应用:如图③,若EF 交AB 边于点F ,EF PE ⊥,其他条件没有变,且PEF 的面积是6,则AP 的长为____.24.如图,在四边形ABCD 中,AD//BC ,090C ∠=,BC=4,DC=3,AD=6.动点P 从点D 出发,沿射线DA 的方向,在射线DA 上以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P 、Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t(秒).(1)设BPQ ∆的面积为s ,直接写出s 与t 之间的函数关系式是____________(没有写取值范围).(2)当B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时t 的值.(3)当线段PQ 与线段AB 相交于点O ,且2OA=OB 时,直接写出tan BQP ∠=_____________.(4)是否存在时刻t ,使得PQ BD ⊥若存在,求出t 的值;若没有存在,请说明理由.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(一模)一、选一选:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为()A.5tan40°B.5cos40°C.5sin40°D.°5cos 40【正确答案】B【详解】∵在Rt △ABC 中,∠C=90°,∴co=BCAB,∵AB=5,∠B=40°,∴BC=AB·co=5cos40°.故选B.2.在△ABC 中,∠C=90°,sinA=2,则co 的值为()A.1B.32 C.22D.12【正确答案】B【分析】先根据sinA=32得到∠A 的度数,即可得到∠B 的度数,再根据角的锐角三角函数值即可得到结果.【详解】解:∵sinA=32∴∠A=60°∵∠C=90°∴∠B=30°∴co=2故选B .本题是角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选一选、填空题形式出现,属于基础题,难度没有大.3.对于函数y =5x 2,下列结论正确的是()A.y 随x 的增大而增大B.图象开口向下C.图象关于y 轴对称D.无论x 取何值,y 的值总是正的【正确答案】C【分析】根据原点的二次函数的性质一一判定即可【详解】∵在函数25y x =中,5000a b c ,,=>==,∴该函数的开口向上,对称轴是y 轴,顶点是原点,∴该函数在y 轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大,且该函数的最小值为0.综上所述,上述结论中只有C 是正确的,其余三个结论都是错误的.故选C .本题考查了y =ax 2图象的性质,解题的关键是熟练掌握二次函数图象的性质.4.如图,D 、E 分别是AB 、AC 的中点,则S △ADE :S △ABC =()A.1:2B.1:3C.1:4D.2:3【正确答案】C【分析】根据三角形中位线定理可求得相似比,再根据相似三角形的面积比等于相似比的平方即可得到答案.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是三角形的中位线,∴DE :BC =1:2,∴S △ADE :S △ABC =1:4.故选C .主要考查了中位线定理和相似三角形的性质.要掌握:中位线平行且等于底边的一半;相似三角形的面积比等于相似比的平方.5.在△ABC 中,∠A ,∠B 都是锐角,tanA =1,si =22,你认为△ABC 最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形【正确答案】B【详解】试题分析:∵△ABC 中,tanA=1,si=22,∴∠A=45°,∠B=45°,∴△ABC 是等腰直角三角形.故选B .考点:角的三角函数值.6.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A.a b c d >>>B.a b d c >>>C.b a c d>>> D.b a d c>>>【正确答案】A【详解】由二次函数中,“当二次项系数为正时,图象开口向上,当二次项系数为负时,图象开口向下”“二次项系数的值越大,图象的开口越小”分析可得:a b c d >>>.故选A.点睛:(1)二次函数2 (0)y ax a =≠的图象的开口方向由“a 的符号”确定,当0a >时,图象的开口向上,当0a <时,图象的开口向下;(2)二次函数2 (0)y ax a =≠的图象的开口大小由a 的大小确定,当a 越大时,图象的开口越小.7.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为()A.1B.2C.D.1【正确答案】A【分析】根据直角三角形的性质求出AB ,根据三角形中位线定理计算即可.【详解】解:∵在Rt △ABC 中,∠C =90°,∠A =30°,∴AB =2BC =2又∵点D 、E 分别是AC 、BC 的中点,∴DE 是△ACB 的中位线,∴DE =12AB =1故选:A本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,4cos 5A =,则下列结论中:①DE=3cm ;②EB=1cm ;③215ABCD S cm =菱形.正确的个数为()A.0个B.1个C.2个D.3个【正确答案】D 【详解】∵四边形ABCD 是菱形,其周长=20cm ,∴AB=AD=5cm ,∵DE ⊥AB 于点E ,∴∠AED=90°,∴cosA=45AE AD =,∴AE=4cm ,∴BE=AB-AE=1cm ,22543-=cm ,∴S 菱形ABCD=AB·DE=5×3=15cm 2.综上所述,题中所给三个结论都是正确的.故选D.二、填空:(共18分,每小题3分)9.若22(2)32my m x x -=++-是二次函数,则m 的值是________.【正确答案】2【分析】根据二次函数的定义求解即可.【详解】由题意,得m 2﹣2=2,且m+2≠0,解得m=2,故答案为2.本题考查了二次函数的定义,利用二次函数的定义是解题关键.10.已知点A (–3,y 1),B (–1,y 2),C (2,y 3)在抛物线y=23x 2上,则y 1,y 2,y 3的大小关系是__________(用“<”连接).【正确答案】y 2<y 3<y 1【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)在抛物线y=23x2,∴y1=23×(﹣3)2=6,y2=23×(﹣1)2=23,y3=23×22=8233.<83<6,∴y2<y3<y1.故答案为y2<y3<y1.点睛:本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.11.△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.【正确答案】7 5【详解】∵在△ABC中,∠C=90°,4 tan3 A=,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sin A=4455BC kAB k==,cosA=3355AC kAB k==,∴sin A+cos A=437 555 +=.故7 512.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.【正确答案】35°【详解】∵四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,∴PE 是△ABD 的中位线,PF 是△BDC 的中位线,∴PE=12AD ,PF=12BC ,又∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=35°.故答案为35°.13.如果某人沿坡度i =4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.【正确答案】30【详解】解:如下图,AB 代表斜坡,AC 代表水平面,则由题意可知:AB=50,BC :AC=3:4,∴可设BC=3x ,则AC=4x ,∴在Rt △ABC 中,由勾股定理可得:222(3)(4)50x x +=,解得:121010x x ==-,(没有合题意,舍去),∴BC=30.即他所在的位置比原来升高了30米.故答案为30.14.已知在△ABC 中,BC=6,AC=6A=30°,则AB 的长是________.【正确答案】12或6【详解】根据题意画出图形如下图所示,则由题意可知:图中,AC=,CB 1=CB 2=6,∠A=30°,过点C 作CD ⊥AB 于点D ,∴∠CDA=∠CDB 2=90°,∵AC=,∠A=30°,CB 1=CB 2,∴CD=9=,DB 1=DB 2,∴AB=AD-DB1=9-3=6或AB=AD+DB2=9+3=12.故6或12.点睛:本题的解题要点是:根据题意画出图形时,需注意∠ABC可能是钝角,也可能是锐角,因此需分这两种情况分别进行讨论解答,解题时没有能忽略了其中任何一种情况.三、解答题:(共78分)15.计算:(1)2cos60°﹣(2009﹣π)0+tan45°.(2)2sin60°﹣3tan30°+2sin45°.【正确答案】(1)1;(2)0.【详解】试题分析:(1)直接利用角的三角函数值以及零指数幂的性质化简得出答案;(2)直接利用角的三角函数值化简代入得出答案.试题解析:解:(1)原式=2×12﹣1+1=1;(2)原式=2×32﹣3×33+2×22﹣=0.16.如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似,将△OAB放大,使得放大后的△OA1B1,与△OAB对应线段的比为2:1,画出△OA1B1,(所画△OA1B1与△OAB在原点两侧);(2)直接写出点A1、B1的坐标_____;(3)直接写出tan∠OA1B1.【正确答案】(1)答案见解析;(2)(4,0),(2,﹣4);(3)2.【详解】试题分析:(1)根据位似变换的定义作图即可;(2)由图形即可出点的坐标;(3)根据正切函数的定义可得.试题解析:解:(1)如图,△OA 1B 1即为所求;(2)由图可知,A 1、B 1的坐标为(4,0)和(2,﹣4);故答案为(4,0)和(2,﹣4);(3)如图,tan ∠OA 1B 1=11B C A C =42=2.点睛:本题主要考查作图﹣位似变换,解题的关键是熟练掌握位似变换的定义及性质.17.如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角α和坝底宽AD .(结果保留根号)【正确答案】AD =7.53+【分析】在Rt CED 中,已知铅直高度以及坡度比,可求出坡角α、DE 的长;过B 作BF AD ⊥于F ,在Rt ABF 中,根据铅直高度和坡长,可求出AF 的长,即可求出AD AF BC DE =++.【详解】解:过B 作BF AD ⊥于F .在Rt ABF 中,5AB =,4BF CE ==.3AF ∴=.在Rt CED 中,tan CE i DE α===.30α∴∠=︒且tan CE DE α==3 4.57.5AD AF FE ED ∴=++=+++答:坡角α等于30°,坝底宽AD 为7.5+.此题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是作“两高”构造出直角三角形和矩形,是解有关梯形问题时常作的辅助线.18.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3(1)求证:BN =DN ;(2)求△ABC 的周长.【正确答案】(1)见解析,(2)41【分析】(1)证明△ABN ≌△ADN ,即可得出结论.(2)先判断MN 是△BDC 的中位线,从而得出CD ,由(1)可得AD =AB =10,从而计算周长即可.【详解】(1)证明:∵BN ⊥AN 于点N ,∴ANB AND ∠=∠,在△ABN 和△ADN 中,∵12AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ).∴BN =DN .(2)∵△ABN ≌△ADN ,∴AD =AB =10,DN =.又∵点M 是BC 中点,∴MN 是△BDC 的中位线.∴CD =2MN =6.∴△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.19.如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式;(2)连结OC ,求出AOC ∆的面积.【正确答案】(1)2y x =;(2)4AOC S =V 【详解】试题分析:(1)将点B 的坐标代入2y ax =中解出a 的值即可得到抛物线的解析式;(2)由(1)中所得抛物线的解析式和直线的解析式组合构成方程组,解方程组即可求得点C 的坐标,点A 的坐标即可求得△AOC 的面积.试题解析:(1)把点B 的坐标(1,1)代入2y ax =得:1a =,∴抛物线的解析式为:2y x =;(2)由22y x y x ⎧=⎨=-+⎩解得:1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,∵点C 在第二象限,∴点C 的坐标为(2 4)-,,∵点A 的坐标为(2,0),∴OA=2,∴S △AOC =12OA×4=4.20.如图,在矩形ABCD 中,DE ⊥AC 于E ,cos ∠ADE=35,AB=3.(1)求AD 的值;(2)直接写出S △DEC 的值是_____.【正确答案】(1)4;(2)5425.【详解】试题分析:(1)首先证明∠ADE =∠ACD ,可得cos ∠ACD =cos ∠ADE =35=CD AC ,由此即可求出AC ,再利用勾股定理求出AD 即可;(2)根据cos ∠DCE =EC CD =35,求出EC ,再利用勾股定理求出DE ,即可解决问题;试题解析:解:(1)∵四边形ABCD 是矩形,∴AB =CD =3,∠ADC =90°.∵DE ⊥AC ,∴∠ADE +∠CDE =90°,∠CDE +∠DCE =90°,∴∠ADE =∠ACD ,∴cos ∠ACD =cos ∠ADE =35=CD AC,∴AC =5,AD.(2)∵cos ∠DCE =EC CD =35,∴CE =95,DE=125,∴S △DEC =12×DE ×EC =12×125×95=5425故答案为5425.点睛:本题考查了矩形的性质、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,在△ABC 中,AD 是BC 边上的高,ta=cos ∠DAC .(1)求证:AC=BD ;(2)若sinC=1213,BC=34,直接写出AD 的长是_____.【正确答案】(1)证明见解析;(2)44225.【详解】试题分析:(1)根据锐角三角函数的定义,即可求出答案.(2)设AC =BD =x ,由于1213CD AC =,从而列出方程即可求出x .试题解析:解:(1)由题意可知:ta=cos ∠DAC ,∴AD AD BD AC=,∴BD =AC ;(2)设AC =BD =x ,∴CD =BC ﹣BD =34﹣x .∵sin C =1213,∴CD AC =1213,∴34x x -=1213,解得:x =44225.故答案为44225.22.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图11①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图10②).若已知CD 为10米,请求出雕塑AB 的高度.(结果到0.1.73)【正确答案】雕塑AB的高度约为6.8米【分析】过点C作CE⊥AB于E,根据题目已知条件可以求出AC=5,利用解直角三角形可以求出AE和CE的长度,从而进一步求出BE,即可求得AB=AE+BE.【详解】解:如图,过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=90°.∵CD=10,∴AC=12CD=5.在Rt△ACE中,AE=AC•sin∠ACE=5•sin30°=5 2,CE=AC•cos∠ACE=5•cos30°=532.在Rt△BCE中,∵∠BCE=45°,∴53 2,∴AB=AE+BE=52+532=523+1)≈6.8(米).所以,雕塑AB的高度约为6.8米.本题主要考查的是解直角三角形,掌握角的三角函数值以及解直角三角形的方法是解题的关键.23.在矩形ABCD 中,AD =3,CD =4,点E 在边CD 上,且DE =1.(1)感知:如图①,连接AE ,过点E 作EF AE ⊥,交BC 于点F ,连接AF ,易证:ADE ECF ≅ (没有需要证明);(2)探究:如图②,点P 在矩形ABCD 的边AD 上(点P 没有与点A 、D 重合),连接PE ,过点E 作EF PE ⊥,交BC 于点F ,连接PF .求证:PDE ECF 和∆∆相似;(3)应用:如图③,若EF 交AB 边于点F ,EF PE ⊥,其他条件没有变,且PEF 的面积是6,则AP 的长为____.【正确答案】(1)见解析;(2)证明见解析;(3)3-【分析】(1)由已知易证∠AED =∠EFC ,∠D =∠C =90°,由AD =3,CD =4DE =1可得AD =CE ,由此即可证得△AED ≌△ECF ;(2)由四边形ABCD 是矩形可得∠D =∠C =90°,∠PEF =90°可证得∠PED =∠EFC ,由此即可证得△PDE ∽△ECF ;(3)过点F 作FH ⊥CD 于点H ,易得四边形AFHD 是矩形,由此可得FH =AD =3,由(2)可得△PDE ∽△EHF ,由此已知条件可证得EF =3PE ,S △12PE ·EF =6,即可解得PE =2,由此在Rt △PDE 中解得PD AP =AD -PD =3-.【详解】(1)∵四边形ABCD 是矩形,EF ⊥AE ,∴∠C =∠D =∠AEF =90°,∴∠DAE +∠AED =90°,∠AED +∠CEF =90°,∴∠DAE =∠CEF ,∵CD =4,DE =1,AD =3,∴EC =CD -DE =3=AD ,∴△ADE ≌△ECF ;(2)同(1)可得:∠D =∠C ,∠DPE =∠CEF ,∴△PDE ∽△ECF ;(3)如图3,在矩形ABCD 中,过点F 作FH ⊥CD 于点H ,∴∠PHD =∠A =∠D =90°,∴四边形AFHD 是矩形,∴FH =AD =3,由(2)可得△PDE ∽△EHF ,∴PE DEEF FH=,∵DE =1,∴13PE EF =,即EF =3PE ,∵S △PEF =12PE ·EF =6,∴3PE 2=12,解得PE =2,∴在Rt △PDE 中,由勾股定理可得:PD =,∴AP =AD -PD =3.24.如图,在四边形ABCD 中,AD//BC ,090C ∠=,BC=4,DC=3,AD=6.动点P 从点D 出发,沿射线DA 的方向,在射线DA 上以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P 、Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t(秒).(1)设BPQ ∆的面积为s ,直接写出s 与t 之间的函数关系式是____________(没有写取值范围).(2)当B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时t 的值.(3)当线段PQ 与线段AB 相交于点O ,且2OA=OB 时,直接写出tan BQP ∠=_____________.(4)是否存在时刻t ,使得PQ BD ⊥若存在,求出t 的值;若没有存在,请说明理由.【正确答案】(1)362s t =-+;(2)43t =,78t =;(3)15tan 16BQP ∠=;(4)94t =【详解】试题分析:(1)由题意可得BQ=BC-CQ=4-t ,点P 到BC 的距离=CD=3,由此三角形的面积公式即可得到S 与t 之间的函数关系式;(2)过点P 作PH ⊥BC 于点H ,勾股定理和已知条件把BP 2、BQ 2、PQ 2用含“t ”的代数式表达出来,然后分BP=BQ 、BP=PQ 、BQ=PQ 三种情况列出方程,解方程得到对应的t 的值,再题中的条件检验即可得到符合要求的t 的值;(3)如图2,过点P 作PM ⊥BC 交CB 的延长线于点M ,易证得四边形PMCD 是矩形,由此可得PM=CD=3,CM=PD=2t ,AD=6,BC=4,可得PA=2t-6,BQ=4-t ,MQ=CM-CQ=t ,由AD ∥BC 可得△OAP ∽△OBQ ,2OA=OB 即可求得t 的值,从而可由tan ∠BQP=PM MQ求得其值;(4)如图3,过点D 作DM ∥PQ 交BC 的延长线于点M ,则当∠BDM=90°时,PQ ⊥BD ,即当BM 2=DM 2+BD 2时,PQ ⊥BD ,由此已知条件把DM 2、BM 2和BD 2用含“t ”的式子表达出来,列出方程就可得解得t 的值.试题解析:(1)由题意可得BQ=BC-CQ=4-t ,点P 到BC 的距离=CD=3,∴S △PBQ=12BQ×3=362t -+;(2)如下图,过点P 作PH ⊥BC 于点H ,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD ∥BC ,∴∠CDP=90°,∴四边形PHCD 是矩形,∴PH=CD=3,HC=PD=2t ,∵CQ=t ,BC=4,∴HQ=CH-CQ=t ,BH=BC-CH=4-2t ,BQ=4-t ,∴BQ 2=2(4)t -,BP 2=22(42)3t -+,PQ 2=223t +,由BQ 2=BP 2可得:22(4)(42)9t t -=-+,解得:无解;由BQ 2=PQ 2可得:22(4)9t t -=+,解得:78t =;由BP 2=PQ 2可得:22(42)3t -+223t =+,解得:43t =或4t =,∵当4t=时,BQ=4-4=0,没有符合题意,∴综上所述,78t=或43t=;(3)如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,12 PA AOBQ BO==,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴26142tt-=-,解得:65t=,∴MQ=65 t=,又∵PM=3,∠PMQ=90°,∴tan∠BPQ=16153516 PMMQ:==;(4)如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD ∥BC ,DM ∥PQ ,∴四边形PQMD 是平行四边形,∴QM=PD=2t ,∵QC=t,∴CM=QM-QC=t ,∵∠BCD=∠MCD=90°,∴BD 2=BC 2+DC 2=25,DM 2=DC 2+CM 2=9+t 2,∵BM2=(BC+CM)2=(4+t)2,∴由BM 2=BD 2+DM 2可得:22(4)925t t +=++,解得:94t =,∴当94t =时,∠BDM=90°,即当94t =时,PQ ⊥BD.点睛:(1)解本题第2小题的要点是:通过作PH ⊥BC 于点H ,勾股定理和已知条件把BP 2、BQ 2、PQ 2用含“t ”的代数式表达出来,这样分BP=BQ 、BP=PQ 、BQ=PQ 三种情况列出方程就能求得对应的“t ”的值了;(2)解本题第4小题的要点是:过点D 作DM ∥PQ ,只要DM ⊥BD 即可得到PQ ⊥DM ,这样由已知条件利用勾股定理的逆定理在△BDM 中由BM 2=BD 2+DM 2建立关于t 的方程,即可求得对应的t 的值了.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(二模)一、选一选(本大题共10题,每题3分,共30分)1.的相反数是【】A.B.22C. D.22-2.下列计算正确的是()A.a+a=2a 2B.a 2•a=2a 3C.(﹣ab )2=ab 2D.(2a )2÷a=4a3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3 cm ,4 cm ,8 cmB.8 cm ,7 cm ,15 cmC.13 cm ,12 cm ,20 cmD.5 cm ,5 cm ,11 cm4.我市某中学举办了以“阳光少年,我们是好伙伴”为主题的演讲比赛,有9名同学参加了决赛,他们的决赛成绩各没有相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.平均数B.众数C.中位数D.方差5.如图,正三棱柱的主视图为().A. B. C. D.6.二次函数2y ax bx c =++的图象如图,且,OA OC =则()A.1ac b +=B.1ab c +=C.1bc a+= D.以上都没有是7.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于()A.73°B.56°C.68°D.146°8.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则BFEF的值是()A.1-B.2C.1D.9.某经销商一批电话手表,个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(本大题共10题,每题2分,共20分)11.化简2211m m m m÷--的结果是__________.12.我国南海海域的面积约为,2㎞该面积用科学记数法应表示为_______2㎞.13.1x +有意义的x 的取值范围是.14.若n 边形的内角和是它的外角和的2倍,则n =_______.15.已知x 2+x ﹣5=0,则代数式(x ﹣1)2﹣x (x ﹣3)+(x+2)(x ﹣2)的值为____.16.如图,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若2EF =,则菱形ABCD 的周长是__.17.如图,OP 平分AOB ∠,15AOP ∠=︒,//PC OA ,4PC =,PD OA ⊥,垂足为D ,则PD =________.18.已知⊙O 的半径为1,弦AB=32,则∠BAC 的度数为___.19.如图,为保护门源百里油菜花海,由“芬芳浴”游客A 处修建通往百米观景长廊BC 的两条栈道AB ,AC ,若∠B=56°,∠C=45°,则游客A 到观景长廊BC 的距离AD 的长约为_____米.(sin56°≈0.8,tan56°≈1.5)20.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且45EDF ∠=︒,将DAE ∆绕点D 逆时针旋转90︒,得到DCM ∆.若1AE =,则EF 的长为____.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21.计算:11()2sin 30(3)2π--+︒+-︒22.已知实数a 、b 满足(a+2)2=0,则a+b 的值为_____.23.如图,函数y x m =+的图象与反比例函数ky x=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为()2,1.(1)求m 及k 的值;(2)求点C 的坐标,并图象写出没有等式组0kx m x<+≤的解集.24.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了问卷,并根据收集到的信息进行了统计,绘制了下面两幅尚没有完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;(2)若该校共有学生900人,请根据上述结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.26.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,23AD BD =.求BE 的长.27.如图,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,△MBC 是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 AC .(1)求过A ,B ,E 三点的抛物线的解析式;(2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得△ABP 的面积等于定值5?若存在,请求出所有的点P 的坐标;若没有存在,请说明理由.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(二模)一、选一选(本大题共10题,每题3分,共30分)1.的相反数是【】A. B.2 C. D.2-【正确答案】C【详解】相反数的定义是:如果两个数只有符号没有同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.的相反数是.故选C.2.下列计算正确的是()A.a+a=2a2B.a2•a=2a3C.(﹣ab)2=ab2D.(2a)2÷a=4a 【正确答案】D【详解】解:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.故选D.3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3 cm,4 cm,8 cmB.8 cm,7 cm,15 cmC.13 cm,12 cm,20 cmD.5 cm,5 cm,11 cm【正确答案】C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、3+4<8,没有能组成三角形,没有符合题意;B、8+7=15,没有能组成三角形,没有符合题意;C、13+12>20,能够组成三角形,符合题意;D、5+5<11,没有能组成三角形,没有符合题意.故选:C.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.我市某中学举办了以“阳光少年,我们是好伙伴”为主题的演讲比赛,有9名同学参加了决赛,他们的决赛成绩各没有相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.平均数B.众数C.中位数D.方差【正确答案】C【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有9个人,且他们的分数互没有相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:C .此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.如图,正三棱柱的主视图为().A . B. C. D.【正确答案】B【详解】试题分析:主视图是从物体的前面往后看到的平面图形,正三棱柱的主视图是矩形,中间有竖着的实线,故选B .考点:几何体的三视图.6.二次函数2y ax bx c =++的图象如图,且,OA OC =则()A.1ac b+= B.1ab c += C.1bc a += D.以上都没有是【正确答案】A 【分析】根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC=∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b+=故选A本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决.7.将一张长方形纸片折叠成如图所示的形状,则∠ABC 等于()A.73°B.56°C.68°D.146°【正确答案】A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=12∠CBE,可得出∠ABC的度数.【详解】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE=12∠CBE=73°.故选:A考点:平行线的性质.8.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则BFEF的值是()A.1-B.2+C.1+D.【正确答案】C【详解】解:作FG⊥AB于点G,由AE∥FG,得BF BG EF GA=,Rt△BGF≌Rt△BCF,再由BC求解BF BGEF GA =1=.故选C .考点:1、平行线分线段成比例,2、全等三角形及角平分线9.某经销商一批电话手表,个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【正确答案】C 【详解】试题分析:根据题意设出未知数,列出相应的没有等式,从而可以解答本题.设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104∴这批电话手表至少有105块考点:一元没有等式的应用10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt△ABC,使∠BAC=90°,设点B 的横坐标为x,设点C 的纵坐标为y,能表示y 与x 的函数关系的图象大致是()A. B. C. D.。
2016年吉林省长春市中考数学模拟试卷(四)
2016年吉林省长春市中考数学模拟试卷(四)一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2007•莱芜)的绝对值是()A.B. C.D.2.(3分)(2016•定陶县一模)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)(2016•长春模拟)2015年9月20日,吉图珺高铁正式开通运营,使长春至军春通勤时间缩短至3小时左右,项目总投资416亿元,416亿这个数用科学记数法表示为()A.416×108B.41.6×109C.4.16×1010 D.4.16×10114.(3分)(2016•长春模拟)不等式x﹣1≥1的解集在数轴上表示为()A.B.C.D.5.(3分)(2015•青海)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.166.(3分)(2016•长春模拟)下列计算正确的是()A.a6÷a3=a2B.3a2•2a=6a3C.(3a)2=3a2D.(a+b)2=a2+b27.(3分)(2016•长春模拟)如图,以BC为直径的半圆⊙O与△ABC的边AB、AC分别相交于点D、E.若∠A=80°,BC=4,则图中阴影部分图形的面积和为()A.B.C.D.8.(3分)(2016•长春模拟)在平面直角坐标系xOy中,函数y=(k1>0,x>0)、函数y=(k2<0,x<0)的图象分别经过▱OABC的顶点A、C,点B在y轴正半轴上,AD⊥x 轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为()A.4:9 B.2:3 C.3:2 D.9:4二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2016•长春模拟)购买单价为a元的牛奶3盒,单价为b元的面包4个共需元(用含有a、b的代数式表示).10.(3分)(2016•长春模拟)因式分解:6x3y﹣12xy2+3xy=.11.(3分)(2016•长春模拟)如图,AB∥CD,∠A=41°,∠C=32°,则∠AEC的大小为度.12.(3分)(2016•长春模拟)如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;直线DF分别交l1、l2、l3于点D、E、F,若AB=3,BC=4,DE=2,则线段EF的长为.13.(3分)(2016•长春模拟)如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC 长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.14.(3分)(2016•长春模拟)点A(1,a)是抛物线y=x2上的点,以点A为一个顶点作边长为2的等边△ABC,使点B、C中至少有一个点在这条抛物线上,这样的△ABC共有个.三、解答题(共10小题,满分78分)15.(6分)(2016•长春模拟)先化简,再求值:(),其中x=﹣.16.(6分)(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?17.(6分)(2016•长春模拟)如图,面积为15的矩形纸片ABCD中,AD=5,在BC边上取点E,使AE=5,剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.(1)求证:四边形AEFD是菱形.(2)直接写出四边形AEFD的两条对角线的长.18.(7分)(2016•长春模拟)某中学为了了解初一年级学生数学学科的预习时间,在初一年级随机抽取了若干名学生进行调查,并把调查结果绘制成如下的不完整的统计表和统计(1)统计表中m的值为,并补全频数分布直方图;(2)预习时间的中位数落在第组;(3)估计该校初一年级400名学生中,数学学科预习时间少于10分钟的学生人数.19.(7分)(2016•长春模拟)双十一期间,某店铺推出的如图①所示的雪球夹销售火爆,其形状可近似的看成图②所示的图形,当雪球夹闭合时,测得∠AOB=28°,OA=OB=14厘米,求这个雪球夹制作的雪球的直径AB的长度.(精确到1厘米)【参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25.20.(7分)(2015•怀化)甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.21.(8分)(2016•长春模拟)感知:如图①,点B、A、C在同一条直线上,DB⊥BC,EC⊥BC,且∠DAE=90°,AD=AE,易证△DBA≌△ACE.探究:如图②,在△DBA和△ACE中,AD=AE,若∠DAE=α(0°<α<90°),∠BAC=2α,∠B=∠C=180°﹣α,求证:△DBA≌△ACE.应用:如图②,在△DBA和△ACE中,AD=AE,若∠DAE=70°,∠BAC=140°,∠B=∠C=110°,则当∠D=°时,∠DAC的度数是∠E的3倍.22.(9分)(2016•长春模拟)甲、乙两车分别从相距480千米的A、B两地出发,匀速相向行驶,乙车比甲车先出发1小时,从B地直达A地.甲车出发t小时两车相遇后甲车停留1小时,因有事按原路返回A地,两车同时到达A地.从甲车出发时开始计时,时间为x(时),甲、乙两车距B地的路程y(千米)与x(时)之间的函数关系如图所示(1)乙车的速度是千米/时,t=.(2)求甲车距B地路程y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出乙车出发多长时间两车相距30千米.23.(10分)(2016•长春模拟)如图,在矩形ABCD中,BC=1,将矩形ABCD绕点D逆时针旋转45°,得到矩形A′B′C′D′,点B′恰好落在BC的延长线上,边A′B′交边CD于点E.(1)求证:B′C=BC.(2)保持矩形A′B′C′D′不动,将矩形ABCD沿射线BB′方向以每秒1个单位的速度平移,设平移时间为t秒.①当矩形ABCD与矩形A′B′C′D′重叠部分为四边形时,求重叠部分的面积为S与t之间的函数关系式.②点A′关于AB的对称点记作点F,直接写出直线DF与矩形A′B′C′D′的边平行时t的值.24.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2016年吉林省长春市中考数学模拟试卷(四)参考答案一、选择题(共8小题,每小题3分,满分24分)1.A;2.B;3.C;4.A;5.C;6.B;7.C;8.D;二、填空题(共6小题,每小题3分,满分18分)9.(3a+4b);10.3xy(2x2-4y+1); 11.73;12.; 13.21;14.5;三、解答题(共10小题,满分78分)15.;16.;17.;18.11;3;19.;20.;21.35;22.60;3;23.;24.;。
长春市2016年中考数学模拟试卷解析
长春市2016年中考数学模拟试卷解析一、选择题(共8小题,每小题3分,满分24分)1.计算﹣5+1的结果为()A.﹣6B.﹣4C.4D.6【考点】有理数的加法.【分析】绝对值不相等的异号两数加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣5+1=﹣(5﹣1)=﹣4.故选:B.2.据统计,长春市主城区2015年上半年机动车数量突破1000000辆大关,1000000这个数用科学记数法表示为()A.1×107B.0.1×107C.1×106D.10×101【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1000000用科学记数法表示为1×106.故选:C.3.如图是由5个高和底面直径相等的圆柱体搭成的立体图形,这个立体图形的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:C.4.不等式x+5≥1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,x≥1﹣5,合并同类项得,x≥﹣4,在数轴上表示为:.故选B.5.下列方程没有实数根的是()A.x2﹣3x+4=0B.x2=2x C.2x2+3x﹣1=0D.x2+2x+1=0【考点】根的判别式.【分析】根据一元二次方程根的判别式△=b2﹣4ac判断即可.【解答】解:A、方程x2﹣3x+4=0中,△=(﹣3)2﹣4×1×4=﹣7<0,故此方程无实数根;B、由x2=2x得x2﹣2x=0,△=(﹣2)2﹣4×1×0=4>0,故此方程有两个不相等实数根;C、方程2x2+3x﹣1=0中,△=32﹣4×2×(﹣1)=17>0,故此方程有两个不相等实数根;D、方程x2+2x+1=0中,△=22﹣4×1×1=0,故此方程有两个相等实数根;故选:A.6.如图,在△ABC中,点D、E、F分别在边AC、AB、BC上,EF∥AC,DF∥AB,若∠B=45°,∠C=65°,则∠EFD的大小为()A.45°B.70°C.80°D.100°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠DFC和∠EFB,再根据平角等于180°列式计算即可得解.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°﹣∠EFB﹣∠DFC=180°﹣65°﹣45°=70°.故选B.7.如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25°,则∠AOC=()A.25°B.30°C.40°D.50°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据等弧所对的圆心角相等,得到∠AOD=∠AOC,再根据圆周角定理即可推出∠AOC=2∠B,通过计算即可推出结果.【解答】解:∵点A是弧CD的中点,∴,∴∠AOD=∠AOC=2∠B,∵∠B=25°,∴∠AOC=50°.故选D.8.如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C 为线段AB上任意一点(不与点A、B重合),CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE的中点,则四边形ODEF的周长为()A.4B.6C.8D.10【考点】一次函数图象上点的坐标特征;坐标与图形性质;矩形的判定与性质.【分析】设直线AB的解析式为y=kx+b,由A、B点的坐标利用待定系数法求出直线AB的解析式,由点C在直线AB上设出点C的坐标为(m,﹣m+2),由点C为线段DE的中点可找出点E的坐标,从而找出线段OD、DE的长度,利用ED ⊥OA,EF⊥y轴,BO⊥OA可得出∠O=∠F=∠ODE=90°,从而得出四边形ODEF为矩形,再根据矩形的周长公式即可得出结论.【解答】解:设直线AB的解析式为y=kx+b,将点A(4,0)、点B(0,2)代入y=kx+b中,得:,解得:.∴直线AB的解析式为y=﹣x+2.设点C的坐标为(m,﹣m+2)(0<m<4),则点E的坐标为(m,﹣m+4),∴OD=EF=m,CD=2﹣m,DE=4﹣m,∵ED⊥OA,EF⊥y轴,BO⊥OA,∴∠O=∠F=∠ODE=90°,∴四边形ODEF为矩形.=2×(OD+DE)=2×(m+4﹣m)=8.∴C矩形ODEF故选C.二、填空题(共6小题,每小题3分,满分18分)9.计算:÷=.【考点】二次根式的乘除法.【分析】根据二次根式的除法法则计算.【解答】解:计算:÷==.10.分解因式:a2﹣4=(a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).11.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(a+3b)元.【考点】列代数式.【分析】一个面包的单价加上3瓶饮料总价就是所需钱数.【解答】解:∵一个面包的价格为a元,3瓶饮料的总价为3a元∴购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(a+3b)元.故答案为(a+3b)元.12.如图,在平面直角坐标系中,▱ABCD的顶点A在函数y=的图象上,顶点B、C在y轴正半轴上(点B在点C的上方),若点D的坐标为(3,1),▱ABCD的面积为4,5,则k的值为7.5.【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】设A(3,t),利用平行四边形的面积公式得到3(t﹣1)=4.5,可解得t=2.5,于是得到A点坐标,然后把A点坐标代入y=中可计算出k的值.【解答】解:设A(3,t),∵▱ABCD的面积为4.5,∴3(t﹣1)=4.5,解得t=2.5,∴A点坐标为(3,2.5),把A(3,2.5)代入y=得k=3×2.5=7.5.故答案为7.5.13.如图,在△ABC和△ADE中,∠C=∠AED=90°,点E在线段AB上,AD∥CB,若AC=AE=2,BC=3,则DE的长为.【考点】相似三角形的判定与性质.【分析】直接证明△ACB∽△DEA,然后利用相似比可计算出DE的长.【解答】解:∵AD∥CB,∴∠B=∠DAE,而∠C=∠AED=90°,∴△ACB∽△DEA,∴AC:DE=BC:AE,即2:DE=3:2,∴DE=.故答案为.14.如图,在平面直角坐标系中,点P在第一象限,以P为顶点的抛物线经过原点,与x轴正半轴相交于点A,⊙P与y轴相切于点B,交抛物线交于点C、点D.若点A的坐标为(m,0),CD=n,则△PCD的周长为m+n(用含m、n的代数式表示).【考点】切线的性质;二次函数图象上点的坐标特征.【分析】过P作PE⊥OA于E,根据已知条件得到OE=OA=m,连接PB,根据切线的性质得到PB⊥OB,推出四边形PBOE是矩形,根据矩形的性质得到PB=OE=m,根据圆的性质得到PC=PD=PB=m,于是得到结论.【解答】解:过P作PE⊥OA于E,∵P为抛物线的顶点,∴OE=OA=m,连接PB,∵⊙P与y轴相切于点B,∴PB⊥OB,∴四边形PBOE是矩形,∴PB=OE=m,∴PC=PD=PB=m,∴△PCD的周长为=PC+PD+CD=m+n,故答案为:m+n.三、解答题(共10小题,满分78分)15.先化简,再求值:(3a+2)2﹣9a(a+1),其中a=.【考点】整式的混合运算—化简求值.【分析】先利用完全平方式和单项式乘以多项式将原式展开,再合并同类项,将a的值代入计算可得.【解答】解:原式=9a2+12a+4﹣9a2﹣9a=3a+4,当a=时,原式=3×+4=5.16.有甲、乙两个不透明的盒子,甲盒里有3张卡片,分别写有字母A、B、C;乙盒里有2张卡片,分别写有字母C、D,这些卡片除所标字母不同外其余均相同,先从甲盒中随机抽取1张卡片,再从乙盒中随机抽取1张卡片,请用画树状图(或列表)的方法.求抽取的两张卡片中都含有字母C的概率.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:如图所示:,一共有6种可能,抽取的两张卡片中都含有字母C的可能有1种,故抽取的两张卡片中都含有字母C的概率为:.17.学校计划选购甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书的册数比单独购买乙种图书要少10册,求甲、乙两种图书的单价.【考点】分式方程的应用.【分析】设乙种图书的单价为x元/册,则甲种图书的单价为1.5x元/册,根据册数=总价÷单价,结合用600元单独购买甲种图书的册数比单独购买乙种图书要少10册,可列出关于x的分式方程,解方程即可求出x的值,由此亦可得出甲种图书的单价.【解答】解:设乙种图书的单价为x元/册,则甲种图书的单价为1.5x元/册,依题意,得﹣=10,解得:x=20,或x=0(舍去).经检验,x=20是原方程的解且符合题意,所以甲种图书的单价为1.5×20=30(元).答:甲种图书的单价为30元/册,乙种图书的单价为20元/册.18.如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF.求证:CD=EF.【考点】三角形中位线定理;平行四边形的判定与性质.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,DE=BC,然后求出四边形DEFC是平行四边形,再根据平行四边形的对边相等证明即可.【解答】证明:∵D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∴四边形DEFC是平行四边形,∴CD=EF.19.如图,一艘货轮位于灯塔P北偏东53°方向,距离灯塔100海里的A处,另一艘客轮位于货轮正南方向,且在灯塔P南偏东45°方向的B处,求此时两艘轮船之间的距离AB.(结果精确到1海里)【参考数据:sin53°=0.799,cos53°=0.602,tan53°=1.327】【考点】解直角三角形的应用-方向角问题.【分析】通过解直角△ACP得到AC、PC的长度;然后结合等腰直角三角形的性质来求BC的长度,则易求AB=AC+BC.【解答】解:由题意,得∠A=53°,BC=PC.在直角△APC中,AC=100cos53°=100×0.602=60.2,BC=PC=100sin53°=100×0.799=79.9,所以AB=AC+BC=60.2+79.9=140.1≈140(海里).答:两艘轮船之间的距离AB约为140海里.20.近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m=100;(3)估计该校1800名学生中认为“影响很大”的学生人数.【考点】扇形统计图;用样本估计总体.【分析】(1)将“没有影响”的人数÷其占总人数百分比=总人数n即可;(2)用总人数减去“没有影响”和“影响不大”的人数可得“影响很低”的人数m;(3)将样本中“影响很大”的人数所占比例乘以该校总人数即可得.【解答】解:(1)n=40÷20%=200(人).答:n的值为200;(2)m=200﹣40﹣60=100;(3)1800×=900(人).答:该校1800名学生中认为“影响很大”的学生人数约为900人.故答案为:(2)100.21.十一期间,小明和小亮相约从长春出发到某市某游乐园游玩,小明乘私家车从长春出发1小时后,小亮乘“和谐号”动车从长春出发,先到某市火车站A,然后乘出租车去游乐园B(换车时间忽略不计),两人恰好同时到达游乐园,他们离开长春的距离y(千米)与小明乘车时间t(时)的函数图象如图所示.(1)求“和谐号”动车的速度.(2)当小亮到达某市火车站时,求小明距离游乐园的距离.(3)若小明乘私家车从长春到达游乐园的时间比原来要提前18分钟,则私家车速度应比原来增加多少?【考点】一次函数的应用.【分析】(1)根据速度=路程÷时间,可得出“和谐号”动车的速度;(2)根据距离=速度×时间可得出小亮乘“和谐号”动车的函数表达式,由图象交点横坐标为1.5可得出此时距离游乐园的距离,由该点的坐标可得出小明乘私家车的函数表达式,求出t=2时y的值,用216减去此时的y值即可得出结论;(3)先通过(2)中得出的小明乘私家车的函数表达式计算出小明到达游乐园的时间,在此时间上减去0.3小时(18分钟),再根据速度=路程÷时间得出提速后的速度,用此速度减去提速前的速度即可得出结论.【解答】解:(1)240÷(2﹣1)=240(千米/时).答:“和谐号”动车的速度为240千米/时.(2)由(1)知,小亮乘“和谐号”动车的函数表达式为y=240(t﹣1)=240t ﹣240(1≤t≤2),当t=1.5时,y=240×1.5﹣240=120.设小明乘私家车的函数表达式为y=kt,则有120=1.5k,解得:k=80,∴y=80t.当t=2时,y=80×2=160,216﹣160=56(千米).∴当小亮到达某市火车站时,小明距离游乐园的距离为56千米.(3)当y=216时,则有80t=216,解得:t=2.7.∵18分钟=0.3小时,∴2.7﹣0.3=2.4(小时),∴216÷2.4=90(千米/时),90﹣80=10(千米/时).答:私家车速度应比原来增加10千米/时.22.探究:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连结EF,求证:EF=BE+DF.应用:如图②,在四边形ABCD中,点E、F分别在BC、CD上,AB=AD,∠B+∠D=90°,∠EAF=∠BAD,若EF=3,BE=2,则DF=.【考点】全等三角形的判定与性质;正方形的性质;旋转的性质.【分析】(1)如图①中,把△ABE绕点A逆时针旋转90°得到△ADE′,只要证明△AFE≌△AFE′即可解决问题.(2)如图②中,将△ABE绕点A旋转到△ADE′位置连接E′F.,只要证明△FAE ≌△FAE′得EF=FE′,在RT△E′DF中利用勾股定理即可解决问题.【解答】(1)证明:如图①中,在正方形ABCD中,∵AB=AD,∠BAD=∠ADC=∠B=90°,把△ABE绕点A逆时针旋转90°得到△ADE′,∵∠ADF=∠ADE′=90°,∴点F、D、E′共线,∴∠E′AF=90°﹣45°=45°=∠EAF,在△AFE和△AFE′中,,∴△AFE≌△AFE′,∵EF=FE′=DE′+DF=DE+DF.(2)解:如图②中,因为AB=AD,所以可以将△ABE绕点A旋转到△ADE′位置,连接E′F.∵∠B+∠ADF=90°,∠B=∠E′DA,∴∠E′DF=∠E′DA+′ADF=90°,∵∠BAE+∠DAF=∠EAF,∠E′AD=∠BAE,∴∠E′AF=∠EAF,在△FAE和△FAE′中,,∴△FAE≌△FAE′,∴EF=FE′=3,在RT△E′DF中,∵∠E′DF=90°,E′F=3,DE′=BE=2,∴DF===.故答案为.23.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,D、E分别是边AB、BC 的中点,点P从点C出发,沿线段CD方向以每秒1个单位长度的速度运动,当点P与点D不重合时,以EP、ED为邻边作▱EDFP,设点P的运动时间为t(秒).(1)求AB长.(2)当∠DPF=∠PFD时,求t的值.(3)当点P在线段CD上时,设▱EDFP与△ABC重叠部分图形的面积为y(平方单位),求y与t之间的函数关系式.(4)连结AF,当△AFD的面积与△PDE的面积相等时,直接写出t的值.【考点】四边形综合题.【分析】(1)在RT△ABC中利用勾股定理即可解决问题.(2)如图1中,当∠DPF=∠PFD时,可以证明PE∥AB,PC=PD,由此即可解决问题.(3)分两种情形①当0≤t≤时,如图2中,作PM⊥DE存在为M,此时重叠部+S 分面积就是平行四边形PEDF的面积,②当<t<5时,如图3中,此时y=S△PHD.△PDE(4)两种情形①t=O时,△ADF与△PDE面积相等.②如图4中,当A、P、E共线时△ADF与△PDE面积相等,由DE∥AC得=,求出PC即可.【解答】解:(1)在△ABC中,∵∠ACB=90°,AC=2,BC=4,∴AB===10.(2)如图1中,∵四边形PEDF是平行四边形,∴PF∥DE,PE∥DF,∴∠DPF=∠PDE,∵∠ACB=90°,AD=DB,∴CD=DB=DA=5,∵CE=EB,∴DE⊥BC,∠CDE=∠EDB∵∠DPF=∠PFD,∴∠PED=∠BDE,∴PE∥DB,∵CE=EB,∴PC=PD=,∴t=.(3)①当0≤t≤时,如图2中,作PM⊥DE存在为M,∵PM∥CE,∴=,∴=,∴PM=(5﹣t),∴Y=DE•PM=•(5﹣t)=﹣2t+10.②当<t<5时,如图3中,∵PH∥AC,∴=,∴=,∴PH=(5﹣t),∴y=S △PHD +S △PDE =•PH•PM+(﹣2t+10)=t 2﹣5t+15,综上所述:y=.(4)①t=O 时,△ADF 与△PDE 面积相等.②如图4中,当A、P、E 共线时,∵AE∥DF,∴S △ADF =S △PDF =S △PED ,∵DE∥AC,∴==,∴PC=CD=,∴t=,∴t=0或时,△ADF 与△PDE 面积相等.24.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,1),直线AB∥x轴交抛物线于点B,点P是直线AB上一点(不与A、B重合),PQ∥y轴交抛物线于点Q,以PQ为斜边向左作等腰直角三角形PQM,设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)当线段PQ被x轴平分时,求m的值.(3)当等腰直角三角形PQM夹在x轴与直线AB之间的图形为轴对称三角形时,求m的取值范围.(4)直接写出当等腰直角三角形PQM的两条直角边与坐标轴有两个公共点时m 的取值范围.【考点】二次函数综合题.【分析】(1)将A 点坐标代入解析式直接求出a;(2)由P、Q 关于x 轴对称,且横坐标相同可设出Q 点坐标,代入抛物线解析式中,即可直接求出m 的值;(3)找到两个临界点:当Q 点刚好在x 轴上时;当M 点刚好在x 轴上时.算出这个两个临界状态时的m 值,即可确定符合要求的m 的取值范围;(4)等腰直角三角形PQM 的两条直角边与坐标轴有两个公共点,也就是y 轴同时与两直角边相交,所以只需算出M 点恰好在y 轴上的临界状态时的m 值即可.【解答】解:(1)把A(0,1)代入y=a(x﹣2)2﹣2中,得1=a(0﹣2)2﹣2,∴a=,∴y=(x﹣2)2﹣2,(2)设Q(m,﹣1),则﹣1=(m﹣2)2﹣2,∴m 1=2+,m 2=2﹣.(3)当点Q 落在x 轴上时,PQ=1,∴1﹣[(m﹣2)2﹣2]=1,∴m 1=2﹣,m 2=2+,∴当0<m≤2﹣或2﹣≤m≤2+或2+≤m<4,为轴对称三角形,(4)当M 点刚好在y 轴上时:|1﹣[(m﹣2)2﹣2]|=m,解得:m=或m=,∴0<m<或m>.。
2022——2023学年吉林省吉林市中考数学专项提升仿真模拟卷(二模三模)含答案
)
A.9
B.8
C.7
D.6
6.一个圆锥的侧面展开图是圆心角为 120°,半径为 3 的扇形,这个圆锥的底面圆的半径为(
)
A.
B.3
C.2
D.1
7.如图是由 n 个相同的小正方体组合成的一个几何体的三视图,则 n 的值为(
).
第 1页/总 50页
※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※ …○…………外…………○…………装…………○…………订…………○…………线…………○…………
第 5页/总 50页
※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※ …○…………外…………○…………装…………○…………订…………○…………线…………○…………
(1)求证: AD ∥ EC ; (2)若 AD 4 ,求线段 AE 的长. 23.2022 年 3 月 23 日,“天宫课堂”第二课在中国空间站开讲,翟志刚、王亚平、叶光富三名航 天员相互配合,为广大青少年再度带来一场“高能”的太空科普课,生动演示微重力环境下的“太 空冰雪、液桥演示、水油分离、太空抛物”等四个实验,深入浅出讲解实验现象背后的科学原理.我 们学校的全体学生也观看了这一节课.小杰的物理老师组织班级同学开展“我爱科学”,观看四 个实验后的感想.老师将四个实验的名称分别写在四张完全相同的卡片上,背面朝上,每位同 学随机选择其中一张,并向同伴对应实验的观看收获. (1)小杰抽到写有“太空抛物实验”卡片,并观后收获的概率为______; (2)通过列表或树状图,求出小杰和同桌小伟恰好都抽到写有“太空抛物实验”卡片,并观后收获 的概率. 24.某企业生产并某种产品,假设量与产量相等,如图中的折线 ABCD、线段 CD 分别表示该 产品每千克生产成本 y1(单位:元)价 y2(单位:元)与产量 x(单位:kg)之间的函数关系. (1)求线段 AB 所表示的 y1 与 x 之间的函数表达式. (2)当该产品产量为多少时,获得的利润?利润是多少?
2016年吉林省长春市中考数学模拟试卷(九)
2016年吉林省长春市中考数学模拟试卷(九)一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣的相反数是()A.B.﹣C.2 D.﹣22.(3分)下列图形中,是正方体表面展开图的是()A.B.C.D.3.(3分)2015年1﹣3月,全国网上商品零售额6310亿元,将6310用科学记数法表示应为()A.6.310×103B.63.10×102C.0.6310×104D.6.310×1044.(3分)不等式组的解集为()A.x≤2 B.x>﹣1 C.﹣1<x≤2 D.﹣1≤x≤25.(3分)如图,在平面直角坐标系中,直线y=﹣x+1上一点A关于x轴的对称点为B(2,m),则m的值为()A.﹣1 B.1 C.2 D.36.(3分)如图,在⊙O中,直径AB=5,弦BC=3,若点P为弧BC上任意一点,则AP的长不可能为()A.3 B.4 C.4.5 D.57.(3分)如图,在菱形ABCD中,E为边CD上一点,连结AE并延长,交BC的延长线于点F,若CE=1,DE=2,则CF长为()A.1 B.1.5 C.2 D.2.58.(3分)如图,在平面直角坐标系中,等腰直角三角形ABC的直角顶点A的坐标为(2,0),顶点B的坐标为(0,1),顶点C在第一象限,若函数y=(x>0)的图象经过点C,则k的值为()A.2 B.3 C.4 D.6二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:=10.(3分)若关于x的一元二次方程x2﹣4x+k﹣2=0有两个相等的实数根,则k的值为.11.(3分)如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°,若使直线b与直线a平行,则可将直线b绕着点A顺时针至少旋转度.12.(3分)如图,在△ABC中,∠C=90°,AC=6,BC=8.以点A为圆心,AC长为半径作圆弧交边AB于点D,则BD的长为.13.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠B=130°,则∠AOC的大小为.14.(3分)如图,在平面直角坐标系中,过抛物线y=a(x+1)2﹣2(x≤0,a为常数)的顶点A作AB⊥x轴于点B,过抛物线y=﹣a(x﹣1)2+2(x≥0,a为常数)的顶点C作CD ⊥x轴于点D,连结AD、BC.则四边形ABCD的面积为.三、解答题(共10小题,满分78分)15.(6分)先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.16.(6分)在一个不透明的袋子里装有四只标号分别为1,2,3,4的乒乓球,这些乒乓球除所标数字不同其余均相同.先从袋子里随机摸出一个乒乓球(不放回),再从袋子里随机摸出一个乒乓球,请用画树状图(或列表)的方法,求两次摸出乒乓球的标号是连续整数的概率.17.(6分)甲、乙两地之间的公路长120千米,一辆汽车从甲地匀速驶往乙地,比原计划晚出发24分钟,该车实际行驶的速度是原计划行驶的速度的1.25倍,结果按原计划时间到达乙地,求该车实际行驶速度.18.(7分)如图,在▱ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?请说明理由.19.(7分)如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH上,除D点外,其他顶点均在矩形EFGH的边上.AB=50cm,BC=40cm,∠BAE=55°,求EF的长.参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.43.20.(7分)为了解大学生参加公益活动的情况,几位同学设计了调查问卷,对几所大学的学生进行了随机调查,问卷如下:根据调查结果绘制出如下两幅不完整的统计图.请回答以下问题:(1)此次被调查的学生人数为人,扇形统计图中m的值为.(2)请补全条形统计图.(3)据统计,该市某大学有学生15000人,请估计这所大学2014﹣2015学年度第一学期参加过至少两次公益活动的人数.21.(8分)小明与小英同时从人们广场出发,沿同一路线骑自行车匀速前往净月潭公园,小明骑行20分钟后因事耽误一会儿,事后继续按原速骑行到达目的地.在小明和小英骑行过程中,二人骑行的路程y(千米)与小英的骑行时间x(分)之间的函数图象如图所示.(1)求小明比小英早到目的地的时间.(2)求图象中线段BC所对应的函数表达式.(3)直接写出在小明和小英所骑行的路程相差不超过1千米时x的取值范围.22.(9分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积;探索创新:(3)若△ABC三边的长分别为、、(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.23.(10分)如图,在△ABC中,AB=7,BC=4,∠B=45°,动点P、Q同时出发,点P 沿A﹣C﹣B运动,在边AC的速度为每秒1个单位长度,在边CB的速度为每秒个单位长度;点Q沿B﹣A﹣B以每秒2个单位长度的速度运动,其中一个动点到达终点时,另一个动点也停止运动,在运动过程中,过点P作AB的垂线与AB交于点D,以PD为边向由作正方形PDEF;过点Q作AB的垂线l.设正方形PDEF与△ABC重叠部分图形的面积为y(平方单位),运动时间为t(秒).(1)当点P运动点C时,PD的长度为.(2)求点D在直线l上时t的值.(3)求y与t之间的函数关系式.(4)在运动过程中,是否存在某一时刻t使得在直线上任取一点H,均有HD=HE?若存在,请直接写出t的值;若不存在,请说明理由.24.(12分)原型:如图①,在Rt△ABC中,∠ACB=90°,C是在直线l上的一点,AD⊥l,BE⊥l,垂足分别为D、E.易证△ACD∽△CBE.(不需证明)应用:点A、B在抛物线y=x2上,且OA⊥OB,连结AB与y轴交于点C,点C的坐标为(0,d).过点A、B分别作x轴的垂线,垂足为M、N,点M、N的坐标分别为(m,0)、(n,0).(1)当OA=OB时,如图②,m=,d=;当OA≠OB,如图③,m=时,d=.(2)若将抛物线“y=x2”换成“y=2x2”,其他条件不变,当OA=OB时,d=;当OA≠OB,m=1时,d=.探究:若将抛物线“y=x2”换成“y=ax2(a>0)”,其他条件不变,解答下列问题:(1)完成下列表格.(2)猜测d与a的关系,并证明其结论.拓展:如图④,点A、B在抛物线y=ax2(a>0)上,且OA⊥OB,连结AB与y轴关于点C,AB的延长线与x轴交于点D.AE⊥x轴,垂足为E,当AE=时,△AOE与△CDO 的面积之比为.2016年吉林省长春市中考数学模拟试卷(九)参考答案一、选择题(共8小题,每小题3分,满分24分)1.A;2.A;3.A;4.C;5.B;6.A;7.B;8.D;二、填空题(共6小题,每小题3分,满分18分)9.;10.6;11.20;12.4;13.100°;14.4;三、解答题(共10小题,满分78分)15.;16.;17.;18.;19.;20.200;13;21.;22.;23.4;24.1;1;1;;;;2;4:9;。
第一章有理数单元测试(新教材,提升卷)(原卷版)--七年级数学上册单元检测(人教版)
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm . 姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2 (1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值:①13x x −+−的最小值为 ;②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .。
长春市2016年中考数学模拟试卷(三)含答案解析(word版)
吉林省长春市2016年中考数学模拟试卷(三)(解析版)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若等式2□(﹣1)=3成立,则“□”内的运算符号是()A.+ B.﹣C.× D.÷【分析】根据有理数的运算法则计算即可求解.【解答】解:∵2﹣(﹣1)=2+1=3,∴若等式2□(﹣1)=3成立,则“□”内的运算符号是﹣.故选B.【点评】本题考查了有理数的运算,熟练掌握运算法则是解题的关键.2.2015年10月1日,某市旅游景点接待游客约有61500人次,数据61500用科学记数法表示为()A.6.15×104B.6.15×105C.61.5×103D.0.615×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:61500=6.15×104,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是某个几何体的三视图,该几何体是()A.正方体B.圆柱C.圆锥D.球【分析】首先根据俯视图将正方体淘汰掉,然后跟主视图和左视图将圆锥和球淘汰;【解答】解:∵俯视图是圆,∴排除A,∵主视图与左视图均是长方形,∴排除C、D故选B.【点评】此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.4.如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【分析】先分别解两个不等式得到x≤3和x<﹣1,然后利用数轴分别表示出x≤3和x<﹣1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤2得x≤3,解不等式3+x<2得x<﹣1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选C.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.5.把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是()A.75° B.105° C.110° D.120°【分析】根据DE∥BC得出∠E=∠ECB=45°,进而得出∠1=∠ECB+∠B即可.【解答】解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故选B【点评】此题考查平行线的性质,关键是根据DE∥BC得出∠E=∠ECB和三角形外角性质分析.6.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【分析】根据平行线分线段成比例得到比例式,代入数据即可得到结论.【解答】解:∵AD∥BE∥CF,∴,即:,∴DE=3,故选B.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出比例式是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.7.如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65° B.45° C.25° D.20°【分析】由OA⊥OB,利用圆周角定理,可求得∠C的度数,由三角形外角的性质,可求得∠ADB的度数,继而求得∠A的度数.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠C=∠AOB=45°,∠ADB=∠AOB﹣∠B=90°﹣25°=65°,∴∠A=∠ADB﹣∠C=20°.故选D.【点评】此题考查了圆周角定理以及三角形外角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,△ABO的面积是()A.B.C.2 D.3【分析】根据等腰三角形的性质解答即可.【解答】解:因为在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,可得y=,把y=代入y=﹣x+1,可得:x=﹣2,所以△ABO的面积=,故选B【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(共6小题,每小题3分,满分18分)9.计算:(2a)3a2=8a5.【分析】首先利用积的乘方运算化简,再利用同底数幂的乘法计算得出即可.【解答】解:(2a)3a2=8a3×a2=8a5.故答案为:8a5.【点评】此题主要考查了单项式乘以单项式,正确掌握积的乘方的计算法则是解题关键.10.一元二次方程x2﹣3x﹣1=0根的判别式△=13.【分析】根据判别式的定义计算b2﹣4ac的值即可.【解答】解:△=(﹣3)2﹣4×1×(﹣1)=13.故答案为13.【点评】本题考查了根的判别式:用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.如图,AB是⊙O的直径,点C在⊙O上,连接AC、BC,CD平分∠ACB交⊙O于点D,若⊙O的半径是4,则的长度是2π.【分析】根据圆周角定理得到∠ACB=90°,根据角平分线的定义求出∠ACD的度数,根据圆周角定理得到∠AOD=90°,根据弧长公式计算即可.【解答】解:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,则的长度是=2π.故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为7.【分析】由翻折的性质可知:DC=DE,BC=EB,于是可得到AD+DE=5,AE=2,故此可求得△ADE的周长为7.【解答】解:∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.故答案为:7.【点评】本题主要考查的是翻折的性质,根据翻折的性质求得AD+DE=5,AE=2是解题的关键.13.如图,反比例函数y1=的图象与直线y2=k2x+b的一个交点的横坐标为2,当x=3时,y1<y2(填“>”、“=”或“<”).【分析】观察x=3的图象的位置,即可解决问题.【解答】解:观察图象可知,x=3时,反比例函数图象在一次函数的图象的下面,所以y1<y2.故答案为:<.【点评】本题考查反比例函数与一次函数的计算问题,正确认识图形是解题的关键,学会利用图象由自变量的取值确定函数值的大小,属于中考常考题型.14.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点O、A,点P在抛物线上,连结OP、AP,设点P的横坐标为m,△AOP的面积为S,若0<m<3,则S的取值范围是0<S≤8.【分析】表示出P点坐标,进而表示出△PAB的底与高的长度,即可得出S与m的关系式,利用配方法可得△PAB的面积S的取值范围.【解答】解:由题意,P点坐标为:(m,﹣m2+4m),∵抛物线y=﹣x2+4x与x轴交于点O、A,∴当y=0时,﹣x2+4x=0,解得:x=0,或x=4,∴A(4,0),∴OA=4,由题意可得:P到AB的距离为﹣m2+4m,∴S=×4×(﹣m2+4m)=﹣2m2+8m=﹣2(m﹣2)2+8;∵0<m<3,∴0<S≤8.故答案为:0<S≤8.【点评】此题主要考查了二次函数的综合应用以及三角形面积求法和图象上点的坐标性质,根据P点坐标得出P到AB的距离是解题关键.三、解答题(共10小题,满分78分)15.先化简,再求值:,其中a=﹣3.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=﹣==,当a=﹣3时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.从一副扑克牌中取出的两组牌如图所示,第一组牌是红桃1,2,3,第二组牌是方块1,2,3.将它们分别重新洗匀后,背面朝上放置,再从每组牌中各随机抽取1张.用画树状图(或列表)求抽出的两张牌的牌面数字之和是4的概率.【分析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表如下:第一组结果第二组1 2 31 2 3 42 3 4 53 4 5 6可得所有的结果有9种,两张牌的牌面数字之和是4的有3种,故P(摸出的两张牌的牌面数字之和是4)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.某条道路上安排了A、B两辆清扫车,A车比B车每小时多清扫路面2km,A车清扫路面35km与B车清扫路面25km所用的时间相同,求B车每小时清扫路面的长度.【分析】设设B车每小时清扫路面的长度为xkm,根据“A车清扫路面35km与B车清扫路面25km所用的时间相同”列出方程求解即可.【解答】解:设B车每小时清扫路面的长度为xkm,由题意,得=,解得x=5.经检验,x=5是所列方程的根,且符合题意.答:B车每小时清扫路面的长度为5km.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题的等量关系是:A车清扫路面35km与B车清扫路面25km所用的时间相同.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【分析】根据平行四边形的判定得出四边形是平行四边形,根据直角三角形上的中线得出CD=BD,根据菱形的判定得出即可.【解答】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形.∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点评】本题考查了直角三角形上的中线,平行四边形的判定,菱形的判定的应用,能正确运用定理进行推理是解此题的关键.19.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某市食品企业计划在今年推出:海参干贝棕、板栗鲜肉粽、水晶蜜浅粽、咖喱牛肉粽(以下分别用A、B、C、D表示)四种口味的粽子.该企业为了解市民对这四种不同口味粽子的喜爱情况,在端午节前派调查组到各社区调查,第一组抽取了某社区10%的居民调查,并将调查情况绘制成如下两幅不完整的统计图.(1)这个社区的居民共有多少人?(2)补全条形统计图.(3)若该市有20万居民,请估计爱吃C种粽子的人数.【分析】(1)先求出调查的人数,再求出这个社区的居民总人数;(2)先求出喜欢吃C种粽子的人数,补全条形统计图即可;(3)利用全市爱吃C种粽子的人数=全市总人数×爱吃C种粽子的百分比.【解答】解:(1)调查这个社区的居民人数为240÷30%=800(人),这个社区的居民总人数为:800÷10%=8000(人);(2)喜欢吃C种粽子的人数为800﹣240﹣80﹣320=160(人),补全条形统计图,;(3)爱吃C种粽子的人数为20×=4(万人).【点评】本题主要考查了条形统计图与扇形统计图,解题的关键是读懂统计图,从统计图中获得准确的信息.20.如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角∠BEF的度数为45°,测得旗杆顶端A的仰角∠AEF的度数为17°,旗杆底部B处与教学楼底部C处的水平距离BC为9m,求旗杆的高度(结果精确到0.1m).【参考数据:sin17°=0.29,cos17°=0.96,tan17°=0.31】【分析】先根据锐角三角函数的定义求出BF及AF的长,再由AB=AF+BF即可得出结论.【解答】解:如图,由题意得EF=BC=9m,∠AEF=17°,∠BEF=45°,在Rt△BEF中,∵tan∠BEF=tan45°=,∴BF=EF=9m.在Rt△AEF中,∵tan17°=,∴AF=9×0.31=2.79m.∴AB=AF+BF=11.79≈11.8m.答:旗杆AB的高度约为11.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.一个容器装有一个注水管和两个排水管,每个排水管每分钟排水7.5L,从某一时刻开始2min内只注水不排水,2min后开启一个排水管,容器内的水量y(L)与注水时间x(min)之间的函数关系如图所示.(1)求a的值.(2)当2≤x≤6时,求y与x的函数关系式.(3)若在6min之后,两个出水管均开启,注水管关闭,还需多长时间可排尽容器中的水?【分析】(1)每分钟的进水量根据前2分钟的图象求出,根据后4分钟的水量变化即可求得a的值.(2)设当2≤x≤6时,y与x的函数关系式为y=kx+b.图象过(2,20)、(6,30),用待定系数法求对应的函数关系式;(3)根据每个出水管每分钟出水量,即可求得排完容器的水所有的时间.【解答】解:(1)根据图象,每分钟进水20÷2=10L,在随后的4min内容器内的水量y=4(10﹣7.5)=10(L),∴a=20+10=30;(2)设当2≤x≤6时,y与x的函数关系式为y=kx+b.∵图象过(2,20)、(6,30),∴,解得:,∴当2≤x≤6时,y与x的函数关系式为y=x+15 (2≤x≤6);(3)30÷(2×7.5)=2.答:还需2小时可排尽容器中的水.【点评】此题考查了一次函数的应用问题,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.22.如图①,在△ABC中,∠ACB=90°,AC=BC,在AC、BC边上分别截取CD=CE,连结DE.将△DCE绕着点C顺时针旋转θ角,连结BE、AD.(1)当0°<θ<90°时,如图②,直线BE交直线AD于点F.①求证:△ACD≌△BCE.②求证:AF⊥BE.(2)当0°<θ<360°,AC=5,CD=3,四边形CDFE是正方形时,直接写出AF的长度.【分析】(1)①根据旋转的性质和已知,运用SAS证明即可;②由问题原型中的结论:△ACE≌△BCE得出∠BFO=∠ACB,结合等量代换进行求解即可;(2)运用CD∥BE结合初步探究中的结论,可证CD⊥AF,结合勾股定理即可求解.【解答】解:(1)①如图②,∵△DCE绕着点C顺时针旋转θ角,由旋转的性质可知,∴∠ACD=∠BCE=θ,又∵AC=BC,CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE;②如图②,设AF与BC交点于O,∵△ACD≌△BCE,∴∠DAC=∠EBC,∵∠AOC=∠BOF,∴∠BFO=∠ACB=90°,∴AF⊥BE;(2)如图③,∵AC=5,CD=3,四边形CDFE是正方形时,∵AD⊥CD,∴AD=,∴AF=4+3=7,如图4,∴AF=4﹣3=1.【点评】此题主要考查几何变换中的旋转,熟悉旋转的性质,会证明三角形全等,并应用全等三角形的性质解决角的问题,会运用勾股定理求线段长度是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m >0,且m≠2).(1)求这条抛物线所对应的函数表达式.(2)求矩形PQMN的周长C与m之间的函数关系式.(3)当矩形PQMN是正方形时,求m的值.【分析】(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,解方程组即可解决.(2)分两种情形:①0<m<2,②m>2,分别求出矩形PQMN的周长C与m之间的函数关系式即可.(3)分两种情形列出方程即可解决.【解答】解:(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得,解得.故抛物线所对应的函数表达式为y=﹣x2+3x.(2)∵点P在抛物线y=﹣x2+3x上,∴可以设P(m,﹣m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=﹣m2+3m﹣m=﹣m2﹣2m,C=2(﹣m2+2m)+2=﹣2m2+4m+2.②当m>2时,如图2中,PQ=m﹣(﹣m2+3m)=m2﹣2m,C=2(m2﹣2m)+2=2m2﹣4m+2.(3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,﹣m2+2m=1,解得m=1.当m>2时,如图4中,m2﹣2m=1,解得m=1+(或1﹣不合题意舍弃).【点评】本题考查二次函数综合题、矩形、正方形的有关性质,学会用待定系数法求二次函数解析式,学会分段讨论的思想,需要正确画出图形,用方程的思想解决问题,是数形结合的好题目,属于中考压轴题.24.如图,△ABC是等边三角形,AB=2,D是边BC的中点,点P从点A出发,沿AB﹣BD以每秒1个单位长度的速度向终点D运动.同时点Q从点C出发,沿CA﹣AC以每秒1个单位长度的速度运动.当点P停止运动时,点Q也随之停止运动,设点P的运动时间为t(秒),△PQD的面积为S.(1)求线段PB的长(用含t的代数式).(2)当△PQD是等边三角形时,求t的值.(3)当S>0时,求S与t的函数关系式.(4)若点D关于直线PQ的对称点为点D′,且S>0,直接写出点D′落在△ABC的边上时t的值.【分析】(1)根据当0≤t≤2和2≤t≤3时两种情况进行解答即可;(2)根据等边三角形的性质和AAS证明△BPD与△CDQ全等解答即可;(3)根据当0≤t≤2和2<t<3时两种情况,利用三角函数和三角形面积公式解答即可.(4)根据点D′落在△ABC的边上两种情况解答即可.【解答】解:(1)∵△ABC是等边三角形,AB=2,∴当0≤t≤2时,BP=2﹣t;当2≤t≤3时,BP=t﹣2;(2)如图1,∵△PQD是等边三角形,∴∠PDQ=60°,∴∠PDB+∠CDQ=120°,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠PDB+∠BPD=120°,∴∠BPD=∠CDQ,∵BD=CD,在△BPD与△CDQ中,,∴△BPD≌△CDQ(AAS),∴BP=CQ,∴2﹣t=t,∴t=1,(3)当0≤t≤2时,如图2,连接AD,∵△ABC是等边三角形,D是边BC的中点,∴∠ADB=90°,∴AD=ABsin60°=,分别过点P,Q作PE⊥BC,QF⊥BC,垂足分别为点E,F,在Rt△BPE中,∠BEP=90°,PE=PBsin60°=,在Rt△QCF中,∠QFC=90°,QF=CQsin60°=,过点Q作QG⊥AB于点G,在Rt△AGQ中,∠AGQ=90°,QG=AQsin60°=,∴S△PQD=S△ABC﹣S△BPD﹣S△QCD﹣S△APQ,∴,∴,当2<t<3时,如图3过点Q作QH⊥BC于点H,在Rt△CQH中,∠CHQ=90°,QH=CQsin60°=,∴,∴.(4)点D′落在△ABC的边上,如图4,此时t=1;点D′落在△ABC的边上,如图5,此时t=2.5.【点评】本题是一道综合性较强的题目,考查了等边三角形的判定和性质、三角函数的性质,是中考压轴题,难度较大.。
2024届吉林省长春市名校调研系列卷(市命题)中考数学对点突破模拟试卷含解析
2024届吉林省长春市名校调研系列卷(市命题)中考数学对点突破模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元一次不等式组的解集中,整数解的个数是()A.4 B.5 C.6 D.72.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.3.下列运算结果为正数的是( )A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)4.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07255.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C .两边和它们的夹角对应相等D .三个角对应相等6.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1① 去括号,得1﹣x +2=1② 合并同类项,得﹣x +3=1③ 移项,得﹣x =﹣2④ 系数化为1,得x =2⑤ A .①B .②C .③D .④7.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .55D .2558.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩9.下列四个几何体中,主视图是三角形的是( )A .B .C .D .10.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( ) A .120°B .135°C .150°D .165°11.下列各式正确的是( ) A .0.360.6=± B 93=± C 33(3)3-=D 2(2)2-=-12.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( ) A .26±B .6C .2或3D 23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________. 14.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=3,则阴影部分的面积是___.15.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线11+22 y x图象上的概率为__.16.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).17.计算12-3的结果是______.18.已知,则=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.20.(6分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)21.(6分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程有一个根的平方等于4,求m 的值. 22.(8分)问题提出(1)如图1,在△ABC 中,∠A =75°,∠C =60°,AC =62,求△ABC 的外接圆半径R 的值; 问题探究(2)如图2,在△ABC 中,∠BAC =60°,∠C =45°,AC =86,点D 为边BC 上的动点,连接AD 以AD 为直径作⊙O 交边AB 、AC 分别于点E 、F ,接E 、F ,求EF 的最小值; 问题解决(3)如图3,在四边形ABCD 中,∠BAD =90°,∠BCD =30°,AB =AD ,BC +CD =123,连接AC ,线段AC 的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.23.(8分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0ny n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.24.(10分)如图,在ABC 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O交BC于点G,交AB于点F,FB恰为O的直径.求证:AE与O相切;当14cos3BC C==,时,求O的半径.25.(10分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.26.(12分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?27.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.考点:一元一次不等式组的整数解.2、C【解题分析】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.3、B【解题分析】分别根据有理数的加、减、乘、除运算法则计算可得.【题目详解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;B、1﹣(﹣2)=1+2=3,结果为正数;C、1×(﹣2)=﹣1×2=﹣2,结果为负数;D、1÷(﹣2)=﹣1÷2=﹣12,结果为负数;故选B . 【题目点拨】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键. 4、B 【解题分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【题目详解】 由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【题目点拨】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 5、D 【解题分析】解:A 、符合AAS ,能判定三角形全等; B 、符合SSS ,能判定三角形全等;; C 、符合SAS ,能判定三角形全等;D 、满足AAA ,没有相对应的判定方法,不能由此判定三角形全等; 故选D . 6、A 【解题分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题. 【题目详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误, 故选A .本题考查解分式方程,解答本题的关键是明确解分式方程的方法.7、A【解题分析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.详解:连接AC,由网格特点和勾股定理可知,2,22,10AB BC==,AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴tan∠ABC=21222ACAB==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.8、D【解题分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【题目详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩,故选D.【题目点拨】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.9、D主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案. 【题目详解】解:主视图是三角形的一定是一个锥体,只有D 是锥体. 故选D . 【题目点拨】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力. 10、C 【解题分析】这个扇形的圆心角的度数为n°,根据弧长公式得到20π=24180n π⨯,然后解方程即可. 【题目详解】解:设这个扇形的圆心角的度数为n°, 根据题意得20π=24180n π⨯, 解得n=150,即这个扇形的圆心角为150°. 故选C . 【题目点拨】本题考查了弧长公式:L=180n Rπ(n 为扇形的圆心角的度数,R 为扇形所在圆的半径). 11、A 【解题分析】3=,则B 3=-,则C 2,则D 错,故选A . 12、A 【解题分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论. 【题目详解】∵方程2230x kx -+=有两个相等的实根, ∴△=k 2-4×2×3=k 2-24=0,解得:k=± 故选A .本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、答案不唯一 【解题分析】分析:把y ()2321x =+-改写成顶点式,进而解答即可.详解:y ()2321x =+-先向右平移2个单位长度,再向上平移3个单位得到抛物线232y x =+.故答案为y ()2321x =+-先向右平移2个单位长度,再向上平移3个单位得到抛物线232y x =+.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-2b a)²+244ac b a -,然后把抛物线的平移问题转化为顶点的平移问题.14、32﹣6π【解题分析】 连接OB . ∵AB 是⊙O 切线, ∴OB ⊥AB ,∵OC=OB ,∠C=30°, ∴∠C=∠OBC=30°, ∴∠AOB=∠C+∠OBC=60°,在Rt △ABO 中,∵∠ABO=90°,AB=3,∠A=30°, ∴OB=1,∴S 阴=S △ABO ﹣S 扇形OBD =12×1×3﹣2601360π⨯ =32﹣6π.15、16【解题分析】根据题意列出图表,即可表示(a ,b )所有可能出现的结果,根据一次函数的性质求出在11+22y x =图象上的点,即可得出答案.【题目详解】画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x =图象上的只有(3,2), ∴点(a ,b )在11+22y x =图象上的概率为16. 【题目点拨】 本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.16、2π【解题分析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°, 所得到的三条弧的长度之和=3×120180r π=2πcm ; 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm .17、【解题分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【题目详解】1232333-=-=.【题目点拨】考点:二次根式的加减法.18、3【解题分析】依据可设a=3k,b=2k,代入化简即可.【题目详解】∵,∴可设a=3k,b=2k,∴=3故答案为3.【题目点拨】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.【解题分析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,在△ADE和△CBF中,{AD BC A C AE CF=∠=∠=,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【题目点拨】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定20、答案见解析【解题分析】连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【题目详解】解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【题目点拨】本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.21、(1)证明见解析;(2)m 的值为1或﹣2.【解题分析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.【题目详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于2,∴x=±2 是原方程的根,当x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为1 或﹣2.【题目点拨】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.22、(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为92.【解题分析】(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.【题目详解】解:(1)如图1中,作△ABC的外接圆,连接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=12,∴OA=OC=1,∴△ABC的外接圆的R为1.(2)如图2中,作AH⊥BC于H.∵AC=86,∠C=45°,∴AH=AC•sin45°=86×22=83,∵∠BAC=10°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=43•32=1,∴EF=2EH=2,∴EF的最小值为2.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC2AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=12x,EH3,∵CD+BC=3CD=x,∴BC=3x∴EC2=EH2+CH2=(3x)2+211232x x⎛⎫+⎪⎝⎭=x2﹣3x+432,∵a=1>0,∴当x =EC 的长最小, 此时EC =18,∴AC =2EC =,∴AC 的最小值为.【题目点拨】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.23、(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解题分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【题目详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x =得,4n =, ∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【题目点拨】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.24、(1)证明见解析;(2)32.【解题分析】(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.【题目详解】(1)连接OM,则OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵点M在圆O上,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=4,cosC=1 3∴BE=2,cos∠ABC=13,在△ABE中,∠AEB=90°,∴AB=cos BE ABC∠=6,设⊙O的半径为r,则AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴OM AO BE AB=,∴626r r-=,解得32r=,∴O的半径为32.【题目点拨】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.25、(1)见解析;(2)见解析.【解题分析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC =∠ADF即可解答此题.【题目详解】(1)连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)选取①完成证明∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.【题目点拨】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.26、(1) 每次下调10% (2) 第一种方案更优惠.【解题分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【题目详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【题目点拨】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.27、(1),;(2)8;(3)或.【解题分析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为.∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.。
2016年吉林省长春市中考模拟数学试卷(含答案)
2016年吉林省长春市中考模拟数学试卷2016.4.30一、选择题(共8小题,每小题3分,满分24分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.32.不等式3x+10≤1的解集在数轴上表示正确的是()A.B. C.D.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.46.下列轴对称图形中,对称轴最多的是()A. B.C.D.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.108.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二、填空题(共6小题,每小题3分,满分18分)9.若2x+1=3,则6x+3的值为.11.如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB的大小为°.12.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为(结果保留π).13.如图,平面直角坐标中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x 轴正方向平移,使⊙P与y轴相交,则平移的距离d的取值范围是.14.如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为.三、解答题(共10小题,满分78分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B 地一共行驶了2.2h,普通公路和高速公路各是多少km?17.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?18.如图,在△ABC中,D、E分别是边AB、AC的中点,延长BC至点F,使得CF=BC,连结CD、DE、EF.(1)求证:四边形CDEF是平行四边形.(2)若四边形CDEF的面积为8,则△ABC的面积为.19.如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角∠DAC为70°,光线与地面的最小夹角∠DAB为35°,要使射灯发光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD.(结果精确到0.1米)【参考数据:sin70°=0.94,cos70°=0.34,tan70°=2.75,sin35°=0.57,cos35°=0.82,tan35°=0.70】20.某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图.结合图中信息,解答下列问题:(1)求本次共调查的学生人数.(2)求被调查的学生中,最喜爱丁类图书的学生人数.(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比.(4)该学校共有学生1600人,估计该校最喜爱丁类图书的人数.21.探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.22.从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF 表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h,他在乙地休息了h.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.23.如图,平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(﹣1,0)、B (3,0),与y轴交于点C,连结BC.点P是BC上方抛物线上一点,过点P作y轴的平行线,交BC于点N,分别过P、N两点作x轴的平行线,交抛物线的对称轴于点Q、M,设P点的横坐标为m.(1)求抛物线所对应的函数关系式.(2)当点P在抛物线对称轴左侧时,求四边形PQMN周长的最大值.(3)当四边形PQMN为正方形时,求m的值.24.如图①,平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B的坐标为(2,4),将矩形OABC绕着点A顺时针旋转90°得到矩形AFED,直线y=kx+b 经过点G(4,0),交y轴于点H.(1)点D、E的坐标分别为.(2)当直线GH经过EF中点K时,如图②,动点P从点C出发,沿着折线C﹣B﹣D以每秒1个单位速度向终点D运动,连结PH、PG,设点P运动的时间为t(秒),△PGH 的面积为S(平方单位).①求直线GH所对应的函数关系式.②求S与t之间的函数关系式.(3)当直线GH经过点E时,如图③,点Q是射线B﹣D﹣E﹣F上的点,过点Q作QM⊥GH于点M,作QN⊥x轴于点N,当△QMN为等腰三角形时,直接写出点Q的坐标.参考答案一、选择题1故选:C.2.故选:C.3.故选A.4.故选:D.5.故选C.6.故选:B.7.故选C.8.故选A.二、填空题9.故答案为:910.故答案为:m>n.11故答案为61°.12.故答案为:3π.13.故答案为:1<d<5.14.故答案是:0.16.三、解答题15.【解答】解:原式=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=1﹣12=﹣11.16.【解答】解:设普通公路长为x(km),高速公路长为y(km).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.17.【解答】解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12=.18.【解答】(1)证明:∵如图,在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC且DE=BC.又∵CF=BC,∴DE=CF,∴四边形CDEF是平行四边形.(2)解:∵DE∥BC,∴四边形CDEF与△ABC的高相等,设为h,又∵CF=BC,∴S△ABC=BC•h=CF•h=8,故答案是:8.19.【解答】解:∵CD⊥AD,∴∠CDA=90°,∴在Rt△ADB中,BD=ADtan∠BAD,在Rt△ADC中,CD=ADtan∠CAD,∴AD•tan70°﹣AD•tan35°=50,∴2.75AD﹣0.70AD=50,解得:AD=≈24.4,答:A处到高楼的距离AD为24.4米.20.【解答】解:(1)40÷20%=200(名)答:共调查的学生人为200名;(2)根据题意得:丁类学生数为200﹣(80+65+40)=15(名);(3)最喜爱甲类图书的人数占本次被调查人数的80÷200×100%=40%;(4)1600×=120(人)答:该校最喜爱丁类图书的人数为120人.21.【解答】解:探索:BE=CD,理由:∵∠BAD=∠CAE=90°,∴∠CAD=∠EAB,在△CAD和△EAB中∵,∴△CAD≌△EAB(SAS);应用:如图②,过点A作AD⊥AB,且AD=AB,连接BD,由探索,得△CAD≌△EAB,∴BE=DC,∵AD=AB=100m,∠DAB=90°,∴∠ABD=45°,BD=100m,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100m,BD=100m,∴CD==100(m),则BE=100m,答:BE的长为100m.22.【解答】解:(1)小明骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),小明平路上的速度为:10+5=15(km/h),小明下坡的速度为:15+5=20(km/h),小明平路上所用的时间为:2(4.5÷15)=0.6h,小明下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小明在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h).故答案为:15,0.1;(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y=4.5+20(x﹣0.9).即y=20x﹣13.5(0.9≤x≤1).(3)由题意可知:小明第一次经过丙地在AB段,第二次经过丙地在EF段,设小明出发a小时第一次经过丙地,则小明出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5解得:a=.=1(千米).答:丙地与甲地之间的路程为1千米.23.【解答】解:(1)当x=0时,y=ax2+bx+2=2,则C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得a•1•(﹣3)=2,解得a=﹣,所以抛物线的解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+2;(2)∵抛物线与x轴分别交于点A(﹣1,0)、B(3,0),∴抛物线的对称轴为直线x=1,设直线BC的解析式为y=px+q,把C(0,2),B(3,0)代入得,解得,所以直线BC的解析式为y=﹣x2+2,设P(m,﹣ m2+m+2),则N(m,﹣ m+2),∴PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,而PQ=1﹣m,∴四边形PQMN周长=2(﹣m2+2m+1﹣m)=﹣m2+2m+2=﹣(m﹣)2+(0<m<1),∴当m=时,四边形PQMN周长有最大值,最大值为;(3)当0<m<1时,PQ=1﹣m,若PQ=PN时,四边形PQMN为正方形,即﹣m2+2m=1﹣m,整理得2m2﹣9m+3=0,解得m1=(舍去),m2=,当1<m<3时,PQ=m﹣1,若PQ=PN时,四边形PQMN为正方形,即﹣m2+2m=m﹣1,整理得2m2﹣3m﹣3=0,解得m1=(舍去),m2=,综上所述,当m=或m=时,四边形PQMN为正方形.24.【解答】(1)解:∵矩形OABC绕着点A顺时针旋转90°得到矩形AFED,且B(2,4),∴OA=AD=2,OC=AF=4,∴D(2,2),E(6,2);故答案为D(2,2),E(6,2);(2)①解:∵E(6,2),G(4,0),∴K(6,1),∵直线y=kx+b经过点G,K,∴,∴,∴直线GH的解析式为y=x﹣2,②当0≤t≤2时,延长CB交HG于W,如图1,S△PHG=S△SHW﹣S△HCP﹣S△PGW= [[6×12﹣6t﹣4(12﹣t)]=﹣t+12,②当2<t≤4时,延长BA交HG于T,如图2,S△PHG=S△PTH+S△PGT=×4(7﹣t)=﹣2t+14,第11页(共12页)(3)解;①当0≤t ≤2时,如图3,由题意,得N (2,0),Q (2,4﹣t ),M (,),∴QN2=(4﹣t )2,MN2=+,QM2=, (Ⅰ)、当QN=QM 时,即QN2=QM2,∴(4﹣t )2=+,∴t=(舍), (Ⅱ)、当QN=QM 时,方法同(Ⅰ)的一样,得t=(舍), (Ⅲ)、当MN=QM 时,方法同(Ⅰ)的一样,得到方程无解,②当2<t ≤6时,由题意,得N (t ,0),Q (t ,2),M (,), 方法和①(Ⅰ)一样,分三种情况,(Ⅰ)、当QN=QM 时,t=6+2(舍),或t=6﹣2∴Q (6﹣2,2); (Ⅱ)、当QN=MN 时,t=﹣8(舍)或t=2,∴Q (2,2);(Ⅲ)、当QM=MN 时,t=4,∴Q (4,2);②当6<t ≤8时,由题意,得N (6,0),Q (6,8﹣t ),M (,﹣), 方法和①(Ⅰ)一样,分三种情况,(Ⅰ)、当QN=QM 时,t=10+2(舍),或t=10﹣2∴Q (6,2﹣2); (Ⅱ)、当QN=MN 时,t=6(舍)或t=10(舍)(Ⅲ)、当QM=MN 时,t=8(舍);∴Q (6﹣2,2)或Q (2,2)或Q (4,2)或Q (6,2﹣2);第12页(共12页)。
吉林省长春市2016届中考数学模拟试卷(二)含答案
吉林省长春市2016届中考数学模拟试卷(二)含答案2016年吉林省长春市中考数学模拟试卷(二)一、选择题(共8小题,每小题3分,满分24分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.3.吉林省交警总队公布的数据显示,截止到2015年9月1日,全省机动车保有量超过4530000辆,4530000这个数用科学记数法表示为()A.0.453×107B.4.53×106C.4.53×107D.45.3×1054.计算5x2﹣2x2的结果是()A.3 B.3x C.3x2D.3x45.不等式﹣3x≥6的解集在数轴上表示为()A.B.C.D.6.如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=55°,则∠2的大小为()A.55°B.65°C.75°D.85°7.如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°8.若二次函数y=﹣x2+2x+m2+1的最大值为4,则实数m的值为()A.B.C.±2 D.±1二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=.10.函数y=x+中,自变量x的取值范围是.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为(结果保留π).12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE 为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.24.(2016•长春模拟)如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.2016年吉林省长春市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选D.【点评】本题考查了三视图的知识,属于基础题,注意主视图是从物体的正面看得到的视图.3.吉林省交警总队公布的数据显示,截止到2015年9月1日,全省机动车保有量超过4530000辆,4530000这个数用科学记数法表示为()A.0.453×107B.4.53×106C.4.53×107D.45.3×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4530000用科学记数法表示为:4.53×106.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.计算5x2﹣2x2的结果是()A.3 B.3x C.3x2D.3x4【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可.【解答】解:原式=5x2﹣2x2=3x2.故选:C.【点评】此题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.5.不等式﹣3x≥6的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),可得答案.【解答】解:﹣3x≥6,解得x≤﹣2.故选:C.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=55°,则∠2的大小为()A.55°B.65°C.75°D.85°【考点】平行线的性质;三角形内角和定理.【分析】先根据平行线性质求出∠3,再根据三角形内角和定理求出∠4,即可求出答案.【解答】解:∵直线l1∥l2,且∠1=55°,∴∠3=∠1=55°,∵在△AEF中,∠A=50°,∴∠4=180°﹣∠3﹣∠A=75°,∴∠2=∠4=75°,故选C.【点评】本题考查了平行线的性质和三角形内角和定理,对顶角相等的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°【考点】圆周角定理.【分析】利用等边对等角求得∠BAO的度数,然后根据三角形内角和定理求得∠AOB的度数,最后根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠BAO=∠ABO=50°,∴∠AOB=180°﹣50°﹣50°=80°.∴∠ACB=∠AOB=40°.故选D.【点评】本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理,求得∠AOB的度数是关键.8.若二次函数y=﹣x2+2x+m2+1的最大值为4,则实数m的值为()A.B.C.±2 D.±1【考点】二次函数的最值.【专题】探究型.【分析】先将二次函数y=﹣x2+2x+m2+1化为顶点式,又因为二次函数y=﹣x2+2x+m2+1的最大值为4,从而可以得到关于m的等式,从而可以得到m的值,本题得以解决.【解答】解:∵y=﹣x2+2x+m2+1=﹣(x﹣1)2+m2+2,二次函数y=﹣x2+2x+m2+1的最大值为4,∴m2+2=4,解得,m=,故选A.【点评】本题考查二次函数的最值,解题的关键时能将二次函数的一般式化为顶点式,找准对应关系.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.10.函数y=x+中,自变量x的取值范围是x≠2.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为,7π(结果保留π).【考点】切线的性质;弧长的计算.【分析】根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=140°,根据弧长公式求出即可.【解答】解:∵PA和PB是⊙O的切线,点A和点B是切点,∴∠PAO=∠PBO=90°,∵∠P=40°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴的长为=7π,故答案为:7π【点评】本题考查了切线的性质,弧长公式的应用,能根据切线的性质求出∠PAO=∠PBO=90°是解此题的关键,注意:圆的切线垂直于过切点的半径.12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为﹣6.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【专题】操作型.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C 是解题关键.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【考点】二元一次方程组的应用.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:由树形图可知所有等可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率,注意列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论.【解答】证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.【点评】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE 为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】要求AC的长,只要求出AB和BC的长即可,根据题意可知BC与DE的长相等,根据∠AEB=53°和BE的长可以求得AB的长,从而可以求得AC的长,本题得以解决.【解答】解:∵AC⊥BE,AC⊥CD,AC∥ED,∴四边形BCDE是矩形,∠AEB=35°,∴BC=DE=35,在Rt△ABE中,∠ABE=90°,tan∠AEB=,BE=60,∴AB=BE•tan∠AEB=60×tan53°=60×1.009=65.94,∴AC=AB+BC=65.94+35=100.94≈100.9cm,即椅子的高约为100.9cm.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答问题.20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为C(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为40%.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.【考点】条形统计图;用样本估计总体.【分析】(1)直接利用条形统计图可得出n的值;(2)利用条形统计图结合(1)中所求,得出C种方式的学生人数占被调查的学生人数的百分比;(3)利用条形统计图得出选择B方式的学生比选择A方式的学生多的人数.【解答】解:(1)n=36+60+96+48=240(人),故n的值为240;(2)由条形统计图可得:四种方式中被选择次数最多的方式为:C;选择该种方式的学生人数占被调查的学生人数的百分比为:×100%=40%;故答案为:C,40%;(3)由题意可得:600×﹣1600×=160(人),答:该校1600名学生中选择B方式的学生比选择A方式的学生多的人数为160人.【点评】此题主要考查了条形统计图的应用,正确利用条形统计图得出正确信息是解题关键.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为8.【考点】正方形的性质;全等三角形的判定与性质.【分析】特例探究:易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE;拓展应用:首先证得△ADE≌△CDF,由全等三角形的性质可得∠DAE=∠CDF,易得△BAE≌△ADF,可得AE=AF,同特例探究可得AF⊥BE,易得四边形ABFE的面积为:.【解答】解:特例探究:AF=BE,AF⊥BE.∵四边形ABCD为正方形,△ADE与△DCF均为等边三角形,∴AB=AD=CD,∠BAD=∠ADC,AE=AD=CD=DF,∠DAE=∠CDF,∴∠BAD+∠DAE=∠ADC+∠CDF,即∠BAE=∠ADF,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE;拓展应用:在△ADE与△CDF中,∵,∴△ADE≌△CDF(SSS),∴∠DAE=∠CDF,∠ADF=∠ADC+∠CDF=90°+∠CDF,∠BAE=∠BAD+∠EAD=90°+∠EAD,∴∠ADF=∠BAE,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE,∴S==8,四边形ABFE故答案为:8.【点评】本题主要考查了正方形的性质和等边三角形的性质,证得AF=BE,AF⊥BE是解答此题的关键.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.【考点】一次函数的应用.【专题】函数及其图象.【分析】(1)根据已知和图象可以得到m的值,由甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,可以求得a的值;(2)由图象可以得到点B、C的点的坐标,从而可以得到机器检修后,甲加工的零件个数y与x之间的函数关系式;(3)根据题意可以列出相应的等式,从而可以求得x的值.【解答】解:(1)由题意可得,m=1.5﹣0.5=1,∵工作效率保持不变,∴,解得a=40,即m=1,a=40;(2)设机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=k1x+b1,则,解得,即机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=40x﹣20(3.5≤x≤7);(3)设CE所在直线的函数解析式为:y=k2x+b2,则解得,,即直线CE所在直线的解析式为:y=80x﹣160,则|(80x﹣160)﹣(40x﹣20)|=50,解得,或x=.即当甲机器工作小时或小时时,恰好相差50个.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.【考点】二次函数综合题.【分析】(1)由题意易得点C的坐标为:(,2),然后代入抛物线y=ax2﹣4ax+1,即可求得答案;(2)首先设抛物线交AD于点E,则点E的纵坐标为1,可求得点E的坐标,然后分别从AE=3DE 或3AE=DE去分析求解即可求得答案;(3)若矩形ABCD是正方形,则AD=CD,可求得点C的坐标,然后分别从点C在点D上方与点C在点D下方,去分析求解即可求得答案;(4)分别从∠BAP=90°,∠ABP=90°或∠APB=90°,去分析求解即可求得答案.【解答】解:(1)∵CB∥x轴,DC∥y轴,点B的坐标为(0,2),点D的坐标为(,1),∴点C的坐标为:(,2),∵抛物线y=ax2﹣4ax+1(a>0)过点C,∴﹣8+1=2,解得:a=,∴抛物线对应的函数表达式为:y=x2﹣x+1;(2)设抛物线交AD于点E,则点E的纵坐标为1,由ax2﹣4ax+1=1,解得:x1=0,x2=4,∴点E的坐标为(4,1),∵点D的坐标为(,1),则DE=﹣4,当AE=3DE时,4=3(﹣4),解得:a=,∴点C的坐标为:(,);当3AE=DE时,12=﹣4,解得:a=,∴点C的坐标为:(16,25);(3)若矩形ABCD是正方形,则AD=CD,∵点D的坐标为:(,1),且DC∥y轴,∴C(,﹣7),若点C在点D上方,则CD=﹣8,∴=﹣8,解得:a=;若点C在点D下方,则CD=8﹣,∴=8﹣,解得:a=;综上可得:a=或;(4)抛物线的对称轴方程为:x=﹣=﹣=2,∵△ABP为等腰直角三角形,∴若∠BAP=90°,则点P的坐标为:(2,1);若∠ABP=90°,则AB=BP=2,∴点P的坐标为:(2,3)或(2,﹣1);若∠APB=90°,AB=2×2=4,∴点P的坐标为:(2,3);综上所述:点P的坐标为:(2,1)或(2,3)或(2,﹣1).【点评】此题属于二次函数的综合题.考查了待定系数求二次函数解析式、矩形的性质、正方形的性质以及等腰直角三角形性质.注意掌握分类讨论思想的应用是解此题的关键.24.(2016•长春模拟)如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=6﹣2t(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.【考点】四边形综合题.【分析】(1)由菱形的性质得出BC=AB=6得出CE=BC﹣BE=6﹣2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积﹣△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.【解答】解:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC﹣BE=6﹣2t;故答案为:6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=EF=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°﹣60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE===t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积﹣△NFN的面积=××(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.【点评】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、三角函数、三角形面积的计算等知识;本题综合性强,难度较大,特别是(3)中,需要进行分类讨论才能得出结果.。
吉林省长春市东北师大附中明珠校2024届中考数学最后冲刺模拟试卷含解析
吉林省长春市东北师大附中明珠校2024届中考数学最后冲刺模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO 缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°3.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100°D.80°4.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018 5.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C.12 D.246.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A.35 22(,)B.33 22(,)C.235 32(,)D.433 32(,)7.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是() A.B.C.D.8.函数22ayx--=(a为常数)的图像上有三点17()2y-,,21()2y-,,33()2y,,则函数值123,,y y y的大小关系是()A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.对于代数式ax 2+bx+c(a≠0),下列说法正确的是( )①如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则a 2x +bx+c=a (x-p )(x-q )②存在三个实数m≠n≠s ,使得am 2+bm+c=an 2+bn+c=as 2+bs+c③如果ac <0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c④如果ac >0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+cA .③B .①③C .②④D .①③④10.下列运算正确的是( )A .a 12÷a 4=a 3B .a 4•a 2=a 8C .(﹣a 2)3=a 6D .a•(a 3)2=a 711.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°12.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF ∆的周长为18,则OF 的长为________.14.在数轴上与表示的点距离最近的整数点所表示的数为_____.15.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.16.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为23,则a的值是_____.17.若一组数据1,2,3,x的平均数是2,则x的值为______.18.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7520.(6分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y (元)与乙种T 恤的进货量x (件)之间的函数关系式;在(2)的条件下,已知两种T 恤进货量都不低于100件,且所进的T 恤全部售完,该商店如何安排进货才能使获得的利润最大?21.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB 由西向东行驶.在A 处测得岸边一建筑物P 在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P 在北偏西60°方向上,如图所示,求建筑物P 到赛道AB 的距离(结果保留根号).22.(8分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)∠EDB =_____︒(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N .①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM 、CN 与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.23.(8分)如图,在△ABC 中,BC =12,tan A =34,∠B =30°;求AC 和AB 的长.24.(10分)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(10分)实践体验:(1)如图1:四边形ABCD 是矩形,试在AD 边上找一点P ,使△BCP 为等腰三角形;(2)如图2:矩形ABCD 中,AB=13,AD=12,点E 在AB 边上,BE=3,点P 是矩形ABCD 内或边上一点,且PE=5,点Q 是CD 边上一点,求PQ 得最值;问题解决:(3)如图3,四边形ABCD 中,AD ∥BC ,∠C=90°,AD=3,BC=6,DC=4,点E 在AB 边上,BE=2,点P 是四边形ABCD 内或边上一点,且PE=2,求四边形PADC 面积的最值.26.(12分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC=60°,∠ABE=25°.求∠DAC 的度数.27.(12分)如图,66⨯网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知Rt ABC 和11Rt BB C △的顶点都在格点上,线段1AB 的中点为O .(1)以点O 为旋转中心,分别画出把11BB C 顺时针旋转90︒,180︒后的221B B C △,23B AC △;(2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形123CC C C ,四边形12ABB B 的形状; ②直接写出12123ABB B CC C C S S 四边形四边形的值;③设Rt ABC 的三边BC a =,AC b =,AB c =,请证明勾股定理.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2). 故答案选D.考点:位似变换.2、B【解题分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF 与∠BCF的和即为∠C的度数.【题目详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【题目点拨】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3、D【解题分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4、A【解题分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【题目详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【题目点拨】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.5、A【解题分析】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=12AC=12×8=4,BO=12BD=12×6=3,由勾股定理的,,∵DH⊥AB,∴S菱形ABCD=AB•DH=12 AC•BD,即5DH=12×8×6,解得DH=245.故选A.【题目点拨】本题考查菱形的性质.6、B【解题分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题. 【题目详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO=OBOA3∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴OH=32,∴3OH=32,∴O′(32,32),故选B.【题目点拨】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.7、B【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【题目详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【题目点拨】本题重点考查三视图的定义以及考查学生的空间想象能力.8、A【解题分析】试题解析:∵函数y=2-2ax(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵32>0,∴y3<0;∵-72<-12,∴0<y1<y1,∴y3<y1<y1.故选A.9、A【解题分析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立.综上所述,四种说法中正确的是③.故选A.10、D【解题分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【题目详解】解:A 、a 12÷a 4=a 8,此选项错误; B 、a 4•a 2=a 6,此选项错误;C 、(-a 2)3=-a 6,此选项错误;D 、a•(a 3)2=a•a 6=a 7,此选项正确;故选D .【题目点拨】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.11、C【解题分析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC 与∠B 所对的弧相同,∴∠B=∠ADC=35°,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C .点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.12、A【解题分析】解:连接OA ,OC ,过点O 作OD ⊥AC 于点D ,∵∠AOC=2∠B ,且∠AOD=∠COD=12∠AOC , ∴∠COD=∠B=60°; 在Rt △COD 中,OC=4,∠COD=60°,∴33 ∴3故选A .【题目点拨】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、72【解题分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【题目详解】解:∵四边形ABCD 是正方形,∴BO DO =,BC CD =,90BCD ︒∠=.在Rt DCE ∆中,F 为DE 的中点,∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =,∴18513CF EF +=-=,∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得2213512DC =-=,∴12BC =,∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点,又∵OF 为BDE ∆的中位线,∴1722OF BE ==. 故答案为:72. 【题目点拨】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.14、3【解题分析】≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴距离整数点3最近. 15、5m <且1m ≠【解题分析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m −1≠0且△=16−4(m −1)>0,解得m <5且m ≠1,∴m 的取值范围为m <5且m ≠1.故答案为:m <5且m ≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>16、2【解题分析】试题分析:过P 点作PE ⊥AB 于E ,过P 点作PC ⊥x 轴于C ,交AB 于D ,连接PA .∵PE⊥AB,AB=23,半径为2,∴AE=12AB=3,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=2∵⊙P的圆心是(2,a),∴a=PD+DC=2+2.【题目点拨】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x 与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.17、1【解题分析】根据这组数据的平均数是1和平均数的计算公式列式计算即可.【题目详解】∵数据1,1,3,x的平均数是1,∴12324x+++=,解得:2x=.故答案为:1.【题目点拨】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.18、100(【解题分析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=CD AD,∴AD=tan60=100,在Rt△BCD中,∴().答:A、B两点间的距离为100(故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、景点A与B之间的距离大约为280米【解题分析】由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC和BC的长.【题目详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m .在Rt △ACP 中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt △BPC 中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A 与B 之间的距离大约为280米.【题目点拨】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20、(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解题分析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【题目详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++ ⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴==②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤,综上,最大利润为10750元.【题目点拨】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.21、1003米.【解题分析】【分析】如图,作PC ⊥AB 于C ,构造出Rt △PAC 与Rt △PBC ,求出AB 的长度,利用特殊角的三角函数值进行求解即可得. 【题目详解】如图,过P 点作PC ⊥AB 于C ,由题意可知:∠PAC=60°,∠PBC=30°,在Rt △PAC 中,tan ∠PAC=PC AC ,∴AC=33PC , 在Rt △PBC 中,tan ∠PBC=PC BC ,∴3PC , ∵AB=AC+BC=333PC=10×40=400, ∴3答:建筑物P 到赛道AB 的距离为3【题目点拨】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.22、(1)α;(2)(2)①见解析;②DM =DN ,理由见解析;③数量关系:sin BM CN BC α+=⋅【解题分析】(1)先利用等腰三角形的性质和三角形内角和得到∠B =∠C =90°﹣α,然后利用互余可得到∠EDB =α;(2)①如图,利用∠EDF =180°﹣2α画图;②先利用等腰三角形的性质得到DA 平分∠BAC ,再根据角平分线性质得到DE =DF ,根据四边形内角和得到∠EDF =180°﹣2α,所以∠MDE =∠NDF ,然后证明△MDE ≌△NDF 得到DM =DN ;③先由△MDE ≌△NDF 可得EM =FN ,再证明△BDE ≌△CDF 得BE =CF ,利用等量代换得到BM +CN =2BE ,然后根据正弦定义得到BE=BD sinα,从而有BM+CN=BC•sinα.【题目详解】(1)∵AB=AC,∴∠B=∠C12=(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案为:α;(2)①如图:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵MED NFDDE DFMDE NDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MDE≌△NDF,∴DM=DN;③数量关系:BM+CN=BC•sinα.证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BD sinα,从而有BM+CN=BC•sinα.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.23、3【解题分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【题目详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH22BC CH-3在Rt△ACH中,tan A=34=CHAH,∴AH=8,∴AC22AH CH+10,【题目点拨】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解题分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【题目详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:100501008000x yx y+=⎧⎨+=⎩,解得:4060xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.25、(1)见解析;(2)PQ min =7,PQ max =13;(3) S min =35425,S max =18. 【解题分析】(1)根据全等三角形判定定理求解即可. (2)以E 为圆心,以5为半径画圆,①当E 、P 、Q 三点共线时最PQ 最小,②当P 点在2P 位置时PQ 最大,分类讨论即可求解.(3)以E 为圆心,以2为半径画圆,分类讨论出P 点在12P P ,位置时,四边形PADC 面积的最值即可.【题目详解】(1)当P 为AD 中点时,AP DPAB CD A D==∠=∠⎧⎪⎨⎪⎩,)ABP DCP SAS ∴∆≅∆(BE CE ∴=∴△BCP 为等腰三角形.(2)以E 为圆心,以5为半径画圆① 当E 、P 、Q 三点共线时最PQ 最小,PQ 的最小值是12-5=7.② 当P 点在2P 位置时PQ 最大,PQ 225+12(3)以E 为圆心,以2为半径画圆.当点p为1P位置时,四边形PADC面积最大()3+64==182⨯.当点p为1P位置时,四边形PADC最小=四边形2P ADF+三角形2P CF=24144354 52525+=.【题目点拨】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.26、∠DAC=20°.【解题分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【题目详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【题目点拨】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.27、(1)见解析;(2)①正方形;②59;③见解析.【解题分析】(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.【题目详解】(1)如图,(2)①四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.理由如下:∵△ABC ≌△BB 1C 1,∴AC=BC 1,BC==B 1C 1,AB=BB 1.再根据旋转的性质可得:BC 1=B 1C 2=B 2C 3,B 2C 1=B 2C 2=AC 3,BB 1=B 1B 2=AB 2.∴CC 1=C 1C 2=C 2C 3=CC 3AB=BB 1=B 1B 2=AB 2∴四边形CC 1C 2C 3和四边形ABB 1B 2是菱形.∵∠C=∠ABB 1=90°,∴四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.②∵四边形CC 1C 2C 3和四边形ABB 1B 2是正方形,∴四边形CC 1C 2C 3∽四边形ABB 1B 2. ∴12123ABB B CC C C S S 四边形四边形=2(1)AB C C∵10 ,CC 1=32, ∴12123ABB B CC C C S S 四边形四边形=2(1032=59.③ 四边形CC 1C 2C 3的面积=221()a b C C =+ =222ab a b ++ , 四边形CC 1C 2C 3的面积=4△ABC 的面积+四边形ABB 1B 2的面积=4⨯12ab +2c =22ab c + ∴222ab a b ++ =22ab c +, 化简得:22a b + =2c . 【题目点拨】本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年吉林省长春市中考数学模拟试卷(八)一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•烟台)﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.(3分)(2016•长春模拟)长珲高铁于2015年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×1033.(3分)(2016•长春模拟)由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.4.(3分)(2010•遵义)不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.5.(3分)(2016•长春模拟)一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根6.(3分)(2013•巴中)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O 的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°7.(3分)(2015•裕华区模拟)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°8.(3分)(2012•黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2014•南宁)分解因式:2a2﹣6a=.10.(3分)(2016•长春模拟)购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.11.(3分)(2016•长春模拟)比较大小:3(填“>”、“=”或“<”).12.(3分)(2016•长春模拟)如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为.13.(3分)(2016•长春模拟)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于.14.(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、解答题(共10小题,满分78分)15.(6分)(2015•福建)先化简,再求值:(x﹣1)2+x(x+2),其中x=.16.(6分)(2016•长春模拟)在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.17.(6分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.18.(7分)(2016•长春模拟)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD 上.DF=BE.求证:四边形BEDF是矩形.19.(7分)(2016•长春模拟)某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】20.(7分)(2016•长春模拟)为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.21.(8分)(2016•长春模拟)某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.22.(9分)(2016•长春模拟)已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为.23.(10分)(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC 于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.24.(12分)(2016•长春模拟)如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.2016年吉林省长春市中考数学模拟试卷(八)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•烟台)﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣【解答】解:|﹣3|=3.故选:B.2.(3分)(2016•长春模拟)长珲高铁于2015年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×103【解答】解:360=3.6×102,故选:C.3.(3分)(2016•长春模拟)由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.【解答】解:从正面看第一层是三个小正方形,第二层右边两个小正方形,故选:A.4.(3分)(2010•遵义)不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【解答】解:2x﹣4≤02x≤4x≤2故选B.5.(3分)(2016•长春模拟)一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:△=(﹣4)2﹣4×1×6=﹣4<0,所以方程没有实数根.故选:D.6.(3分)(2013•巴中)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O 的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.7.(3分)(2015•裕华区模拟)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.8.(3分)(2012•黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2014•南宁)分解因式:2a2﹣6a=2a(a﹣3).【解答】解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).10.(3分)(2016•长春模拟)购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为(m+2n)元.【解答】解:购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为:(m+2n)元,故答案为:(m+2n).11.(3分)(2016•长春模拟)比较大小:<3(填“>”、“=”或“<”).【解答】解:∵2=,3=,∴2<3,故答案为:<.12.(3分)(2016•长春模拟)如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为55°.【解答】:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故答案为:55°.13.(3分)(2016•长春模拟)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于1:2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△DCF,∴=,∵点E是边AD的中点,∴DE=AE=BC,∴==.故答案为:1:2.14.(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.三、解答题(共10小题,满分78分)15.(6分)(2015•福建)先化简,再求值:(x﹣1)2+x(x+2),其中x=.【解答】解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=时,原式=4+1=5.16.(6分)(2016•长春模拟)在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.17.(6分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.18.(7分)(2016•长春模拟)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD 上.DF=BE.求证:四边形BEDF是矩形.【解答】证明:∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形.19.(7分)(2016•长春模拟)某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】【解答】解:过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°,在Rt△ACD中,∠CAD=45°,∴CD=AD,在Rt△BCD中,∠CBD=37°,tan∠CBD=,∴BD=,∵AB=BD﹣AD=2,∴﹣CD=2,解得:CD=≈6.1(米).答:货物(即点C)到地面的高度为6.1米.20.(7分)(2016•长春模拟)为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)“报纸”的人数为:1000×10%=100.补全图形如图所示:(3)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×=32(万人).21.(8分)(2016•长春模拟)某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.【解答】解:(1)当0≤t<5时,y=0,当5≤t≤8时,设y与时间t之间的函数关系式为:y=kx+b,将(5,0),(8,360)代入得:,解得:,∴y与时间t之间的函数关系式为:y=120x﹣600;(2)∵当t=7时,y=120×7﹣600=240,∴a=120+(240﹣120)÷(7﹣4)×(8﹣4)=280(个);(3)(700﹣280)÷120﹣(8﹣5)=0.5(时)答:乙组工人应提前加工零件的时间为0.5小时.22.(9分)(2016•长春模拟)已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为相等.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为 2.8.【解答】(1)如图1中,猜想:DM=EM.理由:作EF∥AB交BC于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AD,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∵EF∥AB,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.故答案为DM=EM.(2)结论DM=EM.理由::如图2中,作EF∥AB交CB的延长线于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AB,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∵EF∥AB,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.(3)如图3中,作EF∥AB交CB的延长线于F,∵EF∥AB,∴∠F=∠ABC,∵AB=AC,∴∠ABC=∠C,∴∠F=∠C,∴EF=CE=4,∵BD∥EF,∴,∴=,∴EM=2.8,故答案为2.8.23.(10分)(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC 于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.【解答】解:(1)抛物线y=x2+bx+c经过点A(﹣4,0),点B(0,8),∴,解得:,∴这条抛物线所对应的函数表达式为y=x2+2x﹣8;(2)设直线AC的解析式为:y=kx+b,点A(﹣4,0),点C(0,﹣4)在直线AC上,∴,解得:,∴直线AC所对应的函数表达式为:y=﹣x﹣4;∵点P在抛物线y=x2+2x﹣8上,∴设点P(m,m2+2m﹣8),∵PD∥y轴,∴点D(m,﹣m﹣4),∴PD=﹣m﹣4﹣(m2+2m﹣8)=﹣m2﹣3m+4,∵四边形PBCD是平行四边形,∴PD=BC,即﹣m2﹣3m+4=4,解得:m1=0,m2=﹣3,∵点P不与点B重合,∴m=﹣3,∴P(﹣3,﹣5);(3)∵点A(﹣4,0),点C(0,﹣4),∴OA=OC,∵∠AOC=90°,∴∠ACO=45°,∵PD∥y轴,∴∠PDE=∠ACO=45°,∵PE⊥AC于点E,∴∠PED=90°,∴∠PDE=∠DPE=45°,设点E的横坐标为n,如图,过点E作EF⊥PD于点F,∵△DPE是等腰直角三角形,∴EF=PD,即n﹣m=PD,∴n=m+PD=m+(﹣m2﹣3m+4)=﹣(m+)2+,∵﹣4<m<0,∴当m=﹣时,n最大,且n的最大值为.24.(12分)(2016•长春模拟)如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为t.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.【解答】解:(1)∵△ABC是等腰直角三角形,∴∠ABC=45°,∵DE∥AC,∴∠FEQ=45°,∵EQ=t,∴QF=t,故答案为t.(2)过点Q作QF⊥DE交AC于G,如图1,∵∠C=90°,DE⊥BC,∴DE∥AC,∴∠PFQ=∠QGM=90°,∵四边形PQMN为正方形,∴∠PQM=90°,PQ=MQ,∴∠FPQ+∠FQP=∠FQP+∠GQM=90°,∴∠FPQ=∠GQM..∴△FPQ≌△GQM,∴FP=GQ,∵AC=BC=12,点D为BC中点,∴∠A=∠B=45°,CD=6,∵PT=EF=t,PF=QG=2t,∴t+2t=6,∴t=2;解:(3)当正方形顶点落在BC边上时,如图2,2(6﹣t)=6,∴t=3,当0<t≤2时,如图3,S=PQ2=t2+(2t)2=5t2,当2<t≤3时,如图4,S=[t﹣(6﹣t)]2=﹣t2+45t﹣45,当3<t≤6时如图5,S=(6+12)×6﹣t2(6﹣t)2﹣(6﹣t)2=﹣t2+15t+9,(4)解:如图6,AC与MN的交点为H,由题意由EH=AH=6,△ACD≌△MHA,∴MH=AC=6,∴EM=EH+MG=18,∴S线段QM所扫过的面积=S△AEM=×EM×AH=×18×6=54.参与本试卷答题和审题的老师有:CJX;sd2011;2300680618;haoyujun;73zzx;zcx;zjx111;gbl210;zgm666;王学峰;sks;wd1899;nhx600;弯弯的小河;陈红美;星月相随(排名不分先后)菁优网2016年5月3日古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。