高一数学必修4综合试卷(1)
(完整版)高一数学必修4测试题及答案详解
BCCAB BDBDD BD(-2,-1) -6 -3 [-1,3] 根号2118解:(1)336tan )64tan()623tan(==+-=-ππππ……(4分)(2)原式=︒︒+︒︒=︒+︒30sin 45cos 30cos 45sin )3045sin(=42621222322+=⨯+⨯ ……(8分)19解:由已知有:3·2)cos(1B A +-+2)cos(1B A -+=2 ……(3分)∴-3cos(A +B)+cos(A -B)=0,∴-3(cosAcosB -sinAsinB)+(cosAcosB +sinAsinB)=0, ………(6分)∴cosAcosB =2sinAsinB, ∴tan AtanB=21…………(8分) 20解:设),(y x =,由题意得:⎩⎨⎧=--=-⋅⇒⎪⎩⎪⎨⎧==⋅)1,3()2,1(),(0)2.1(),(0λλy x y x ……(3分))7,14(7142312=⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-=+=⇒y x y x yx λλ……(6分))6,11(=-=……(8分)21解:(Ⅰ))cos 23sin 21(2x x y +==)3sin cos 3cos (sin 2ππx x +=)3sin(2π+x……(2分)函数)(x f 的周期为T =π2,振幅为2。
……(.4分)(Ⅱ)列表:……(6分) 图象如上(作图不规范者扣1分)。
……(8分) (Ⅲ)由)(232322Z k k x k ∈+≤+≤+πππππ解得: )(67262Z k k x k ∈+≤≤+ππππ所以函数的递减区间为)(],672,62[Z k k k ∈++ππππ……(10分)22解:(Ⅰ)因为A (1,1),B (2,1)所以=(1,1),=(2,1)……(2分) cos ∠AOB 1010310121411)1,2()1,1(||||=+=+⋅+⋅=⋅OB OA . ……(4分)(Ⅱ)因为C (3,1),D (3,0),所以tan ∠BOD =21,tan ∠COD =31……(6分) 所以 tan(∠BOD +∠COD)=CODBOD COD BOD ∠∠-∠+∠tan tan 1tan tan 1312113121=⋅-+= ……(8分) 又因为∠BOD 和∠COD 均为锐角,故∠BOD +∠COD =45° ……(10分) 考查向量数量积的几何意义,向量夹角求法,两角和的正切,。
【2019-2020高一数学试题】人教A版必修4《正弦函数、余弦函数的性质(1)》试题 答案解析
正弦函数、余弦函数的性质(1)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x2.函数f (x )=x +sin x ,x ∈R ( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .24.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π12 5.下列四个函数中,是以π为周期的偶函数的是( )A .y =|sin x |B .y =|sin2x |C .y =|cos2x |D .y =cos3x6.如果函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( )A .3B .6C .12D .24二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω= .8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)= . 9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)= .三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.——能力提升类——12.已知函数y =2sin ⎝⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( )A .0B .-π4 C.π2 D .π13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )14.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 .15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.正弦函数、余弦函数的性质(1)(答案解析)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( D ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin x2的最小正周期为T =2πω=4π,故C 项不符合题意;D 项,y =cos2x 的最小正周期为T =2πω=π,故D 项符合题意.故选D.2.函数f (x )=x +sin x ,x ∈R ( A ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数又是偶函数 D .既不是奇函数又不是偶函数解析:函数f (x )=x +sin x 的定义域为R ,f (-x )=-x +sin(-x )=-x -sin x =-f (x ),则f (x )为奇函数.故选A.3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( B )A .1B .-1C .0D .2解析:∵T =π,且为奇函数.∴f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫34π-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1. 4.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( D )A .x =-π6 B .x =-π12 C .x =π6D .x =π12解析:令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).故选D. 5.下列四个函数中,是以π为周期的偶函数的是( A ) A .y =|sin x | B .y =|sin2x | C .y =|cos2x |D .y =cos3x解析:A 中的函数周期为π.B 中的函数周期为π2.C 中的函数周期为π2.D 中的函数周期为23π.故选A.6.如果函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( B )A .3B .6C .12D .24解析:函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,∴T =2×π6=π3,又2πω=π3,∴ω=6.选B.二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω=8. 解析:π4=2πω,∴ω=8.8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)=-5. 解析:由f (2 015)=2 015a +b sin2 015+1=7, 得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=-1.解析:因为T =2,则f (x )=f (x +2).又f (-1)=f (-1+2)=f (1),且x ∈[1,3)时,f (x )=x -2,所以f (-1)=f (1)=1-2=-1.三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解:由题意知函数定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数. 11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的最小正周期是2π.——能力提升类——12.已知函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( B ) A .0 B .-π4 C.π2D .π解析:y =2sin ⎝⎛⎭⎪⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z .显然当k =0时,φ=-π4满足题意.13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )解析:A 项,由f (-x )=f (x )知函数f (x )为偶函数,故A 错.B 项,由函数f (x )为偶函数,周期为2,故B 正确.C 项,由函数f (x )为偶函数,故C 错.D 项,由函数f (x )周期为2.故D 错.14.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为±45. 解析:由题意得2πω=π2, ∴ω=4,∴f (x )=3sin ⎝ ⎛⎭⎪⎫4x +π6∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95. ∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45. 15.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.解:当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3.因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32 解得x +π3=-π6或π6, 即x =-π2或-π6.又因为g (x )的最小正周期为π.所以g (x )=32的解集为 ⎩⎨⎧⎭⎬⎫x|x =k π-π2或x =k π-π6,k ∈Z .。
2014《成才之路》高一数学(人教A版)必修4:本册综合能力测试学生用
高中数学必修4综合测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·泰安期末)tan 83π的值为( )A.33 B .-33C.3 D .- 3 2.(2013·辽宁理)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A .(35,-45) B .(45,-35) C .(-35,45) D .(-45,35)3.(2013·诸城月考)集合{x |k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )4.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 25.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75° 6.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( ) A.60119 B.120119 C .-60119 D .-1201197.(2013烟台模拟)已知cos α=35,cos(α+β)=-513,α,β都是锐角,则cos β=( )A .-6365B .-3365 C.3365 D.63658.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[12,1]C .[12,32]D .[32,1]9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( ) A .0 B .-1 C .0或-1 D .-1或1 11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34 B.34 C .-43 D.4312.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若tan α=3,则sin αcos α的值等于________.14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.15.(2013南通调研)设α、 β∈(0,π),且sin(α+β)=513,tan α2=12,则cos β的值为________. 16.已知△ABC 中,AC =4,AB =2,若G 为△ABC 的重心,则AG →·BC →=__ . . 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.18.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.19.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期; (2)若f (θ)=3,其中0<θ<π2,求cos(θ+π6)的值.20.(本题满分12分)(2012济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值; (2)若|2a -b |<m 恒成立,求实数m 的取值范围.21.(本题满分12分)(2013山东潍坊高一期末)已知函数f (x )=A sin(ωx +φ)(ω>0,0<φ<π2)的部分图象如图所示. (Ⅰ)求f (x )的解析式;(Ⅱ)将函数y =f (x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(Ⅲ)当x ∈[-π2,5π12]时,求函数y =f (x +π12)-2f (x +π3)的最值.22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域。
人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx
高中数学学习材料唐玲出品高一数学必修4综合考试卷(人教A 版附答案)第I 卷注意事项:本次考试试卷分为试题和答题卷两部分,学生应把试题中的各个小题答在第II 卷中相应的位置上,不能答在试题上,考试结束后,只交答题卷。
一、选择题:本大题共10题,每小题3分,共30分。
在每一题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在...........第.II ..卷的选择题答案表中.........。
1.将-300o 化为弧度为( ) A .-;34π B .-;35π C .-;67π D .-;47π2.若角α的终边过点(sin30o ,-cos30o ),则sin α等于( ) A .;21 B .-;21 C .-;23 D .-;33 3.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC 4.oooo26sin 19sin -26cos 71sin 的值为( ) A .;21B .1;C .-;22 D .;22 5.函数)23cos(3x y π+=的图象是把y=3cos3x 的图象平移而得,平移方法是( )A .向左平移2π个单位长度; B .向左平移6π个单位长度; C .向右平移2π个单位长度; D .向右平移6π个单位长度; 6.在下列四个函数中,在区间),(20π上为增函数,且以π为最小正周期的偶函数是( ) A .y=x 2; B .y=|sinx|; C .y=cos2x; D .y=sinxe ;7.在∆ABC 中,若sinAsinB<cosAcosB ,则∆ABC 一定是( ) A .锐角三角形; B .直角三角形; C .钝角三角形; D .不能确定;8.已知)(),点=(),,-=(-21x,P 1,1ON 32OM 在线段NM 的中垂线上, 则x 等于( )A .;-25B .;-23C .;-27 D .-3;9.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o ),则|AB |的值是( ) A .;21 B .;22 C .;23 D .1; 10.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足,+=OB OA OC βα 1R =+,且、其中βαβα∈,则点C 的轨迹方程是( )A .3x+2y -11=0;B .(x -1)2+(y -2)2=5;C .2x -y=0;D .x+2y -5=0;二、填空题:本大题共有5小题,每小题3分,满分15分。
高一数学必修4试题及答案
高 一 数 学 测 试 卷1(必修4)一、填空题(1-8题每题5分 , 9-14题每题6分,共76分)1、比较大小: 0cos(508)-0cos(144)- 2、函数tan 2y x =的定义域是3、函数y =cos(2x -4π)的单调递增区间是_________________4、若21tan =α,则ααααcos 3sin 2cos sin -+=5、函数2cos 1y x =+的定义域是___________6、函数)23cos(3x y π+=的图象是把y=3cos3x 的图象平移而得,平移方法是______________ 7、函数xxy sin 3sin 3+-=的值域为______________________ 8、①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是 。
9、函数)sin(ϕω+=x A y (A >0,0<ϕ<π)在一个周期内的图象如右图,此函数的解析式为___________________10、函数2005sin(2004)2y x π=-是_______函数 (填:奇函数、偶函数、非奇非偶函数、既是奇函数又是偶函数 ) 11、 关于函数f(x)=4sin(2x +3π), (x ∈R )有下列命题:①y =f(x)是以2π为最小正周期的周期函数;② y =f(x)可改写为y =4cos(2x -6π);③y =f(x)的图象关于点(-6π,0)对称; ④ y =f(x)的图象关于直线x =512π-对称;其中正确的序号为 。
12、直线y a = (a 为常数)与正切曲线tan y x ω=(0ω>)相交的相邻两点间的距离是_______ 13、如下图,函数)656(3sin 2ππ≤≤=x x y 与函数y=2的图像围成一个封闭图形,这个封闭图形的面积是_________________________14、如上图,函数f(x)=Asin(ωx +ϕ) (A>O ,ω>0)的部分图象如图所示,则f(1)+f (2)+…+f(2008)的值等于________二、解答题(共6大题,共84分) 15、(本题满分14分)(1)已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; (2)已知5sin cos ,2,tan ααπαπα-=-p p 求的值。
高一下学期第一次月考数学试题1(必修4)(含答案)
高一下学期第一次月考数学试题一、 选择题(每题5分,共计60分)1、sin 210︒的值为A .12B . 12- C .2 D . 2- 2、已知4tan 3α=-,且α为第四象限角,则sin α的值为 A .35 B .35- C .45 D .45- 3、若sin 0α<且tan 0α>是,则α是A .第一象限角B .第二象限角C . 第三象限角D . 第四象限角4、所有与角α终边相同的角, 连同角α在内, 可构成的一个集合S 是A .{β|β=α+k ·180°,k ∈Z}B .{β|β=α+k ·360°, k ∈Z}C .{β|β=α+k ·180°,k ∈R}D .{β|β=α+k ·360°, k ∈R}5、下列函数是周期为π的偶函数为A . cos 2y x =B . sin 2y x =C . tan 2y x =D . 1cos 2y x = 6、函数)32sin(2π+=x y 的图象A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x =6π对称 7、若[]0,2x π∈,则使函数sin y x =为增函数,cos y x =为减函数的区间为A .[0,]2πB . [,]2ππC . 3[,]2ππD .3[,2]2ππ 8、若函数234y x x =--的定义域为[0, m],值域为25[,4]4--,则m 的取值范围是A.[0,4]B.[4,23] C.[3,23]D.[+∞,23) 9、函数sin()y A x ωϕ=+在一个周期内的图象如下,此函数的解析式可以为A .)322sin(2π+=x yB .)32sin(2π+=x y C .)32sin(2π-=x y D .)32sin(2π-=x y10、若函数3cos(2)y x ϕ=+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,则||ϕ的最小值为 A. 6π B. 4π C. 3π- D. 2π11、为了得到函数)321sin(π-=x y 的图像,需将x y 21sin =的图像上每一个点 A.向左平移3π个单位长度 B.向右平移3π个单位长度 C.向右平移32π个单位长度 D.向左平移32π个单位长度 12、函数0.5log cos 2y x =的单调递增区间是A . 2,22k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) B . ,2k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) C . ,4k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) D .. ⎪⎭⎫⎢⎣⎡++2,4ππππk k (Z k ∈) 二、填空题(每小题5分, 共20分)13、角α的终边上有一点()4,P m -,且sin (0)5m m α=<,则sin cos αα+= ; 14、一个扇形的弧长为cm 5,它的面积为25cm ,则这个扇形的圆心角的弧度数是______.15、()sin tan 1,(5)7,(5)f x a x b x f f =++=-=已知满足则 ;16、 函数[]()sin 2sin ,0,2f x x x x π=+∈的图像与直线y=k 有且只有两个不同的交点,则 k 的取值范围是 。
高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
高一数学(人教B版)必修4:第3章综合素质检测
阶段性测试题六(第三章综合素质检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.有下列四个命题:①存在x ∈R ,sin 2x 2+cos 2x 2=12; ②存在x 、y ∈R ,sin(x -y )=sin x -sin y ;③x ∈[0,π],1-cos2x 2=sin x ; ④若sin x =cos y ,则x +y =π2. 其中不正确的是( )A .①④B .②④C .①③D .②③[答案] A[解析] ∵对任意x ∈R ,均有sin 2x 2+cos 2x 2=1, 故①不正确,排除B 、D ;又x ∈[0,π],1-cos2x 2=sin 2x =sin x ,故③正确,排除C ,故选A.2.(2009·广东)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 [答案] A[解析] y =2cos 2⎝⎛⎭⎫x -π4-1=cos ⎝⎛⎭⎫2x -π2=cos ⎝⎛⎭⎫π22x =sin2x∴函数是最小正周期为π的奇函数.3.在△ABC 中,若4sin A +2cos B =1,2sin B +4cos A =33,则sin C 的大小是( )A .-12 B.32 C.12或32 D.12[答案] D[解析] 由条件,得(4sin A +2cos B )2=1,(2sin B +4cos A )2=27,∴20+16sin A cos B +16sin B cos A =28.∴sin A cos B +cos A sin B =12.即sin(A +B )=12.∴sin C =sin[π-(A +B )]=sin(A +B )=12.4.函数y =(sin x +cos x )2+1的最小正周期是( ) A.π2 B .π C.3π2 D .2π[答案] B[解析] y =(sin x +cos x )2+1=1+2sin x cos x +1=2+sin2x .∴最小正周期T =π.5.设5π<θ<6π,cos θ2=a ,则sin θ4的值等于( )A .-1+a 2B .-1-a2C .-1+a 2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0,∴sin θ4=-1-cos θ22=-1-a2.6.(2009·江西)函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为() A .1 B .2C.3+1D.3+2[答案] B[解析] f (x )=cos x +3sin xcos x ·cos x=cos x +3sin x =2⎝⎛⎭⎫12cos x +32sin x=2sin ⎝⎛⎭⎫x +π6, ∵0≤x <π2,∴π6≤x +π6<2π3,∴f (x )的最大值为2.7.函数y =sin 4x +cos 2x 的最小正周期为( ) A.π4 B.π2C .πD .2π[答案] B[解析] y =sin 4x +cos 2x =(1-cos 2x )2+cos 2x=cos 4x -cos 2x +1=(cos 2x -12)2+34=(1+cos2x 2-12)2+34=cos 22x 4+34=1+cos4x8+34=18cos4x +78.∴T =2π4=π2,故选B.8.cos 275°+cos 215°+cos75°cos15°的值为( ) A.62 B.32C.54 D .1+34[答案] C[解析] 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54.9.函数f (x )=sin x -3cos x (x ∈[-π,0])单调递增区间是()A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0D.⎣⎡⎦⎤-π6,0 [答案] D[解析] f (x )=sin x -3cos x=2⎝⎛⎭⎫12sin x -32cos x =2sin ⎝⎛⎭⎫x -π3. ∵x ∈[-π,0],∴x -π3⎣⎡⎦⎤-4π3,-π3. 当x -π3∈⎣⎡⎦⎤-π2,-π3时,f (x )递增, 此时x ∈⎣⎡⎦⎤-π6,0.故选D. 10.(2009·重庆)设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( ) A.π6B.π3C.2π3D.5π6 [答案] C[解析] ∵m·n =3sin A cos B +3cos A sin B =3sin(A +B )=1+cos(A +B ), ∴3sin(A +B )-cos(A +B )=1, ∴3sin C +cos C =1,即2sin ⎝⎛⎭⎫C +π6=1, ∴sin ⎝⎛⎭⎫C +π6=12,∴C +π6=5π6,∴C =2π3. 11.在△ABC 中,已知sin 2A +sin 2B +sin 2C =2,则△ABC 为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形[答案] C[解析] 由已知,得1-cos2A 2+1-cos2B 2+sin 2C =2, ∴1-12(cos2A +cos2B )+sin 2C =2, ∴cos2A +cos2B +2cos 2C =0,∴cos(A +B )·cos(A -B )+cos 2C =0,∴cos C [-cos(A -B )-cos(A +B )]=0,∴cos A ·cos B ·cos C =0,∴cos A =0或cos B =0或cos C =0.∴△ABC 为直角三角形.12.若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[答案] C[解析] f (sin x )=3-cos2x=3-(1-2sin 2x )=2+2sin 2x ,∴f (x )=2+2x 2∴f (cos x )=2+2cos 2x=2+1+cos2x =3+cos2x .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上)13.(2009·上海)函数y =2cos 2x +sin2x 的最小值是________.[答案] 1- 2[解析] y =2cos 2x +sin2x =1+cos2x +sin2x=1+2sin ⎝⎛2x +π4,∴y min =1- 2. 14.2tan150°1-tan 2150°的值为________. [答案] - 3[解析] 原式=2×⎝⎛⎭⎫-331-⎝⎛⎭⎫-332=-233·32=- 3. 15.cos θ=-35,且180°<θ<270°,则tan θ2=________. [答案] -2[解析] ∵180°<θ<270°,∴90°<θ2<135°, ∴tan θ2,又∵cos θ=-35,∴tan θ2=-1-cos θ1+cos θ=-1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=-2. 16.在△ABC 中,cos ⎝⎛⎭⎫π4+A =513,则cos2A 的值为________. [答案] 120169[解析] 在△ABC 中,cos ⎝⎛⎭⎫π4+A =513>0, ∴sin ⎝⎛⎭⎫π4+A =1-cos 2⎝⎛⎭⎫π4+A =1213∴cos2A =sin ⎝⎛⎭⎫π2+2A =sin2⎝⎛⎭⎫π4+A =2sin ⎝⎛⎭⎫π4+A cos ⎝⎛⎭⎫π4+A =2×1213×513=120169. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求值(tan5°-cot5°)·cos70°1+sin70°. [解析] 解法一:原式=⎝⎛⎭⎫tan5°-1tan5°·cos70°1+sin70°=tan 25°-1tan5°·sin20°1+cos20°=-2·1-tan 25°2tan5°·sin20°1+cos20°=-2cot10°·tan10°=-2.解法二:原式=⎝⎛⎭⎫sin5°cos5°-cos5°sin5°·sin20°1+cos20°=sin 25°-cos 25°sin5°·cos5°·sin20°1+cos20°=-cos10°12sin10°·2sin10°·cos10°2cos 210°=-2. 解法三:原式=⎝ ⎛⎭⎪⎪⎫1-cos10°sin10°-1sin10°1+cos10°·sin20°1+cos20° =⎝⎛⎭⎫1-cos10°sin10°-1+cos10°sin10°·sin20°1+cos20°=-2cos10°sin10°·2sin10°·cos10°2cos 210°=-2.18.(本小题满分12分)已知cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,且π2<α<π,0<β<π2,求tan α+β2的值.[解析] ∵π2<α<π,0<β<π2,∴π4<α-β2<π. ∵cos ⎝⎛⎭⎫α-β2=-19∴sin ⎝⎛⎭⎫α-β2=459. 又∵π4<α2<π2, ∴-π4<α2-β<π2. ∵sin ⎝⎛⎭⎫α2-β=23,∴cos ⎝⎛⎭⎫α2-β=53. 故sin α+β2sin ⎣⎡⎦⎤⎝⎛α-β2-⎝⎛⎭⎫α2-β =sin ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β-cos ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =459×53-⎝⎛⎭⎫-19×23=2227, cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527,∴tan α+β2=sinα+β2cos α+β2 =22277527=22535. 19.(本小题满分12分)已知α+β=3π4,求证:cos 2α+cos 2β+2cos αcos β=12. [解析] 左边=1+cos2α2+1+cos2β2+2cos αcos β =1+12(cos2α+cos2β)+2cos αcos β =1+cos(α+β)cos(α-β)+22[cos(α+β)+cos(α-β)] =1+cos 3π4cos(α-β)+22⎣⎡⎦⎤cos 3π4+cos (α-β)=1-22cos(α-β)+22×⎝⎛⎭⎫-22+22cos(α-β) =1-12=12=右边. 20.(本小题满分12分)若函数f (x )=1+cos2x 4sin ⎝⎛⎭⎫π2+x -a sin x 2·cos ⎝⎛⎭⎫π-x 2的最大值为2,试确定常数a 的值.[解析] f (x )=2cos 2x 4cos x +a sin x 2cos x 2=12cos x +a 2sin x , f (x )的最大值为14+a 24 ∴14+a 24=2, 解得a =±15.21.(本小题满分14分)(2010·南安一中高一下学期期末测试)已知f (x )=2cos 2x +3sin2x +a ,其中a ∈R .(1)若x ∈R ,求f (x )的最小正周期;(2)若f (x )在[-π6,π6]上最大值与最小值之和为3,求a 的值. [解析] f (x )=1+cos2x +3sin2x +a=2sin(2x +π6)+a +1, (1)f (x )的最小正周期为T =2π2=π. (2)∵x ∈[-π6,π6],2x ∈[-π3,π3], 2x +π6∈[-π6,π2], sin(x +π6)∈[-12,1], ∴f (x )max =a +3,f (x )min =a ,∴2a +3=3,∴a =0.22.(本小题满分14分)(2009·湖南)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.[解析] (1)∵a ∥b ,∴2sin θ=cos θ-2sin θ,∴4sin θ=cos θ,∴tan θ=14. (2)由|a |=|b |,得sin 2θ+(cos θ-2sin θ)2=5, ∴1-2sin2θ+4sin 2θ=5.∴-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,∴sin ⎝⎛⎭⎫2θ+π4=-22. 又∵0<θ<π,∴π4<2θ+π4<9π4,∴2θ+π4=5π4或7π4. ∴θ=π2或θ=3π4.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4) (特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C22120s i n 等于 ( ) A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=x x 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数tan 2y x =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________ 16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、, 求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 32 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2--12.在ABC ∆中,tan tan 33tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学(人教B版)必修4:第1章基本知能检测
阶段性测试题 一(第一章基本知能检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.sin480°的值是( )A .-12B .-32 C.12 D.32[答案] D[解析] sin480°=sin(360°+120°)=sin120°=32. 2.tan300°+cot405°的值为( )A .1+ 3B .1-3C .-1- 3D .-1+ 3 [答案] B[解析] tan300°+cot405°=tan[360°+(-60°)]+cot(360°+45°)=-tan60°+cot45°=1- 3.3.下列命题中不正确的个数是( )①小于90°的角是锐角; ②终边不同的角的同名三角函数值不等; ③若sin α>0,则α是第一、二象限角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y2.A .1B .2C .3D .4 [答案] D[解析] 对于①,负角小于90°,但不是锐角. π4和3π4终边不同,但正弦值相等,所以②错. sin π2=1,但π2不是一、二象限角.是轴线角所以③错,对于④由定义cos α=xx 2+y 2,所以④也不对.4.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2 [答案] B[解析] 由题意知α终边可在第二或第四象限.当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.5.函数y =|sin(13x -π4)|的周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sinsin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.6.若α是三角形的内角,且sin α+cos α=23,则该三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 [答案] A[解析] ∵sin α+cos α=23,∴1+2sin αcos α=49,∴sin αcos α=-518<0,∴α为钝角,故选A. 7.若0≤x ≤π2,sin x ·cos x =12,则11+sin x +11+cos x 的值是( )A .39+10 5B .9-25C .9+215D .4-2 2 [答案] D[解析] (sin x +cos x )2=1+2sin x ·cos x =1+1=2, ∴sin x +cos x =±2,∵0≤x ≤π2∴sin x >0,cos x >0,∴sin x +cos x =2,原式=1+cos x +1+sin x (1+sin x )(1+cos x )=2+sin x +cos x1+sin x +cos x +sin x ·cos x=2+21+2+12=4-2 2.8.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调递增区间为( )A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈Z C.⎝⎛k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z[答案] C[解析] 令x +π4=t ,则t 单调递增.由复合函数单调性知,只有tan t 单调递增才能使原函数单调递增,∴x +π4∈⎝⎛⎭⎫k π-π2,k π+π2,∴x ∈⎝⎛⎭⎫k π-3π4,k π+π4 (k ∈Z ). 9.若把函数y =f (x )的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再把所得的图象向左平移π2个单位,向下平移1个单位,最后得到的图象正好与函数y =12sin x 的图象相同,则f (x )的解析式为( )A .y =-12cos2x +1B .y =12cos2x +1C .y =12sin ⎝⎛⎭⎫2x -π4 +1D .y =12sin ⎝⎛⎭⎫2x +π4+1[答案] A[解析]10.定义在R 上的函数f (x )既是偶函数、又是周期函数,若f (x )最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f⎝⎛⎭⎫5π3的值为( ) A .-12 B.12 C.32 D .-32[答案] C[解析] f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫-π3+2π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3 =sin π3=32.11.若角α是三角形的一个内角,且sin α=13,则α等于( )A .π-arccos 223B .arcsin 13C .arcsin 13或π-arcsin 13D .arccos 223或π-arccos 223[答案] C[解析] sin α=13>0,α为三角形内角α∈(0,π),当α为锐角时α=arcsin 13,当α为钝角时α=π-arcsin 13.12.已知函数f (x )=12(sin x +cos x )-12x -cos x |,则f (x )的值域是( )A .[-1,1] B.⎣⎡⎦⎤-22,1 C.⎣⎡⎦⎤-1,22 D.⎣⎡⎦⎤-1,-22[答案] C[解析] 当sin x ≥cos x ,f (x )=cos x ,当sin x <cos x ,f (x )=sin x ,∴f (x )=⎩⎨⎧cos x (sin x ≥cos x )sin x (sin x <cos x ).其图象如图实线表示.所以值域为⎣⎡⎦⎤-1,22,故选C. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.cos π3tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________.[答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 14.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡2k π,2k π+π2(k ∈Z )[解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间.故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).15.如图是函数y =A sin(ωx +φ)+B 的图象的一部分,则函数的解析式为________.[答案] y =-2sin ⎝⎛⎭⎫2x +π4+3[解析] |A |=5-12=2,T =4⎝⎛⎭⎫π8+π8=π,B =3, ∴ω=2,而2⎝⎛⎭⎫-π8+φ=0, ∴φ=π4,∴A =-2,∴y =-2sin ⎝⎛⎭⎫2x +π4+3.16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数;③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6[解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一).三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知cos ⎝⎛⎭⎫π2-α=2cos ⎝⎛⎭⎫3π2+β,3sin ⎝⎛⎭⎫3π2-α= -2sin ⎝⎛⎭⎫π2+β,且0<α<π,0<β<π,求α,β的值. [解析] cos ⎝⎛⎭⎫π2-α=2cos⎝⎛⎭⎫3π2+β,即 sin α=2sin β.①3sin ⎝⎛⎭⎫3π2-α=-2sin ⎝⎛⎭⎫π2+β,即 3cos α=2cos β.②式①2+②2得2=sin 2α+3cos 2α. 又sin 2α+cos 2α=1,所以cos 2α=12.所以cos α=±22.又因为α∈(0,π), 所以α=π4或α=3π4.当α=π4cos α=22,cos β=32cos α=32.又β∈(0,π),所以β=π6当α=3π4时,cos α=-22,cos β=32cos α=-32. 又β∈(0,π),所以β=5π6.综上所述,α=π4,β=π6或α=3π4,β=5π6.18.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪π6θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤56π.解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π.由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 19.(本小题满分12分)图为函数y 1=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2.(1)写出函数y 1的解析式;(2)若函数y 2与y 1的图象关于直线x =2对称,求函数y 2的解析式.[解析] (1)由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ,∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z. 又∵φ∈⎝⎛⎭⎫-π2,π2,所以φ=π4.∴y 1=2sin ⎝⎛⎭⎫π4x +π4; (2)设y 2图象上任一点P (x ,y ),点P 关于直线x =2的对称点为Q (x 0,y 0), 即Q (4-x ,y )在y 1图象上, 有y =2sin ⎣⎡⎦⎤π4(4-x )+π4,即y =2sin ⎝⎛⎭⎫π+π4-π4x ,即y =2sin ⎝⎛⎭⎫π4x -π4,∴y 2=2sin ⎝⎛⎭⎫π4x -π4.20.(本小题满分12分)说明y =-2sin ⎝⎛⎭⎫2x -π6+1的图象是由y =sin x 的图象怎样变换而来的.21.(本小题满分12分)某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数y=A sinωt +b的图象.(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时被认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,问:它至多能在港内停留多长时间(忽略进出港所需的时间)?[解析](1)由已知数据,易知y=f(t)的周期T=12.由已知,振幅A=3,b=10,所以y=3sin πt6+10;(2)由题意,该船进出港时,水深应不小于5+6.5=11.5(米),∴3sin π6+10≥11.5,即sinπt6≥12. 解得2k π+π6≤πt 6≤2k π+56π(k ∈Z ),∴12k +1≤t ≤12k +5(k ∈Z ), 在同一天内,取k =0或1, 所以1≤t ≤5或13≤t ≤17.故该船可在当日凌晨1时进港,下午17时离港,它在港内至多停留16小时. 22.(本小题满分14分)已知函数f (x )=23sin(3ωx +π3),其中ω>0.(1)若f (x +θ)是周期为2π的偶函数,求ω及θ的值; (2)若f (x )在(0,π3]上是增函数,求ω的最大值.[解析] (1)由函数解析式f (x )=23sin(3ωx +π3),ω>0整理可得f (x +θ)=23sin[3ω(x +θ)+π3]=23sin(3ωx +3ωθ+π3),由f (x +θ)的周期为2π,根据周期公式2π=2π3ω,且ω>0,得ω=13,∴f (x +θ)=23sin(x +θ+π3), ∵f (x +θ)为偶函数,定义域x ∈R 关于原点对称, 令g (x )=f (x +θ)=23sin(x +θ+π3),∴g (-x )=g (x ),23sin(x +θ+π3)=23sin(-x +θ+π3),∴x +θ+π3π-(-x +θ+π3)+2k π,k ∈Z ,∴θ=k π+π6k ∈Z .∴ω=13,θ=k π+π6,k ∈Z .(2)∵ω>0,∴2k π-π2≤3ωx +π3≤π2+2k π,k ∈Z ,∴2k π3ω-15π18ω≤x ≤π18ω+2k π3ω,k ∈Z ,若f (x )在(0,π3]上是增函数,∴(0,π3]为函数f (x )的增区间的子区间,∴π18ω≥π3,∴ω≤16,∴ωmax =16.。
高一数学(必修4)综合试卷(1)
高一数学(必修4)综合试卷(1)一、选择题:(5′×10)1.sin2400的值是 [ ] A.-21 B.21 C.23 D.-23 2.已知=(– 2,4),=(1,2), 则·等于 [ ] A.0 B.10 C.6 D.-10 3.已知=(4, – 2),=(4,2),则21AB 等于 [ ] A.(0,2) B.(0,-2) C.(4,0) D.(0,4)4.cos150·cos1050– cos750·sin1050的值是 [ ]A.0B.-21C.21D.±21 5.设点P(2,3)分21P P 所成的比为21,点P 1坐标为(1,2),则点P 2的坐标是 [ ] A.(2,3) B.(3,4) C.(4,5) D.(5,6)6.函数f(x)=sin2x ·cos2x 是 [ ] A.周期为π的偶函; B.周期为π的奇函数; C.周期为2π的偶函数; D.周期为2π的奇函数. 7.若=(1,2),=(–3,2),且(k +)∥(–3),则实数k 的值是 [ ] A.-31 B.19 C.911D.-2 8.函数f(x)=3cosx – sinx(0≤x ≤6π)的值域是 [ ] A.[-3,1] B.[1,3] C.[-3,2] D.[1,2]9.如图, △ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线, 它们交于点G ,则下列各等式中不正确的是 [ ]A.32=;B.21=;C.FG CG 2-= ;D.213231=+BC . 10.对于函数f(x)=sin(2x+6π),下列命题: ①函数图象关于直线x=-12π对称;②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到;④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标变为原来的21倍(纵坐标不变)而得到;其中正确的命题的个数是 [ ]GD FECB AA.0B.1C.2D.3 二、填空题:(4′×6) 11. 若cos2α =53, 则sin 4α – cos 4α = . 12.已知向量=(x+3,x 2– 3x – 4)与相等,若A(1,2),B(3,2),则x= ; 13.已知tan(α+β)=52,tan(β–4π)=41,则tan(α+4π)= ; 14.设i , j 是平面直角坐标系内x 轴,y 轴正方向上的两个单位向量,且→--AB = 4i + 2j ,→--AC= 3i + 4 j . 则△ABC 的形状是__________________。
高一数学(人教B版)必修4:第1章综合素质检测
阶段性测试题二(第一章综合素质检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.tan600°的值是( ) A .-33B.33C .- 3 D. 3 [答案] D[解析] tan600°=tan(360°+180°+60°) =tan60°= 3.2.角α满足条件sin αcos α>0,sin α+cos α<0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 [答案] C[解析] ∵sin αcos α>0,∴α为第一或第三象限角, 又∵sin α+cos α<0,∴α为第三象限角.3.在区间[-π,π]上既是增函数,又是奇函数的是( ) A .y =sin2(π-x ) B .y =sin ⎝⎛⎭⎫π+x 4 C .y =sin ⎝⎛⎭⎫π2+x2D .y =cos 3π+x2[答案] D[解析] y =cos 3π+x 2=sin x2在区间[-π,π]上是增函数,又是奇函数.4.已知sin x -cos x =15(0≤x <π),则tan x 等于( )A .-34B .-43C.34D.43 [答案] D[解析] ∵sin x -cos x =15,∴1-2sin x cos x =125,∴2sin x cos x =2425>0,∵0≤x <π,∴x 是第一象限角.(sin x +cos x )2=1+2sin x cos x =4925,∴sin x +cos x =75.由⎩⎨⎧sin x -cos x =15sin x +cos x =75,得⎩⎨⎧sin x =45cos x =35.∴tan x =43.5.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛-π4,π4 B.⎝⎛π4,3π4 C.⎝⎛π,3π2 D.⎝⎛⎭⎫3π2,2π [答案] C[解析] 作出函数y =|sin x |的图象.由图象可知,选C.6.如果函数f (x )=sin(πx +θ)(0<θ<π)的最小正周期为T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π2[答案] A[解析] T =2πω=2ππ=2,又x =2时,f (x )取最大值,∴2π+θ=π22k π,k ∈Z ,∴θ=2k π-3π2,k ∈Z .令k =1,得θ=π2,故选A.7.已知α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 [答案] D[解析] ∵⎪⎪⎪⎪sin α2=-sin α2,∴α2是第三或第四象限角,又α是第三象限角,由等分象限法(如右图)可知,α2D.8.函数f (x )=sin ⎝⎛⎭⎫32+π4的图象相邻的两个零点之间的距离是( ) A.π3 B.2π3 C.4π3D .2π [答案] B[解析] 函数y =sin ⎝⎛⎭⎫32x +π4的图象相邻的两个零点之间的距离为半个周期,又T =2π32=4π3,∴T 2=2π3. 9.函数y =cos ⎝⎛⎭⎫-3x +π3的一个对称中心为( )A.⎝⎛⎭⎫π6,0B.⎝⎛⎭⎫π3,0C.⎝⎛⎭⎫5π18,0D.⎝⎛⎭⎫π2,0 [答案] C[解析] y =cos ⎝⎛⎭⎫-3x +π3=cos ⎝⎛⎭⎫3x -π3,令3x -π3=k π+π2(k ∈Z ),∴x =k π3+5π18(k ∈Z ).当k =0时,x =5π18,故选C.10.(2009·浙江)已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能...是( )[答案] D[解析] 图A 中函数的最小值小于2,故0<a <1,而周期大于2π,故A 中图象可以是函数f (x )的图象;图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象;当a =0时,f (x )=1,此时对应C 中图象;对于D 中,最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.11.若|x |≤π4,那么函数y =cos 2x +sin x 的最小值是( )A.2-12 B.1-22C .-2+12D .-1[答案] B[解析] y =cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵|x |≤π4,∴-π4≤x ≤π4,∴-22≤sin x ≤22, ∴当sin x =-22时,y 取最小值1-22. 12.关于x 的方程2sin ⎝⎛⎭⎫x +π4=2m 在[0,π]内有相异两实根,则实数m 的取值范围为( )A.⎣⎡-12,12 B.⎣⎡⎦⎤12,22 C.⎣⎡⎦⎤-22,22D.⎣⎡⎦⎤-12,24[答案] B[解析] 验证:当m =0时,方程化为2sin ⎝⎛⎭⎫x +π4=0,∵x ∈[0,π], ∴只有当x =3π4时,方程成立, ∴m ≠0,故应选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.已知sin α、cos α是方程2x 2-x -m =0的两根,则m =________. [答案] 34[解析] 由题意,得⎩⎨⎧sin α+cos α=12sin αcos α=-m2,解得m =34,又m =342x 2-x -m =0有两根.14.要得到y =sin ⎝⎛⎭⎫x 2+π3的图象,需将函数y =sin x2的图象至少向左平移________个单位.[答案]2π3[解析] 将函数y =sin x 2的图象向左平移2π3得到y =sin 12⎝⎛⎭⎫x +2π3=sin⎝⎛⎭⎫x 2+π3的图象.15.已知函数f (x )=a sin2x +cos2x (a ∈R )的图象的一条对称轴方程为x =π12,则a 的值为________.[答案]33[解析] 由题意,得f (0)=f ⎝⎛⎭⎫π6,即a sin0+cos0=a sin π3+cos π3,∴32a =12,∴a =33. 16.有一种波,其波形为函数y =sin ⎝⎛⎭⎫π2的图象,若在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是________.[答案] 5[解析] ∵54T ≤t ,∴54×2ππ2≤t ,∴t ≥5.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知角α的终边上的一点的坐标是P (-3,y ),且sin α=24y ,求sin α和tan α.[解析] 当y =0时,角α的终边在x 轴的负半轴上,sin α=0,tan α=0; 当y ≠0时,r =3+y 2,sin α=24y , ∴3+y 2=22, 因此y =±5, 当y =5时,sin α=104,tan α=-153; 当y =-5时,sin α=-104,tan α=153. 18.(本小题满分12分) 求函数f (x )=sin x +lg(25-x 2)cos x的定义域.[解析] 由题意,得⎩⎪⎨⎪⎧sin x ≥0cos x >025-x 2>0,∴⎩⎪⎨⎪⎧2k π≤x ≤(2k +1)π,k ∈Z-π2+2k π<x <π2+2k π,k ∈Z-5<x <5,即-5<x <-3π2或0<x <π2 ∴函数f (x )=sin x +lg(25-x 2)cos x的定义域为⎝⎛⎭⎫-5,-3π2∪⎝⎛⎭⎫0,π219.(本小题满分12分)由函数y =2sin3x ⎝⎛⎭⎫π6x ≤5π6与函数y =2(x ∈R )的图象围成一个封闭图形,求这个封闭图形的面积.[解析] 如图所示,根据对称性,所围成封闭图形的面积等价于一个矩形面积(S 3=S 1+S 2).∴封闭图形的面积 S =⎝⎛5π6-π6×2=4π320.(本小题满分12分)已知sin x +sin y =13,求t =sin y -cos 2x 的最值.[解析] 由sin x +sin y =13sin y =13-sin x .∵-1≤sin y ≤1,∴-1≤13-sin x ≤1,∵-1≤sin x ≤1,∴-23≤sin x ≤1.t =sin y -cos 2x =13-sin x -1+sin 2x=sin 2x -sin x -23=⎝⎛⎭⎫sin x -122-1112. 又-23≤sin x ≤1,∴t ∈⎣⎡⎦⎤-1112,49, 即t max =49,t min =-111221.(本小题满分12分)如图所示,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)的图象上相邻的最高点与最低点的坐标分别为⎝⎛⎭⎫5π12,3和⎝⎛⎭⎫11π12,-3,求该函数的解析式.[解析] 由题意知A =3,设最小正周期为T , 则T 2=11π12-5π12=π2, ∴T =π,又T =2πω,∴ω=2.∴函数解析式为y =3sin(2x +φ). ∵点⎝⎛⎭⎫5π12,3在图象上, ∴3=3sin ⎝⎛⎭⎫2×5π12+φ,∴sin⎝⎛⎭⎫5π6+φ=1. ∴5π6+φ=2k π+π2,∴φ=2k π-π3,k ∈Z . ∵|φ|≤π2,∴φ=-π3.∴函数的解析式为y =3sin ⎝⎛⎭⎫2x -π3.22.(本小题满分14分)已知某海滨浴场的海浪高达y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪高数据.(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多长时间可供冲浪者进行运动?[解析] (1)由表中数据,知周期T =12, ∵ω=2πT =2π12=π6. 由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴振幅为12,∴y =12cos π6t +1.(2)由题意知,当y >1时才可对冲浪者开放.∴12cos π6t +1>1,∴cos π6t >0. ∴2k π-π2<π6<2k π+π2,即12k -3<t <12k +3.∵0≤t ≤24,故可令k 分别为0、1、2,得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8 00至晚上20 00之间,有6个小时时间可供冲浪者运动,即上午9 00至下午15 00.。
高一数学必修4综合能力测试
本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α=-3,则α是第( )象限角.( ) A .一 B .二 C .三 D .四[答案] C[解析] ∵-π<-3<-π2,∴-3为第三象限角.2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 2[答案] A[解析] 由题意得⎩⎪⎨⎪⎧ 2r +l =8,l =2r.解得⎩⎪⎨⎪⎧r =2,l =4.所以S =12lr =4(cm 2).3.有三个命题:①向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一条直线上;②向量a 与b 平行,则a 与b 的方向相同或相反;③单位向量都相等,其中真命题有( )A .0个B .1个C .2个D .3个[答案] A4.已知sin θ<0,tan θ>0,则1-sin 2θ化简的结果为( ) A .cos θ B .-cos θ C .±cos θ D .以上都不对[答案] B[解析] ∵sin θ<0,tan θ>0,故θ为第三象限角,∴cos θ<0. ∴1-sin 2θ=cos 2θ=|cos θ|=-cos θ. 5.tan(-1560°)的值为( ) A .- 3 B .-33C.33D. 3 [答案] D[解析] tan(-1560°)=-tan1560°=-tan(4×360°+120°)=-tan120°=-tan(180°-60°)=tan60°= 3.6.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75°[答案] D[解析] ∵a ∥b ,∴sin α·cos α=34×13,即sin2α=12又∵α为锐角,∴0°<2α<180°. ∴2α=30°或2α=150° 即α=15°或α=75°.7.已知sin α>sin β,那么下列命题中成立的是( ) A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β [答案] D[解析] 可以结合单位圆进行判断. 8.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[121]C .[12,32]D .[32,1][答案] B[解析] 可以借助单位圆或函数的图象求解.9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位[答案] C10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( )A .0B .-1C .0或-1D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x2·(x +1)2+x 2=22,即x 2+x =0,解得x =0或x =-1.11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34B.34 C .-43D.43[答案] B[解析] 主要考查三角函数的运算,分子分母同时除以cos α可得tan α=-3,带入所求式可得结果.12.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >c . 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若tan α=3,则sin αcos α的值等于________.[答案] 310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.函数y =sin(π3-2x )+sin2x 的最小正周期是________.[答案] π[解析] y =sin π3cos2x -cos π3sin2x +sin2x =32cos2x +12sin2x =cos(2x -π6),故T =2π2=π.16.已知三个向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,则k =________.[答案] -2或11[解析] 由A 、B 、C 三点共线,可得AB →=λBC →,即(4-k ,-7)=λ(6,k -5),于是有方程组⎩⎪⎨⎪⎧k +6λ=4,kλ-5λ=-7,解得⎩⎪⎨⎪⎧k =-2λ=1,或⎩⎨⎧k =11λ=-76.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(α)-sin 2(5π2-α)的值.[解析] 原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1 又∵tan α=12,∴原式=12+112-1=-3.18.(本题满分12分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.19.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2), b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2 =13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.20.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期;(2)若f (θ)=3,其中0<θ<π2cos(θ+π6)的值.[解析] (1)由题意得f (x )=3sin2x +(sin x +cos x )·(sin x -cos x )=3sin2x -cos2x =2sin(2x -π6),故f (x )的最小正周期T =2π2=π.(5分)(2)由(1)知,f (θ)=2sin(2θ-π6),若f (θ)=3,则sin(2θ-π6)=32.又因为0<θ<π2,所以-π6<2θ-π6<5π6,则2θ-π6=π3或2θ-π6=2π3,故θ=π4或θ=5π12.(9分)当θ=π4时,cos(θ+π6)=cos(π4+π6)=cos π4cos π6-sin π4sin π6=6-24.(12分)当θ=5π12时,cos(θ+π6)=cos(5π12+π6)=cos(π-5π12)=-cos 5π12=-cos(π4+π6)=-6-24.(15分)21.(本题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的最大值为22,最小值为-2,周期为π,且图象过(0,-24). (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解析] (1)∵f (x )=A sin(ωx +φ)+B 的最大值为22,最小值为-2.∴A =322,B =22.又∵f (x )=A sin(ωx +φ)+B 的周期为π, ∴φ=2πω=π,即ω=2.∴f (x )=322sin(2x +φ)+22又∵函数f (x )过(0,-24),∴-24=322sin φ+22,即sin φ=-12.又∵|φ|<π2,∴φ=-π6,∴f (x )=322sin(2x -π6)+22.(2)令t =2x -π6,则y =322sin t +22,其增区间为:[2k π-π2,2k π+π2],k ∈Z .即2k π-π2≤2x -π6≤2k π+π2,k ∈Z .解得k π-π6≤x ≤k π+π3.(k ∈Z )所以f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域。
(word完整版)高一数学必修四综合试题及详细答案
1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修4)综合试卷(1)
一、选择题:
1.sin2400的值是 [ ]
A.-21
B.21
C.23
D.-2
3 2.已知=(– 2,4),=(1,2), 则·等于 [ ]
A.0
B.10
C.6
D.-10
3.已知=(4, – 2),=(4,2),则21AB 等于 [ ] A.(0,2) B.(0,-2) C.(4,0) D.(0,4)
4.cos150·cos1050– cos750·sin1050的值是 [ ]
A.0
B.-
21 C.21 D.±2
1 5.设P(2,3),P 1(1,2),且2121PP P P =则点P 2的坐标是 [ ] A.(2,3) B.(3,4) C.(4,5) D.(5,6)
6.函数f(x)=sin2x ·cos2x 是 [ ]
A.周期为π的偶函;
B.周期为π的奇函数;
C.周期为2π的偶函数;
D.周期为2
π的奇函数. 7.若=(1,2),=(–3,2),且(k +)∥(–3),则实数k 的值是 [ ]
A.-31
B.19
C.911
D.-2 8.函数f(x)=3cosx – sinx(0≤x ≤6
π)的值域是 [ ] A.[-3,1] B.[1,3] C.[-3,2] D.[1,2] 9.如图, △ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,
它们交于点G ,则下列各等式中不正确的是 [ ]
A.32=;
B.21=;
C.FG CG 2-= ;
D.2
13231=+BC . 10.对于函数f(x)=sin(2x+
6
π),下列命题: ①函数图象关于直线x=-12π对称;②函数图象关于点(12
5π,0)对称; ③函数图象可看作是把y=sin2x 的图象向左平移个6
π单位而得到; ④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标变为原来的21倍 (纵坐标不变)而得到;其中正确的命题的个数是 [ ] G D F E C B A
A.0
B.1
C.2
D.3
二、填空题:
11. 若cos2α = 5
3, 则sin 4α – cos 4α = . 12.已知向量=(x+3,x 2– 3x – 4)与相等,若A(1,2),B(3,2),则x= ;
13.已知tan(α+β)=52,tan(β–4π)=41,则tan(α+4
π)= ; 14.设i , j 是平面直角坐标系内x 轴,y 轴正方向上的两个单位向量,且→--AB = 4i + 2j ,→
--AC
= 3i + 4 j . 则△ABC 的形状是__________________。
.
15.在△ABC 中,∠A=300,AB=3,BC=1,则AC= ;
16.下列四个命题:①若λa =λb (λ为实数),则a =b ;②若a =b ,则a ·c =b ·c ; ③若a ·c =b ·c ,则a =b ;④若(b ·c )·a =(d ·e )·a (a ≠0),则b ·c =d ·e 其中正确命题的序号是 .
三、解答题:
17.如图,、不共线,=t (t ∈R ),
用、表示.
18. 求证:tan(α+
4π)-tan(α-4π)=α
2cos 2
19. 设=(3,-4),=(2,x),=(2,y), 若∥且⊥,求与的夹角.
O
20. 已知α为第二象限角,化简)23(sin 1)23sin()
cos()5sin(212αππαπααπ+-----+.
21.甲船自某港出发时,乙船也正从相距该港7海里的海面上驶向该港.如图两船
的航线成600角,甲、乙两船的速度之比为2∶1,求两船最靠近时,相距该港各为多远.
22.已知函数y=4cos 2x+43sinxcosx-2,x ∈R.
①求函数的最大值及其相对应的x 值;②写出函数的单调增区间;
③此函数的图象是否可以由函数y=sin2x, x ∈R 的图象按向量=(h,k)(h,k 为常数)平移得到?若能,求出这样的向量a ;若不能,请说明理由.
港口。