STC_virtual_datasheet
IC datasheet pdf-OPA363,OPA2363,OPA364,OPA2364,OPA4364,pdf(1.8V, 7MHz, 90dB CMRR, Single-Supply Rail
DESCRIPTION
The OPA363 and OPA364 families are high-performance CMOS operational amplifiers optimized for very low voltage, single-supply operation. These miniature, low-cost amplifiers are designed to operate on single supplies from 1.8V (±0.9V) to 5.5V (±2.75V). Applications include sensor amplification and signal conditioning in battery-powered systems. The OPA363 and OPA364 families offer excellent CMRR without the crossover associated with traditional complimentary input stages. This results in excellent performance for driving Analog-to-Digital (A/D) converters without degradation of differential linearity and THD. The input commonmode range includes both the negative and positive supplies. The output voltage swing is within 10mV of the rails. The OPA363 family includes a shutdown mode. Under logic control, the amplifiers can be switched from normal operation to a standby current that is less than 1µA. The single version is available in the MicroSIZE SOT23-5 (SOT23-6 for shutdown) and SO-8. The dual version is available in MSOP-8, MSOP-10, and SO-8 packages. Quad packages are available in TSSOP-14 and SO-14 packages. All versions are specified for operation from –40°C to +125°C.
STCS05ADR;中文规格书,Datasheet资料
July 2008Rev 21/18STCS05A0.5 A max constant current LED driverFeatures■Up to 40 V input voltage■Less than 0.5 V voltage overhead ■Up to 0.5 A output current ■PWM dimming pin ■Shutdown pin■LED disconnection diagnostic ■Slope control with external capApplications■LED constant current supplying for varying input voltages ■Low voltage lighting■Small appliances LED lighting ■Car LED lightsDescriptionThe STCS05A is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discretecomponents solution for driving LEDs in low voltage applications such as 5 V , 12 V or 24 V giving benefits in terms of precision, integration and reliability.The current is set with external resistor up to 0.5 A with a ± 10 % precision; a dedicated pin allows implementing PWM dimming. An externalcapacitor allows setting the slope for the current rise from tens of microseconds to tens of milliseconds allowing reduction of EMI.An open-drain pin output provides information on load disconnection condition.SO-8Table 1.Device summaryOrder code Package Packaging STCS05ADRSO-82500 parts per reelContents STCS05AContents1Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Detail description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.1Current setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.2Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.3PWM dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.4Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128.1Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128.2Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 9Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 10Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172/18STCS05A Application diagram3/181 Application diagramPin configuration STCS05A4/182 Pin configurationTable 2.Pin descriptionPin n°Symbol Note1V CC Supply voltage 2PWM PWM dimming input 3EN Shutdown pin4DRAIN Internal N-MOSFET drain5FB Feedback input. The control loop regulates the current in such a way that the average voltage at the FB input is 100 mV (nominal). The cathode of the LED and a resistor to ground to set the LED current should be connected at this point.6GND Ground7SLOPE Capacitor for slope control8DISCLoad disconnection flag (open drain)STCS05A Maximum ratings5/183 Maximum ratingsNote:Absolute maximum ratings are those values beyond which damage to the device may occur.Functional operation under these conditions is not implied.Table 3.Absolute maximum ratingsSymbol ParameterValue Unit V CC DC supply voltage -0.3 to +45V DRAIN Drain pin -0.3 to +45PWM, EN, DISC Logic pins -0.3 to + V CC + 0.3V SLOPE, FBConfiguration pins-0.3 to + 3.3V ESD Human body model (all pins)±2kV Power DissipationSO-8 T A =25°C (1)1.See Figure 16 for details of max power dissipation for ambient temperature higher than 25 °C0.85W T J Junction temperature -40 to 150°C T STGStorage temperature range-55 to 150°CTable 4.Thermal dataSymbol ParameterSO-8Unit R thJC Thermal resistance junction-case 20°C/W R thJAThermal resistance junction-ambient (1)100°C/W1.This value depends from thermal design of PCB on which the device is mounted.Electrical characteristics STCS05A6/184 Electrical characteristicsNote:All devices 100 % production tested at T A = 25 °C. Limits over the operating temperature range are guaranteed by design.Table 5.Electrical characteristics (V CC = 12 V; I O = 100 mA; T J = -40 °C to 125 °C; V DRAIN = 1 V;C DRAIN = 1 µF; C BYP = 100 nF typical values are at T A = 25 °C, unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V CCSupply voltage range 4.540V Output current range1500mA I OOutput currentR FB = 0.2 Ω500mA Regulation (percentage with respect to V CC = 12 V)V CC = 4.5 to 40V ,I O = 100mA; V DRAIN = 1V -1+1%V FBFeedback VoltageI O = 0 to 0.5A 90100110mVI CCQuiescent current (Measured onV CC pin)On Mode450750µAShutdown Mode;V CC = 5 to 12V1Shutdown Mode;V CC = 12 to 40V 3V DROPDropout voltage (V DRAIN to GND)I O = 100mA 0.120.16V I O = 0.5A0.580.9LEAK DRAIN Drain leakage current Shutdown; V DRAIN = 40V 10µA T R /T FRise/Fall time of the current on PWM transitionC SLOPE = 10 nF ,T J = -40 °C to 105 °C 800µs T DDelay on PWM signal (see Figure 3)V PWM rising, V CC = 12V C SLOPE = floating, 3µsV PWM falling, V CC = 12V C SLOPE = floating 1.2DISCLow level voltageI SINK = 5mA 0.20.5V Leakage currentV DISC = 5V 1µA Load disconnection threshold (V DRAIN -GND)DISC Turn-ON 75mV DISC Turn-OFF110Thermal ProtectionShutdown temperature 155°CHysteresis25Logic inputs (PWM and EN)V L Input low level 0.4V V HInput high level1.2VEN, PWM leakage current V EN = 5V; V PWM = 5V 2µAEN input leakage current V EN = 40V 60PWM input leakage currentV PWM = 40V120STCS05A Timing 5 Timing7/188/186 Typical performance characteristicsFigure 7.I DRAIN vs temperature Figure 8.V DROP (including V FB) vstemperatureFigure 9.I CC vs temperature Figure 10.I CC vs V CC9/18Figure 13.Rise timeFigure 14.Fall timeI DRAIN = 80 mA -C SLOPE = 10nF -T A = 25°CV PWM 2V/DIV I DRAIN 20mA/DIV V DRAIN 1V/DIV Time 210µsec/DIVV PWM 2V/DIV I DRAIN 20mA/DIV V DRAIN 1V/DIV Time 200µsec/DIVI DRAIN = 80 mA -C SLOPE = 10nF -T A = 25°C V PWM 2V/DIV I DRAIN 20mA/DIV V DRAIN 1V/DIV Time 200µsec/DIVI DRAIN = 80 mA -C SLOPE = 10nF -T A = 25°CDetail description STCS05A10/187 Detail descriptionThe STCS05A is a BiCMOS constant current source designed to provide a precise constantcurrent starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.7.1 Current settingThe current is set with an external sensing resistor connected to the FB pin. The feedbackvoltage is 100 mV, then a low resistor value can be chosen reducing power dissipation. A value between 1 mA and 500 mA can be set according to the resistor value, the resulting output current has a tolerance of ± 10 %.For instance, should one need a 350 mA LEDs current, R F should be selected according to the following equation:R F = V FB / I LEDs = 100 mV / 350 mA = 284 m Ω7.2 EnableWhen the enable pin is low the device completely off thus reducing current consumption to less than 1 µA. When in shutdown mode, the internal main switch is off.7.3 PWM dimmingThe PWM input allows implementing PWM dimming on the LED current; when the PWMinput is high the main switch will be on and vice versa. A typical frequency range for the input is from few Hertz to 50 kHz. The maximum dimming frequency is limited by theminimum rise/fall time of the current (obtained with C SLOPE = 0) which is around 4 µs each. Above 50 kHz the current waveforms starts assuming a triangular shape.While the PWM input is switching, the overall circuitry remains on, this is needed in order to implement two important features: short delay time and controlled slope for the current.Since the PWM pin is controlling just the main switch, the overall circuitry is always on and it is able to control the delay time between the PWM input signal and the output current in the range of few µs, this is important to implement synchronization among several light LED sources.The rise and fall slope of the current is controlled by the C SLOPE capacitor. The rise and fall time are linear dependent from the C SLOPE capacitor value (see graph in typicalcharacteristics). A controlled rise time has two main benefits: reducing EMI noise and avoid current spike at turn on.When C SLOPE is left floating, the internal switch is turned on at maximum speed, in this condition an overshoot can be present on the LED current before the system goes into regulation.分销商库存信息: STMSTCS05ADR。
STC5DNF30V;中文规格书,Datasheet资料
le td(on) o tr bs td(off) O tf
Turn-on delay time Rise time Turn-off delay time Fall time
ቤተ መጻሕፍቲ ባይዱ
Test conditions
VDD= 10 V, ID= 2.3 A, RG=4.7 Ω, VGS=4.5 V
Min. -
3
Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. On/off states
Symbol
Parameter
Test conditions
Min. Typ. Max. Unit
V(BR)DSS
Drain-source breakdown voltage
ID = 250 µA, VGS= 0
30
V
IDSS
Zero gate voltage drain current (VGS = 0)
Doc ID 12246 Rev 2
STC5DNF30V
1
Electrical ratings
Electrical ratings
Table 2. Absolute maximum ratings
Symbol
Parameter
Value
WBOX-516X产品手册说明书
产品手册WBOX-516X,无风扇工业计算机版本:V1.01 / 41认可声明AMI 为Award Software International, Inc. 的商标。
Intel 和Atom 为Intel Corporation 的商标。
IBM、PC/AT、PS/2 和VGA 为International Business Machines Corporation的标。
Intel 和Atom 为Intel Corporation 的商标。
Microsoft Windows 为Microsoft Corp. 的注册商标。
RTL 为Realtek Semiconductor Co., Ltd. 的商标。
所有其它产品名称和商标均为其所有者的财产。
本手册适用于WBOX-516x系列.符合性声明这些限制旨在为商业环境下的系统操作提供合理保护,使其免受有害干扰。
本设备会产生、使用和发射无线电频率能量。
如果没有按照手册说明正确安装和使用,可能对无线电通讯造成有害干扰。
但即使按照手册说明进行安装和使用,也并不能保证不会产生干扰。
若本设备会对无线电或电视信号接收产生有害干扰,用户可通过开、关设备进行确认。
当本设备产生有害干扰时,用户可采取下面的措施来解决干扰问题:●1、调整接收天线的方向或位置●2、增大本设备与接收器之间的距离●3、将本设备的电源接头插在与接收器使用不同电路的电源插座●4、若需技术支持,请咨询经销商或经验丰富的无线电/电视技术人员警告!权利可能会被取消。
包装清单在您打开包装时,请确认包装中附有以下各项:●–WBOX-516x 1pcs附件盒,装有以下各项:●- 电源端子1pcs●- 国标电源线1.8米(可选)1pcs●- 电源适配器(可选)1pcs如果其中任何一项缺失或者破损,请立即联系您的销售商或销售代表。
2 / 41选购信息技术支持与服务用户若需技术支持,请与当地分销商、销售代表客服中心联系。
进行技术咨询前,用户须将下面各项产品信息收集完整:–产品名称及序列号–外围附加设备的描述–用户软件的描述(操作系统、版本、应用软件等)–产品所出现问题的完整描述–每条错误信息的完整内容警告! 1. 输入电压为DC 12-24V电源(电源功率90W或以上)2. 包装:需谨慎,请以双手托住设备。
M9306-WDS6T中文资料
1/31August 2004M93C86, M93C76, M93C66M93C56, M93C4616Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide)MICROWIRE® Serial Access EEPROMFEATURES SUMMARYs Industry Standard MICROWIRE Bus sSingle Supply Voltage:– 4.5 to 5.5V for M93Cx6– 2.5 to 5.5V for M93Cx6-W – 1.8 to 5.5V for M93Cx6-Rs Dual Organization: by Word (x16) or Byte (x8) s Programming Instructions that work on: Byte, Word or Entire Memorys Self-timed Programming Cycle with Auto-Erases sSpeed:–1MHz Clock Rate, 10ms Write Time(Current product, identified by process identification letter F or M)–2MHz Clock Rate, 5ms Write Time (NewProduct, identified by process identification letter W or G or S) s Sequential Read Operations Enhanced ESD/Latch-Up Behaviour s More than 1 Million Erase/Write Cycles sMore than 40 Year Data RetentionTable 1. Product ListReferencePart Number ReferencePart Number M93C86M93C86M93C56M93C56M93C86-W M93C56-W M93C86-R M93C56-R M93C76M93C76M93C46M93C46M93C76-W M93C46-W M93C76-R M93C46-RM93C66M93C66M93C66-W M93C66-RM93C86, M93C76, M93C66, M93C56, M93C46TABLE OF CONTENTSFEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Table 1.Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 2.Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 3.Memory Size versus Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 4.Instruction Set for the M93Cx6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 3.DIP, SO, TSSOP and MLP Connections (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . .5MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 POWER-ON DATA PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Table 5.Instruction Set for the M93C46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 6.Instruction Set for the M93C56 and M93C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 7.Instruction Set for the M93C76 and M93C86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase/Write Enable and Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 4.READ, WRITE, EWEN, EWDS Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Figure 5.ERASE, ERAL Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Erase All. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 6.WRAL Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10READY/BUSY STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 COMMON I/O OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11CLOCK PULSE COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 7.Write Sequence with One Clock Glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 8.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 9.Operating Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 10.Operating Conditions (M93Cx6-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 11.Operating Conditions (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 12.AC Measurement Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 13.AC Measurement Conditions (M93Cx6-W and M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . .14 Figure 8.AC Testing Input Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142/31M93C86, M93C76, M93C66, M93C56, M93C46Table 14.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 15.DC Characteristics (M93Cx6, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 16.DC Characteristics (M93Cx6, Device Grade 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 17.DC Characteristics (M93Cx6-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Table 18.DC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 19.DC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 20.AC Characteristics (M93Cx6, Device Grade 6, 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . .18 Table 21.AC Characteristics (M93Cx6-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 22.AC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .20 Table 23.AC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 9.Synchronous Timing (Start and Op-Code Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 10.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 11.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23Figure 12.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .23 Table 24.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .23 Figure 13.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . .24 Table 25.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 24Figure 14.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline 25Table 26.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data.25Figure 15.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline 26Table 27.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data 26Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . .27 Table 28.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data. . . . . . . . . . . .27PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 29.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 30.How to Identify Current and New Products by the Process Identification Letter. . . . . . .29REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 31.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303/31M93C86, M93C76, M93C66, M93C56, M93C464/31SUMMARY DESCRIPTIONThese electrically erasable programmable memo-ry (EEPROM) devices are accessed through a Se-rial Data Input (D) and Serial Data Output (Q)using the MICROWIRE bus protocol.Table 2. Signal NamesThe memory array organization may be divided into either bytes (x8) or words (x16) which may be selected by a signal applied on Organization Se-lect (ORG). The bit, byte and word sizes of the memories are as shown in Table 3..Table 3. Memory Size versus OrganizationThe M93Cx6 is accessed by a set of instructions,as summarized in Table 4., and in more detail in Table 5. to Table 7.).Table 4. Instruction Set for the M93Cx6A Read Data from Memory (READ) instruction loads the address of the first byte or word to be read in an internal address register. The data at this address is then clocked out serially. The ad-dress register is automatically incremented after the data is output and, if Chip Select Input (S) is held High, the M93Cx6 can output a sequential stream of data bytes or words. In this way, the memory can be read as a data stream from eight to 16384 bits long (in the case of the M93C86), or continuously (the address counter automatically rolls over to 00h when the highest address is reached).Programming is internally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle) and does not require an Erase cycle prior to the Write instruction. The Write instruction writes 8 or 16 bits at a time into one of the byte or word locations of the M93Cx6. After the start of the programming cy-cle, a Busy/Ready signal is available on Serial Data Output (Q) when Chip Select Input (S) is driv-en High.S Chip Select Input D Serial Data Input Q Serial Data Output C Serial Clock ORG Organisation Select V CC Supply Voltage V SSGroundDevice Number of Bits Number of 8-bit Bytes Number of 16-bit Words M93C861638420481024M93C7681921024512M93C664096512256M93C562048256128M93C46102412864Instruction Description Data READ Read Data from Memory Byte or Word WRITEWrite Data to Memory Byte or WordEWEN Erase/Write Enable EWDS Erase/Write Disable ERASE Erase Byte or Word Byte or WordERAL Erase All Memory WRALWrite All Memory with same DataM93C86, M93C76, M93C66, M93C56, M93C46An internal Power-on Data Protection mechanism in the M93Cx6 inhibits the device when the supply is too low.Figure 3. DIP, SO, TSSOP and MLPNote: 1.See PACKAGE MECHANICAL section for package di-mensions, and how to identify pin-1.2.DU = Don’t Use.The DU (Don’t Use) pin does not contribute to the normal operation of the device. It is reserved for use by STMicroelectronics during test sequences. The pin may be left unconnected or may be con-nected to V CC or V SS. Direct connection of DU to V SS is recommended for the lowest stand-by pow-er consumption.MEMORY ORGANIZATIONThe M93Cx6 memory is organized either as bytes (x8) or as words (x16). If Organization Select (ORG) is left unconnected (or connected to V CC) the x16 organization is selected; when Organiza-tion Select (ORG) is connected to Ground (V SS) the x8 organization is selected. When the M93Cx6 is in stand-by mode, Organization Select (ORG) should be set either to V SS or V CC for minimum power consumption. Any voltage between V SS and V CC applied to Organization Select (ORG) may increase the stand-by current.POWER-ON DATA PROTECTIONTo prevent data corruption and inadvertent write operations during power-up, a Power-On Reset (POR) circuit resets all internal programming cir-cuitry, and sets the device in the Write Disable mode.–At Power-up and Power-down, the device must not be selected (that is, Chip Select Input (S) must be driven Low) until the supplyvoltage reaches the operating value V CCspecified in Table 9. to Table 11..–When V CC reaches its valid level, the device is properly reset (in the Write Disable mode) and is ready to decode and execute incominginstructions.For the M93Cx6 devices (5V range) the POR threshold voltage is around 3V. For the M93Cx6-W (3V range) and M93Cx6-R (2V range) the POR threshold voltage is around 1.5V.5/31M93C86, M93C76, M93C66, M93C56, M93C466/31INSTRUCTIONSThe instruction set of the M93Cx6 devices con-tains seven instructions, as summarized in Table 5. to Table 7.. Each instruction consists of the fol-lowing parts, as shown in Figure 4.:s Each instruction is preceded by a rising edgeon Chip Select Input (S) with Serial Clock (C) being held Low.s A start bit, which is the first ‘1’ read on SerialData Input (D) during the rising edge of Serial Clock (C).s Two op-code bits, read on Serial Data Input(D) during the rising edge of Serial Clock (C). (Some instructions also use the first two bits of the address to define the op-code).sThe address bits of the byte or word that is to be accessed. For the M93C46, the address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization (see Table 5.). For the M93C56 and M93C66, the address is made up of 8 bits for the x16 organization or 9 bits for the x8 organization (see Table 6.). For the M93C76 and M93C86, the address is made up of 10 bits for the x16 organization or 11 bits for the x8 organization (see Table 7.).The M93Cx6 devices are fabricated in CMOS technology and are therefore able to run as slow as 0Hz (static input signals) or as fast as the max-imum ratings specified in Table 20. to Table 23..Table 5. Instruction Set for the M93C46Note: 1.X = Don ’t Care bit.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1DataRequiredClock CyclesAddress 1DataRequired Clock CyclesREAD Read Data from Memory 110A6-A0Q7-Q0A5-A0Q15-Q0WRITE Write Data to Memory101A6-A0D7-D018A5-A0D15-D025EWEN Erase/Write Enable 10011X XXXX 1011 XXXX 9EWDS Erase/Write Disable 10000X XXXX 1000 XXXX 9ERASE Erase Byte or Word 111A6-A010A5-A09ERAL Erase All Memory 10010X XXXX 1010 XXXX 9WRALWrite All Memory with same Data10001X XXXXD7-D01801 XXXXD15-D0257/31M93C86, M93C76, M93C66, M93C56, M93C46Table 6. Instruction Set for the M93C56 and M93C66Note: 1.X = Don ’t Care bit.2.Address bit A8 is not decoded by the M93C56.3.Address bit A7 is not decoded by the M93C56.Table 7. Instruction Set for the M93C76 and M93C86Note: 1.X = Don ’t Care bit.2.Address bit A10 is not decoded by the M93C76.3.Address bit A9 is not decoded by the M93C76.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1,2DataRequiredClock CyclesAddress 1,3DataRequired Clock CyclesREAD Read Data from Memory 110A8-A0Q7-Q0A7-A0Q15-Q0WRITE Write Data to Memory101A8-A0D7-D020A7-A0D15-D027EWEN Erase/Write Enable 100 1 1XXXXXXX 1211XX XXXX 11EWDS Erase/Write Disable 1000 0XXX XXXX 1200XX XXXX 11ERASE Erase Byte or Word 111A8-A012A7-A011ERAL Erase All Memory 100 1 0XXX XXXX 1210XX XXXX 11WRALWrite All Memory with same Data1000 1XXX XXXXD7-D02001XX XXXXD15-D027Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address1,2DataRequiredClock CyclesAddress 1,3DataRequiredClock CyclesREAD Read Data from Memory 110A10-A0Q7-Q0A9-A0Q15-Q0WRITE Write Data to Memory101A10-A0D7-D022A9-A0D15-D029EWEN Erase/Write Enable 10011X XXXX XXXX 1411 XXXX XXXX 13EWDS Erase/Write Disable 10000X XXXX XXXX 1400 XXXX XXXX 13ERASE Erase Byte or Word 111A10-A014A9-A013ERAL Erase All Memory 10010X XXXX XXXX 1410 XXXX XXXX 13WRALWrite All Memory with same Data10001X XXXX XXXXD7-D02201 XXXX XXXXD15-D029M93C86, M93C76, M93C66, M93C56, M93C468/31ReadThe Read Data from Memory (READ) instruction outputs data on Serial Data Output (Q). When the instruction is received, the op-code and address are decoded, and the data from the memory is transferred to an output shift register. A dummy 0bit is output first, followed by the 8-bit byte or 16-bit word, with the most significant bit first. Output data changes are triggered by the rising edge of Serial Clock (C). The M93Cx6 automatically incre-ments the internal address register and clocks out the next byte (or word) as long as the Chip Select Input (S) is held High. In this case, the dummy 0 bit is not output between bytes (or words) and a con-tinuous stream of data can be read.Erase/Write Enable and DisableThe Erase/Write Enable (EWEN) instruction en-ables the future execution of erase or write instruc-tions, and the Erase/Write Disable (EWDS)instruction disables it. When power is first applied,the M93Cx6 initializes itself so that erase and write instructions are disabled. After an Erase/Write En-able (EWEN) instruction has been executed, eras-ing and writing remains enabled until an Erase/Write Disable (EWDS) instruction is executed, or until V CC falls below the power-on reset threshold voltage. To protect the memory contents from ac-cidental corruption, it is advisable to issue the Erase/Write Disable (EWDS) instruction after ev-ery write cycle. The Read Data from Memory (READ) instruction is not affected by the Erase/Write Enable (EWEN) or Erase/Write Disable (EWDS) instructions.M93C86, M93C76, M93C66, M93C56, M93C46EraseThe Erase Byte or Word (ERASE) instruction sets the bits of the addressed memory byte (or word) to 1. Once the address has been correctly decoded, the falling edge of the Chip Select Input (S) starts the self-timed Erase cycle. The completion of the cycle can be detected by monitoring the Ready/READY/BUSY STA-TUS section.WriteFor the Write Data to Memory (WRITE) instruction, 8 or 16 data bits follow the op-code and address bits. These form the byte or word that is to be writ-ten. As with the other bits, Serial Data Input (D) is sampled on the rising edge of Serial Clock (C).After the last data bit has been sampled, the Chip Select Input (S) must be taken Low before the next rising edge of Serial Clock (C). If Chip Select Input (S) is brought Low before or after this specific time frame, the self-timed programming cycle will not be started, and the addressed location will not be programmed. The completion of the cycle can be described later in this document.Once the Write cycle has been started, it is inter-nally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle). The cycle is automatically preceded by an Erase cycle, so it is unnecessary to execute an explicit erase instruction before a Write Data to Memory (WRITE) instruction.9/31M93C86, M93C76, M93C66, M93C56, M93C4610/31Erase AllThe Erase All Memory (ERAL) instruction erases the whole memory (all memory bits are set to 1).The format of the instruction requires that a dum-my address be provided. The Erase cycle is con-ducted in the same way as the Erase instruction (ERASE). The completion of the cycle can be de-scribed in the READY/BUSY STATUS section.Write AllAs with the Erase All Memory (ERAL) instruction,the format of the Write All Memory with same Data (WRAL) instruction requires that a dummy ad-dress be provided. As with the Write Data to Mem-ory (WRITE) instruction, the format of the Write All Memory with same Data (WRAL) instruction re-quires that an 8-bit data byte, or 16-bit data word,be provided. This value is written to all the ad-dresses of the memory device. The completion of the cycle can be detected by monitoring theNote:For the meanings of Xn and Dn, please see Table 5., Table 6. and Table 7..READY/BUSY STATUSWhile the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL instruction, the Busy signal (Q=0) is returned whenever Chip Se-lect Input (S) is driven High. (Please note, though, that there is an initial delay, of t SLSH, before this status information becomes available). In this state, the M93Cx6 ignores any data on the bus. When the Write cycle is completed, and Chip Se-lect Input (S) is driven High, the Ready signal (Q=1) indicates that the M93Cx6 is ready to re-ceive the next instruction. Serial Data Output (Q) remains set to 1 until the Chip Select Input (S) is brought Low or until a new start bit is decoded. COMMON I/O OPERATIONSerial Data Output (Q) and Serial Data Input (D) can be connected together, through a current lim-iting resistor, to form a common, single-wire data bus. Some precautions must be taken when oper-ating the memory in this way, mostly to prevent a short circuit current from flowing when the last ad-dress bit (A0) clashes with the first data bit on Se-rial Data Output (Q). Please see the application note AN394 for details. CLOCK PULSE COUNTERIn a noisy environment, the number of pulses re-ceived on Serial Clock (C) may be greater than the number delivered by the master (the microcontrol-ler). This can lead to a misalignment of the instruc-tion of one or more bits (as shown in Figure 7.) and may lead to the writing of erroneous data at an er-roneous address.To combat this problem, the M93Cx6 has an on-chip counter that counts the clock pulses from the start bit until the falling edge of the Chip Select In-put (S). If the number of clock pulses received is not the number expected, the WRITE, ERASE, ERAL or WRAL instruction is aborted, and the contents of the memory are not modified.The number of clock cycles expected for each in-struction, and for each member of the M93Cx6 family, are summarized in Table 5. to Table 7.. For example, a Write Data to Memory (WRITE) in-struction on the M93C56 (or M93C66) expects 20 clock cycles (for the x8 organization) from the start bit to the falling edge of Chip Select Input (S). That is:1 Start bit+ 2 Op-code bits+ 9 Address bits+ 8 Data bitsMAXIMUM RATINGStressing the device above the rating listed in the Absolute Maximum Ratings" table may cause per-manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu-ments.Table 8. Absolute Maximum RatingsNote: pliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ® 7191395 specification, andthe European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2.JEDEC Std JESD22-A114A (C1=100pF, R1=1500 Ω, R2=500 Ω)Symbol ParameterMin.Max.Unit T STG Storage Temperature–65150°C T LEAD Lead T emperature during Soldering See note 1°C V OUT Output range (Q = V OH or Hi-Z)–0.50V CC +0.5V V IN Input range –0.50V CC +1V V CC Supply Voltage–0.50 6.5V V ESDElectrostatic Discharge Voltage (Human Body model) 2–40004000VDC AND AC PARAMETERSThis section summarizes the operating and mea-surement conditions, and the DC and AC charac-teristics of the device. The parameters in the DC and AC Characteristic tables that follow are de-rived from tests performed under the Measure-ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame-ters.Table 9. Operating Conditions (M93Cx6)Table 10. Operating Conditions (M93Cx6-W)Table 11. Operating Conditions (M93Cx6-R)Symbol ParameterMin.Max.Unit V CCSupply Voltage4.55.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CCSupply Voltage2.5 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CC Supply Voltage1.8 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°CTable 12. AC Measurement Conditions (M93Cx6)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 13. AC Measurement Conditions (M93Cx6-W and M93Cx6-R)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 14. CapacitanceNote:Sampled only, not 100% tested, at T A =25°C and a frequency of 1MHz.Symbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.4V to 2.4V V Input Timing Reference Voltages 1.0V and 2.0V V Output Timing Reference Voltages0.8V and 2.0VVSymbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.2V CC to 0.8V CC V Input Timing Reference Voltages 0.3V CC to 0.7V CC V Output Timing Reference Voltages0.3V CC to 0.7V CCVSymbol ParameterTest Condition MinMax Unit C OUT OutputCapacitance V OUT = 0V 5pF C INInputCapacitanceV IN = 0V5pFNote: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.Table 16. DC Characteristics (M93Cx6, Device Grade 7 or 3)Note: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.I LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5 µA I CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22 mA I CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150µAV CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µAV IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4VSymbol ParameterTest Condition Min.Max.Unit I LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5µAI CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22 mA I CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150 µA V CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µA V IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4V。
潘启panchip 2.4ghz无线收发soc芯片pan2416av产品说明书
PAN2416AV产品说明书2.4GHz无线收发SOC芯片V1.0PAN2416AV产品说明书2.4GHz单片高速无线收发SOC芯片概述PAN2416AV芯片是工作在2.400~2.483GHz世界通用ISM频段的单片无线收发芯片。
该芯片集成射频收发机、频率发生器、晶体振荡器、调制解调器和低功耗MCU等功能模块,并且支持一对多组网和带ACK的通信模式。
用户通过MCU的I/O口向芯片发出指令,芯片自动完成收发配置进行通信,并根据应答信息自动判断数据发送/接收是否成功,从而进行重发,丢包,继续发送和等待等操作,简化了用户程序。
发射输出功率、工作频道以及通信数据率均可配置。
PAN2416AV需要少量的外围器件,支持单层/双层印制电路板的方案。
主要特性1、功耗较低发射模式(2dBm)工作电流19mA;接收模式工作电流15mA;休眠电流2uA。
2、节省外围器件支持外围5个元器件,包括1颗晶振和少量电容;支持双层或单层印制板设计,可以使用印制板微带天线或者导线天线;芯片自带部分链路层的通信协议;配置少量的参数寄存器,使用方便。
3、性能优异250K/1M/2M bps模式的接收灵敏度为-91/-87/-83dBm;发射输出功率最大可达8dBm;抗干扰性好,接收滤波器的邻道抑制度高,接收机选择性较好。
4、集成MCU功能OTP:4K×16Bit;通用RAM:176×8Bit;MCU集成高精度12位ADC,内置WDT定时器、PWM输出、低压侦测电路等模块。
其它特性四线SPI 接口通信带自动扰码和CRC校验功能支持最大数据长度为32字节(两级FIFO)或者64字节(单级FIFO)SOP16封装1M / 2Mbps模式,需要晶振精度±40ppm 250kbps模式,需要晶振精度±20ppm 工作电压支持2.2~3.3V 工作温度支持-40~+85℃GFSK通信方式支持自动应答及自动重传支持RSSI检测功能10个GPIO中断源三路定时器应用方案无线鼠标电视和机顶盒遥控器无线游戏手柄遥控玩具常用遥控器智能家居版本修订时间更新内容相关文档V0.4 2016. 12 文字勘误V1.0 2017.09 文字修改目录1. 命名规则 (8)1.1 PAN2416AV命名规则 (8)1.2 PAN2416系列产品选择 (8)2. 主要电特性 (8)3. 极限最大额定值 (10)4. 系统结构方框图 (10)5. 引脚定义 (11)6. 芯片工作状态 (13)6.1 休眠模式 (14)6.2 待机模式-I(STB1) (14)6.3 待机模式-III(STB3) (14)6.4 待机模式-II(STB2) (14)6.5 接收模式 (14)6.6 发射模式 (14)7. 数据通信模式 (15)7.1 普通模式 (15)7.2 增强模式 (15)7.3增强发送模式 (16)7.4 增强接收模式 (16)7.5 增强模式下的数据包识别 (17)7.6 增强模式下的PTX和PRX的时序图 (17)7.7 增强模式下的接收端一对多通信 (17)7.8 DATA FIFO (19)7.9 中断引脚 (19)8. SPI控制接口 (19)8.1 SPI指令格式 (20)8.2 SPI 时序 (21)9. 控制寄存器 (22)10. 数据包格式描述 (32)10.1 普通模式的数据包形式 (32)10.2 增强模式的数据包形式 (33)10.3 增强模式的ACK包形式 (33)11. MCU寄存器 (34)11.1性能特性 (33)11.2系统结构框图 (34)11.3系统配置寄存器 (35)11.4在线串行编程 (36)12. 中央处理器(CPU) (37)12.1内存 (37)12.1.1程序内存 (37)12.1.2数据存储器 (41)12.2寻址方式 (43)12.2.1直接寻址 (43)12.2.2立即寻址 (43)12.2.3间接寻址 (43)12.3堆栈 (44)12.4工作寄存器(ACC) (45)12.4.1概述 (45)12.4.2 ACC应用 (45)12.5 程序状态寄存器(STATUS) (45)12.6 预分频器(OPTION_REG) (47)12.7程序计数器(PC) (48)12.8 看门狗计数器(WDT) (48)12.8.1 WDT周期 (48)12.8.2 看门狗定时器控制寄存器WDTCON (49)13. 系统时钟 (50)13.1 概述 (50)13.2 系统振荡器 (51)13.2.1 内部RC振荡 (51)13.3起振时间 (51)13.4振荡器控制寄存器 (51)14. 复位 (52)14.1上电复位 (52)14.2 掉电复位 (53)14.2.1掉电复位概述 (53)14.2.2掉电复位的改进办法 (54)14.3 看门狗复位 (54)15. 休眠模式 (55)15.1 进入休眠模式 (55)15.2 从休眠状态唤醒 (55)15.3 使用中断唤醒 (55)15.4 休眠模式应用举例 (56)15.5 休眠模式唤醒时间 (56)16. I/O端口 (57)16.1 PORTA (58)16.1.1 PORTA数据及方向控制 (58)16.1.2 PORTA模拟选择控制 (60)16.2 PORTB (60)16.2.1 PORTB数据及方向 (60)16.2.2 PORTB上拉电阻 (61)16.2.3 PORTB电平变化中断 (61)16.3 PORTC (62)16.3.1 PORTC数据及方向 (62)16.3.2 PORTC上拉电阻 (63)16.4 PORTE (63)16.4.1 PORTE数据及方向 (63)16.5 I/O使用 (64)16.5.1 写I/O口 (64)16.5.2 读I/O口 (64)16.6 I/O口使用注意事项 (65)17. 中断 (66)17.1 中断概述 (66)17.2 中断控制寄存器 (67)17.2.1 中断控制寄存器 (67)17.2.2 外设中断允许寄存器 (68)17.2.3 外设中断请求寄存器 (69)17.3 中断现场的保护方法 (70)17.4 中断的优先级,及多中断嵌套 (70)18. 定时计数器TIMER0 (71)18.1 定时计数器TIMER0概述 (71)18.2 TIMER0的工作原理 (72)18.2.1 8 位定时器模式 (72)18.2.2 8 位计数器模式 (72)18.2.3 软件可编程预分频器 (72)18.2.4 在TIMER0和WDT模块间切换预分频器 (72)18.2.5 TIMER0中断 (73)18.3 与TIMER0相关寄存器 (73)19. 定时计数器TIMER1 (74)19.1 TIMER1概述 (74)19.2 TIMER1 的工作原理 (74)19.3 TIMER1 预分频器 (74)19.4 TIMER1 中断 (74)19.5 TIMER1相关寄存器 (75)20. 定时计数器TIMER2 (75)20.1 TIMER2概述 (75)20.2 TIMER2的工作原理 (77)20.3 TIMER2相关的寄存器 (77)21. 模数转换(ADC) (79)21.1 ADC概述 (79)21.2 ADC配置 (79)21.2.1 端口配置 (79)21.2.2 通道选择 (80)21.2.3 ADC参考电压 (80)21.2.4 转换时钟 (80)21.2.5 ADC中断 (80)21.2.6 结果格式化 (80)21.3 ADC工作原理 (81)21.3.1 启动转换 (81)21.3.2 完成转换 (81)21.3.3 终止转换 (81)21.3.4 ADC在休眠模式下的工作原理 (81)21.3.5 A/D转换步骤 (81)21.4 ADC相关RAM (83)22. PWM模块 (85)22.1 PWM1 (85)22.2 PWM2 (86)22.3 PWM模式 (87)22.3.1 PWM周期 (88)22.3.2 PWM占空比 (88)22.3.3 PWM分辨率 (89)22.3.4 休眠模式下的操作 (89)22.3.5 系统时钟频率的改变 (89)22.3.6 复位的影响 (89)22.3.7 设置PWM操作 (89)23. MCU电气参数 (90)23.1 MCU DC特性 (90)23.2 MCU AC特性 (90)23.3指令一览表 (91)23.4 指令说明 (93)24. 典型应用电路(参考) (104)25. 封装尺寸 (105)26. 联系方式 (106)1. 命名规则1.1 PAN2416AV 命名规则图1.1 PAN2416系列产品命名规则1.2 PAN2416系列产品选择表1-1 PAN2416系列产品选择产品型号芯片版本 封装形式 PAN2416AV A V :SOP16 PAN2416AF A F :SOP142. 主要电特性表2-1 PAN2416AV 的RF 部分主要电特性参数值 特 性测试条件(VCC = 3V±5%,TA=25℃)最小 典型 最大 单位 休眠模式 2 uA 待机模式1 30 uA 待机模式3 650 uA 待机模式2 780 uA 发射模式 (-35dBm) 9 mA 发射模式 (-20dBm) 9.5 mA 发射模式 (0dBm) 16 mA 发射模式 (2dBm) 19 mA 发射模式 (8dBm) 30 mA 发射模式 (13dBm) 66 mA 接收模式 (250Kbps) 15 mA 接收模式 (1Mbps) 15.5 mA ICC接收模式 (2Mbps)16.5 mA 系统指标ƒOP 工作频率24002483MHzPLL res锁相环频率步径 1 MHz ƒXTAL晶振频率16 MHz DR码率0.25 2 Mbps ∆ƒ250K调制频偏@250Kbps 125 150 KHz ∆ƒ1M调制频偏@1Mbps 160 300 KHz ∆ƒ2M调制频偏@2Mbps 320 550 KHz FCH250K频道间隔@250Kbps 1 MHz FCH1M频道间隔@1Mbps 1 MHz FCH2M频道间隔@2Mbps 2 MHz发射模式指标PRF 典型输出功率 2 8 8 dBm PRFC 输出功率范围-35 8 dBmPBW1发射带数据调制的20dB带宽(250Kbps)500 KHzPBW2发射带数据调制的20dB带宽(1Mbps)1 MHzPBW3发射带数据调制的20dB带宽(2Mbps)2 MHz接收模式指标(注1)RX max误码率<0.1%时的最大接收幅度0 dBm RXSENS1 接收灵敏度(0.1%BER)@250Kbps-91 dBmRXSENS2 接收灵敏度(0.1%BER)@1Mbps-87 dBmRXSENS3 接收灵敏度(0.1%BER)@2Mbps-83 dBm接收模式邻道选择性C/I CO同频的通道选择性@250kbps 2 dBc C/I1ST第1相邻道选择性@250kbps -8 dBc C/I2ND第2相邻道选择性@250kbps -18 dBc C/I3RD第3相邻道选择性@250kbps -24 dBc C/I4TH第4相邻道选择性@250kbps -28 dBc C/I5TH第5相邻道选择性@250kbps -32 dBc C/I6TH第6相邻道选择性@250kbps -35 dBc C/I CO同频的通道选择性@1Mbps 10 dBc C/I1ST第1相邻道选择性@1Mbps 1 dBc C/I2ND第2相邻道选择性@1Mbps -18 dBc C/I3RD第3相邻道选择性@1Mbps -23 dBc C/I4TH第4相邻道选择性@1Mbps -28 dBc C/I5TH第5相邻道选择性@1Mbps -32 dBc C/I6TH第6相邻道选择性@1Mbps -35 dBc C/I CO同频的通道选择性@2Mbps 10 dBcC/I1ST第1相邻道选择性@2Mbps -6 dBcC/I2ND第2相邻道选择性@2Mbps -10 dBcC/I3RD第3相邻道选择性@2Mbps -22 dBcC/I4TH第4相邻道选择性@2Mbps -28 dBcC/I5TH第5相邻道选择性@2Mbps -34 dBc操作条件VDD 供电电压 2.2 3 3.3 VVSS 芯片地0 VV OH高电平输出电压VDD-0.3 VDD VV OL低电平输出电压VSS VSS+0.3 VV IH高电平输入电压VDD-0.3 VDD VV IL低电平输入电压VSS VSS+0.3 V*注1:在晶振16MHz的整数倍(如2416、2432MHz等)的频道及相邻正负1MHz的频道的接收灵敏度退化2dB;发射信号调制精度(EVM)退化10%。
KEIL里增加STC器件列表并与自带器件列表共存的方法
KEIL里增加STC器件列表并与自带器件列表共存的方法在STC 官网上看到的方法是先备份KEIL 安装目录下面的UV2.CDB 或者UV3.CDB 文件(在文件夹UV2 或者UV3 里面),然后用STC 提供的同名的CDB 文件代替,这个方法很简单,但缺点是在器件选型时,只能选择STC 单片机,其他的都没了,对于这一点,让人很讨厌。
后来我在网上搜了一下,发现上海普芯达电子有限公司提供了另外一种方法chipswinner/case/08591340574176.html,我在KEIL4 下面已经验证过,这个方法可行,具体如下:1、在Keil/C51/INC 下新建目录”STC”文件夹,把所有STC 单片机的头文件拷贝到”STC”目录下。
3、下载的用于keil 下的STC 器件数据库更名为STC.CDB 并拷贝到Keil/UV2 或者UV3 或UV4 目录下。
4、打开Keil 文件夹下的TOOLS.ini 文件。
5、在[UV2]下键入CDB0=“UV2\STC.CDB”(“STC”)或者CDB0=“UV3\STC.CDB”(“STC”)或者CDB0=“UV4\STC.CDB”(“STC”)需要单独一行的哦。
6、保存TOOLS.ini 文件,添加完毕。
7、启动Keil,打开OptionsforTarget...的Device 页,选择Database 中STC,就可以选择STC 单片机了,而且不会影响原来数据库的使用,这相当于另外增加了一个器件选型的数据库文件。
如图__________________________此方法适合UV2 UV3 UV4或者直接下载含有STC 的CDB 文件tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
STC系列单片机内部AD的应用
STC系列单片机内部AD的应用STC89LE52AD、54AD、58AD、516AD这几款89系列的STC单片机内部自带有8路8位的AD转换器,分布在P1口的8位上,当时钟在40MHz以下时,每17个机器周期可完成一次AD转换。
与AD相关的几个寄存器如表1所示。
表1 STC89系列单片机AD相关寄存器P1_ADC_EN:P1.X口的AD使能寄存器。
相应位设置为“1”时,对应的P1. X口作为AD转换使用,内部上拉电阻自动断开。
ADC_CONTR:AD 转换控制寄存器。
ADC_START:AD转换启动控制位,设置为“1”时,AD开始转换。
ADC_FLAG:AD转换结束标志位,当AD转换完成后,ADC_FLAG=1。
CHS2、CHS1、CHS0:为模拟输入通道选择,如表2所示。
表2 STC89系列单片机AD模拟通道选择设置ADC_DATA:AD 转换结果寄存器。
模拟/数字转换结果计算公式如下:结果=256×Vin / VccVin为模拟输入通道输入电压,Vcc为单片机实际工作电压,用单片机工作电压作为模拟参考电压。
下面一个例程演示STC89LE516AD/X2系列单片机的A/D转换功能。
时钟11.0592MHz,转换结果以16进制形式输出到串行口,可以用串行口调试程序观察输出结果。
(本代码摘自宏晶科技芯片手册,经作者调试可正常运行)。
新建文件part3.4.5.c,程序代码如下:#include <reg52.H>#include <intrins.H>// 定义与 ADC 有关的特殊功能寄存器sfr P1_ADC_EN = 0x97; //A/D转换功能允许寄存器sfr ADC_CONTR = 0xC5; //A/D转换控制寄存器sfr ADC_DATA = 0xC6; //A/D转换结果寄存器typedef unsigned char INT8U;typedef unsigned int INT16U;void delay(INT8U delay_time) // 延时函数{INT8U n;INT16U m;for (n=0;n<delay_time;n++){for(m=0;m<10000;m++);}}void initiate_RS232(void) //串口初始化{ES = 0; // 禁止串口中断SCON = 0x50; // 0101,0000 8 位数据位,无奇偶校验T2CON = 0x34; // 0011,0100,由T2 作为波特率发生器RCAP2H = 0xFF; // 时钟11.0592MHz, 9600 波特率RCAP2L = 0xDB;ES = 1; // 允许串口中断}void Send_Byte(INT8U one_byte) // 发送一个字节{TI = 0; // 清零串口发送中断标志SBUF = one_byte;while (TI == 0);TI = 0; // 清零串口发送中断标志}INT8U get_AD_result(INT8U channel){INT8U AD_finished = 0; // 存储 A/D 转换标志ADC_DATA = 0;ADC_CONTR = channel; // 选择 A/D 当前通道delay(1); //使输入电压达到稳定ADC_CONTR |= 0x08; //0000,1000 令 ADC_START = 1, 启动A/D 转换AD_finished = 0;while ( AD_finished == 0 ) // 等待A/D 转换结束{AD_finished = (ADC_CONTR & 0x10); //0001,0000, ADC_FLAG ==1测试A/D转换结束否}ADC_CONTR &= 0xF7; //1111,0111 令 ADC_START = 0, 关闭A/D 转换,return (ADC_DATA); // 返回 A/D 转换结果}void main(){initiate_RS232();P1 = P1 | 0x63; // 0110,0011,要设置为 A/D 转换的P1.x 口,先设为高P1_ADC_EN = 0x63; //0110,0011, P1 的P1.0,P1.1,P1.5,P1.6 设置为 A/D 转换输入脚// 断开P1.0,P1.1,P1.5,P1.6 内部上拉电阻while(1){Send_Byte(get_AD_result(0)); //P1.0 为 A/D 当前通道, 测量并发送结果delay(0x200);Send_Byte(get_AD_result(1)); //P1.1 为 A/D 当前通道, 测量并发送结果delay(0x200);Send_Byte(get_AD_result(5)); //P1.5 为 A/D 当前通道, 测量并发送结果delay(0x200);Send_Byte(get_AD_result(6)); //P1.6 为 A/D 当前通道, 测量并发送结果delay(0x200);Send_Byte(0); // 连续发送 4 个 00H, 便于观察输出显示Send_Byte(0);Send_Byte(0);Send_Byte(0);delay(0x200); // 延时delay(0x200);delay(0x200);delay(0x200);delay(0x200);delay(0x200);}}知识点:typedef与#define的区别typedef:类型定义,其功能是用户为已有数据类型取“别名”。
STC89C516RD-_datasheet芯片手册
STC89C53 RC 0-80M
15K 512 √ √ √ √ √ √ 2 1ch+ 8 4 3 W78E54 P89C54 AT89C55
STC89C54 RD+ 0-80M
16K 1280 √ √ √ √ √ √ 8K+ 2 1ch+ 8 4 3 W78E54 P89C54 AT89C55
STC89C51RC, STC89C52RC, STC89C53RC,
STC89LE51RC STC89LE52RC STC89LE53RC
STC89C54RD+, STC89LE54RD+ STC89C58RD+, STC89LE58RD+ STC89C516RD+, STC89LE516RD+ 附录 A:
STC89LE51 RC
0-80M 4K
512 √ √ √ √ √ √ 1K+ 2 1ch+ 8 4 3 W78LE51
AT89LV51
STC89LE52 RC
0-80M 8K
512 √ √ √ √ √ √ 1K+ 2 1ch+ 8 4 3 W78LE52
AT89LV52
STC89LE53 RC
用户程序是用 ISP/IAP 机制写入,一边校验一边写,无读出命令,彻底无法解密。DIP-40,PLCC-44,
PQFP-44 三种封装(PLCC、QFP 有 P4 口),RC/RD+ 系列单片机 P4 口地址为 E8H,并有 2 个附加外部中断,
P4.2/INT3,P4.3/INT2。STC89LE516AD/X2 系列单片机 P4 口地址为 C0H,无附加外部中断。 宏晶科技:专业单片机 / 存储器供应商 www.MCU-Memory.com STC 增强型 8051 单片机中文指南(RC/RD+ 系列)
1-STC单片机下载器软件硬件介绍
STC单片机下载器硬件介绍产品介绍接口:USB公头直接可以用电脑USB接口连接、四针杜邦孔可以直接用直排阵接口连接。
延长线:40CM接口标准:V G T R使用方法在电脑上安装PL2303驱动文件及STC下载软件,设置好串口端口好。
将USB头与电脑USB2.0接口连接。
将引脚口V接口与系统电源正极连接,可以提供5V 500MA电源,将引脚G接口与系统电源负极连接,将引脚T接口与单片机TXD引脚连接,将引脚R接口与单片机RXD引脚连接。
使用不同的上位机软件可以实现STC单片机程序烧写及TLL串口通讯。
应用1、从电脑USB2.0接口输出5V 500MA作为电源使用2、直接给不同型号的STC单片机下载程序3、实现USB转串口TTL 进行PC机与单片机通讯程序下载 通过USB接口 PC与单片机串口讯程序下载界面 PC机与单片机串口通讯界面STC单片机下载器软件使用介绍第一步:安装PL2303驱动程序找到“PL2303-驱动程序”文件夹下的“Setup.exe”文件,双击该文件出现图1,点击下一步开始驱动程序安装。
图1 PL2303驱动程序安装界面提示驱动安装成功以后,如果提示需要重新启动电脑则重新启动下电脑,该程序安装好以后,就会将电脑上的USB接口生成虚拟串口,将下载器模块与USB连接进行串口号设置就进行程序下载或PC机与单片机串口通讯。
第二步:设置STC下载器软件找到“STC下载软件”文件夹下的“STC_ISP_V479.exe”文件,双击出现图2,图中“1”设置单片机的型号(型号一定要对应),图中“2”表示加载程序的下载文件,图中“3”表示设置下载器对应的串口号,图中“4”默认不设置,图中“5”程序下载开始按钮。
图2 STC下载软件界面在图中“1”根据具体使用的单片机选择对应的型号,在图中“2”加载文件前必须设置号下载器对应的虚拟串口号。
下载器的功能是将USB接口转换成一个虚拟的串口,主要有第一步安装的“PL2303驱动程序”来确定,但是每台电脑不同的USB接口对应虚拟串口号是不相同的,所以在下载时要确定所使用USB接口对应的串口号。
ST STEVAL-ISB011V1 数据手册
Data briefFor further information contact your local STMicroelectronics sales office.March 2010Doc ID 17197 Rev 11/4STEVAL-ISB011V1Li-ion battery monitoring system demonstration boardbased on the STC3100 and STM32Features■STC3100 uses Coulomb counter/gas gauge to track the remaining charge in the battery, and can read the charging current, temperature and voltage of the battery■On-board STM32 microcontroller is interfaced with USB, STC3100, LCD, switches. Battery parameters are sent to PC via virtual COM port ■Charging and discharging status displayed on LCD.■Gas gauge: battery capacity up to +7300 mAh can be monitored (programmable by user)■Supports external or internal battery charger allowing evaluation of the STC3100 with the user’s own charging system■On-board charger (STC4054) available to charge the battery■Four switches for menu scrolling■Micro-USB B type connector can:–communicate battery parameters to the PC –provide power to the board–charge the battery using internal charger ■Option to interface external microcontroller using jumpers■STC3100 clock source can be selected from external oscillator, the device’s internal clock or from clock generated by an internal/external microcontroller ■RoHS compliantDescriptionThe STEVAL-ISB011V1 demonstration board is based on the STC3100 battery monitoring device and the STM32 microcontroller.The STM32 microcontroller provides a simple, compact solution to monitor the voltage,temperature, current and capacity of single cell Li-ion batteries utilizing the highly-efficient gas gauge capability of the STC3100.Battery charging is performed using the USB port, or using a DC adaptor.STEVAL-ISB011V1Schematic diagramsSTEVAL-ISB011V12/4Doc ID 17197 Rev 11 S chematic diagramsSTEVAL-ISB011V1Revision historyDoc ID 17197 Rev 13/42 Revision historyTable 1.Document revision historyDate RevisionChanges15-Mar-20101Initial release.STEVAL-ISB011V1Please Read Carefully:Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All ST products are sold pursuant to ST’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLES S OTHERWIS E S ET FORTH IN S T’S TERMS AND CONDITIONS OF S ALE S T DIS CLAIMS ANY EXPRES S OR IMPLIED WARRANTY WITH RES PECT TO THE US E AND/OR S ALE OF S T PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLES S EXPRES S LY APPROVED IN WRITING BY AN AUTHORIZED S T REPRES ENTATIVE, S T PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.© 2010 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America4/4 Doc ID 17197 Rev 1。
LabVolt系列32位微处理器电路板下载套件说明书
LabVolt Series Datasheet PC Download Kit for 32-Bit Microprocessor Circuit Board 585742 (91778-00)* The product images shown in this document are for illustration purposes; actual products may vary. Please refer to the Specifications section ofeach product/item for all details. Festo Didactic reserves the right to change product images and specifications at any time without notice.Festo Didactic en 12/2023PC Download Kit for 32-Bit Microprocessor Circuit Board, LabVolt SeriesTable of ContentsGeneral Description_________________________________________________________________________________3 Manual___________________________________________________________________________________________3PC Download Kit for 32-Bit Microprocessor Circuit Board, LabVolt SeriesGeneral DescriptionThe PC Download Kit for 32-Bit Microprocessor Circuit Board contains replacement EPROMs, a connecting cable, and an additional plug-in shunt to allow downloading of a program from a PC to the 32-Bit Microprocessor circuit board.ManualDescription Manual numberPC Download Kit for 32-Bit Microprocessor Circuit Board (User Guide) _______________________585396 (91780-00)PC Download Kit for 32-Bit Microprocessor Circuit Board, LabVolt Series Reflecting the commitment of Festo Didactic to high quality standards in product, design, development, production, installation, and service, our manufacturing and distribution facility has received the ISO 9001 certification.Festo Didactic reserves the right to make product improvements at any time and without notice and is not responsible for typographical errors. Festo Didactic recognizes all product names used herein as trademarks or registered trademarks of their respective holders. © Festo Didactic Inc. 2023. All rights reserved.Festo Didactic SERechbergstrasse 373770 DenkendorfGermanyP. +49(0)711/3467-0F. +49(0)711/347-54-88500Festo Didactic Inc.607 Industrial Way WestEatontown, NJ 07724United StatesP. +1-732-938-2000F. +1-732-774-8573Festo Didactic Ltée/Ltd675 rue du CarboneQuébec QC G2N 2K7CanadaP. +1-418-849-1000F. +1-418-849-1666。
STC12C5A60S2单片机各个模块程序代码
//* // CLKOUT2 时钟初始化 // //*********************************// void CLKOUT_init(void){WAKE_CLKO = 0x04; //Bit2-BRTCLKO 允许 P1.0 配置为独立波特率发生器的时钟输 出//BRT 工作在 1T 模式下时的输出频率 = Sysclk/(256-BRT)/2 //BRT 工作在 12T 模式下时输出频率 = Sysclk/12/(256-BRT)/2AUXR = 0x14; //Bit4-BRTR 允许独立波特率发生器运行 //Bit2-BRTx12 BRT 工作在 1T 模式下BRT = 0xff; // 更改该寄存器的值可实现对输出的时钟频率进行分频 }#else /* 条件编译 CLKOUT0时钟输出 */ //*// CLKOUT0 时钟和 CLKOUT1初始化 //*********************************//void CLKOUT_init(void){WAKE_CLKO = 0x03; // 允许将 P3.4/T0 脚配置为定时器 0 的时钟输出 CLKOUT0文案大全实用标准文档 //* // // // // // // //// // // // // ////STC12C5A60S2 可编程时钟模块说明: STC12C5A60S2单片机有三路可编程时钟输出 CLKOUT0/T0/P3.4 CLKOUT1/T1/P3.5、 CLKOUT2/P1.0涉及寄存器: AUXR(辅助寄存器 ) 、WAKE_CLKO 时(钟与系统掉电唤醒控制寄存器 ) BRT( 独立波特率发生器定时器寄存器 ) 程序说明:本程序可选实现 P3.4 输出 CLKOUT0时钟、 P3.5 输出 CLKOUT1时钟 P1.0输出 CLKOUT2时钟////** **// #include <STC12C5A60S2.H> #include <intrins.h> //#define Port_BRT // // 如果想测试独立波特率发生器时钟输出请打开此句若想测试 CLKOUT1和 CLKOUT0请注释此句#ifdef Port_BRT /* 条件编译独立波特率发生器时钟输出 */*// *//////T0 //T0 //1T //12T工作在 1T 模式时的输出频率 = SYSclk/(256-TH0)/2 工作在 12T 模式时的输出频率 = SYSclk/12/(256-TH0)/2 指的是每 1 个时钟加 1, 是普通 C51 的 12 倍 指的是每 12 个时钟加 1 与普通 C51 一样// 允许将 P3.5/T1 脚配置为定时器 1 的时钟输出 CLKOUT1只, 能 工作在定时器模式 2 下//T1 工作在 1T 模式时的输出频率 = SYSclk/(256-TH0)/2 //T1工作在 12T 模式时的输出频率 = SYSclk/12/(256-TH0)/2//1T 指的是每 1 个时钟加 1, 是普通 C51 的 12 倍 //12T 指的是每 12 个时钟加 1 与普通 C51 一样定时器速度是普通 8051的 12倍, 即工作在 1T 模式下 定时器速度是普通 8051 的 12 倍, 即工作在 1T 模式下 定时器 0工作模式为方式 2, 自动装载时间常数 定时器 1工作模式为方式 2, 自动装载时间常数 更改该寄存器的值可实现对输出的时钟频率进行分频更改该寄存器的值可实现对输出的时钟频率进行分频//* // 主程序 // //* void main(){CLKOUT_init(); while(1);}//**************************************************************************** //// STC12C5A60S2 系统时钟模块 // //// 说明: STC12C5A60S2 单片机有两个时钟源,内部 R/C 振荡时钟和外部晶体时钟 // 出厂标准配置是使用外部晶体或时钟 // //// 涉及寄存器: CLK_DIV(时钟分频寄存器 )// 由该寄存器的 Bit0-2 组合可实现对时钟源进行 0、2、4、8、 16文案大全实用标准文档AUXR = 0xc0; //T0//T1TMOD = 0x22; ////TH0 = 0xff; // TL0 = 0xff; TH1 = 0xff; // TL1 = 0xff; TR1 = 1; TR0 = 1;}#endif*// *//实用标准文档//32 、64、 128 分频 ////// 程序说明:// 对外部时钟进行分频得到 Sysclk, 然后经过 P1.0 的独立波特率 //时钟输出功能 Sysclk/2 输出时钟频率//#include <STC12C5A60S2.h> #include <intrins.h>#define Bus_clk 12 // 若要修改系统时钟直接在此处修改// 系统时钟初始化 // *//的 sysclk 的 sysclk 的 sysclk 的 sysclk*////*void Sysclk_init(void){WAKE_CLKO = 0x04; // AUXR = 0x14;//配置 P1.0 口为频率输出 允许波特率时钟工作 // 工作模式为 1T档#endif}//**********************************************// // 主程序 ////**********************************************// void main(){Sysclk_init();while(1);}//*// // STC12C5A60S2 系统省电模块////// 说明: STC12C5A60S2 单片机有三种省电模式以降低功耗 . 空闲模式,低速模式// 掉电模式////// 涉及寄存器:// Bit0 - IDL // Bit1 - PD PCON电(源控制寄存器)控制单片机进入 IDLE 空闲模式控制单片机进入掉电模式/ / / // / 程序说明:程序实现让单片机先工作一阵子(通过 P0^3 指示灯显示)// 然后进入掉电状态 ,利用外部中断 0 口来唤醒单片机工作/ / 唤醒后单片机将通过 P0^0-3 口的灯闪烁显示开始工作////****//#include <STC12C5A60S2.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intuchar Power_Down_Flag = 0; // 进入掉电状态标志sbit Chip_Start_LED = P0^0; //sbit Power_Down_LED_INT0 = P0^1; //INT0 sbit N_Power_Down_LED_INT0 = P0^2; //INT0 sbit Normal_Work_LED = P0^3; //sbit Power_Down_Wakeup_INT0= P3^2; // 单片机开始工作指示灯口掉电唤醒指示灯口没有唤醒指示灯正常工作指示灯外中断唤醒输入口void Delay_ms( uint time ); void Normal_work(void);void Intp_init(void); void After_Powr_Down(void);*// void Delay_ms( uint time ){uint t; // 延时时间 = (time*1003+16)us while(time--) {for( t = 0; t < 82; t++ ); }}//***********************************// // 正常工作指示 void Normal_work(void){Normal_Work_LED = 1; Delay_ms(500); Normal_Work_LED = 0; Delay_ms(500);}void After_Power_Down(void){uchar i ;for( i = 0; i < 100; i++ ) {P0 = 0x0f; Delay_ms(500); P0 = 0x00; Delay_ms(500); }}//********************************** // 中断初始化 void Intp_init(void) IT0 = ; // 外部中断源 0 为低电平触发EX0 = 1; // 允许外部中断 EA = 1 ; // 开总中断文案大全//* *////软件延时 ////*//*//// 主程序 // *//void main(){uchar j = 0;uchar wakeup_counter = 0; // P0 = 0x00;Chip_Start_LED = 1; // Intp_init(); // while(1) {P2 = wakeup_counter; wakeup_counter++; for( j = 0; j < 250; j++ ){Normal_work(); //}Power_Down_Flag = 1; // PCON = 0x02;_nop_();_nop_(); _nop_(); _nop_();After_Power_Down(); // }}//**********************************// // 中断服务//**********************************// void INT0_Service(void) interrupt 0 {if( Power_Down_Flag ){Power_Down_Flag 记录掉电次数 单片机开始工作 外中断 0 初始化系统正常工作指示 系统开始进入掉电状态 掉电唤醒后}else // 未掉电状态 文案大全实用标准文档 //* //* // = 0; Power_Down_LED_INT0 = 1; while( Power_Down_Wakeup_INT0 == 0 ) {nop();}Power_Down_LED_INT0 = 0;掉电唤醒状态指示N_Power_Down_LED_INT0 = 1; // while( Power_Down_Wakeup_INT0 == 0 ) {_nop_();}N_Power_Down_LED_INT0 = 0; } } 不是掉电唤醒指示//**************************************************************************** // // // STC12C5A60S2 A/D 转 换 模 块 // // // // // // 说明: STC12C5A60S2单片机有 8路 10位高速 AD 转换器 ,P1^0-P1^7 涉及寄存器: P1ASF (模拟功能控制寄存器 ) 、ADC_CONTR (AD 控C 制寄存器 ) ADC_RES 、 ADC_RESL 转( 换结果寄存器 ) // 动 A/D 转换 // 转换 // 注意 : 、初次打开内部 A/D 模拟电源需适当延时等内部模拟电源稳定后 , 再启 启动 A/D 后,在转换结束前不改变任何 I/O 口的状态 , 有利于高精度 A/D // // 正确 // //// // 若能将定时器 / 串行/ 中断系统关闭更好。
STC 单片机下载器使用说明
STC 单片机下载器使用说明STC单片机下载器使用说明介绍:这是一个USB转TTL电平的串口转换器。
它利用USB协议里规定的总线转换功能,把USB转换成串行通信口。
因为现在的台式机、笔记本电脑普遍已经不再配备串口,因此在需要串口的时候,可以使用这种转换器。
由于STC单片机可以使用串口下载程序,所以可以使用这种USB转串口模块来给STC的单片机下载程序。
写到此处,我想多说几句题外话,8051内核单片机诞生于1980年左右,由Intel 公司设计,(这家公司各位一定不陌生吧)。
当时英特尔公司刚刚起步,走的是开放的、兼容型的路线。
所以,intel公司把8051单片机的设计授权给了给了其他半导体厂商,于是众多厂商生产了各种各样的51系列单片机,这些厂商包括: ATMEL公司、WinBond(华邦)公司、Philips(飞利浦)公司NEC(日电)公司、 LG公司、、等。
SIEMENS(西门子)公司如今,8051单片机内核的知识产权保护期已过,因此许多国产半导体厂商兴起,如:深圳宏晶(STC)、上海海尔、台湾笙泉、湖南华芯、台湾华邦(芯唐)、台湾中颖、台湾新茂、台湾太欣等等。
我们之所以选用国产STC单片机作为教学用单片机,主要还是考虑到其成本因素。
相对来说,STC单片机价格比较便宜,而且芯片功能强大,片内集成了很多功能。
此外还要说明的是,给单片机下载程序必须要有下载器(编程器、烧录器),而多数单片机的下载器价格都会在100到200元以上,这对于初学者来说是难以承受的,而STC单片机烧录程序,仅仅需要串口即可,而即使电脑没有配备串口,购买一个USB转串口也不过15块钱以内,这就大大降低了单片机的学习门槛。
下面就来介绍我们这款STC的单片机下载器――USB转TTL串口模块。
USB转串口小板功能:1、简单的串口通信。
2 、路由器或者ADSL固件升级。
3 、STC单片机、STM32单片机等,烧写程序。
4 、硬盘固件升级。
STC12C2052AD之数字电压表099V
STC12C2052AD之数字电压表0-99V做了N个ICL7107的数字电压表头都没有成功,今天改为带AD的单片机了。
AD部分代码来看网络。
电路就不发了。
数码管用四位共阳。
小数点后面有一点跳动,不过对于用面包板搭建的电路,应该算不错吧。
基准电压采用TL431.电压在2.61和2.37之间跳动。
/************************************************ **********************基于STC12C4052AD单片机的0-99V数字电压表程序数码之家首发。
ID:abenyaoP1.6口为0-5V模拟量输入端,P1.5口连接TL431l输出的2.5V基准电源,4位串行LED数码管显示************************************************* *********************/#include ; //单片机头文件#include ; //51基本运算(包括_nop_空函数)#define uchar unsigned char#define uint unsigned int#define LEDBus P3//a3.0-b3.1-c3.2-d3.3-e3.4-f3.5-g3.7-dp1.0#define ON 1//定义0为打开#define OFF 0//定义1为关闭sbit ge=P1^4;//个位位选sbit shi=P1^3;//十位位选sbit bai=P1^2;//百位位选sbit qian=P1^1;//千位位选sbit db=P1^0;char d[5];uint R,M,N;//若定义成uchar型就只能显示2.5V以下的数值uchar codeLEDTab[]={0xc0,0xf9,0x64,0x70,0x59,0x52,0x42,0xf8 ,0x40,0x58};/************************************************ *****************函数名:毫秒级CPU延时函数调用:delay (?);参数:1~65535(参数不可为0)返回值:无结果:占用CPU方式延时与参数数值相同的毫秒时间备注:应用于1T单片机时i;0;t--)//如果t大于0,t减1(外层循环)for(i=600;i>;0;i--);//i等于124,如果i大于0,i减1}/************************************************ *******************函数名:ADC初始化及8位A/D转换函数返回值:8位的ADC数据结果:读出指定ADC接口的A/D转换值,并返回数值备注:适用于STC12C2052AD系列单片机(必须使用STC12C2052AD.h头文件)************************************************* ******************/uchar Read (uchar CHA){uchar AD_FIN=0; //存储A/D转换标志;若在函数外定义此变量则不能得到连续变化的模拟量的显示/******以下为ADC初始化程序****************************/CHA &= 0x07;//选择ADC的8个接口中的一个(0000 0111 清0高5位)ADC_CONTR = 0x60; //ADC转换的速度(0XX0 0000 其中XX控制速度,请根据数据手册设置)_nop_();ADC_CONTR |= CHA;//选择A/D当前通道_nop_();ADC_CONTR |= 0x80;//启动A/D电源delay(1);//使输入电压达到稳定(1ms即可?/******以下为ADC执行程序****************************/ADC_CONTR |= 0x08;//启动A/D转换(0000 1000 令ADCS = 1)_nop_();_nop_();_nop_();_nop_();while (AD_FIN ==0){//等待A/D转换结束AD_FIN = (ADC_CONTR & 0x10); //0001 0000测试A/D转换结束否}ADC_CONTR &= 0xE7;//1111 0111 清ADC_FLAG位, 关闭A/D转换, return (ADC_DATA);//返回A/D转换结果(8位)}/************************************************ ******************显示函数转换函数:M=模拟量采样值,N=基准电压源采样值(本例为2.5V),R=模拟量输入值(待显示值)N=256*2.5/Vcc;变形后得Vcc=256*2.5/N;代入M=256*R/Vcc;得到M=R*N/2.5;变形后得R=M*2.5/N 1.105为输入端分压比。
STC单片机USB下载使用说明书
【STC单片机USB下载使用说明书】初学习者拿到学习板的时候首先要检查学习板是否完好无损,检查没有问题后再进行下面的操作。
1、安装“USB下载器”电脑驱动程序:要使用“USB下载器”下载程序到单片机,首先得安装下载器的电脑驱动程序,要不然电脑不能识别下载器,下载器也就是不能下载程序(不能使胙)了。
USB下载器驱动程序安装过程如下:USB驱动程序在“【精创科技】51初级学习板(红板)\软件\USB下载线软件和驱动\PL2303HX新版驱动\”,请双击“”图标就可以安装驱动了,依照其提示一步步向下点击即可装好。
2、下载器和学习板的连接以及学习板上的跳线设置、电源开关所置的状态:=============================================================== 3、下载软件操作过程:首先将学习如“步骤2”图1、图2、图3连接、设置好,再在“【精创科技】51初级学习板(红板)\下载软件和编辑软件\本公司下载线软件和驱动\本公司的STC和AT下载软件、\”根目下双击“”图标就可以进入STC单片机的USB 下载软件的操作介面,如下图所示:(1)点击“”按钮选择要下载的例子程序的目标文件(即“*.Hex”或“*.Bin”文件)。
(2)选择下载通信串口:点击COM 筐里的下拉按钮“”就可以进入COM口的选择,那怎么知道选COM 几呢?首先你把学习板、USB下载器和电脑连接好后,在“我的电脑”-“属性”-“硬件”-“设备管理器”下查看“端口”就可以看到“”,具体为COM几看电脑而定。
(3)选好COM口后点击“”即可自动完成程序下载(烧录)过程,并自动复位让程序自动运行。
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆学习板上各个配件的接法图:附:为了你操作方便,你最好将光盘里面的资料全部复制到电脑硬盘里面,这样操作会省不少时间。
《单片机技术》课程51-AVR-STC单片机三合一简易实验板元器件及材料清单
29 30 31 32 33 34
号
元器件名称 AT89S52单片机 AT89S52单片机芯片锁紧座 四位一体共阳数码管 四位一体共阳数码管插座 74HC573 74HC573芯片插座 晶振 发光二极管 单排插针 三极管 蜂鸣器 小按键 下载口座子 六脚按键电源开关 USB电源线 USB电源线插座 电阻 电阻 电阻 电解电容 瓷片电容 排阻 排阻 短路冒 杜邦线8P PCB板子 固定螺钉螺帽 USB下载线
1 8 4 2 2 4 1 3 1 1
4mm 无 39 40 41 42 43 44 45
直柄麻花钻 直柄麻花钻 直柄麻花钻 电熨斗 环保腐蚀剂 电烙铁 焊锡丝 松香 转印纸 细砂纸 相关工具、万用表
1.0mm 1.2mm 4.0mm
AVR转接板 AVRmega16单片机 STC89C52RC STC单片机USB转串口下载线 打孔机 直柄麻花钻
规 格 40P 40P 40P 20P 20P 12MHz 40P 9012
数 目 1 1 2 1 1 1 1 9 3 1 1 10 1 1 1 1
备 注
200 470 1K 22uf 33pf 10k 470
24LC64X-IST;24LC64XT-IST;中文规格书,Datasheet资料
1.1 DC Characteristics
DC CHARACTERISTICS
VCC = +1.8V to +5.5V Industrial (I): TAMB = -40°C to +85°C Automotive (E): TAMB = -40°C to +125°C
Param. No.
Sym
• Factory programming (QTP) available • ESD protection > 4,000V
• 1,000,000 erase/write cycles • Data retention > 200 years
• 8-lead PDIP, SOIC, TSSOP, and MSOP package
Industrial (I):
TAMB = -40°C to +85°C
Automotive (E): TAMB = -40°C to +125°C
Param. No.
Sym
Characteristic
Min
Max Units
Conditions
1
FCLK Clock frequency
—
400 kHz 2.5V ≤ VCC ≤ 5.5V
D4
VHYS Hysteresis of Schmitt
0.05 VCC —
—
V (Note 1)
Trigger inputs
D5
VOL Low level output voltage
—
D6
ILI Input leakage current
—
D7
ILO Output leakage current —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Spirent TestCenter Virtual is a software module that resides on the virtual machine providing unsurpassed visibility into the entire data center infrastructure. It extends and complements the capabilities of Spirent TestCenter to accurately benchmark and optimize performance of virtual server switches and cloud-based virtualization.
With Spirent TestCenter Virtual, network equipment vendors can for the first time:
Put virtual switches thru the same tests physical switches have n
n
been undergoing for years
Quickly determine what virtual or physical component is
n
n
impacting performance and dropping frames
Performance benchmark new virtual switches, firewalls, load n
n
balancers and other virtual appliances
Measure application reliability impact of dynamic resource
n
n
scheduling with live migration of virtual servers
Compare networking performance of different hypervisors and n
n
blade server solutions
Holistically validate the performance of all elements of the
n
n
data center and cloud-computing environments
TESTCENTER Virtual
TESTCENTER Virtual
Benefits
Optimize IT resources: n n Characterize the performance of
individual data center elements and systems in a multitude of real-world scenarios
Reduce TCO: n n Test virtualized network infrastructure
performance end-to-end with a single, integrated system.
Deploy best in class data center systems: n n Test availability,
security, scalability and interoperability of virtual network elements.
Ensure seamless migration and consolidation: n n Transition to
virtualized data center or cloud computing environments with
the lowest possible risk.
Know performance before you go live: n n Identify performance
bottlenecks within each element and across multiple elements
of the data center.
Features
Layer 2 – 7 test and measurement capabilities.
n n Correlates data center power consumption with network load
n n under realistic loads.
Delivers a complete picture of system performance at line rate
n n with Spirent TestCenter HyperMetrics modules.
Support for RFC 2544 Network Interconnect, RFC 2889
n n Switch and RFC 3918 Multicast benchmark performance
measurements.
Validates security and policy enforcement including access
n n control, rate limiting, port mirroring and VLAN trunking
capabilities.
Single application to validate virtualized network infrastructure
n n performance, scalability and security
Spirent TestCenter Virtual is the industry’s only solution to:
Conduct line rate layer 2-7 performance testing of virtual and physical network resources by emulating VLANs, multicast and FCoE
n n traffic along with stateful application protocols
Measure key layer 2 performance metrics such as throughput, frame loss and latency between virtual and physical network elements
n n including network-to-VM, VM-to-network and VM-to-VM
Deliver a unified testing architecture that ensures full compatibility with any Spirent TestCenter interface including the award-winning
n n Spirent Hypermetrics for accurate, high performance FPGA hardware generated network traffic
For data center system vendors delivering the benefits of virtualization to enterprises and service providers, Spirent TestCenter™
n n Virtual delivers the power to architect high performance data center systems, mitigate risks of migration or consolidation of existing IT infrastructure, minimize the total cost of ownership (TCO) of testing resources and optimize infrastructure utilization by testing performance in a multitude of real-world scenarios.。