Generic Uniqueness of Least Area Planes in Hyperbolic Space
采用独立分量分析Zernike矩的遥感图像飞机目标识别
随着遥 感 技术 的发 展 , 感 影 像 广 泛 应 用 于 环 遥 境 监测 、 源调 查 、 事 侦 查 等 众 多 领 域 . 感 图像 资 军 遥
在 物体识 别 的 过程 中 , 体 的形 状 是 非 常 重 要 物 的特 征 之一 . 状特 征是 图像 的核 心特 征 , 是人 类 形 也 视觉 系 统进 行物 体 识 别 时所 识 别 的关 键 信 息 之 一. 具有 仿 射不 变关 系 的 目标 匹 配 、 识别 一 直 是 物 体 形
式 中 : 是 独立 分 量 基 ,o , … , ( o ,
) 是 待 识 则
A[ =
吕一 … s] i. n 0
别 目标 在特 征空 间的投影 系数 , 式 ( ) 用 3 求得 :
( ln , , )= ×( ) 。 ,2 … 0 一 . () 3 提 取投影 系数作 为 目标 提取 的特 征值 , 造 合适 的 构 分类 器实 现分类. 本文提 出的算 法是将 分割后 的 目标形 状数据 转
遥感 图像 在 提取 目标 物 体 的形 状 特 征 前 , 先 首 要对 遥感 图像 进行 预处 理 , 除噪声 对 图像 的影 响. 消 然后 通过 阈值 分 割 的方 法 将 目标 区域 提 取 出来 , 对 感 兴趣 区域 进 行处 理 并 提 取 不 变 特征 . 里 提 出 了 这
状特 征研 究 的重 点 4 . 。
目标 自动识 别 成 为研 究 的热 点 , 别 是 军 事 目标 的 特
自动 识别 领域 更是 研 究 的重 点 . 感 影 像 在 拍 摄 过 遥
程 中, 摄像 机 的拍 照距 离 要 远 远 大 于 景 物 本 身 的尺
堆叠自动编码器的特征选择方法(八)
堆叠自动编码器的特征选择方法自动编码器是一种无监督学习算法,可以用于特征提取和数据降维。
堆叠自动编码器是由多个自动编码器组成的深度神经网络,通过层层训练来学习数据的高级抽象特征。
在实际应用中,特征选择是非常重要的,可以帮助我们减少数据维度,提高模型效率和预测准确率。
本文将探讨堆叠自动编码器的特征选择方法。
一、特征选择的意义特征选择是指从原始数据中选择出最具代表性的特征,排除冗余和噪声,以提高模型的泛化能力和预测性能。
在实际应用中,原始数据往往包含大量特征,而其中只有一部分特征对模型的训练和预测起到关键作用。
因此,通过特征选择可以减少数据维度,提高模型训练效率,降低过拟合的风险。
二、堆叠自动编码器的特征提取堆叠自动编码器是一种深度神经网络,可以用于学习数据的高级抽象特征。
在训练过程中,每一层自动编码器都能够学习数据的不同层次的特征表示,从而实现数据的逐层抽象和提取。
通过堆叠多个自动编码器,可以逐渐提取出数据的深层次特征,这些特征对于区分不同类别的数据具有很强的区分能力。
三、基于重构误差的特征选择方法在堆叠自动编码器中,每个自动编码器的训练都是通过最小化重构误差来实现的。
重构误差指的是输入数据与自动编码器的重构输出之间的差异,通过最小化重构误差,可以有效地学习数据的抽象特征表示。
因此,可以基于重构误差来进行特征选择,具体方法是通过分析每个特征对于重构误差的贡献程度,选择对重构误差影响较大的特征作为最终的特征集合。
四、基于梯度下降的特征选择方法除了基于重构误差的方法,还可以利用梯度下降的方法来进行特征选择。
在堆叠自动编码器的训练过程中,可以通过计算每个特征对于损失函数的梯度,来评估每个特征对于模型训练的重要性。
通过梯度下降的方法,可以筛选出对于损失函数梯度影响较大的特征,从而实现特征选择的目的。
五、正则化方法的特征选择在堆叠自动编码器的训练过程中,可以通过正则化方法来进行特征选择。
正则化方法可以通过添加惩罚项来约束模型的复杂度,从而实现对特征的选择和筛选。
基于结构特征的飞机目标识别方法才让卓玛
1
引言
飞机目标的自动识别是军事遥感领域的一个重要课题,
征, 但在其几个主要的部件区域, 灰度比较均匀; 不同机型 形状各异, 但结构上相似, 都具有一些典型的形状特征。 这些都可以作为研究飞机识别方法的重要依据。 本文提出一种基于结构特征的飞机识别方法, 具有效 率高、 定位可靠、 机型判定较为准确的优点。该方法采用 Mean Shift 方法进行图像分割, 得到飞机目标轮廓, 分析目 标轮廓的形状特征以剔除虚警, 提取目标轮廓参数作为机 型分类依据,
对目标图像的分割, 首先采用 Mean Shift 算法滤波,
Mean Shift 算法可以较好地保持图像中的明显边缘, 而将 灰度相近的像素合并为区域, 便于后续目标轮廓的提取。 滤波后进行区域的合并, 将较小的区域和附近的较大区域 合并, 减少后续计算的复杂度。对合并后的每一个区域, 进行边界跟踪, 得到区域的闭合轮廓, 进行轮廓的层次化
作者简介: 才让卓玛 (1972—) , 女 (藏族) , 副教授, 主要研究方向为人工智能与模式识别; 张名成 (1975—) , 男, 酒泉卫星发射中心工程师, 主要研究方向为图像分析。 E-mail: 164022321@ 收稿日期: 2011-07-08 修回日期: 2011-08-26 文章编号: 1002-8331 (2013) 04-0174-04 CNKI 出版日期: 2011-11-14 /kcms/detail/11.2127.TP.20111114.0951.095.html
为了军事需要, 一般要求能够快速准确定位飞机, 并尽可 能获取较多信息以实现机型判别。高分辨率可见光图像 下的飞机目标自动识别在近些年来取得了长足的发展, 但 仍有许多方面需要做进一步研究。准确识别飞机目标的 困难不仅表现在目标的复杂多样性, 也有对人类视觉机制 认识不足的原因。 由于飞机型号众多, 外形各异, 而且存在遮挡、 阴影以 及地物干扰, 飞机识别从目标图像分割、 特征选择、 特征分 析方面来说都存在一定难度, 主要体现在以下几个方面: 飞机目标灰度特征并不明显, 目标的分割和轮廓的提取较 为困难; 由于图像质量以及噪声和地物干扰等因素, 得到 目标轮廓不一定完整, 可能是破碎、 残缺的。虽然存在上 述困难, 但同很多人工目标一样, 飞机目标也存在以下一 些易于识别的特征: 虽然目标整体上没有统一的灰度特
CDFA
目录
1、什么是CDFA 2、AC-121/135FS-2013-46 3、公司政策 4、CDFA航图识读 5、总结
什么是CDFA
什么是CDFA
CDFA技术示意图
什么是CDFA
1、非精密进近 2、FAF之后持续下降 3、MDA/H没有平飞
CDFA技术的优势
相对于航空器在到达最低下降高度/高前快速下 降的大梯度下降(快速下降后平飞)进近技术 ,CDFA技术具有下述优势:
5.能够与气压垂直导航(baro-VNAV)进近 的实施程序相整合; 6.减少在最后进近航段中低于超障裕度的可能 性; 7.当处于公布的下降梯度或下滑角度飞行时, 航空器姿态更容易使飞行员获得所需的目视参 考。
CDFA特定决断高度/高(DDA/H)
飞行员在使用CDFA技术的过程中执行复飞时,不得 使航空器下降到最低下降高度/高以下。考虑到航空 器在复飞过程中可能的高度损失等因素,运营人应 指令他们的飞行员在公布的最低下降高度/高以上的 某一高度/高﹝即CDFA特定决断高度/高(DDA/H ),例如:在公布的最低下降高度/高上增加15米 (50英尺)﹞开始复飞,以确保航空器不会下降到 公布的最低下降高度/高以下。
飞行机组训练
CAT.OP.MPA.115 Approach flight technique — aeroplanes (a) All approaches shall be flown as stabilised approaches unless otherwise approved by the competent authority for a particular approach to a particular runway. (b) Non-precision approaches (1) The continuous descent final approach (CDFA) technique shall be used for all non-precision approaches.EN L 296/70 Official Journal of the European Union 25.10.2012 (2) Notwithstanding (1), another approach flight technique may be used for a particular approach/runway combination if approved by the competent authority. In such cases, the applicable minimum runway visual range (RVR): (i) shall be increased by 200 m for category A and B aeroplanes and by 400 m for category C and D aeroplanes; or (ii) for aerodromes where there is a public interest to maintain current operations and the CDFA technique cannot be applied, shall be established and regularly reviewed by the competent authority taking into account the operator’s experience, training programme and flight crew qualification.
可见光图像中飞机目标的特征选择及提取
可见光图像中的丁飞机目标进行较好识别,准确率较高,平均识别率达到了 90% 以上.
关键词:可见光图像;特征提取;飞机识别;模式识别
中图分类号:
TP242
文献标志码 :A
文章编号:
0367 -6234(2010)07 -1056-04
ቤተ መጻሕፍቲ ባይዱ
Selection and extraction of features of aircraft in optical image
域用一些预先定义的几何基元填充表达;三是利
D 关于这条直线的转动惯量为
1 =
ff [(XO- α) sinα - (Yo b) cosα] 于(x , y)dxdy.
(1)
用一些目标区域内部像素获得的集合来表达.主
要的基于区域的目标表达有四叉树、骨架等.基于
使 I 取最小值的直线可以代表这个区域的
"取向",即主轴方向.将式(1)分别对 α , b 和 α 求
开展了大量飞机识别方面的研究,从不同的角度
文提出了 5 个对于飞机目标具有统一性的特征,
用来区分飞机目标和非飞机目标,试验结果表明,
利用这 5 类特征对飞机目标进行识别具有很好的
人手,通过提取飞机的目标特征和建立相应的数
据库,实现对飞机的识别 [lJ]. 目前,大部分飞机
目标识别算法都是依赖建立的飞机样本库,所以
的距离和整个机身长度的比值作为机翼前缘位置
的表示.
算最大值两侧的面积,并计算它们两个的比值.用 这个比值就可以表示目标的对称程度.这个比值 理论上应该接近于 1( 由于其他因素的影响,这个
比值往往会在 1 左右震荡 ).ll 长径比是飞机机身长度和直径的比值,从图
未来的医疗科技英语作文
未来的医疗科技英语作文1In the future, medical technology is expected to undergo remarkable advancements that will transform the way we receive healthcare.Remote medical care is likely to become more common. Patients will be able to receive diagnoses from experts without leaving their homes. For instance, a person living in a remote area can have a video consultation with a top doctor in a big city. This not only saves time but also makes high-quality medical services accessible to more people.Intelligent diagnosis systems will also play a significant role. These systems can analyze a large amount of medical data quickly and accurately, helping doctors make more precise diagnoses. They can detect diseases at an early stage, increasing the chances of successful treatment.Gene editing is another exciting area of development. There have been cases where this technology has successfully treated complex and rare diseases. It holds the potential to eradicate genetic disorders and improve the quality of life for many.In conclusion, the future of medical technology is filled with great possibilities and potential. It will undoubtedly bring more convenience and better treatment options to patients. We can look forward to a healthier and happier future.In the future, medical technology is expected to undergo revolutionary changes. It will undoubtedly bring numerous benefits.Firstly, it will significantly enhance the efficiency of treatment. Advanced diagnostic tools and personalized treatment plans will enable doctors to identify diseases more accurately and provide targeted therapies, thus saving precious time for patients.Secondly, it will reduce medical costs. New technologies such as 3D printing of organs and generic drugs will make medical resources more accessible and affordable.However, there are also potential problems. Ethical issues have become a major concern. For instance, the cloning technology may raise questions about the dignity and uniqueness of human life.Another issue is data security. The leakage of patients' personal medical data can lead to the violation of their privacy and even cause serious consequences.In conclusion, while future medical technology holds great promise, we must approach it with caution. We need to establish a sound legal and ethical framework to ensure that its development benefits humanity while avoiding potential harms. Only in this way can we truly embrace the bright future that medical technology brings.When I look back at the medical experiences I've witnessed in the future, I'm filled with awe and gratitude.A few years ago, I was struck down by a serious illness. The traditional treatment methods seemed ineffective, and I was losing hope. But then, a revolutionary medical device came into my life. It was a small, yet incredibly powerful machine that could precisely target the source of my disease and administer targeted therapy. In a matter of weeks, I started to recover. I could feel my strength returning, and the pain gradually fading away. It was like a miracle.Not only me, but also my grandmother benefited from the advanced medical technology. She had a heart condition that had plagued her for years. But with the development of genetic editing technology, doctors were able to correct the faulty genes in her heart cells. Now, she can enjoy a normal and active life, free from the fear of sudden attacks.These experiences have made me truly appreciate the power of future medical science. It not only heals the body but also gives hope and joy to countless families. I believe that in the future, medical technology will continue to advance, bringing more miracles and making our lives healthier and happier.4Nowadays, medical technology has made significant progress andhas brought great changes to our lives.Common medical technologies include advanced imaging techniques like MRI and CT scans, which help doctors accurately diagnose diseases.Also, minimally invasive surgeries have reduced patients' pain and recovery time.The development of artificial intelligence in medicine is remarkable.AI can analyze large amounts of medical data to assist in disease prediction and treatment planning.For example, some systems can predict the risk of certain diseases based on a person's genetic information and lifestyle.In the future, medical technology is expected to make even more astonishing breakthroughs.Personalized medicine will become more common, where treatments are tailored specifically to an individual's genetic makeup and unique characteristics.Regenerative medicine, such as the ability to grow new organs using a patient's own cells, holds great promise for those in need of organ transplants.Moreover, telemedicine will continue to expand, allowing patients in remote areas to access quality healthcare services.Nanotechnology may also play a crucial role, with tiny nanoparticlesdelivering drugs precisely to targeted cells in the body.The future of medical technology is incredibly exciting, and it has the potential to save countless lives and improve the quality of life for people all over the world.5In recent years, the rapid advancement of technology has brought about revolutionary changes in various fields, and the field of medical science is no exception. This report aims to explore the prospects of future medical technology based on current research achievements.The research background is characterized by the continuous improvement of people's living standards and the increasing demand for high-quality medical services. At the same time, technological innovations such as artificial intelligence, big data, and nanotechnology have provided strong support for the development of medical technology.The research methods adopted include comprehensive literature review, case studies of advanced medical institutions, and analysis of market trends. Through these methods, we have collected a large amount of valuable data and information.The research results show that future medical technology will present several remarkable trends. For instance, personalized medicine based on genomic sequencing will enable more targeted and effective treatments. Telemedicine will break geographical limitations, allowingpatients to receive medical services remotely. Moreover, the application of robotics in surgery will improve the precision and safety of operations.In conclusion, the future of medical technology is extremely promising. It holds the potential to save countless lives, improve the quality of medical care, and bring about profound changes to the entire healthcare industry. However, it also requires continuous investment in research and development, as well as the establishment of appropriate regulatory frameworks to ensure the safe and effective application of these technologies.。
桁架结构优化设计的免疫克隆选择算法
的用 于求解 问 题 的系 统 或 计 算 工 具 _ . 一 领 域 出 8这 ]
现于 2 0世 纪 8 0年代 中期 , 的 应用 涵 盖 了从 生物 它 学 到 机器 人技 术 等诸 多领 域l . 而 , _ g 1 然 在结 构 工程
L F n A GH s e g , / e g ,T N eh n XUR i XU S n to ’ u , E o ga
(1 Re e r h I siue f Sr cu a En n e i g n Dia tr . s ac n tt t o tu tr l gie rn a d s se
对 于 桁 架 结 构 , 给 定 结 构 形 式 、 料 、 局 拓 在 材 布
扑 和 形状 的情 况 下 , 化各 个 杆 件 的截 面 尺 寸 使 结 优
构最 轻 , 即尺 寸优 化 . 尺寸 优化 中取 杆 件 的横 截 面 在
积 为 设 计 变 量 . 结 构 优 化 领 域 中 , 化 准 则 在 优 ( p i l y r e i,O o t i ci r ma t t a C) 法 _ 与 数 学 规es y S a g a 2 0 9 eut , o nj nvri , h nh i 0 0 2, C ia 2 t hn ; .
De a t n fAr htcu e, c o l fEn ie rn To o uI siueo p rme t c i tr S h o gn e ig, h k n tt t f o e o
题. 但启发 式 算法 共 同的 缺点 是 参数 不 易 确定 , 参数 的设 置通 常会 影 响算法 收 敛 的效果 . 人工 免疫 系统 (ric lmmuesse , I) atii f a i n ytmsA S
海克斯康构造特征组-概述说明以及解释
海克斯康构造特征组-概述说明以及解释1.引言1.1 概述海克斯康构造特征组是一种用于描述和分析复杂系统的工具,通过将系统中的元素按照相互关联的特征分组,可以更清晰地理解系统的结构和功能。
本文将从海克斯康构造特征组的定义、应用和优势三个方面进行探讨,旨在深入探讨这一工具对于系统分析和设计的重要意义。
通过本文的阐述,读者将能够对海克斯康构造特征组有一个全面的了解,并能够在实际应用中取得更好的效果。
1.2 文章结构文章结构部分的内容如下:文章结构部分主要介绍了本文的组织结构和各部分内容的概述。
文章分为引言、正文和结论三个部分。
在引言部分,我们将概述海克斯康构造特征组的概念和本文的目的。
在正文部分,我们将详细介绍海克斯康构造特征组的定义、应用和优势。
最后,在结论部分,我们将总结文章内容,并展望未来可能的研究方向。
通过这样的组织结构,读者可以逐步了解海克斯康构造特征组的重要性和价值,同时也能够对相关概念和应用有一个清晰的认识。
1.3 目的本文旨在介绍海克斯康构造特征组的概念、定义和应用,探讨其在数据分析和模式识别领域的重要性和优势。
通过深入分析海克斯康构造特征组的特点和作用,希望读者能够更加全面和深入地了解这一概念,并掌握如何运用海克斯康构造特征组进行数据分析和模式识别,从而提高数据处理和识别准确率,推动相关领域的发展和进步。
同时,通过展望未来海克斯康构造特征组的发展方向和应用前景,激发读者对这一领域的兴趣,促进更多研究人员参与到海克斯康构造特征组的研究与应用中来,共同推动相关领域的发展和创新。
2.正文2.1 海克斯康构造特征组定义海克斯康构造特征组是一种用于描述和表示数据特征的方法。
它基于海克斯康构造算法,通过对数据进行分析和处理,提取出对数据具有代表性和区分性的特征,构建成特征组的形式。
具体来说,海克斯康构造特征组是由一组能够描述数据属性的特征向量组成的集合。
这些特征向量包含了数据的各种属性信息,如数值型特征、类别型特征等,能够在模型建立和数据分析过程中发挥重要作用。
民机CCAR25.1309条款符合性验证思路与方法分析
S c 科 i e n c e & 技 T e c h 视 n o l o g y 界 V i s i o n
科技
・
探索・ 争鸣
民机 C C A R 石 ( 上海 飞机 设计研 究 院 四性 与产 品支 援部 。 中国 上 海 2 0 1 2 1 0 )
【 摘  ̄l C C A R 2 5 . 1 3 0 9条款规 定了民机必须 满足的设备 、 系统与安装方面的安全性要 求, 是最具综合性和复杂性的条款之一。 本 文通过对 C C AR 2 5 . 1 3 0 9条款的解读 , 分析了民机 C C A R 2 5 . 1 3 0 9条款符合性 的思路与方法 。
【 关键词】 2 5 . 1 3 0 9 ; 符合性 验证 ; 符合一 t g A -  ̄
0 前 言
大型民用运输类 飞机 为表 明其安全性 , 须验证对 C C A R2 5部的符 合性 。针对 2 5部 的不 同条款 , 申请人 采用不同的符合性验证方 法, 方 法组合来表明飞机设 计对其符合性 对于各种符合性方法l l 1 . 国内外的 学者和工程技术人员 , 已对其有较为深入的解读踟. 对于C C AR 2 5 . 1 3 0 9条 款“ 设备 、 系统及安 装” . 则多见仅针对 某具体系统 的符合性思路 的介 绍 。作为 C C A R 2 5部 中最具有综合 性和复杂性的条款之 一 . 1 3 0 9条 2 C C AR 2 5 . 1 3 0 9条 款 符合 性 验 证 思 路 与 方 法 款涉及 飞机所有 系统 和设备 : 其对飞机与系统安全性提 出了纲领性 的 通过对条款的解读 . 从 民机研制顶 层考 虑. 分析飞机对 2 5 . 1 3 0 9 条 要求 , 对验证飞机安全性 至关重要 本文件通过对 C C A R 2 5 . 1 3 0 9 条款 款的符合性验证通用思路 与方法 的解 读 . 从 民机全 机层 面综合 考 虑 . 分 析 民机研制 过 程 中为表 明对 2 . 1 1 3 0 9 N ) 条款 1 3 0 9 条款符合性 的验证思路与方法 为验证对 1 3 0 9 ( a ) 的符合 性 . 需要针对 飞机/ 系统“ 预定功能 ” 等的 1 C C AR 2 5 . 1 3 0 9条 款解 读 说 明性 文 件 ( Mo C 1 ) , 如飞机/ 系统 功 能 定 义 、 描 述类 的文 件 ; 针对“ 可 预 期的运行条件” 和完成 “ 预定功能” . 应开展必要 的试验( 包括试验室试 1 . 1 C C AR 2 5 . 1 3 0 9条 款 内 容 验( Mo C 4 ) , 地面试验( Mo C 5 ) , 飞行试验( Mo C 6 )  ̄模拟器试验( Mo C 8 ) ) 和 中国 民用 航 空局 于 2 0 1 1年 发 布最 新 的 C C AR 2 5部 R 4版 . 其 机上检查 ( M o C 7 ) . 如 自然结冰飞行试验等 : 并辅 以相关系统设备的鉴 2 5 . 1 3 0 9条款详细内容 如下: 定试验材料 ( Mo C 9 ) 第2 5 . 1 3 0 9条 设备 、 系统及安装 2 . 2 1 3 0 9 ( b ) 条款 ( a ) 凡航空器适航标准对其功能有要求 的设备 、 系统及安装 . 其设 根据 A C 2 5 . 1 3 0 9的建 议 . 安全性评估 f M o C 3 ) 是验证 1 3 0 9 ( b ) 条款 计必须保证在各种可预期 的运行条件下能完成预定功能 。 的基本必 须方法 . 如F HA、 P A S A / P S S A、 AS MS S A等. 并辅 以说 明性文 ( b ) 飞机 系统与有关部件 的设 计 . 在单独 考虑以及与其 它系统一 件: 为确认 和验证安全 眭评估 中失效状态影响等级等 的需要 . 1 3 0 9 f d 1 条 同考虑的情况下 . 必须符合下列规定 : 款所指出的试验形式 .对于部分系统的符合性验证工作也是必要的. 如 ( 1 ) 发生任何妨碍飞机继续安全飞行与着陆的失效情况的概率极小 : I MA失效模 拟器试验等 : 综 合复杂 系统对 1 3 0 9 ( b ) 条款的符合性 验证 ( 2 ) 发生任何降低飞机能力或机组处理不利运 行条件能力的其它 过程 中 . 应综合 应用研制过程保证 技术与安全性评估技 术 . 如设备研 失效情况的概率很小 制保证等级 ( I D A L ) 的分 配和验证 , 并提供 相应 的设备鉴定材料 ( c ) 必须提供警告 信息 . 向机组指 出系统 的不安 全工作情况 并能 2 - 3 1 3 0 9 ( c ) 条 款 使机组采取适当的纠正动作 系统、 控 制器件 和有 关的监控与警告装 针对 1 3 0 9 ( c 1 条款 . “ 系统 的不安 全工作情况 ” 主要通过 安全性评 置 的没计必须尽量减少可能增加危 险的机组失误 估来定义和确认 . 并通过需求传递落实在飞行手册等说明性文件中: 对 ( d ) 必须通 过分析 , 必要 时通过适 当的地 面 、 飞行或模拟 器试验 . 于“ 适 当的纠正动作” 等该条款内容的确认与验证工作 . 必须开展相应 来表 明符合本条 ( b ) 的规定。这种分析必须考 虑下列情况 : 的试验和必要 的机上检查 . 如告警试验 等 ( 1 ) 可能的失效模式 . 包括外界原因造成 的故 障和损坏 : 2 . 4 1 3 0 9 ( d ) 条 款 ( 2 ) 多重失效和失效未被检测出的概率 : 1 3 0 9 ( d ) 条款是对 f b 1 条款 的进一步强调 . 所采用 的思路 和方 法与 ( 3 ) 在各个飞行阶段和各种运行条件下 . 对飞机和乘员造成的后果 : f b ) 条款一致。 ( 4 ) 对机组 的警告信号 , 所需的纠正动作 , 以及对故障的检测能力 2 . 5 1 3 0 9 ( e 1 条款 ( e ) 在表明电气系统和设备的设计与安装符合本条 ( a ) 和( b ) 的规 1 3 0 9 ( e ) 条款是针对 电气系统和设备对( a 1 和( b 涤 款 的进一步要求 , 定时. 必须考虑 临界 的环境条件 民用航空规章规定具备 的或要求使 主要 采用说 明性 文件( M o C I ) 、 安 全性 评估 . 结 合必要的试验 、 机上检 用 的发电 、 配电和用 电设备 . 在可预期 的环境 条件下能否 连续安全使 查 以及设备鉴定材料 用. 可由环境试验 、 设计 分析或参考其它 飞机 已有 的类似 使用经验来 2 . 6 1 3 0 9 ( i ' ) 条 款 表 明. 但适航 当局认可 的技术标准中含有环境 试验程序 的设备除外 1 3 0 9 ( 0 条款引 向 1 7 0 9 条款 . 主要 的符合性方法为安全性评估 . 并 … 必须按 照 2 5 . 1 7 0 9条的要求 对 电气线 路互联系 统( E WI S ) 进行 辅 以说明性文件 。针对 E WI S安全性评估工作 . 需 与接 1 2 1 系统 的安全 评估 。 性 评估工作结合开展 1 . 2 条款解读 另外 , 对于如相似 性分析 ( M o C 2 ) 等 的方法 。 在机型 和运行 条件 、 ( a ) 条款 中的“ 可预期 的运行条 件” 是 指可 能的所有 飞机运 行情 环境条件等相近情况可参 考使用 : 符合性方法也 在创新 . 在与局方达 况, 包括 飞机正 常运行条件 、 应急构型条件 、 可能 的正常和恶劣环境条 成一致的前 提下 . 也可应用其它等效方法 件等 “ 预定功能” 即指在飞机系统功能定义时确定的系统功能 ( b ) 条款规定 了失效状态 的影响程度与其失效可能性 ( 概率 ) 之间 3 总 结 关系的要 求。 A C 2 5 . 1 3 0 9 对失效概率 的解读 以及与影响程度的关 系作 本文通过对 C C AR 2 5 . 1 3 0 9条款 的解读.分析 了民机 C C A R 2 5 . 1 3 0 9 了详尽描述 。此外 . C S 2 5 . 1 3 0 9 条款增 加了“ 灾难性失效状态不能 由单 条款符合性 的思路与方法 。 对于民机不同系统 , 可结合该思路与方法 , 选 点失效导致 ” 的要求 择适合于 自身系统 的其 中某一种或几种方法 、 最低成 本地来 满足条款 ( c ) 条款要求了与不安全系统运行条件相关的信息需提供给机组。“ 系 统 的不安全工作情况” 是指可能导致或者与其它继发失效结合导致潜 在危 险/ 灾难性失效 的不安全 陛条件
轨道导航系统的飞机类型识别说明书
Adaptive weighted morphology tree classifier for aircraft typerecognitionZhi-Gang Liu* and Yan-Ying GuoGuangzhou Civil Aviation College, Guangzhou, Guangdong, ChinaE-mail:***********************Corresponding authorAircraft type recognition is a problem and key factor of safe docking of aircraft in airportauto-docking guide system. Based on adaptive weighted morphology tree classifieralgorithm, it is approved for aircraft type recognition to solve the key issues to dockingguide, useing image analysis and recognition technology to complete the typediscrimination, so as to overcome the shortcomings of the aircraft in the whole range ofberth travel and improve the speed and reliability of the search. According to the featureof target size and feature change during the process of aircraft movement, the adaptiveweight morphological algorithm extracts the invariant features, which can solve theproblem of feature transform of aircraft type recognition. The experimental resultsindicate that the effectiveness of the current recognition system is given. The systemprovides a good performance in aircraft recognition and offers better robustness againstnoise and poor image quality, which can satisfy the auto-docking system requirements ofhigh precision, rapid speed and stabilization.Keywords : Aircraft Type Recognition; Adaptive Weighted Morphology; Tree Classifier;Least Distance; Auto-docking System.1. IntroductionMoving target recognition is an important research area of pattern recognition, and has been widely used in agriculture and medical fields and so on. At the airport the automatic docking guidance system, in order to prevent the docking aircraft error and causing flight delays, or some special airplanes use specific berth must be of docking aircraft types for recognition. Identification of aircraft types is the key to the success of guidance system, and the current impact of the system application problems.The difficulty for Aircraft types recognition lies in the target itself does nothave a common gray feature, and different types of aircraft shape, size, gray difference is very large, so it is difficult to get the aircraft through thegrayInternational Conference on Communication and Electronic Information Engineering (CEIE 2016)method complete and accurate appearance, it is difficult to distinguish the model, the recognition rate is low. At present, aircraft types recognition methods include: image matching, neural network recognition [1], invariant moment (or boundary moment) [2-3], Fourier descriptor [4-5] or geometric in-variants[6]. The algorithms are characterized by the global profile, and the three methods are essentially based on the assumption that the complete and accurate contour of the object can be obtained. Therefore, the use of the overall characteristics of the outline has its shortcomings, and extracted from the outline of some good robustness, easy to extract and sufficient to determine the key parameters of the target, rather than the entire profile as the feature, will have a better recognition effect.2. Feature Representation and Recognition of Plane ImageA significantly different characteristics in different types of aircraft wingspan, length, engine number, to effectively identify the scale, size and rotation of the plane, with the above conditions do not occur transform features. This paper selects the ratio of length and wingspan, wingspan and altitude ratio, engine number, cockpit window shape and escape door, main landing gear number features, the adaptive weighted morphology for translation, rotation and scale invariant of the main characteristics of the type recognition, the training sample database on the features of target performance analysis. Then tree classifier is used to classify and identify. The process is shown in Figure 1.Fig. 1 Recognition procedure2.1. Feature extractionFeature extraction is related to the speed and accuracy of recognition and classification. In this paper, the performance of the target representation is better characterized by the adaptive weight morphology. Feature extraction is simple, less quantity, so that the classification function of the tree classifier is simple, easy to hardware implementation. Specific features are defined as follows:(1) The ratio of length and wingspanThe plane's ratio of length and wingspan can be the following steps to obtain:a) Determine the direction of the spindle:111200221tan 2μαμμ-=- (1)For αis the angle between the principal axis and the horizontal direction, μij is the center invariant moments of the image.b) Rotate the image so that the principal axis is parallel to the horizontal direction.c) The plane image is projected in two directions of horizontal and vertical, and obtained shadow of the horizontal 'x and vertical directions 'y .d) Ratio is ''x R y =.(2) The ratio of aircraft wingspan and altitude. 'z is the height of the aircraftshadow, and ratio is ''yT z =.(3) Engine number, cockpit window shape and escape door, main landing gear number is extraction of adaptive weighted morphological algorithm.The definition adaptive weighted corrosion (WER) and inflation (WDI) is as follows:,(,)min{(,)/(,)}=++u v WER k l X k u l v B u v (2) ,max{(,)(,)}=--⨯u v WDI X k u l v B u v (3)For B is structural element, X is original image.Structural element B has standardized weighted factor and the values of factor are calculated by this method: The values of the edge direction of the weight is 1, the weighted values of the farthest point are assigned in accordance with the weight factor 1ω>,This leads to a very important influence on the edge points and reduces the influence of adjacent points. The rest of the weight values are calculated based on (1)/d ωω∆=-, and d is the distance between the edge point and the distance from the edge point. In horizontal and vertical direction, weighted values in accordance with ω∆growth, each step starts from the edge point. For example, for the size of 3 x 3 of the structural elements B , if the horizontal direction of the edge 13ω=,so B is 1B , which 2ω∆=, suppose that 23ω=,and the same edge points in the direction of the 45 degree, B is 2B , which 1ω∆=.1111111111B ---⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦ 2101010101B -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦2.2. Feature analysisIn order to quantitatively describe the quality of the feature, each feature is regarded as a random variable which obeys Gauss distribution, and is described by its mean and standard deviation:1/Ni i m fN ==∑ (4)σ(5)According to the following equation: 3i j i j m m σσ->- (6)The characteristics of the plane sample target expression quality, determine the representation model of plane target. These analyses can also be used to determine the priority of classification features. In this paper, apply this method to sort the characteristic quantity according to the advantages and disadvantages, and then apply the superior features to classify, and then use the sub optimal feature to classify the next layer.2.3. Classification and recognition of tree classifierIn this paper, the adaptive weighted morphology algorithm is embedded into the bottom of the tree classifier. The analysis of the extracted features, the classification tree is set up according to the advantages and disadvantages of the characteristic description. In the classification tree, cannot be characterized by a single better clear description of the other sub-optimum characteristic quantity of with the minimum distance method of clustering, so as to achieve the purpose of all target classification. Flow chart of algorithm is implemented as shown in figure 2.Fig. 2 Algorithmic flow chart3. Experimental ResultIn this paper, the real video image of BaiYun airport aircraft berth is used, and a part of the video image is added to the noise. The two valued aircraft images of segmentation are used to identify, and the BP neural network is compared with the experimental results. Ten types of aircraft target 200 images (boeing737/747/777, airbus320/340/380, cessna172, IL86, MD82, CRJ200ER) train, At the same time, the noise is added to the image after 50 training, and then use the video image to test the berth. The experimental results are as follows:The classification experiment of three types of docking aircraft image with less than 0.3 noise was carried out, for B777, A320, IL86, the results are shown in table 1.Tab. 1 Three different types noise aircraft recognition4. ConclusionIn this paper, the algorithm uses adaptive weight morphology to extract features, and hierarchical input tree classifier is used to get the purpose of aircraft type’s recognition. In which the characteristics of the aircraft are extracted by adaptive weighted morphology, which can solve the problem of aircraft matching, but also can remove the noise of the docking image, thus improve the accuracy and efficiency of the recognition and the ability of feature extraction and robust adaptation. Finally, the minimum distance tree classifier is used to solve the problem of the docking system, and a good result is achieved. So the research work in this paper has important theoretical significance and broadly application prospects in the intelligent traffic management.AcknowledgmentsThis work was financially supported by the Guangdong Higher Vocational Education Teaching Reform Project (No.20130301051) and the training projectfor outstanding young teachers in higher education institutions of Guangdong Province(No. YQ2014177).References1.Syed Zafar Ali and Muhammad Ahmad Choudhry. A generalized higherorder neural network for aircraft recognition in a video docking system [J].Neural Computing & Applications, 2010, Volume 19(1), 21-32.2.M Breuers. Based planepose estimation using moment invariants[C]. InSPIE Conference on automatic target recognition IX. Orlando, Florida, 1999, 3718(4).3.Yan-Ying Guo, Guo-Qing Yang; Li-Hui Jiang, Adaptive weightedmorphology detection algorithm of plane object in docking guidance system [J]. International Journal of Advanced Robotic Systems, 2010, v 7, n 2, p 99-104.4.Park, Jin-Yeong, Jun, Bong-huan et al. , Experiments on vision guideddocking of an autonomous underwater vehicle using one camera [J], Ocean Engineering, 2009,v 36, n 1, p 48-61.5.Feng Zhang,Shang-qian Liu,Da-bao Wang,Wei Guan. Aircraft recognitionin infrared image using wavelet moment invariants [J]. Image and Vision Computing. 2008 (4).6.Wang X F, Zhang X Y, Gao R N. Research of image edge detection basedon mathematical morphology. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2013.。
基于蚁群算法的飞机定检原位工作流程优化
术语定义抽取的特征选择框架
1 1 特征 选择框 架 定义 .
本 文提 出 的结 合 两类 分 布差 异 的特 征 选 择 框 架 由 3个 部 分 组 成 , 别 对 应 特 征 的 类 间 分 布 差 分 异 、 内分 布差 异 、 据分 布加权 。论述 如下 : 类 数 特征 t 类 别 中出现 频率 较 高 , 在 而在类 别 B 出现频率较 低 。这 种情况 构成 了特征 t 的类 问分 布
jn t u c
随着 国 内航 空业 进入 高速 发展 的新 阶段 , 对从 业 人 员 的持 续 培 训 以及 为航 空 安 全 、 航 进 行 数 适
作 之 一 。 用分 类方 法处 理术语 定义 抽取 可 以被 看 使 作 是 一 个 不平 衡 数 据 分 类 的过 程 [3 特 征选 择 是 1] _,
据 、 识 的积 累和分析 成 为一种 常态 的任 务 。这使 知
得 对 基 于 计 算 机 的 培 训 技 术 ( o ue ae C mp trb sd tann ,C T) 及 各 种 专业 知 识 库 的需 求 迅 速 riig B 以 增 长 , 空术 语 定义 的抽取 就是 建立 行业 相关 知识 航 库 和 以知识 库 为基 础 开 展智 能 培 训 的重 要 基 础工
e p rme t l e u t r o x e i n a s ls a e c mp r d i o p so e m e i ii n c r u fa i t n n B r a e n c r u f r d f to o p s o va i .I RF c a sfc to t n o l s i a i n, i
基 金 项 目 : 国 民航 局 民航 应 用 研 究 基 金 ( 中 MHR 73 资 助 项 目。 D0 2 )
基于蚁群算法的飞机定检人员均衡配置
,
(. eatet f r a et cec n eho g , aa A rnu c n s oat a U i r t, at 60 1 C i ; 1D pr n o m m n S i eadT cnl y N vl eoat a adA t nui l n esy Y n 2 40 , h a m A n o il r c v i M n
马登武 张勇亮 邓 力 张 , , , 旭。张晓瑜 ,
(. 1 海军航 空工程学院兵 器科 学与技 术 系, 山东 烟 台 2 40 ; 60 1
2 海 军航 空 工 程 学 院研 究 生 管理 大 队 , 东 烟 台 2 0 1 3 中 国人 民解 放 军 95 5部 队 , 南 临 高 5 13 ) . 山 4 6 0 ;. 14 海 7 8 3
足, 均衡 配置后人 员工作 时间均方差减 小 6 .O , 5 9 % 验证 了 A O在解决飞机 定检人 员均衡配置问题上的适用性。 C 关键词 : 蚁群 算法 ; 飞机定检 ; 员均衡配置 人
中 图分 类 号 :P 0 . T 3 16 文 献 标 识 码 : A d i 1 .9 9ji n 10 —4 52 1. 10 7 o: 0 36 /. s.0627 .0 1 1.0 s
摘要 : 将蚁群 算法( C 应 用于飞机定检人员均衡 配置 中。首先 , A O) 根据均方差指标建立人 员均衡 配置模 型; 次, 用 3 其 运
种精英策略并 引入信息素 限制和 自适应机 制对基本蚁群算 法进 行改进 , 同时提 出一种新 变异算子 以进一 步提 高算法的 性 能; 最后 , 运用改进蚁群 算法 求解模型。实例仿真表 明, 改进蚁群 算法克服 了基本蚁群算法搜 索时间长、 易早熟 的不 容
民用飞机透明件CCAR25.775(d)条款符合性验证方法讨论
次承力 层必须保证不出现失效
动进行试验 ,并通过温度传感器和压力表进行监控 ,保证试验温 度 、压
CCAR一25部 中包含 了多 个 关 于 透 明件 的条 款 .本 文讨 论 了 力满足试验要求 。系统还增加 了线性位移传感器 用以监控试验件变形
CCAR25.775(d)条款的符合性试验验证方法 首先 阐述 了 CCAR25.775 情况和试验故障 。数据记录仪用于记 录试验 中的试 验数据 。
作者简 介:蒋裕 (1985一),男,湖北人 ,上 海飞机 设计研 究院 ,工程 师,主要从事 飞机 结构设计与研 究。
6 I科技视 界 Seience& Technol。gY Visi。n
项目钠
Sc科ience&技Tech视nology界 Visio n
科技 · 探索·争鸣
“微型计算机原理与接口技术”的教学改革探讨
图 2
会瞬时高于舱 内压力—— 负压试验
试 验平台与真实飞机的逼真度直接关系到试验结果 的 』效性 逼
通过上述 4个验证试验 .可验证 飞机各 透明件对 CCAR25.775(d1 真度主要是指试验件夹持方式 和温度 、压力 的控制 。图 2所 示试验平
条款 的符合性 各试验均 为压 力试验 .并需综合考虑透 明件使用 中可 台模拟 了飞机 上透明件真 实的安装 状态 ,并 在试验件 内 、外形成 两个
全 飞 行
2 验 划 的试验包括
1)增 压飞机 的风挡 和窗户 必须根据 高空 飞行 的特殊 因素来设计 .包括 持续 和循环增压
图 1
载荷 的影 响 、所 用材料 的固有特性 、温度 和温 差的影响——疲劳试验 :
2)在装置本身或有关 系统 中发生任何单个 破损后 .风挡 和窗户玻
送外国友人纪念品英语作文
Sending Souvenirs to Foreign FriendsIn the vibrant mosaic of cultural exchanges, the act of gifting souvenirs to foreign friends stands as a symbol of friendship, respect, and the desire to preserve memories. The choice of a souvenir is often informed by therecipient's preferences, the significance of the occasion, and the uniqueness of the gift itself. As one ventures into the realm of selecting the perfect souvenir, it becomes an exercise in understanding, appreciation, and the art of giving.When considering a souvenir for a foreign friend, it is essential to take into account their cultural background and interests. A well-chosen souvenir should resonate with their identity, reflecting either their nationality ortheir personal hobbies and passions. For instance, for a friend from Japan, a traditional kimono or a set ofdelicate tea cups might be an apt choice, as these items are deeply ingrained in Japanese culture. Conversely, for a friend who is passionate about art, a piece of locally crafted artisan jewelry or a painting by a renowned artist from the host country could be a thoughtful gift.The significance of the occasion also plays a pivotal role in determining the nature of the souvenir. If it's a farewell gift, something that symbolizes the bond formed during the time spent together might be appropriate. A personalized photo album or a framed map of the visited places could serve as reminders of shared experiences. On the other hand, if the gift is intended to commemorate a special event or festival, a souvenir that captures the essence of that event, such as a festival mask or a commemorative coin, would be ideal.Moreover, the uniqueness of the souvenir adds to its charm and value. Generic items that are easily available anywhere often lack the personal touch and cultural significance that make a souvenir memorable. Seeking out items that are locally made, hand-crafted, or carry a specific historical or cultural significance can ensurethat the gift stands out and holds a special place in the recipient's heart.In the process of selecting a souvenir, it's also important to consider its practicality and portability. While a large, bulky item might be impressive, it might notbe convenient for the recipient to carry back home or display in their living space. Therefore, choosing a souvenir that is both visually appealing and easy to transport is crucial.Finally, the presentation of the souvenir is equally important. Wrapping it in a beautiful package, adding a personal note, or even presenting it in a way that tells a story can enhance the emotional value of the gift. A heartfelt message expressing gratitude, friendship, or wishes for the future can turn a souvenir into a cherished keepsake.In conclusion, gifting souvenirs to foreign friends is an act that transcends the boundaries of language and culture, connecting people through shared experiences and mutual respect. By carefully considering the recipient's preferences, the significance of the occasion, and the uniqueness and practicality of the gift, one can create a meaningful souvenir that will be treasured for years to come.**送给外国友人的纪念品**在文化交流的绚烂画卷中,送给外国友人的纪念品不仅象征着友谊与尊重,更是保留美好回忆的一种方式。
孤立森林算法 评估标准
孤立森林算法评估标准
孤立森林算法的评估标准通常包括以下几个方面:
1. 误分类率:这是最常用的评估标准之一,它衡量了算法将正常样本误分类为异常样本的比例。
2. 精度:精度是指算法正确预测为正常样本的比例。
3. F1 分数:F1 分数是精度和召回率的调和平均数,它综合考虑了精度和召回率两个方面。
4. 接收者操作特征曲线(ROC):ROC 曲线是用于评估二分类算法性能的一种图形化工具。
它绘制了真阳性率(TPR)与假阳性率(FPR)之间的关系。
5. 平均精度(AP):AP 是在不同阈值下的精度的平均值,它可以更好地反映算法在不同阈值下的性能。
Where is the second planet in the HD 160691 planetary system
Krzysztof Go´ zdziewski1 Toru´ n Centre for Astronomy, N. Copernicus University, Gagarina 11, 87-100 Toru´ n, Poland
arXiv:astro-ph/0303630v2 30 Mar 2003
Maciej Konacki2 Department of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125, USA Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rabia´ nska 8, 87-100 Toru´ n, Poland Andrzej J. Maciejewski
4
http://www.encyclopaedia.fr
–3– In this work we analyze the published RV data of the HD 160691 system in a more general manner — beyond a formal fit of the Keplerian orbital elements. Although the RV data do not provide tight constrains on the orbital elements of the second planet, these elements are confined by the dynamics, especially in a case when the second companion is not very far from the inner planet. This relevant information is entirely omitted in the Keplerian fit. Applying the Copernican principle, it is not likely to observe planetary systems during moments of their extraordinary orbital evolution (Murray & Holman 2001). But a disruption of a planetary system is an unusual event and we can argue that if by a formal fit, we find the initial conditions that lead to such a phenomenon then this fit is unlikely either. In this sense, the system dynamics becomes an observable that should be taken into account together with the RV observations while looking for the possible orbital parameters of a planetary system. This way of reasoning has already been applied by skipping orbital fits that lead to highly unstable systems (see, for instance Stepinski et al. 2000; Laughlin & Chambers 2001; Rivera & Lissauer 2001; Go´ zdziewski & Maciejewski 2001). It has also inspired us to ask whether the current, limited RV data set of the HD 160691 system merged with the dynamical analysis of the obtained best fit orbital parameters can provide enough information to estimate meaningful limits on the orbital parameters of the hypothetical second planet. In this paper we also describe a method that can be useful in resolving this generic problem not only for the HD 160691 system, chosen as an excellent candidate for such analysis, but in all other cases when the RV observations do not supply sufficient constraints on the orbital parameters of planetary companions.
点云iss特征提取原理
点云iss特征提取原理点云ISS特征提取原理点云是三维空间中的一组点的集合,它是数字化三维模型的基础。
在点云处理中,特征提取是一个重要的步骤,它可以提取出点云中的关键特征,用于后续的分类、分割、配准等操作。
ISS(Intrinsic Shape Signature)是一种常用的点云特征提取方法,它可以提取出点云中的局部形状信息,具有较好的鲁棒性和可重复性。
ISS特征提取的原理是基于点云的曲率和法向量信息。
曲率是描述曲面弯曲程度的量,法向量是描述曲面法线方向的量。
ISS特征提取的目的是提取出点云中的局部形状信息,因此需要考虑点云的曲率和法向量信息。
ISS特征提取的步骤如下:1. 计算点云的法向量点云的法向量是描述点云表面法线方向的量,它是点云特征提取的基础。
常用的法向量计算方法有基于协方差矩阵的方法和基于曲面拟合的方法。
基于协方差矩阵的方法是通过计算点云中每个点的邻域点的协方差矩阵来估计点云的法向量。
基于曲面拟合的方法是通过拟合点云的曲面来估计点云的法向量。
2. 计算点云的曲率点云的曲率是描述点云表面弯曲程度的量,它是点云特征提取的关键。
常用的曲率计算方法有基于协方差矩阵的方法和基于曲面拟合的方法。
基于协方差矩阵的方法是通过计算点云中每个点的邻域点的协方差矩阵来估计点云的曲率。
基于曲面拟合的方法是通过拟合点云的曲面来估计点云的曲率。
3. 计算点云的ISS特征ISS特征是描述点云局部形状信息的量,它是点云特征提取的核心。
ISS特征的计算是基于点云的曲率和法向量信息的。
ISS特征的计算公式如下:ISS(p) = λ1(p) * λ2(p)其中,λ1(p)和λ2(p)是点p的主曲率,它们是点云曲率计算的结果。
ISS(p)是点p的ISS特征,它是点云特征提取的结果。
ISS特征提取的优点是可以提取出点云中的局部形状信息,具有较好的鲁棒性和可重复性。
ISS特征可以用于点云分类、分割、配准等操作,是点云处理中的重要工具。
ica算法假设的三个条件 -回复
ica算法假设的三个条件-回复ICA(Independent Component Analysis,独立成分分析)算法是一种用于盲源信号分离的数学方法。
它的基本思想是,通过找到一组线性变换矩阵,将混合信号转换为互相独立的成分,从而实现对源信号的分离。
ICA 算法假设了三个条件,包括统计独立、高阶统计独立和非高斯分布。
本文将详细介绍这几个条件以及ICA算法的步骤和应用。
首先,我们来探讨ICA算法的第一个假设条件,即统计独立。
统计独立是指成分之间没有线性相关性,也就是说,每个成分都是相互独立的。
在实际应用中,我们通常将混合的源信号视为随机变量的集合,假设这些随机变量满足独立性。
然而,在现实生活中,信号很少是完全独立的,因此我们需要使用ICA算法来尽可能地分离出独立成分。
接下来是ICA算法的第二个假设条件,即高阶统计独立。
高阶统计独立是指成分之间的高阶统计量(如协方差和相关系数)为零。
这个条件是ICA 算法成立的前提条件,因为如果成分之间存在高阶统计关系,那么通过线性变换矩阵只能分离出低阶独立成分,无法完全分离出源信号。
因此,高阶统计独立性是ICA算法能够实现盲源分离的重要条件。
最后一个假设条件是非高斯分布。
非高斯分布是指成分的概率密度函数不服从高斯分布。
这个条件在ICA算法中起到了至关重要的作用。
由于高斯分布的统计特性,无论进行何种线性变换,都无法改变其高斯性质。
而非高斯分布具有在变换中保持非高斯性质的特点,因此,在满足统计独立和高阶统计独立的前提下,通过非高斯分布的选择,可以更好地实现源信号的分离。
以上就是ICA算法的三个假设条件。
下面我们将一步一步解析ICA算法的实际步骤。
第一步是数据预处理。
这个步骤包括信号的中心化和白化处理。
中心化是将信号的均值调整为零,白化是将信号的协方差矩阵转换为单位矩阵。
这两个步骤可以帮助消除信号的直流分量和相关性,有利于后续的独立成分的分离。
第二步是选择合适的非高斯性度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:mat h /4866v1[mat h.GT]4A ug24GENERIC UNIQUENESS OF LEAST AREA PLANES IN HYPERBOLIC SPACE BARIS COSKUNUZER A BSTRACT .We study the number of solutions of asymptotic Plateau problem in H 3.By using the analytical results in [Co1]and some topological arguments,we show that there exist an open dense subset of C 3,µJordan curves in S 2∞(H 3)such that any curve in this set bounds a unique least area plane in H 3.1.I NTRODUCTION The asymptotic Plateau problem in H 3is introduced to the mathematical litera-ture by Michael Anderson in his seminal paper [A1].He proved that for any Jordan curve in asymptotic boundary of hyperbolic space S 2∞(H 3),there exists an embed-ded least area plane in H 3spanning that curve by using geometric measure the-ory methods.Then,Hardt and Lin studied the asymptotic regularity of least area surfaces in hyperbolic space in [HL],[Li1].Also in [Ga],Gabai solved asymp-totic Plateau problem by using topological arguments developed by Hass and Scott [HS].Lang generalized Anderson’s methods to solve the problem in Hadamard Gromov hyperbolic spaces [L].The author solved the problem for Gromov hyper-bolic spaces with cocompact metric by generalizing Gabai’s techniques in [Co1].On the number of least area planes spanning a given curve,there are a few results so far.Anderson showed that if the curve in S 2∞(H 3)bounds a convex domain,then there exist a unique least area plane spanning that curve in [A1].Then,Lin generalized this result to the curves bounding star shaped domains in S 2∞(H 3)in [Li1].Anderson also gave an example of a curve bounding infinitely many least area surfaces in H 3,[A2].Recently,the author showed a generic finiteness result for C 3,µcurves in [Co1].In this paper,we improve the generic finiteness result of the previous paper [Co1]to a generic uniqueness result for more general class of curves.In [Co1],we studied the asymptotic Plateau problem by using global analysis methods.We first looked at the space of minimal maps from D 2to H 3with C 3,µasymptotic data.We iden-tified these maps with conformal harmonic maps,and considered this space as a subspace of the space of harmonic maps.Then,we identified these harmonic maps with their boundary parametrizations,by using Li and Tam’s results [LT1],[LT2].Then by using Tomi and Tromba’s techniques in [TT],we proved that the boundary restriction map from minimal maps to their boundary parametrizations is Fredholm12BARIS COSKUNUZERof index0.By using the boundary regularity results of Hardt and Lin in[HL]to get compactness,we showed that for a generic set of curves(except a set offirst category),there arefinitely many least area planes spanning it.The short outline of this paper is the following:We start with the results in the previous paper,and consider the boundary restriction map from minimal maps to their boundary parametrizations whose derivative is isomorphism for the generic curves.By using inverse function theorem,wefind a neighborhood of a least area plane in the preimage mapping homeomorphically to a neighborhood of the generic curve.By using these neighborhoods,we show existence of foliated neighborhood for the least area plane,which implies uniqueness of the least area plane.Then we show same result for any curve in a neighborhood of a generic curve,and we got an open dense subset with the uniqueness result.Theorem1.1.Let A be the space of C3,µembeddings of S1into S2∞(H3).Then there exist open dense subset A′⊂A such that for anyΓ∈A′,there exist unique least area planeΣwith∂∞Σ=Γ.The organization of the paper as follows:In the next section we will give some preliminary results which will be used in the following sections.In section3,we will construct foliated neighborhood of a least area plane spanning a generic curve. By using this,we will show that there is a unique least area plane spanning that curve.In Section4,we will show that the curves with this property is indeed open dense.Finally,in the last section we will give some concluding remarks.1.1.Acknowledgements:I want to thank David Gabai for very useful conversa-tions,and helpful remarks.2.P RELIMINARIESIn this section,we will overview the basic results which we use in the following sections.Definition2.1.A minimal plane is a plane such that the mean curvature is0at every point.A least area plane is a plane such that any disk in the plane is least area among the disks with same boundary.A least area plane is minimal,but the converse is not true in general.Definition2.2.A linear operator between two Banach spaces is called Fredholm operator if the dimension of kernel and codimension of the image arefinite.The difference between these dimensions is called the Fredholm index of the operator.A map between two Banach manifolds is Fredholm map if the derivative is Fredholm operator at every point.A regular value is a point in the image such that for any point in the preimage(may be empty),the derivative is surjective.The classical theorem of the subject is the Sard-Smale theorem from[Sm].GENERIC UNIQUENESS OF LEAST AREA PLANES IN HYPERBOLIC SPACE3 Theorem2.1.(Sard-Smale)Let f:X→Y be a Fredholm map.Then the regular values of f are almost all of Y,i.e except a set offirst category.We will use the following spaces in the remaining part.Letµ>0.A={α∈C3,µ(S1,S2∞)|αembedding}D={u∈C3(S1,S1)|u diffeomorphism and satisfies three point condition, i.e.u(e23kπi,k=1,2,3}M={f:D2→H3|f(D2)minimal and f|∂D2∈A}Since A is an open submanifold of the space of immersions,we can replace it with the space of immersions in[Co1],and the same proofs will go through.So, we have the following theorem from[Co1].α◦u(D2)is minimal}is a submanifold of Theorem2.2.M={(α,u)∈A×D|the product bundle A×D,and the bundle projection map when restricted to M,π1|M:M→A,is Fredholm of index0.In other words,we realize M,the space of minimal planes,as a subspace of the product bundle A×D.Letα∈A,and consider thefiber({α}×D)∩M.α◦u i(D2),with asymptotic boundary Then we got the all minimal planes,Σi=Γ=α(S1),i.e∂∞Σi=Γ.So,the theorem says that the boundary restriction map (π1((α,u))=α)from the space of minimal maps to the the space of boundary parametrizations in above setting is Fredholm of index0.The next theorem which we use is the classical inverse function theorem for Banach manifolds,[La].Theorem2.3.(Inverse Function Theorem)Let M and N be Banach manifolds, and let f:M→N be a C p map.Let x0∈M and d f is isomorphism at x0.Then f is local C p diffeomorphism,i.e.there exist an open neighborhood of U⊂M of x0and an open neighborhood V⊂N of f(x0)such that f|U:U→V is C p diffeomorphism.Now,we can establish the starting point of the paper.Theorem2.4.Letα∈A be a generic curve as above.Then for anyΣ∈π−11(α),:UΣ→Vαis a there exist neighborhoods UΣ⊂M,and Vα⊂A such thatπ1|UΣhomeomorphism.Proof:By Theorem2.2,the mapπ1|M:M→A is Fredholm of index0.By Sard-Smale Theorem,the regular values are generic forπ1.Letα∈A be a regular value,andΣ∈π−11(α)⊂M.Sinceαis regular value,Dπ1(Σ):TΣM→TαA is surjective.Moreover,we know thatπ1is Fredholm of index0.This implies Dπ1 is isomorphism at the pointΣ∈M.By Inverse Function Theorem,there exist a neighborhood ofΣ,whichπ1maps homeomorphically onto a neighborhood of α∈A.4BARIS COSKUNUZERBeforefinishing this section,we want to quote another result from[Co1],which will be used in the following sections.This result is indeed true for C1curves by Hardt and Lin’s regularity result in[HL].Theorem2.5.LetΓ⊂S2∞(H3)be a C3,µJordan curve.Then,any least area plane spanningΓis properly embedded.3.F OLIATED N EIGHBORHOODS OF L EAST A REA P LANESIn this section,our aim is to construct a foliated neighborhood for any least area plane spanning a given generic curve(regular value of the Fredholm map)in A. Moreover,we will show that the leaves of this foliation are embedded least area planes whose asymptotic boundaries are disjoint from each other.By using this, we will show that uniqueness of the least area plane spanning the regular curve. We will abuse the notation by using interchangeably the mapΓ:S1→S2∞(H3) with its imageΓ(S1).Similarly same is true forΣ:D2→H3and its image Σ(D2).LetΓ0∈A be a generic curve,and letΣ0∈π−11(Γ0)⊂M be a least area plane whose existence guaranteed by Anderson’s result in[A1].Then by Theorem 2.4,there is a neighborhood ofΣ0∈U⊂M homeomorphic to the neighborhood Γ0∈V⊂A.LetΓ:[−ǫ,ǫ]→V be a path such thatΓ(0)=Γ0and for any t,t′∈[−ǫ,ǫ],Γt∩Γt′=∅.In other words,{Γt}foliates a neighborhood ofΓ0in S2∞(H3).Let Σt∈U be the preimage ofΓt under the homeomorphism.Lemma3.1.{Σt}is a foliation of a neighborhood ofΣ0in H3by embedded least area planes.Proof:We will prove the lemma in three steps.Claim1:For any s∈[−ǫ,ǫ],Σs is an embedded plane.Proof:SinceΣ0is a least area plane,by Theorem2.5,Σ0is an embedded plane.Now,{Σt}is continuous family of minimal planes.We cannot apply the Theorem2.5to these planes,since the theorem is true for least area planes,while our planes are only minimal.Let s0=inf{s∈(0,ǫ]|Σs is not embedded}.But,since{Σt}is continuous family of planes,and this can only happen whenΣshas tangential self intersection (locally lying on on side).But this contradicts to maximum principle for minimal surfaces.So for all s∈[0,ǫ],Σs is embedded.Similarly,this is true for s∈[−ǫ,0], and the result follows.Claim2:{Σt}is a foliation,i.e.for any t,t′∈[ǫ,ǫ],Σt∩Σt′=∅.Proof:Assume on the contrary that there exist t1<t2such thatΣt1∩Σt2=∅.First,since the asymptotic boundariesΓt1andΓt2are disjoint,the intersectionGENERIC UNIQUENESS OF LEAST AREA PLANES IN HYPERBOLIC SPACE5 cannot contain an infinite line.So the intersection must be a collection of closed curves.We will show that in this situation,there must be a tangential intersection between two planes,and this will contradict to the maximum principle for minimal surfaces.IfΣt2does not intersect all the minimal planesΣs for s∈[−ǫ,t2],let s0= sup{s∈[−ǫ,t2]|Σt2∩Σs=∅}.Then,since{Σt}is continuous family ofminimal planes,it is clear thatΣt2must intersectΣstangentially,and lie in oneside ofΣs.But this contradicts to maximum principle for minimal surfaces.So,let’s assumeΣt2intersects all minimal planesΣs for s∈[−ǫ,t2].Let s0=sup{s∈[−ǫ,t2]|Σ−ǫ∩Σs=∅}.SinceΣ−ǫis embedded by Claim1, there exist an s0∈(−ǫ,t2].But again since{Σt}is continuous family of minimal planes,Σs must intersectΣ−ǫtangentially,and lie in one side ofΣs.But this again contradicts to maximum principle for minimal surfaces.Claim3:For any s∈[−ǫ,ǫ],Σs is a least area plane.Proof:FixΣs for s∈(−ǫ,ǫ).Now,let[Σ−ǫ,Σǫ]be the region bounded by embedded planesΣ−ǫandΣǫin H3.By above results,Σs⊂[Σ−ǫ,Σǫ].Since the boundaries are least area planes,[Σ−ǫ,Σǫ]is a mean convex region.Letγ⊂Σs be a simple closed curve.By Meeks and Yau’s theorem[MY],there exist a least area embedded disk D spanningγin the mean convex domain[Σ−ǫ,Σǫ].If D is not inΣs,it must intersect other leaves nontrivially.Then{Σt}∩D induce a singular 1-dimensional foliation F on D.The singularities of the foliation are isolated as {Σt}are minimal planes.Since Euler characteristic of the disk is1,by Poincare-Hopf index formula there must be a positive index singularity implying tangential (lying on one side)intersection of D with some leaveΣs.But this contradicts to maximum principle for minimal surfaces.Sinceǫwas chosen arbitrarily at the beginning,one can start with suitableǫ′>ǫ.The whole proof will go through,and this shows thatΣ±ǫare also least area.The result follows.Lemma3.2.Σ0is the unique least area plane with asymptotic boundaryΓ0.Proof:LetΣ′be another least area plane with asymptotic boundaryΓ0.If Σ0=Σ′thenΣ′must intersect a leave in the foliated neighborhood ofΣ0,sayΣs. But,since∂∞Σs=Γs is disjoint from∂∞Σ′=Γ0,this implies the intersection cannot have infinite lines but closed loops.But these are least area planes,and by Meeks-Yau’s exchange roundoff trick,two least area plane cannot intersect in a closed loop.This is a contradiction.So,we have proved the following theorem:6BARIS COSKUNUZERTheorem3.3.LetΓ∈A be a generic curve as described above.Then there exist a unique least area planeΣ⊂H3with∂∞Σ=Γ.Remark3.1.This theorem does not say that there exist a unique minimal plane spanning a given generic curve.In our proof(Lemma3.2),we essentially use the plane being least area.So far we have proved the uniqueness of least area planes for a subsetˆA⊂A which is except afirst category set.In the next section,we will show that this is true for a more general class of curves,i.e.an open dense subset of A.4.O PEN DENSE SET OF CURVESIn this section,we will show that any regular curve has an open neighborhood such that the uniqueness result holds for any curve in this neighborhood.LetΓ0∈A be a regular curve,and letΣ0∈π−11(Γ0)⊂M be the unique least area plane spanningΓ0.Let U⊂M be the neighborhood ofΣ0homeomorphic to the neighborhood V⊂A ofΓ0as above.We will show thatΓ0has a smaller open neighborhood V′⊂V such that for anyΓ∈V′,there exist unique least area plane in H3with∂∞Σ=Γ.First we will show that the curves disjoint fromΓ0in the open neighborhood also bounds a unique least area plane in H3.Lemma4.1.Letβ∈V withβ∩Γ0=∅.Then there exist a unique least area plane spanningβ.Proof:Sinceβ∈V is disjoint fromΓ0,we canfind a pathΓ:(−ǫ,ǫ)→V, such that{Γt}foliates a neighborhood ofΓ0in S2∞(H3),andβis one of the leaves, i.e.β=Γs for some s∈(−ǫ,ǫ).Then the proofs of the previous section implies thatΣβ=Σs and{Σt}also gives a foliation of a neighborhood ofΣβby least area planes.Then proof of Lemma3.2implies thatΣβis the unique least area plane spanningβ.Now,if we can show same result for the curves in V intersectingΓ0,then we are done.Unfortunately,we cannot do that,but we will bypass this by going to a smaller neighborhood.Lemma4.2.There exist a neighborhood V′⊂V ofΓ0such that for anyΓ′0∈V′, there exist a unique least area plane with asymptotic boundaryΓ′0.Proof:Let V′⊂V be an open neighborhood containingΓ0such that for anyΓ′0∈V′,there exist two curvesβ1,β2∈V,such thatβ1andβ2are both disjoint fromΓ0andΓ′0.We also assume that if B⊂S2∞(H3)is the annulus bounded byβ1andβ2,Γ0,Γ′0⊂B.To see the existence of such a neighborhood, one canfix two curves disjoint fromΓ0,and lying in the opposite sides ofΓ0inGENERIC UNIQUENESS OF LEAST AREA PLANES IN HYPERBOLIC SPACE7 S2∞(H3).Then suitable complements of these two curves in V will give us the desired neighborhood ofΓ0.Now,fixΓ′0∈V′.By the assumption on V′,there are two curvesβ1,β2disjoint from bothΓ0,Γ′0and bounding the annulus B in S2∞(H3)such thatΓ0,Γ′0⊂B⊂S2∞(H3).Then,we canfind two pathsΓ,Γ′:[−ǫ,ǫ]→V with{Γt},{Γ′t}foliates B such thatΓ(ǫ)=Γ′(ǫ)=β1,Γ(−ǫ)=Γ′(−ǫ)=β2,andΓ(0)=Γ0,Γ′(0)=Γ′0.By Lemma4.1,we know that{Γt}induces{Σt}family of embedded least area planes with asymptotic boundary{Γt}.Moreover,these least area planes are unique with the given asymptotic boundary,and leaves of the foliation in the neigh-borhood ofΣ0.Now,consider the preimage of the pathΓ′under the homeomorphismπ1|U: U→V.This will give us a pathΣ′⊂U⊂M,which is a continuous family of minimal planes,say{Σ′t}.We claim that this is also a family of embedded least area planes inducing a foliated neighborhood ofΣ′0.By previous paragraphs we know thatΣǫand theΣ−ǫare the unique least area planes with asymptotic boundaryβ1andβ2,respectively.This meansΣ′±ǫ=Σ±ǫ.So,the family{Σ′t} has embedded least area planesΣ′±ǫ.Then by slight modification of the proof of Lemma3.1shows that{Σ′t}is a family of embedded least area planes inducing a foliation of a neighborhood ofΣ′0.By Lemma3.2,Σ′0is the unique least area plane spanningΓ′0.So,we got the following theorem.Theorem4.3.There exist an open dense subset A′⊂A,where A={α∈C3,µ(S1,S2∞)|αembedding}with C3,µtopology,such that for anyΓ∈A′,there exist unique least area plane with asymptotic boundaryΓ.Proof:The set of regular values of Fredholm map,sayˆA,is the whole set ex-cept a set offirst category by Sard-Smale theorem.So,the regular curves are dense in A.By above lemmas,for any regular curveΓ0,there exist an open neighborhoodV′Γ0⊂A which the uniqueness result holds.So,A′= Γ∈ˆA V′Γis an open densesubset with the desired properties.5.F INAL R EMARKS5.1.The technique.The technique we used in this paper to show uniqueness of the least area planes is similar to the techniques of Anderson and Lin for their proof for convex domains[A1]and star shaped domains[Li1]in S2∞(H3).The idea is simple.Fix the least area plane.Construct a neighborhood foliated by least area planes with disjoint asymptotic boundaries.Then any other least area plane with same asymptotic boundary with the original one,must intersect the other least area planes.But this intersection cannot contain an infinite line as the asymptotic8BARIS COSKUNUZERboundaries are disjoint.So the intersection must be a collection of closed curves. But Meeks-Yau’s exchange roundoff trick says that two least area planes cannot intersect in a closed loop,and gives the desired contradiction.On the other hand,hyperbolic space and its asymptotic boundary are not very essential for this technique.One can employ same method for any convex domain, and least area disks whose boundaries are in the boundary of this convex domain, once one has the continuous family of minimal disks.5.2.Extremal Curves in R3.As we mentioned above,we can use this technique for extremal curves in convex domains in R3.Let N⊂R3be a smooth convex domain.Then by changing the space of curves from embeddings of S1into R3 to the embeddings of S1into∂N in[TT],the whole proof would go through.So this will establish the necessary analytical background to employ the techniques in this paper.Then one canfix a regular extremal curve in∂N,and get a foliated neighborhood of the embedded least area disk spanning thefixed curve in N.This proves again uniqueness of least area disk.So,one can show that for a given smooth convex domain N in R3,there exist open dense subset of C3,µJordan curves in∂N bounds a unique least area disk in R3.In some sense,this is generic uniqueness for extremal curves in R3.By using the same setting and similar techniques,Fang-Hua Lin showed that an extremal curve either bounds a unique least area disk,or two”extremal”stable minimal disk in[Li2].One can get same result by using the methods of this paper. Also,by using similar techniques in an analytical way,Li-Jost proved that a C3,µJordan curve in H3with total curvature less than4πbounds a unique least area disk,[Lj].There is a great resemblance between asymptotic Plateau problem in hyperbolic space,and Plateau problem for the extremal curves in Euclidean space from geo-metric point of view.We believe that most of the results for extremal curves can be carried out to the asymptotic Plateau problem case.5.3.Questions.As we mentioned in the introduction,there are not many results on the number of solutions of asymptotic Plateau problem in H3.In this paper,we showed a generic uniqueness result for some smooth class of curves.One suspects whether there is any smooth class of Jordan curves in S2∞(H3)such that any curve in this class bounds onlyfinitely many least area planes.Another question in the opposite direction is whether there is any smooth Jordan curve in S2∞(H3)bounding infinitely many least area planes.If you remove the condition being plane(the topological type of the surface is disk),Anderson gave examples of Jordan curves bounding infinitely many area minimizing surfaces in[A2].If one remove the embeddedness condition for the curve,the universal cover of a hyperbolic manifoldfibering over a circle,induces aGENERIC UNIQUENESS OF LEAST AREA PLANES IN HYPERBOLIC SPACE9 Peano curve in S2∞(H3)bounding infinitely many minimal planes,corresponding to the universal cover of the least area representative of thefiber.It is still an open question tofind a Jordan curve bounding infinitely many least area planes.But it is reasonable to hope that the bridge principle hold in this case too,and one constructs a rectifiable embedded curve in S2∞(H3)similar to the Euclidean case.R EFERENCES[A1]M.Anderson,Complete minimal varieties in hyperbolic space,Invent.Math.69,477–494 (1982).[A2]M.Anderson,Complete minimal hypersurfaces in hyperbolic n-manifolds,Commnet.Math.Helv.58,264–290(1983).[Co1] B.Coskunuzer,Minimal Planes in Hyperbolic Space,Comm.Anal.Geom.12,821–836 (2004).[Co2] B.Coskunuzer,Uniform1-cochains and Genuine Laminations,eprint;math.GT/0304094 [G] D.Gabai,On the geometric and topological rigidity of hyperbolic3-manifolds,J.Amer.Math.Soc.10,37–74(1997).[HL]R.Hardt and F.H.Lin,Regularity at infinity for area minimizing hypersurfaces in hyperbolic space,Invent.Math.88,217–224(1987).[HS]J.Hass and P.Scott,The Existence of Least Area Surfaces in3-manifolds,Trans.AMS310, 87–114(1988).[L]ng,Asymptotic Plateau problem in Gromov hyperbolic manifolds,Calc.Var.Partial Differential Equations16,31–46(2003).[La]ng,Real analysis,Addison-Wesley,MA,(1983).[Li1] F.H.Lin,On the Dirichlet problem for the minimal graphs in hyperbolic space,Invent.Math.96,593–612(1989).[Li2] F.H.Lin Plateau’s problem for H-convex curves,Manuscripta Math.58,497–511(1987). [Lj]X.Li-Jost Uniqueness of minimal surfaces in Euclidean and hyperbolic3-space,Math.Z.217,275–285(1994).[LT1]P.Li and L.F.Tam,Uniqueness and regularity of proper harmonic maps,Ann.of Math.(2),137,167–201(1993).[LT2]P.Li and L.F.Tam,Uniqueness and regularity of proper harmonic maps.II,Indiana Univ.Math.J.42,591–635(1993).[MY]W.Meeks and S.T.Yau,The classical Plateau problem and the topology of three manifolds, Topology21,409–442(1982)[Sm]S.Smale,An infinite dimensional version of Sard’s Theorem,Amer.J.Math.87,861–866 (1965).[Tr] A.J.Tromba,On the number of simply connected minimal surfaces spanning a curve,Mem.Amer.Math.Soc.,no.194(1977).[TT] F.Tomi and A.J.Tromba,Extreme curves bound embedded minimal surfaces of the type of the disc,Math.Z.158,137–145(1978).D EPARTMENT OF M ATHEMATICS,Y ALE U NIVERSITY,N EW H AVEN,CT06520E-mail address:baris.coskunuzer@。