动态热机械分析仪DMA原理及方法

合集下载

动态热机械分析法

动态热机械分析法

热膨胀法 静态热机械 动态热机械
1 热机械分析 1-1 热膨胀法
线热膨胀法
体热膨胀法
1 热机械分析 1-2 静态热机械分析
定义:在程序控温下,测量物质在非 振动负荷下的温度与形变关系的技术。
拉伸 压缩 弯曲 扭转
1-2 静态热机械分析 线形非晶高聚物的温度-形变曲线
动态热机械分析
02
应力(σ)与应变(ε) δ–滞后相位角
= 0
o o
时间 o
时间
= 90
o o
时间

o
o
k
时间
2 动态热机械分析 2-2 基本原理
线性粘弹性行为:
σ = ε0 E’ sin(ωt) + ε0 E’’ cos (ωt)
储能模量 E’ = ( σ0 / ε0 ) COS δ 损耗模量E’’ = ( σ0 / ε0 ) sin δ 损耗正切Tanδ= E’’ / E’
与DSC比较
Rieger 认为在作用力频率为1 Hz的扭摆测试时,
由E”峰所对应的Tg与 (
)测
定的Tg十分接近,但当频率提高到100 Hz时由E”
峰测得的Tg 偏高。
由于E”峰不太明显,因此通常用tanδ峰顶温度 来表征Tg,但它比DSC测定的Tg高。
DMA和DSC测定得到Tg的差别主要是由于 DMA是动态测试,而DSC是静态测试。需要指出 的是,由E’突变处的切线交点得到的Tg与DSC结
果最为接近,但不适宜用于表征某一组分含量较 少的高聚物共混体系。
2 动态热机械分析
2-4 DMA的影响因素
频率
温度范围
加热和冷却速率
校正精确度 样品夹持
Influencing Factors

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法

DMA研究生
动态热机械分析仪DMA原理
11
及方法
高聚物熔体具有不同于小分子液体的许多特点 在外力作用下,高聚物熔体除了会发生不可回复塑 性形变外,还不可避免地同时产生弹性形变。 高聚物熔体从圆柱状口模孔中挤出时,形成的料条 直径可能比孔径大,如橡胶入孔时变细,出孔时因形 变回复而又变粗一样。 受搅拌棒搅拌时,熔体沿棒壁上爬;快速挤出时, 型材发生畸变等现象也是熔体中含有弹性的表现 这类现象统称为高聚物的粘性中带有弹性。 高聚物在力学性能上的最大特点是高弹性与粘弹性。
属固体。
玻璃态的普弹性:
固体材料如金属、陶瓷(包括玻璃)等,在力学性能上有 一个共性,那就是具有弹性。
在外力作用下立即发生形变,外力除去后,形变立即回 复,形变对外力的响应是瞬间的,如下图所示
DMA研究生
动态热机械分析仪DMA原理
7
及方法
这种弹性形变很小,例如,小于1% 形变较大时,金属材料可能发生不可回复的塑性变形, 陶瓷材料可能发生脆性断裂。 高聚物固体材料在小形变下也具有上述弹性。这种普遍 存在的弹性称为普弹性。
材料分析与检测 动态热机械分析仪(DMA)
DMA研究生
动态热机械分析仪DMA原理
1
及方法
动态热机械分析仪DMA原理 及方法
动态热机械分析仪(Dynamic Mechanical Analysis简 称DMA)主要是测定在一定条件下,材料的温度、 频率、应力和应变之间的关系,获得材料结构与 分子运动的信息。 实验室美国TA公司的DMA2980可以得到: 储能模量、储能柔量、损耗模量、损耗柔量、复 数模量、动态粘度、应力、应变、振幅、频率、 温度、时间和损耗因子等,可以研究应力松弛、 蠕变、玻璃化温度和次级松弛等

TA仪器DMA入门指南

TA仪器DMA入门指南

三点弯曲
1N
(硬热固性聚合物样品)
150%~200%
选择多频和多应变模式试验参数
频率 Frequency … …
该 DMA 的频率范围为 0.01~200Hz,它是仪器马达所能施加的频率范围。具体到不同样品, 所能施加的最高频率取决于样品硬度,样品硬度越高,则越容易驱动到高频率;
单频温度扫描
若要通过温度扫描确定材料某转变温度,但不清楚所需频率,推荐在 1Hz 下进行测试,1Hz 可以作为标杆试验频率。 选择试验频率的一个限定因素是数据点取点速率,试验频率越低,取 1 个数据点所需时间越 长。如果选择的频率过低(或升温速率过高),则在较大温度范围内可能出现数据空白。进 行单频温度扫描试验时,取点时间计算方法如下:
z 该仪器为力控制型,力的规格范围为 0.0001N~18N; z 仪器测量所施力对应的应变(振幅),在动态试验中可输入的振幅范围是±0.5μm~
10,000μm。表 1 列出的使用不同夹具(Clamp)进行动态试验时建议起始振幅;
夹具类型 薄膜/纤维拉伸夹具 压缩夹具 三点弯曲夹具 双/单悬臂夹具 剪切三明治夹具
图 2 DMA 温度扫描试验结果示意图
力和振幅
您需要知道 … …
了解完 DMA 如何进行测试之后,我们再看一下 DMA 仪器的基本参数。该 DMA 是一款力(或 应力)控制型动态热机械分析仪,马达可对样品施加仪器规格范围内任意大小的力,然后通 过光学编码器测量对应的位移(Displacement)。这就要求设置试验时输入的振幅(Amplitude) 必须仪器规格范围内:
TA 仪器动态热机械分析仪(DMA)入门指南
DMA 测试原理
DMA 如何进行测试? DMA Q800(或更早的型号 DMA 2980)是一款应力(力)控制型动态热机械分析仪,初学者 可能对此感到困惑,因为试验时我们在控制软件中输入的参数是振幅(应变)。图 1 是 DMA 基本架构示意图,主要由马达(Motor)和位移传感器(Displacement Sensor)两大部分构 成,马达对样品施加应力(Stress),位移传感器测量振幅(Amplitude)(或应变,Strain)。

dma动态热机械测试案例

dma动态热机械测试案例

dma动态热机械测试案例【实用版】目录一、DMA 动态热机械分析测试简介二、DMA 测试的应用范围三、DMA 测试的具体方法和操作步骤四、DMA 测试的注意事项五、DMA 测试的实际案例分析正文一、DMA 动态热机械分析测试简介动态热机械分析(DMA)是一种测量材料在温度和载荷作用下动态力学性能的测试方法。

这种测试方法可以测量材料的刚度、阻尼和应变等性能指标,因此被广泛应用于各种材料的研究、生产和质量控制环节。

二、DMA 测试的应用范围DMA 测试的应用范围非常广泛,不仅适用于金属、陶瓷和聚合物等传统材料,还适用于复合材料、生物材料和纳米材料等新型材料。

在树脂基复合材料固化工艺研究中,DMA 可以用来测试各种材料内的力学性能。

此外,DMA 测试还可以通过瞬态实验或者动态实验测定材料的粘弹性包括蠕变或应力松弛,力学性能与时间、温度和频率的关系。

三、DMA 测试的具体方法和操作步骤DMA 测试的具体方法和操作步骤可以概括为以下几个步骤:1.样品准备:首先需要根据测试要求选择合适的样品,并将其加工成适当的尺寸和形状。

2.仪器校准:在开始测试之前,需要对 DMA 仪器进行校准,以确保测试结果的准确性。

3.测试设置:根据测试要求设置测试温度、载荷、频率等参数。

4.测试操作:将样品放入 DMA 测试仪中,并施加一个可变振幅的正弦交变应力。

此时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角。

5.数据处理:测试结束后,需要对测试数据进行处理和分析,得出材料的动态力学性能。

四、DMA 测试的注意事项在进行 DMA 测试时,需要注意以下几点:1.样品的尺寸和形状应符合测试要求。

2.测试温度应控制在±0.5°C 以内。

3.测试过程中应避免样品受到外界干扰。

4.测试结束后,应及时对仪器进行清洗和维护。

五、DMA 测试的实际案例分析以下是一个 DMA 测试的实际案例分析:某树脂基复合材料生产商需要对其产品进行 DMA 测试,以确保其力学性能符合要求。

DSC与DMA研究方法

DSC与DMA研究方法

DSC与DMA研究方法DSC(差示扫描量热法)和DMA(动态力学分析)是两种常用的热分析方法,用于研究材料的热性能和力学性能。

本文将分别介绍DSC和DMA的原理和应用,并对其研究方法进行详细阐述。

1.差示扫描量热法(DSC):差示扫描量热法是一种热分析技术,用于测量材料在加热或冷却过程中吸放热的变化。

其原理是将待测样品和参比样品放置在两个热电偶杆上,并在一个恒定的温度下进行加热或冷却。

通过测量样品和参比样品之间的温差,并对温差进行微小修正,可以计算出样品的热容量和吸放热的变化。

DSC常用于研究物质的热力学性质,如相变温度、熔化焓、反应热及催化活性等。

其研究方法主要包括以下几个方面:(1)样品制备:根据研究目的,选择合适的样品制备方法。

通常情况下,样品需要具备足够的纯度和均匀性。

(2)实验条件设置:根据目标热特性和样品特点,选择合适的实验条件,如样品的加热速率、温度范围等。

(3)实验数据处理:根据实验结果,进行数据处理和分析。

通常情况下,可以根据DSC曲线上的各个特征峰值,计算得出样品的熔化焓、相变温度等物理参数。

(4)结果解释:根据实验结果,进行结果解释和对比分析。

根据DSC曲线上的各个特征峰值,可以判断材料的晶体结构、热稳定性等性能。

2.动态力学分析(DMA):动态力学分析是一种用来研究材料的力学性能的方法。

其原理是通过施加一个周期性的力(如拉伸或振动力)于样品上,并通过测量样品的应变和应力响应,来研究材料的力学特性。

DMA常用于研究材料的弹性、刚性、损耗因子及玻璃化转变等性能。

其研究方法主要包括以下几个方面:(1)样品制备:根据研究目的,选择合适的样品制备方法。

通常情况下,样品需要具备足够的尺寸和形状,并且保证表面光洁度。

(2)实验条件设置:根据目标研究性质和样品特点,选择合适的实验条件,如频率、振幅、温度等。

(3)实验数据处理:根据实验结果,进行数据处理和分析。

通常情况下,可以根据DMA曲线上的各个特征峰值,计算得出样品的弹性模量、玻璃化转变温度等物理参数。

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法
动态热机械分析仪 DMA原理及方法
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
点击此处添加 目录标题
02
DMA基本原理
03
DMA实验方法
04
DMA在材料研 究中的应用实 例
05
DMA技术的发 展趋势和未来 展望
01 添加章节标题
02 DMA基本原理
精度和误差:高精度和低误差,确 保测试结果的准确性和可靠性
03 DMA实验方法
DMA实验步骤
准备样品:选 择合适的样品, 并进行必要的 处理和固定。
安装样品:将 样品安装到
DMA仪器的夹 具中,确保夹 具稳定且不会 对样品产生过
大的应力。
设定实验参数: 根据实验需求, 设置测试温度、 测试频率、振
动态热机械分析仪定义
DMA是一种用 于测量材料在 动态载荷下的 热机械行为的
测试仪器
它通过施加正 弦振动负荷并 测量其响应来 评估材料的力
学性能
DMA常用于评 估材料的粘弹 性、弹性模量、
阻尼等性质
在高分子材料、 复合材料、橡 胶、塑料等领 域有广泛应用
DMA工作原理简述
DMA通过测量样品在振动过程中施加力的变化来表征材料的力学性质。 DMA使用一个固定端和一个可动端之间的相对振动来测试样品的动态特性。 当振动施加力时,样品的形变会发生变化,导致施加的力与时间的关系曲线发生变化。 通过分析力与时间的关系曲线,可以获得样品的力学性质,例如弹性模量、阻尼等。
更高温度和压力下的DMA测量技术 新型DMA测量原理和方法的探索 DMA与其他测量技术的结合 DMA技术在材料科学、能源、环境等领域的应用拓展

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法

D
6
二、聚合物的玻璃态、高弹态及粘流态
1、玻璃态: ?物质处于晶态时肯定是固体,处于非晶态时可能是固体,
也可能是液体。
?许多非晶态塑料在室温下处于液态结构的固体;从分子
凝聚态来看,分子排列只有近程有序而无远程有序,应属
液态结构;而从力学状态看,具有一定的体积与形状,又
属固体。
玻璃态的普弹性:
?固体材料如金属、陶瓷(包括玻璃)等,在力学性能上有
D
9
橡胶弹性的热力学驱动力是体系自发趋向于熵最大的状态 ?对于碳-碳高分子链,从不受外力作用时的卷曲状态到外 力作用下完全伸直的状态,伸长比近似地正比于N1/2,N 是该高分子主链上包含的单键数。 ?对高分子而言,N是一个远远超过100的值,因此高弹形 变可高达百分之几百或更大。 ?这种高弹形变的机理与普弹形变的机理完全不同,普弹 形变主要是应力引起原子或离子间键长、键角的变化所致, 如下图(b)
D
8
2、高弹态: ?高聚物在一定的条件下具有一种其他材料不可能呈现的 状态-橡胶态,也称高弹态。 ?高弹态,其凝聚态,属液态;其力学状态,属固体。其 最明显的特点是能产生高达百分之几十到百分之一千的弹 性形变,称为高弹形变。 ?高聚物呈现高弹性原因是高分子链长而柔,在未受外力 作用时,呈无规线团状,而在外力作用下,线团沿外力方 向伸展;外力除去后,分子又自动回复到无规线团状态, 如下图(a)
一个共性,那就是具有弹性。
?在外力作用下立即发生形变,外力除去后,形变立即回
复,形变对外力的响应是瞬间的,如下图所示
D
7
?这种弹性形变很小,例如,小于1% ?形变较大时,金属材料可能发生不可回复的塑性变形, 陶瓷材料可能发生脆性断裂。 ?高聚物固体材料在小形变下也具有上述弹性。这种普遍 存在的弹性称为普弹性。

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法

DMA研究生
实用文档
12
三、高聚物性能与时间的关系 进一步研究高聚物的力学性能,发现它们的性能与时间有关。 所谓与时间有关,是指同一种高聚物材料的力学性能,如刚 度、强度、韧性、阻尼等,都会随试验频率、升温速率、观 察时间等时间因素的变化而发生明显的变化。 有机玻璃在常温下快速拉伸时,是典型的脆性材料,而在慢 速拉伸时,能够屈服并在屈服后继续,产生很大的形变,这 种形变表面上似是塑性形变,实质上却是高弹形变。 橡胶材料,在低频应力作用下表现得柔软而富弹性,但在高 频作用下,会变得相当刚硬。 这类弹性随时间变化,统称为高聚物弹性中带有一定的粘性。
DMA研究生
实用文档
6
二、聚合物的玻璃态、高弹态及粘流态
1、玻璃态:
物质处于晶态时肯定是固体,处于非晶态时可能是固体,
也可能是液体。
许多非晶态塑料在室温下处于液态结构的固体;从分子
凝聚态来看,分子排列只有近程有序而无远程有序,应属
液态结构;而从力学状态看,具有一定的体积与形状,又
属固体。
玻璃态的普弹性:
DMA研究生
实用文档
8
2、高弹态: 高聚物在一定的条件下具有一种其他材料不可能呈现的 状态-橡胶态,也称高弹态。 高弹态,其凝聚态,属液态;其力学状态,属固体。其 最明显的特点是能产生高达百分之几十到百分之一千的弹 性形变,称为高弹形变。 高聚物呈现高弹性原因是高分子链长而柔,在未受外力 作用时,呈无规线团状,而在外力作用下,线团沿外力方 向伸展;外力除去后,分子又自动回复到无规线团状态, 如下图(a)
固体材料如金属、陶瓷(包括玻璃)等,在力学性能上有
一个共性,那就是具有弹性。
在外力作用下立即发生形变,外力除去后,形变立即回

DMA 原理

DMA 原理

__________________________________________________________________________________动态机械分析仪 --- DMA Dynamic Mechanical Analysis1.什么是动态机械分析仪动态机械分析(DMA )是用来测量材料在一周期应力下,材料发生形变时的模量 (刚性)和阻尼(能量损耗)特性。

DMA 可以定性、定量地表征材料的粘弹性能。

2.DMA 是如何工作地?动态力学测量时,对试样施加一正弦交变地应力,同时测量其应变地变化。

对于线性粘弹性的行为而言,当达到平衡时,应力和应变二者都按正弦形式变化,但应变曲线与应力曲线存在一相位角。

应变相对滞后于应力。

应变:ε=ε0s i n ωt 应力:σ=σ0 s i n (ωt +δ)复合模量: E * =σ0/ε0= E ’+ i E ” (其中E ’为储存模量, E ” 为能量的损耗,称损耗模量)由于不同粘弹性材料,当施加一周期正弦应力时,应力与应变之间的相位角总是不同,从而可以测定材料产生形变时的模量(储存能量)和阻尼(损耗模量)。

对于理想的胡克弹体,应力与应变是同相位的,δ= 0°,每一周期中能量没有损耗。

对于理想的粘性液体而言,应变滞后于应力90°,即在每一个周期中外力对体系所做的功全部以热的形式损耗掉了。

而对于粘弹性材料来说,应力与应变之间的相位差介于0°与90°之间。

由于有相位差的存在,我们可以得到不同材料的一些基本参数,如储能模量、损耗模量、t a nδ、复合模量、粘弹性、应力、应变等等。

3.D M A可以告诉我们什么?D M A可以用来分析各种材料,如塑料、热固性材料、复合材料、高弹性体、涂层材料、金属、陶瓷等,尤其适用于高分子材料。

一般材料都有粘弹性而高聚物是最为典型的粘弹性材料。

使用D M A可以用来评估温度、频率对材料机械性能的影响。

动态热机械分析仪 DMA DMA242C

动态热机械分析仪 DMA DMA242C

动态热机械分析仪 DMA DMA242C动态热机械分析仪(DMA TMA DMTA)仪器描述仪器说明仪器标签动态热机械分析仪(DMA)为使样品处于程序控制的温度下,并施加随时间变化的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。

广泛应用于热塑性与热固性塑料、橡胶、涂料、金属与合金、无机材料、复合材料等领域。

测量材料的如下特性:储能模量(刚性);损耗模量(阻尼);粘弹性;蠕变与应力松弛;玻璃化转变;软化温度;二级相变;固化过程。

主要特点:1.傅立叶分析法,出色的信噪比。

2.完善的仪器校正。

3.样品支架(测量模式): 三点弯曲, 单/双悬臂, 压缩, 针入, 线性剪切和拉伸。

4.根据用户需要可提供特殊样品支架,如测量粘性液体或特硬刚性样品。

5.可以和介电法树脂固化监测仪 DEA 联用,进行同步 DMA-DEA 分析,对热固性树脂的固化行为进行全面的表征。

技术参数:形变模式:- 三点弯曲- 单/双悬臂弯曲- 剪切- 压缩/针入- 拉伸- 其他特殊模式(单悬臂+自由推杆模式等)测量模式:- 标准模式- TMA 模式- 蠕变/松弛模式(选件)- 应力/应变扫描模式(选件)温度范围:-170℃ ... 600℃升降温速率:0 ... 20 K/min降温时间: 10 min (20℃ ... -150℃)频率范围:0.01Hz ... 100 Hz施加力范围:静态力最大 8 N,动态力最大 ± 8 N应变振幅范围:最大 ± 240 μm储能模量(E')范围: 10-3 MPa ... 106 MPa阻尼(tanδ)范围: 0.00006 (10)气氛:惰性、氧化、静态、动态单路气体流量计(可选)循环水浴(可选)浸入式测试容器(可选)© 2005-2009 必和国际贸易(香港)有限公司版权所有,并保留所有权利。

上海市长乐路989号2006室,邮编:200031,电话:021-********,136********,, info@file:///D|/webtopdf/动态热机械分析仪 DMA DMA242C动态热机械分析仪(DMA TMA DMTA).htm[2010-1-8 22:56:55]。

DMA

DMA

动态力学分析性质:利用动态力学试验求取材料在周期性外力作用下的模量和损耗,并把模量和损耗作为温度、频率或时间的函数来考察材料的黏弹性能的方法。

对试样施加随时间交变的应力或应变,求取作为温度、频率或时间函数关系的模量和损耗的关系曲线,以研究材料的黏弹行为,这就是动态力学分析的主要内容。

其中,模量和损耗与时间的关系曲线,即是动态力学分析时间分布曲线。

Dynamic thermomechanical analysis 动态热机械分析动态热机械分析(DMA)是通过对材料样品施加一个已知振幅和频率的振动,测量施加的位移和产生的力,用以精确测定材料的粘弹性,杨氏模量(E*)或剪切模量(G*)。

动态粘弹分析方法的分类和特征:DMA技术依测试方法的不同,可分为四类: (前三种常用)(1)自由振动法(如扭摆和扭辨仪) (0.1--10Hz)(2)共振法(50--5000Hz)(3)强迫非共振法(0.001--1000Hz)(4)声波传播法。

原理:(1) 自由振动法中的扭摆法其装置的结构原理如图所示。

外力使扭摆中的试样扭转变形,外力除去后,惯性体作固定周期地衰减运动,这是由于高聚物的粘性所产生的力学内耗所致。

在不考虑系统的附加阻尼情况下,振幅的衰减速率是由试样的损耗因子决定的,可以通过测量振动的周期和振幅衰减来获得动态剪切复模量及阻尼。

(a)--扭摆仪原理图, (b)--阻尼振动曲线扭辨法是由扭摆法演变出来的,扭摆和扭辫之间的主要差别在于试样,后者系用玻璃纤维或其它惰性纤维织成的辫子作为基底,把高聚物试样的溶液(5--100%)或熔体涂覆在辫子上进行实验。

由于这种方法使用的试样系复合体,听以测不出试样切模量的绝对值,仅为相对值,一般以周期P平方的倒数1/P2表示,另外扭辫的频率范围小,对固化的难熔物不宜测定,但由于它试样用量小,(100mg以下),且灵敏度高,所以乐于被采用。

DMA

DMA

7.3 违规与处罚
(一)预约实验后如需取消,请提前一天告知相应管理员,如无告知或告 知较晚,测试中心有权根据情况收取原测试费30%~50%的机时占用费,并 对测试人员予以警告。 (二)在培人员未经管理员允许擅自更改仪器重要参数或更改硬件设置, 视为违规,测试中心视其严重性追究相应的责任。 (三)如签订责任书的人员在预约时间内擅自将仪器交予其它人员,一经 发现给予警告或取消其1个月的上机资格。如因此造成的损失,测试中心有 权追究其责任。
4.2 DMA测试影响因素
1
2
4.2.1 DMA曲线温度依赖性
4.3.2 DMA曲线频率依赖性
4.3.2 DMA曲线频率依赖性
未硫化SBR动态热机械曲线
5. 1 应用实例
A
B • • Tg的方法: Tanδ 的峰值 DMA测玻璃化转变温度是最灵敏的
相容性差
相容性好
共混聚合物相容性表征
5. 2 储存模量
压缩、针入、拉伸、 三点弯曲 恒定/斜变
应用
测量模式 加载力
高分子、陶瓷、金属
适用领域
高分子材料 (形变大)
7 测试中心仪器开放管理办法
1
仪器开放要求
2
仪器测试流程
3
违规及处罚
7.1 仪器开放要求
独立上机操作
签订安全责任书
遵守操作规程及相关规定
1. 严格按实验流程; 2. 仪器操作规程; 3. 关水关电关窗关门;
弯曲模量
塑料,复合材料
3 夹具的选择
拉伸 3-点弯曲 单双悬臂
L
L
L
薄膜 纤维
块体 刚性大
块体 刚性小
4 DMA操作流程
夹具样品安装
应力-应变曲线扫描

DMA 原理与应用

DMA 原理与应用

DMA 242C 标准模式
标准模式测试图谱
E'' /MPa E' /MPa tgδ 0.6 0.5 0.4 0.3 0.2 200 0.1 0.0 0 50 100 温度 /℃ 150 200 90 80 测量模式:单悬臂 800 [1] PU 97.dm2 1.000 Hz 2.000 Hz 5.000 Hz 10.000 Hz 70 60 50 40 30 20 10 0
NETZSCH Analyzing & Testing
21
DMA 242 C - 可控湿度下的测量
NETZSCH Analyzing & Testing
22
紫外固化炉
NETZSCH Analyzing & Testing
23
软件功能
NETZSCH Analyzing & Testing
24
DMA 242C 软件特点
储存模量 E’ = |E*| cosδ
损耗模量 E” = |E*| sinδ 损耗因子 tgδ= E” / E’
NETZSCH Analyzing & Testing 5
常见材料在室温下的模量
材料 E’ / MPa
E* = E' + i E"
Aluminim
Steel Glass LDPE HDPE PA 66 PS ABS LDPE (Glasfiber.) HDPE (Glasfiber) PA 66 (Glasfiber) Polyester Resin, filled Rubber mixture
NETZSCH Analyzing & Testing
28
DMA 242C 标准模式

第3章_动态热机械分析技术DMA

第3章_动态热机械分析技术DMA
对于聚合物粘弹体系,应力与应变存在相位差:
0 sin t (2) 0 sin( t ) (3)
将(3)式展开,得到:
0 sin t (2) 0 sin( t) cos 0 cos( t)sin (4)
40
3.4.3 贮能模量(E’)和损耗模量(E’’)
热分析技术:P = f(T)
单一热分析技术 差热分析; 热重分析; 动态热机械分析; 热介电分析; 热折光分析; …… 联用热分析技术 热重-差热分析; 质谱-差热分析; 质谱-热重分析; 红外光谱-差热分析; 紫外光谱-差热分析; ……
图6 热分析方法的基本类型
09
3.2.3 举例
图7 受污染土壤的热重-红外光谱联用分析
41
3.4.3 贮能模量(E’)和损耗模量(E’’)
E' ( 0 / 0 )cos
贮能模量;表示在应力 作用下能量在样品中的 贮存能力,同时也是材 料刚性的反映。
E'' ( 0 / 0 )sin
损耗模量;与应变相位 差90度;表示能量的损 耗程度,是材料耗散能 量的能力反映。
(2)针入度法
测试条件: 加重:5kg; 升温速度:20oC/min;
图24 聚酯/聚酰胺-聚酰亚胺的针入度曲线
27
3.3.3 静态热机械分析
(3)弯曲法
热变形温度: 在一定的弯曲作用负 荷、升温速度及跨距
下,当样品弯曲桡度
达一定变形量时所对 应的温度。是工业上
评价聚合物耐热性能
的重要指标。
图25 热变形温度测定示意图
由于聚合物在玻 璃化转变和粘流 转变过程具有不 同的热膨胀系数 ,利用曲线拐折 处可求得玻璃化 转变温度和粘流 温度。

DMA实验报告

DMA实验报告

动态热机械分析测试实验报告一、实验目的1.了解动态力学分析仪(DMA)的测量原理及仪器结构;2.了解影响动态力学分析仪(DMA)实验结果的因素,正确选择实验条件;3.通过聚合物PP 动态模量和力学损耗与温度关系曲线的测定,了解线性非结晶聚合物不同的力学状态;4.学会使用DMA来测试聚合物的Tg,并会分析材料的热力学性质。

二、实验原理在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。

动态力学分析能得到聚合物的动态模量(E′)、损耗模量(E″)和力学损耗(tanδ)。

这些物理量是决定聚合物使用特性的重要参数。

同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。

高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。

它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。

当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。

能量的损耗可由力学阻尼或内摩擦生成的热得到证明。

材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。

如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。

形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。

如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。

假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力900,所示。

聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。

在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法

05
DMA技术发展趋势与挑战
技术创新方向探讨
更高频率范围
开发能够在更高频率下工作的DMA技术, 以满足对材料高频响应特性的研究需求。
多功能集成
将DMA与其他分析技术(如热分析、光学分析等) 相结合,实现多功能一体化分析。
智能化与自动化
利用人工智能和机器学习技术,提高DMA 测试的自动化程度和数据分析的准确性。
DMA可测定聚合物在不同温度和频率下的储能模量和损耗模量, 揭示材料的粘弹性行为。
蠕变与松弛行为研究
DMA可用于研究聚合物的蠕变和松弛行为,为材料长期性能预测 提供依据。
金属材料疲劳寿命预测
疲劳裂纹扩展速率
测定
DMA可测定金属材料在不同温度 和加载频率下的疲劳裂纹扩展速 率,为疲劳寿命预测提供关键参 数。
100%
温度控制
通过PID算法等精确控制加热元 件的功率,实现样品温度的精确 控制。
80%
温度范围
根据测试需求,加热系统可提供 从室温到高温(如600℃)的宽 温度范围。
冷却系统
冷却方式
采用液氮、压缩空气等作为冷 却介质,实现样品的快速冷却 。
温度控制
通过控制冷却介质的流量和温 度,精确控制样品的冷却速率 和最终温度。
现状
目前,DMA已经成为材料科学研究领域的重要工具之一,随着新材料和新技术的不断涌现,DMA的应用前景将 更加广阔。同时,DMA技术也在不断发展和完善,如高温DMA、高压DMA等新型仪器的出现,为材料科学研究 提供了更多的可能性。
02
DMA系统组成与功能
加热系统
80%
加热元件
通常采用电阻丝、红外线灯等作 为加热元件,提供均匀稳定的热 源。
与其他技术的联合应 用

动态热机械分析仪(DMA)

动态热机械分析仪(DMA)

1
指标
温度范围
-190 °C to 600 °C

最小: 0.00025 N 最大: ± 10 µm to 1000 µm 分辨率: 10 nm
频率
范围: 0.01 Hz to 300 Hz 分辨率: 1 mHz
测试头
多位置
DMA 1 动态热机械分析仪
梅特勒-托利多 中国 李焱
介绍
1.5
DMA理论
模量是由施加力的振幅Fa、测量的位移振幅La以及力 和位移之间相位差δ通过计算得到。 模量的种类有:
1 0.5 0 0.0 -0.5 -1 -1.5 0.5
D

复合模量M*,(拉伸模式:弹性模量E*;剪切模式 :剪切模量G*)
会议介绍: 时间:2014-05-14 14:30 讲师:唐远旺 梅特勒-托利多中国公司热分析技术应用主管,热分析专家,长期从事热分析仪
器的应用研究工作。
网址:/eNSBH
9
Thank You
2
彩色触摸屏
3
特殊应用

温度校准 TMA模式 浸入研究 湿度研究 应力/应变 蠕变 应力松弛
4
拉伸和TMA模式
PET膜
5
DMA 1 浸入式研究
聚酰胺纤维
6
DMA 1湿度研究
EVA
7
应力应变曲线
SBR橡胶
8
总结

DMA 1是一款具有价格优势且功能强大的DMA仪器 所有的形变模式均为标配 独特的可旋转测试头和彩色触摸屏使得DMA1操作方便 DMA 1具有无可匹敌的冷却能力 DMA1包含特殊测试模式:TMA模式、应力-应变、应力松弛和蠕变。 湿度附件、浸入附件、粉末包和液体管这些特殊附件扩大了DMA 1的测试能力

DMA原理

DMA原理

第2章气凝胶热学力学特性及表面修饰机理2.2.2.1 DMA测试原理动态热机械分析仪(DMA)被广泛用于材料的粘弹性能研究,可获得材料的动态储能模量,损耗模量和损耗角正切(tan δ)等指标。

DMA8000主要是用来测量样品在一定条件温度、时间、频率、应力或应变、气氛和湿度等综合条件下的动态力学性能。

DMA8000用于研究材料在交变应力(或应变)作用下的应变(或应力)的响应、蠕变、应力松弛和热机械性能等测试。

图2.4为DMA8000实物图。

图2.4 DMA8000实物图DMA使一定几何形状的样品产生一个正弦形变。

这样,样品能够经受一个可控的应力或应变。

如果应力一定,那么样品将产生一定程度的形变。

形变的大小与样品的刚度有关。

里面的电动机产生正弦波,并通过驱动轴传送到样品上。

驱动轴的柔度及用来固定驱动轴的稳定轴承显著地影响测试效果。

由DMA8000的驱动系统示意图(图2.5)可知,这种设计既不需要弹簧也不需要气动轴承装置来支撑驱动轴,使仪器有更低的柔度。

同济大学硕士学位论文气凝胶保温隔热材料的制备及力学热学性能研究图2.5 DMA8000轻质驱动系统DMA测量样品的刚度和阻尼,即模量和tan delta。

因为仪器引入了一个正弦力,模量可以表示成同相部分(即储能模量)和异相部分(即损耗模量),如图2.6所示。

储能模量(E’或G’)可以衡量样品的弹性行为。

耗能模量与储能模量的比值就是tan delta(即损耗角正切)。

它可以测量材料的能量损耗,它是材料摆脱能量的能力的量度,被称为相位角的正切。

它告诉我们材料吸收能量的能力。

它随着材料的状态(即温度)和频率的变化而变化。

图2.6 正弦应力与应变的关系、相位滞后和形变2.2.2.2 DMA夹具的选择及测试模式DMA8000配置了六种常用的夹具用于多种形变模式测试(图2.7),囊括了测试材料所需的所有类型。

通常,根据待测样品的特性、尺寸以及用途等来选择适合的夹具。

动态热机械分析仪DMA原理及方法

动态热机械分析仪DMA原理及方法

2020/1航/1天8材料及工艺研究所
7
这种弹性形变很小,例如,小于1% 形变较大时,金属材料可能发生不可回复的塑性变形, 陶瓷材料可能发生脆性断裂。 高聚物固体材料在小形变下也具有上述弹性。这种普遍 存在的弹性称为普弹性。
2020/1航/1天8材料及工艺研究所
8
2、高弹态: 高聚物在一定的条件下具有一种其他材料不可能呈现的 状态-橡胶态,也称高弹态。 高弹态,其凝聚态,属液态;其力学状态,属固体。其 最明显的特点是能产生高达百分之几十到百分之一千的弹 性形变,称为高弹形变。 高聚物呈现高弹性原因是高分子链长而柔,在未受外力 作用时,呈无规线团状,而在外力作用下,线团沿外力方 向伸展;外力除去后,分子又自动回复到无规线团状态, 如下图(a)
材料分析与检测 动态热机械分析仪(DMA)
2020/1航/1天8材料及工艺研究所
1
DMA研航究天生材料及工艺研究所
2
动 态 热 机 械 分 析 仪 (Dynamic Mechanical
Analysis简称DMA)主要是测定结构与分子运动的信息。
结晶一般也不完善,通常总是以部分结晶的
形式,即晶相与非晶相共存的形式存在。
2020/1航/1天8材料及工艺研究所
6
二、聚合物的玻璃态、高弹态及粘流态 1、玻璃态: 物质处于晶态时肯定是固体,处于非晶态时可能是固体, 也可能是液体。 许多非晶态塑料在室温下处于液态结构的固体;从分子 凝聚态来看,分子排列只有近程有序而无远程有序,应属 液态结构;而从力学状态看,具有一定的体积与形状,又 属固体。 玻璃态的普弹性: 固体材料如金属、陶瓷(包括玻璃)等,在力学性能上有 一个共性,那就是具有弹性。 在外力作用下立即发生形变,外力除去后,形变立即回 复,形变对外力的响应是瞬间的,如下图所示

动态热机械分析仪DMA原理及方法共74页文档

动态热机械分析仪DMA原理及方法共74页文档


28、知之者不如好之者,好之者不如乐之者。——孔子


29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
74

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
动态热机械分析仪DMA原理及方法

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档