概率论 第四章

合集下载

第四章 第一讲 正态分布及其性质

第四章 第一讲 正态分布及其性质
上侧分位数的计算方法: 由定义知 ( u ) 1

u
查标准正态分布函数值表便可得 u
x
图2 也可由定义利用上侧分位数与双侧分位数之间的关系,借助于标 准正态分布双侧分位数表直接查得,即直接查 的双侧分位数.
0 .0 5
u 1 .6 4 5
0 .0 1
所以有 P 0 . 84 X 0 . 64 ( 0 . 64 ) ( 0 . 84 )
0 . 7389 0 . 2005 0 . 5384
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
例 设X~N(0, 1),求P(-1<X≤2),P(X>2.5). 解 P( -1<X≤2 ) = Φ( 2 )-Φ( -1 ) = Φ( 2 )-[1-Φ( 1 )] = 0.9772-(1-0.8413) = 0.8185. P{ X > 2.5 }= 1-Φ( 2.5 )
第四章 正态分布
第一讲
正态分布及其性质
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
第一讲 正态分布及其性质
• • • • 一、正态分布 二、标准正态分布 三、正态变量的线性组合 四、小结
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
一、正态分布
1、定义
设连续型随机变量 X 的概率密度为 f (x) 1 2 πσ
解 : ( 2) P { X 5 0 0 2 0 0} 1 P { X 500 200 }
1 P{ 200 60 X 500 60 200 60 }
200 200 1 60 60

概率论课程第四章

概率论课程第四章

第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。

但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。

例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。

本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。

第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。

如果级数 不绝对收敛,则称数学期望不存在。

例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。

概率论第4章

概率论第4章

19 2012-6-28
例5 甲,乙各自同时向一敌机射击, 已知 甲击中敌机的概率为0.6, 乙击中敌机的 概率为0.5. 求敌机被击中的概率.
20 2012-6-28
解 设A为事件"甲击中敌机", B为事件"乙 击中敌机", C为事件"敌机被击中", 由广 义加法定理知 P(C)=P(AB)=P(A)+P(B)-P(AB) 根据题意可认为A,B事件相互独立, 因此 有 P(AB)=P(A)P(B)=0.60.5=0.3 于是 P(C)=0.6+0.5-0.3=0.8
P( B | A) r m r/n m/n P( AB) P( A)
5 2012-6-28
.
在一般情形下, 如果P(A)>0, 也定义事件 A出现下事件B的条件概率为
P( B | A) P( AB) P( A) , ( P( A) 0)
乘法定理 两事件的积事件的概率等于其 中一事件的概率与另一事件在前一事件出 现下的条件概率的乘积:
正品数 第一台车床加工的零件数 第二台车床加工的零件数 总计 35 50 85 次品数 5 10 15 总计 40 60 100
从这100个零件中任取一个零件, 则"取得的 零件为正品"(设为事件B)的概率为
P( B) 85 100 0.85
3 2012-6-28
正品数 第一台车床加工的零件数 第二台车床加工的零件数 总计 35 50 85
乘法定理可以推广到有限多个事件的情 形. 例如, 对于A,B,C三个事件, 有 P(ABC)=P((AB)C)=P(AB)P(C|AB) =P(A)P(B|A)P(C|AB), (P(AB)>0)

第四章 (概率论基础与抽样分布)

第四章 (概率论基础与抽样分布)

4 - 25
第四章 概率论与抽样分布
第二节 概率分布
分布函数与密度函数的图示
1. 密度函数曲线下的面积等于1 2. 分布函数是曲线下小于 x0 的面积
f(x)
4 - 26
F ( x0 )
x0
x
第四章 概率论与抽样分布
第二节 概率分布
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望为
E(X ) xf (x)dx
4 - 41
第四章 概率论与抽样分布
第二节 概率分布
4 - 42
第四章 概率论与抽样分布
第二节 概率分布
【例】已知x~N(12.86,1.332),若 P(x<l1)=0.03,P(x≥l2)=0.03,求l1,l2
概率的性质
1. 非负性 对任意事件A,有 0 P 1
2. 规范性 必然事件的概率为1;不可能事件的概率为0。即
P ( ) = 1; P ( ) = 0
3. 可加性 若A与B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P ( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
标准正态分布
=1
0.1664
2.9 5 7.1 X
.0832 .0832
-.21 0 .21 Z
4 - 37
第四章 概率论与抽样分布
第二节 概率分布
【例】已知x~N(30.26,5.12), 求P(|x-30.26|<5.1); P(20.06≤x<40.46)
P(| X 30.26 | 5.1) P 5.1 X 30.26 5.1

概率论教学课件第四章4.4协方差与相关系数

概率论教学课件第四章4.4协方差与相关系数
1
一、协方差
对于二维随机变量(X,Y),讨论描述X与Y之间相互 依赖关系的数字特征.
X与Y相互独立 E[(X EX )(Y EY )] 0
或者:E[(X EX )(Y EY )] 0 X与Y一定不相互独立
定义1. 若E[(X EX )(Y EY )]存在, 则称E[(X EX )(Y EY )]为X与Y的协方差.
(连续型).
-
3
或者用以下公式计算
Cov(X , Y ) E(XY ) EX EY
Cov (X , Y ) E[(X EX )(Y EY )]
E(XY XEY YEX EXEY ) E(XY ) EX EY EX EY EX EY E(XY ) EX EY
4
定义2* 设 DX 0 , DY 0,称X,Y的标准化随机变量
X , Y 的协方差 Cov ( X , Y ) 为X与Y的相关系数.
记 为 XY , 即
XY Cov( X , Y ) E( X Y ) EX EY E( X Y )
E[( X EX )(Y EY )] Cov( X ,Y ) .
其逆命题不真!
注:若Cov X,Y 0,即E XY EXEY,则X与Y不相互独立.
4. D(X Y ) DX DY 2Cov(X , Y ).
5
例4.14 设二维随机变量(X,Y )的联合分布列为
XY 0 1 pi 0 0.2 0.3 0.5 1 0.5 0 0.5
p j 0.7 0.3
1 R
2
R
dx
R
R2 x2
xydy
R2 x2
0,
Cov(X , Y ) E(XY ) EXEY 0 00 0 .
8
Cov(X , Y ) E(XY ) EXEY 0 .

《概率论》第4章矩、协方差矩阵

《概率论》第4章矩、协方差矩阵

为 k l 阶混合中心矩
E假(定X )其中各数学1 阶期原望点都矩存在
D“矩(X”) 是来自于2物阶理中学心中矩力矩的概念
Cov(X y,Y )
2 阶混合中心矩
y f (x)
O
x d第x 四章 随机x变量的数字特征
§4 矩、协方差矩阵
2/8
对于二维r.v ( X1,,X记2 )
c11 E[( X1 E( X1))2 ] D( X1) c12 E[(X1 E(X1))(X2 E(X2 ))] Cov(X1, X 2 )
7/8
(X1, X2 ,L , Xn ) ~ N(,C) X1, X2,, Xn 的任一线性
组合 l1X1 l2 X2 ln Xn 服从一维正态分布 正态r.v的线性变换不变性:设
(X1, X2 ,, Xn ) ~ N(,C) 令
Y1 a11 X1 a12 X2 a1n Xn
Y2
§4 矩、协方差矩阵
1/8
对于 r.v X ,Y , 称
E( X k ) ( k 1, 2,)
为 k阶原点矩,简称 k阶矩 .称
E[( X E( X ))k ] ( k 2,3,)
为 k阶中心矩 .称
E( X kY l ) (k,l 1, 2,)
为 k l 阶混合矩 .称
E[( X E(X ))k (Y E(Y ))l ] (k,l 1, 2,)
)e2 xp2{
12(x(X1)1( y)2TC21)(X
(y
)}2
2 2
)2
]}
与一维记再正记C态Xr.vcc12密11xyf度c(c,1x222)函数比11211较2, e2则xp{122(x2
)
2
}

概率论第四章总结-精品文档

概率论第四章总结-精品文档

XY
=
数.
Cov ( X ,Y ) D( X ) D(Y)
称为随机变量X与Y的相关系
2.基本性质
7)| |=1的充要条件是,存在常数 a,b使得 P{Y=a+bX}=1
XY
1)Cov(X,Y)=Cov(Y,X) , Cov(X,X)=D(X).
5)Cov(X1+X2,Y)=Cov(X1,Y)+Cov (X2,Y). 6)| |≤1. *当=0时,称X与Y不 相关.
XY
2)D(X+Y)=D(X)+D(Y)+2Cov(X,Y) 3)Cov(X+Y)=E(XY)-E(X)E(Y).
4)Cov(aX,bY)=abCov(X,Y),a,b是常数.
3.例题 • 设随机变量X ~ N( , ),Y ~ N( , ),且设X,Y相互独立,试求 • Z1=aX+bY和Z2=aX-bY的相关系数(其中a,b是不为零的常数).
The key
解:E[(X-C)2]=E(X2-2CX+C2)=E(X2)-2CE(X)+C2=E(X2) -[E(X)]2+{[E(X)]2-2CE(X)+C2}=D(X)-[E(X)-C]2 ≥ D(X),等 号当且仅当C=E(X)时成立.
三、协方差及相关系数
1.定义
量E{(X-E(X))(Y-E(Y))}称为随机变量X与Y的协方差. 记为Cov(X,Y),即 Cov(X,Y)=E{(X-E(X))(Y-E(Y))}

j=1,2,····,说明X的 数学期望不存在. 例2.将n只球(1—n号)随 机的放进n个盒子(1—n号) 中,一个盒子装一只球.若
3j j

《概率论与数理统计》第04章习题解答

《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。

概率论第4章

概率论第4章
(4)数学期望的性质
ò ò
+¥ +¥
- ¥ - ¥
(设该积分绝对收敛) g ( x , y ) f ( x , y ) dxdy .
性质 1 设 c 是常数,则有 E ( c ) = c . 性质 2 设 X 是随机变量,设 c 是常数,则有 E (cX ) = cE ( X ) . 性质 3 设 X ,Y 是随机变量,则有 E ( X + Y ) = E ( X ) + E ( Y ) . (该性质可推广到有限个随机变量 之和的情况) 性质 4 设 X , Y 是相互独立的随机变量,则有 E ( XY ) = E ( X ) E ( Y ) . (该性质可推广到有限 个随机变量之积的情况) 2. 方差 (1)定义 设 X 是随机变量 , E{[ X - E ( X )] } 存在,就称其为 X 的方 差 ,记为 D ( X ) ( 或 Var ( X ) ) ,即
å x p
k =1
k
发散,则称随机变量 X 的数学期望不存在.
(2)连续型随机变量的数学期望 定义 设连续型随机变量 X 的分布密度函数为 f ( x ) ,若积分 学期望或均值.记为 E ( X ) , E ( X ) = 不存在。 (3)随机变量的函数的数学期望 定理 设 Y 为随机变量 X 的函数: Y = g ( X ) (g 是连续函数) ① X 是离散型随机变量,分布律为 p ( X = x k = 1 , 2 , L ;若级数 k = P k ),
r XY = í
, a > 0 ì1 , a < 0 î-1
性质 4 r XY = 1 的充要条件是,存在常数 a, b 使 P {Y = aX + b } = 1 . 事实上相关系数只是随机变量间线性关系其强弱的一个度量, 当 r XY = 1 表明随机变量 X 与 Y 具有线 性关系, r = 1 时为正线性相关, r = -1 时为负线性相关,当 r XY < 1 时,这种线性相关程度就随着 r XY 的减小而减弱,当 r XY = 0 时,就意味着随机变量 X 与 Y 是不相关的. (4)X 与 Y 不相关的充要条件 只要满足以下四个条件之一就可以 ①

概率论与数理统计第4章 随机变量的数字特征与极限定理

概率论与数理统计第4章  随机变量的数字特征与极限定理
4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

概率论与数理统计第4章复习

概率论与数理统计第4章复习

第四章 随机变量的数字特征一、 随机变量的数学期望1. 离散型随机变量数学期望设离散型随机变量X 的分布律为:,...2,1,}{===k p x X P k k 若级数∑kk k p x 绝对收敛,则称级数∑kk k p x 的和为随机变量X 的数学期望,记为E(X),即∑=kk kp xX E )(。

2. 连续型随机变量数学期望设连续型随机变量X 的概率密度函数为)(X f ,若积分⎰+∞∞-dx x xf )(绝对收敛,则称积分⎰+∞∞-dx x xf )(为随机变量X 的数学期望,记为E(X),即⎰+∞∞-=dx x xf X E )()(.数学期望简称期望或均值,他反映了随机变量所有可能取值的一种平均。

3. 随机变量函数的期望(1) 设X 是随机变量,)(x g y =为实变量x 的函数。

1) 若X 是离散型随机变量,其分布律为:,}{k k p x X P == 1=k ,2,3,...,且级数∑kk k p x g )(绝对收敛,则∑==kk kp xg x g E Y E )()]([)(2) 若X 市连续型随机变量,其密度函数为)(x f ,且积分⎰+∞∞-dx x f x g )()(绝对收敛,则⎰+∞∞-==dx x f x g x g E Y E )()()]([)((2) 设(X ,Y )是二维随机变量,),(y x g z =为实变量x ,y 的二元函数。

1) 若(X ,Y )是离散型随机变量,其分布律为:,),(ij i i p y Y x X P ===,.....2,1,=j i 且∑∑ijij j ip y xg ),(绝对收敛,则∑∑==ijij j ip y xg Y X g E Z E ),()],([)(2) 若(X ,Y )是连续型随机变量,其密度函数为),(y x f ,且⎰⎰+∞∞-+∞∞-dxdy y x f y x g ),(),(绝对收敛,则⎰⎰+∞∞-+∞∞-==dxdy y x f y x g Y X g E Z E ),(),()],([)(。

概率论第四章-切比雪夫不等式

概率论第四章-切比雪夫不等式
定理:(切比雪夫不等式) 定理:(切比雪夫不等式) :(切比雪夫不等式
设随机变量X 设随机变量X 有数学期望 E = µ, 方 D =σ2 X 差 X 对任意 ε > 0, 不等式
P{| X −µ |≥ε}≤σ2 / ε2
或 成立, P{| X −µ |<ε}≥1−σ / ε 成立,
2 2
称此式为切比晓夫不等式. 称此式为切比晓夫不等式.
P(6800< X <7200) =
用切比雪夫不等式
7200 K 10 C104 0.7K0.3 −K ∑
K=6800 =
2100 =0.95 P(6800< X <7200) = P( X −7000 < 200) ≥1− 2 200
练习 随机掷四颗骰子, 随机掷四颗骰子,估计四颗骰子出现的点数
之和在10至18之间的概率。 之和在10至18之间的概率。 10 之间的概率
P{| X −µ |≥ε}≤σ2 / ε2
P{| X −µ |<ε}≥1−σ / ε
2
2
证明:设X为连续性(离散型类似),其密度为 f ( x). 证明: 为连续性(离散型类似),其密度为 ),
P{| X −µ |≥ε}

|x− |≥
∫ε µ
1
2
|x−µ |
2
ε
2
f (x)dx ≤ ∫
2
|x−µ |2
不等式的其它形式
例1 估计 解
的概率
例2一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 求同时开的灯数在6800至7200之间的概率。 求同时开的灯数在6800至7200之间的概率。 6800 之间的概率 解 为同时开的灯数。 设X 为同时开的灯数。 用二项分布

概率论与数理统计PPT课件第四章数学期望与方差

概率论与数理统计PPT课件第四章数学期望与方差
回归分析
在回归分析中,数学期望和方差 等统计指标用于描述因变量和自 变量之间的关系,以及预测未来
的趋势。
假设检验
在假设检验中,数学期望和方差等 统计指标用于比较两组数据或样本 的差异,判断是否具有显著性。
方差分析
方差分析利用数学期望和方差等统 计指标,分析不同组别或处理之间 的差异,确定哪些因素对数据变化 有显著影响。
质量控制
统计分析
在统计分析中,方差分析是一种常用 的统计方法,通过比较不同组数据的 方差,可以判断它们是否存在显著差 异。
在生产过程中,方差用于度量产品质 量波动的程度,通过控制产品质量指 标的方差,可以提高产品质量稳定性。
03
期望与方差的关系
期望与方差的关系式
期望值是随机变量取值的平均数 ,表示随机变量的“中心趋势”
方差的性质
方差具有可加性
当两个随机变量相互独立时,它们组 合而成的随机变量的方差等于它们各 自方差的线性组合。
方差与期望值的关系
方差与期望值之间存在一定的关系, 如方差等于期望值减去偏差的平方和 再求平均值。
方差的应用
风险评估
在金融和经济学中,方差被用来度量 投资组合的风险,通过计算投资组合 中各个资产的方差和相关系数,可以 评估投资组合的整体风险。
期望与方差的拓展
期望与方差在金融中的应用
金融风险评估
利用数学期望和方差计算 金融资产的风险,评估投 资组合的风险和回报。
资产定价
利用数学期望和方差等统 计指标,对金融资产进行 定价,确定其内在价值。
保险精算
通过数学期望和方差等统 计方法,评估保险产品的 风险和回报,制定合理的 保费和赔付方案。
期望与方差在统计学中
期望与方差在其他领域的应用

概率论 第四章 极限定理

概率论 第四章 极限定理

频率稳定在概率附近。
当试验次数n充分大时,事件A 发生的频率与其概率有较大偏差的
可能性很小,在应用中,用频率作为概率的近似值是合理的。
2.小概率原理:概率接近于0的事件(小概率事件)在个别实验中 当作是不可能发生的. 小概率原理仅仅适用于个别的或次数极少的实验,当试验次数较多 时就不适用了。
4.2 中心极限定理
lim P (| X n -a | ) 1
n
a-
a
a+
则称随机变量序列 {X n} 依概率收敛于 a,简记 为: X p a
n
注: (1)定义中的式子等价于 lim P (| X n -a | ) 0
n
(2) {X n}依概率收敛于a意味着对任给正数 ,当 n 充分 大时,事件“|X n- a|< 发生的概率很大,接近于 1. 当 n 充分大时, X n的取值就密集在a附近。
引例1:考虑一门大炮的射程。它受很多因素的影响,如炮身的 振动、炮弹的差异、瞄准的误差、天气(风速,风向)的状况等。 观察到的射程是诸多随机因素的共同作用的结果。各不同因素是独 立的。 引例2:一个城市的耗电量是大量用户耗电量的总和。
大量的相互独立的随机变量和的极限分布是 ??分布
中心极限定理
定理4.4(独立同分布的中心极限定理)
4.1 大数定律
在一次试验中随机事件的发生与否具有随机性,但在大量的 重复试验中却呈现出明显的规律性。
1 . 在实践中,人们认识到大量测量值的算术平均值具有稳定性. 例1: 在运动会上评判跳水运动员的成绩,是将各个评委打的分数 加以平均作为最后的成绩,而且参评的评委越多,这个平均分应越 接近于运动员的真实水平; 例2: 测量一个长度为a的物体,一次测量的结果不一定等于真值a, 一般要进行多次测量,当测量的次数很多时,其算术平均值接近于 真值a几乎是必然的. 2. 频率具有稳定性

概率论与数理统计 第4章

概率论与数理统计 第4章

dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
dt
1-91
31
1 E( X ) x e 2
( x )2 2 2
dx 令t
t2 2
x

,得
E( X )
1 2



( t )e
t2 2

从而
的概率密度为:
1-91
21
故所求数学期望分别为
1-91
22
三.数学期望的性质
性质1: 设 C 为常数,则 性质2: 设 C 为常数,X 为随机变量, 则有 性质3: 设 X , Y 为任意两个随机变量, 则有 为 n 个随机变量,
推论1 设
为常数,则
1-91
23
性质4 设X 和Y 是相互独立的随机变量,则有
证: 因为 X 和 Y 相互独立,所以 于是
推广:
1-91 24
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值 解 引入随机变量
显然有
1-91
25
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值
1-91
18
例5. 设某公共汽车站于每小时的10分, 50分发车, 乘客在每小时内任一时刻到达车站是随机的。求 乘客到达车站等车时间的数学期望。
解: 设T 为乘客到达车站的时刻, 则
其概率密度为
设Y 为乘客等车时间,则
1-91
19
已知
1-91

概率论第四章随机变量的数字特征第4节矩和协方差矩阵

概率论第四章随机变量的数字特征第4节矩和协方差矩阵

特别,若 X ~ N 0, 1 , 则
E X n
n 1!!
0
n为偶数 n为奇数 ,
n 4时, EX 4 3.
返回主目8 录
练习一下
• 已知随机变量的X和Y的联合分布为
Y X
-2
0
1
-1
0.30
0.12
0.18
1
0.10
0.18
0.12
求X和Y的协差矩阵.
0.96 0.24
0.24 1 .65
DX
所以,
E X n nE Y n
n yn fY
y dy
n
y
n
e
y2 2
dy
2
⑴.当 n为奇数时,由于被积函 数是奇函数,所以
E X n 0 .
返回主目5 录
第四章 随机变量的数字特征
(2).当n为偶数时,由于被积函 数是偶函数,所以
EX n
2 n
y
n
e
y2 2
E X n
n
22
n
n
1
n
1
n
22
n
n
1
n
3
n
3
2 2 2 2 2
n
22
n
n
1
n
3
1
1
22
2 2
n
22
n
n 1!!
n
22
n n 1!!
返回主目7 录
第四章 随机变量的数字特征
因而,
§5 矩
E X n
n n 1!!
0
n为偶数 n为奇数
其中,
135 n n为奇数 n!! 2 4 6 n n为偶数

概率论第四章

概率论第四章

一、选择题1.设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y(A)相关(B)不相关(C)独立(D)不独立2. 将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于(A)-1 (B)0 (C)(D)13. 对于任意二维随机变量X和Y,与命题“X和Y不相关”不等价的是(A)EXY=EXEY (B)Cov(X,Y)=0(C)DXY=DXDY (D)D(X+Y)=DX+DY4. 假设随机变量X在区间【-1,1】上均匀分布,则U=arcsinX和V=arccosX的相关函数等于(A)-1 (B)0 (C)0.5 (D)15. 设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差>0,记=,则~与的相关系数为(A)-1 (B)0 (C)(D)16. 设随机变量X的方差存在,并且满足不等式P||X-EX|3|,则一定有(A)DX=2 (B)P||X-EX|3|(C)DX2 (D)P||X-EX|3|7. 设随机变量,,…,相互独立同分布,其密度函数为偶函数,且D=1,…,n,则对任意,根据切比雪夫不等式直接可得(A)P{||<} (B)P{||<}(C)P{||<} (D)P{||<}二、填空题1. 两名射手个向自己的靶射击,直到有一次命中时该射手才(立即)停止射击,如果第i名射手每次命中概率为(0<,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为。

2. 将长度为L德邦随机折成两段,则较短段的数学期望为。

3. 设随机变量X和Y的相关系数为0.9,若Z=2X-1,则Y与Z的相关系数为。

4. 设随机变量X与Y的相关系数为0.5,EX=EY=0,E=E=2,则E= 。

5. 设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则P{0<X+Y<10}三、计算题与应用题1. 设某网络服务器首次失效时间服从E(λ),先随机购得4台,求下列事件的概率:(I)事件A:至少有一台的寿命(首次失效时间)等于此类服务器的平均寿命;(II)事件B:有且仅有一台寿命小于此类服务器期望寿命。

概率论与数理统计(叶慈南 刘锡平 科学出版社)第4章 多维随机变量(r.v.)及其分布

概率论与数理统计(叶慈南 刘锡平 科学出版社)第4章 多维随机变量(r.v.)及其分布

fY
(
y
)
=
π2
1− y2, 0,
− 1 ≤ y ≤ 1. 其它
28
2. 二维正态分布 p97
(X,Y)的概率密度为
f (x, y) =
1
e 2(
−1 1− ρ
2
)

(
x
− µ1 σ2
1
)2
−2
ρ
(
x

µ1 )( σ 1σ
y
2

µ2
)
+
(
y
− µ2 σ2
2
)2

2πσ σ 1 − ρ 2 12
f ( x, y)dy
−∞
称为(X,Y)关于X的边缘概率密度。
∫ fY ( y) =
+∞
f ( x, y)dx
−∞
称为(X,Y)关于Y的边缘概率密度。
20
例p102 设 ( X ,Y )的概率密度是
f
(
x,
y)
=
cy(2 −

0,
x
),
0 ≤ x ≤ 1, 0 ≤ y ≤ x ,
其它
求 (1) c 的值; (2) 两个边缘密度; (3) P{X<1/2}.

pi j

p.j
… … … … ….. … …

p1 . p2 .

pi . …
1
18
3
例 将一枚硬币掷 3 次, 以X表示前 2 次中出现 H的次数, 以Y表示 3 次中出现H的次数. 求X,Y 的联合分布律以及(X,Y)的边缘分布律.
19
三、连续型(X,Y)的边缘概率密度

《概率论》第4章_协方差及相关系数

《概率论》第4章_协方差及相关系数
X ,Y互不相关
12/14 12/14
指 X ,Y之间没有线 性关系, 性关系,但可能有 其它关系
2 设 ( X ,Y) ~ N(µ1, µ2,σ12 ,σ2 , ρ), 则 ρ =0 相互独立 X ,Y相互独立 ρXY = 0
X ,Y互不相关
第四章 随机变量的数字特征
§3 协方差及相关系数 设 X 的概率密度为: 的概率密度为:
相关
第四章 随机变量的数字特征
§3 协方差及相关系数
Y
8/14
Y
Y = a0+b0 X ( b0 < 0 )
Y
Y= a0 +b0 X ( b0 > 0 )
O
ρXY = 1
Y
X
O
Y
ρXY = − 1
y = a0 +b0 x ( b0 < 0 )
X
O
y = a0 +b0 x ( b0 > 0 )
ρσ1σ2p{− −t /1 [∞x − µ−u / 2 ( 2 ) ∞ 2 f (x, y) = ex = e dt ⋅ u e du 2π σ 1− ρ π ∫−∞ 2(1− ρ )∫−∞ σ σ 2 (x − µ )( y − µ 2) ( y − µ ) − 2ρ σ1σ2σ − ρ + −t / 2 ]}∞ −u / 2 1 ∞ + σ te σ dt ⋅ ∫−∞ ue du ∫−∞ − µ x − µ 1 = ex − π 1 p{ 2 [( yσ − ρ σ ) + (1− ρ ) (x − µ ) ]} ( σ 2πσ σ 1− ρρσ1σ 2 2 1− ρ ) = −µ 2π µ2π = ρσ1− µ σ y 2π x− 1 x 21 2 令 t = 1 2( −ρ ), u = , J =1 σ σ1 σ1 1− ρ ρσ1σ2 Cov( X2Y ) , = =ρ ∴ ρXY = D( X ) D(Y) σ1σ2

概率论 正态分布

概率论 正态分布

概率论正态分布概率论&colon;正态分布第四章正态分布第一节第二节第三节第四节第五节正态分布的密度函数正态分布的数字特征正态分布的线性性质二维正态分布中心极限定理正态分布的密度函数正态分布是实践中应用最为广泛,在理论上研究最多的分布之一,它在概率统计中占有特别重要的地位.比如,考察一群人的身高,个体的身高作为一个随机变量,其取值特点是:在平均身高附近的人较多,特别高和特别矮的人较少.一个班的一次考试成绩、测量误差等均有类似的特征.高斯在研究误差理论时曾用它来刻画误差,因此很多文献中亦称之为高斯分布. 进一步的理论研究表明,一个变量如果受到大量独立的因素的影响(无主导因素),则它一般服从正态分布,这是中心极限定理探讨的问题.一. 一般正态分布1. 定义若随机变量X的密度函数为1 2 2 f ( x) e 2其中 x ( x )2式中为实数, >0 .则称X服从参数为 ,2的正态分布,亦称高斯分布.记为N(, 2).可表为X~N(, 2). 图象见右上角正态分布有两个特性: (1) 单峰对称密度曲线关于直线x=对称1 f()=maxf(x)= 2(2) 的大小直接影响概率的分布越大,曲线越平坦; 越小,曲线越陡峻. 正态分布也称为高斯(Gauss)分布N ( 4,3 / 5)N ( 4,1)N ( 4,7 / 5)二. 标准正态分布参数=0,2=1的正态分布称为标准正态分布,记作X~N(0, 1)。

(x) 其密度函数为1 (x)2 ( x )x2 e 24 2 0(1) (0)=0.5( x ) P { X x}t2 x 1 e 2 2(2) (+∞)=1;dt , xf ( x) 1 e 2(3) (x)=1-(-x). 一般的概率统计教科书均附有标准正态分布表供读者查阅(x)的值.(P328附表1)如,若 X~N(0,1),(0.5)=0.6915, P{1.32正态分布的数字特征 (一) 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx(二)标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx三. 一般正态分布概率的计算若X~N(,2),>0,则有F ( x ) P { X x}x 1 e 2 (t ) 2 2 2x }F ( x) P{X x} P{ P{Z ( x ).} ( x ) /t2 1 e 2 dt 2一般地,有例1 设随机变量 X ~ N (1, 2 ) , 求 P{ 1.6 X 2.4} 解 P{ 1.6 X 2.4} P{ 1.6 1 X 1 2.4 1} P{ 2.6 X 1 1.4}P{ 2.6 / 2 ( X 1) / 2 1.4 / 2} P{ 1.3 ( X 1) / 2 0.7}(0.7) ( 1.3)(0.7) [1 (1.3)] 0.7580 [1 0.9032] 0.6612 .P{a X b} P{a X b } a b a Xb P{ } P{ Z } b a P{Z } P{Z } Z ~ N (0,1) b a( ) ( ) 2例2. 设 X N(,2),求P{-3解 P{ 3 X 3 } P{( 3 ) X( 3 ) } P{3 X 3 } P{ 3 X3 } P{ 3 ( X ) / 3} (3) ( 3)(3) [1 (3)] 2 (3) 1 0.9973本题结果称为3原则.在工程应用中,通常认为P{|X|≤3} ≈1,忽略{|X|>3}的值.如在质量控制中, 常用标准指标值±3作两条线,当生产过程的指标观察值落在两线之外时发出警报,表明生产出现异常.例 3 设随机变量 X ~ N ( 2, 2 ) , 且 P{2 X 4} 0 .3, 求 P{ X0}. 随机变量解 P{2 X 4} P{0 ( X 2) / 2 / } 标准化(2 / ) (0) 0.3, (2 / ) 0.3 (0) 0.8P{ X 0} P{( X 2) / 2 / } ( 2 / ) 1 (2 / ) 1 0.8 0.2 例 4 设随机变量 X ~ N ( 3, 4 ) , 且常数 C 满足 P{ X C } P{ X C }, 求常数 C . 解由P{ X C} P{ X C}, 即 1 P{ X C} P{ X C} 所以 P{ X C} 0.5 X 3 C 3 C 3 另一方面 , P{ XC} P{ } ( ) 0.5 2 2 2 C 3 0 , C 3. 2例 4(2021年) ( A)设 X ~ N (0 , 1), 对于给定的 (0,1), 数 ( B)满足 P{ X } . 若 P{ X x} , 则 x 等于( D) 1解 P { X x} P { x X x}1 P{ X x}2 故 x 1一种电子元件的使用寿命X(小时)服从正态分布N(100,152),某仪器上装有3个这种元件,三个元件损坏与否是相互独立的.求:使用的最初90小时内无一元件损坏的概率. 解:设Y为使用的最初90小时内损坏的元件数,则Y~90 100 ) (0.67) 0.2514 其中 p P{ X 90} ( 15P{Y 0} (1 p ) 3 0.4195 故2 (2021年) 设随机变量X ~ N ( 1 , 12 ), Y ~ N ( 2 , 2 ),且 P{ X 1 1} P{ Y 2 1}, 则必有 ( A) 1 2 . ( B ) 1 2 . (C ) 1 2 . ( B) 1 2 .第二节正态分布的数字特征一. 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx例1 已知随机变量X的密度函数为 1 x 2 2 x 1 f ( x) e ,x 求 E ( X )、D ( X ) .f ( x)x 2 x 11 e2 (1/ 2)( x 1) 2 2(1/ 2 ) 21 故 1, 2例2 设X服从N(0,1)分布,求E(X2),E(X3)1 解 f (x) e2 x2 x2 2 E ( X 2 ) x 2 f ( x)dxe dx 2 2 2x de 2x 2x 2 eE( X )3 xf ( x) dxx2 x3 2 e dxx2 e 2 dx 12021年(数一) 设随机变量X的分布函数为F ( x) 0.3 ( x) 0.7 ( 其中 ( x)为标准正态分布函数, 则EX ( A)0. ( B )0.3. (C )0.7. ( D)1.x 1 ), 2分析 : EX xf ( x )dx ,因此先求随机变量 X的概率密度函数 f ( x ).解 f ( x ) F ( x ) [ 0 . 3 ( x ) 0 . 7 (0 .7 x 1 0 . 3 ( x ) ( ) 2 2于是 EXx 1 ) ] 2xf ( x ) dxx[0.3 ( x )0 .7 x 1 ( )]dx 2 20.7 x 1 0.3 x ( x)dx x ( )dx 2 21 0 .3 x e 20 .7 dx x 21 x 12 ( ) 2 21 x 12 ( ) 1 2 2 e dx 20 .7 1 x 2 e 21 x 12 ) ( 0 .7 1 2 2 dx dx x 2 e 2x 1 令 t , 则dx 2dt , x 2t 1. 代入上式得 20 .7 1 x 2 e 21 x 12 ) ( 2 20 .7 1 dx (2t 1) 2 e 21 0 .7 2t e2 22 dt0 .7 1 2 e 20. 7 10 2 e 22dt 0.7dt 0.7.设随机变量 X与 Y相互独立 , 且 X服从标准正态分布 ,1 Y的概率分布为 P{Y 0} P{Y 1} .记 FZ ( z )为随机变量2 Z XY 的分布函数 , 则函数 FZ ( z )的间断点个数为 ( A) 0 . ( B )1. (C ) 2 . ( D )3 .解 FZ (z) P{Z z} P{XY z}P{Y 0}P{XY z | Y 0} P{Y 1}P{XY z | Y 1}1 [ P{ XY z | Y 0} P{ XY z | Y 1}]2 1 [ P{ X 0z | Y 0} P{ X 1 z | Y 1}] 2 为什么? 1 [ P { X 0 z }P { X z }] 21 (1)当z 0时, FZ ( z ) [ P{ X 0 z} P{ X z}] 21 1 [ P( ) P{ X z}] [0 P{ X z}]2 21 1 P{ X z} ( z )2 2 1 (2)当z 0时, FZ ( z ) [ P{ X0 z P{ X z}] 21 1 [ P() P{ X z}] [1 P{ X z}]2 2所以 , z 0为函数 FZ ( z )的间断点 . ( B )正确 .1 [1 ( z )] 2例 3 某地抽样调查结果表明 , 考生的外语成绩 (百分制) 近似服从正态分布 , 平均成绩为 72 分, 而 96以上的考生占总数的 2.3%, 求考生的外语成绩在 60 分至 84 分之间的概率 . 解设 X —考生的外语成绩, 依题设知X ~ N ( , 2 ), 其中72, 下求方差 2 X 96 由题设 P{ X 96} 0.023 P{ } 0.023 X 96 96 1 P{ } 0.023, 即 1 ( ) 0.023) 0.977,96 96 72 2, 12 2 2于是 , P{60 X 84 } P{60 72 X 84 72 X 1} P{ } P{ 1 12 12(1) (1) (1) [1 (1)]2 (1) 1 2 0.841 1 0.682例 4 假设测量的随机误差 X ~ N ( 0,10 2 ).试求在 100 次独立重复测量中 , 至少有三次测量的绝对值大于 19 .6 的概率 ,并利用泊松分布求出的近似值 . 解先求每次测量误差的绝对值大于19.6的概率 p p P{ X 19.6} 1 P{ X19.6} 1 P{19.6 X 19.6}1 P{ 19.619.6 0 X 19.6 0 } 1 P{ 10 10 X1 P{ 1.96 1.96} 1 [ (1.96) ( 1.96)]1 [ (1.96) ( 1.96)] 1 (1.96) [1 (1.96)]2 2 (1.96) 2 2 0.975 2 1.95 0.0519.6设 Y — 100次测量中绝对值大于19.6, 则Y ~ B (100,0.05)于是所求的概率为 P{Y 3} 1 P{Y 0} P{Y 1} P{Y2}0 1 1 C100 (0.05) 0 (0.95)100 C100 (0.05)1 (0.95)99 2 C100 (0.05) 2 (0.95)98np 100 0 .05 5, 故由泊松分布得52 1 e (1 ) 1 e 5 (1 5 ) 0.87 2 2习作题 1.设随机变量X N(0,1),Y U(0,1),Z B(5,0.5),且 X,Y,Z独立,求随机变量U=(2X+3Y)(4Z-1)的数学期望答:27 E (U ) E (2 X 3Y ) E (4 Z 1) 22 设随机变量 X 1 ,..., X n 相互独立,且均服从 N ( , 2 )1 n 分布,求随机变量 X X i 的数学期望 n i 1 1 n 答: E ( X ) E ( X i ) n i 11. 设随机变量X B(12,0.5),Y N(0,1), COV(X,Y)=-1,求V=4X+3Y+1与W=-2X+4Y 的方差与协方差.2. 某单位招聘2500人,按考试成绩从高分到低分依次录用,共有10000人报名.假定报名者的考试成绩X 服从正态分布 N ( , 2 ), 现已知90分以上有359人, 60分以下的有1151人,求被录用者中的最低分数.第三节正态分布的线性性质一. 线性性质例1 设随机变量X服从标准正态分布,求随机变量 Y a X b ~ N (b, a2 ) Y=aX+b的密度函数,且有y b 解: Y=ax+b关于x严单,反函数为 h( y ) ay b fY ( y) f X ( ) h( y) 1 a 2E (Y )y b a 2 e( y b ) 2 2a2y e 2 a( y b ) 2 2a 2dyax b 2x2 e 2 dxD (Y ) E{[YE (Y )]2 } [ y E (Y ) ]2 f ( y ) dy( y b)2 2 a 2 2 e dy a 2 a 直接由Y的密度函数,可观察到Y的数学期望与方差1 2a2 , 由 f ( y) e 2 a 可知随机变量Y服从正态分布, ( y b) 2( y b)2而且 E (Y ) b , D (Y ) a 2定理1 设随机变量X 服从正态分布N(, 2),则X的线性函数 Y a b X 也服从正态分布,且有 Y a bX ~ N ( a b , a 2 2 )已知X N(,2),求 Y解 Y X 关于x严格单调,反函数为 h( y) y 故 fY ( y) f X [h( y)] | h( y) | f X (y )y 2你能用正态分布的线性性质求解吗?二. 正态分布的可加性定理2 设随机变量X1,X2 相互独立且Xi 服从正态分布N(i ,i2),i=1,2, 则 2 2 2 2 a1 X 1 a2 X 2 ~ N (a1 1 a2 2 , a1 1 a2 2 ) 定理3 设随机变量X1, X2,..., Xn独立且Xi 服从正态分布N(i ,i2),i=1,...,n, 则a i X i ~ N ( a i i , a i2 i2 )i 1 i 1例1. 设随机变量X与Y独立且均服从标准正态分布,求证:Z=X+Y服从N(0,2)分布.解依题设 X ~ N ( 0,1) , Y ~ N ( 0,1) ; 故有E ( X ) 0 , D ( X ) 1 , E (Y ) 0 , D (Y )于是由定理 2可知 X Y服从正态分布 , 且有E ( X Y ) E ( X ) E (Y ) 0 0 0D ( X Y ) D ( X ) D (Y ) 1 1 2,即 X Y ~ N (0 , 2 )例2. 设随机变量X与Y独立,且X~ N(1,2),Y~N(0,1). 求证:(1)Z=2X-Y+3的密度函数;(2)P{2D ( Z ) D ( 2 X Y 3) 4 D ( X )E (Y ) 8 1 9Z 2 X Y 3 ~ N (5,9) 2 Z 8 Z (2) P{2 Z 8} P{ } P{ 1 1} (1) (1) (1) [1 (1)] 即2 (1) 1 2 0.8413 1 0.6826一. 密度函数若随机变量(X,Y)的密度函数为f ( x, y )1 212 11 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 ) 2 [ ] 2 22 2 1 2 2( 1 ) 2 1其中,1、2为实数,1>0、2>0、| |( X , Y ) ~ N ( 1 , 2 , , , )2 1 2 2二、边缘密度函数 2 设(X, Y)~f(x,y),(x,y)R ,则称 f X ( x) f ( x, y )dy 为(X,Y)关于X的边缘密度函数;同理,称 fY ( y ) f ( x,y )dx为(X, Y)关于Y的边缘密度函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 随机变量的数字特征
数学期望
方差
协方差及相关系数
矩、协方差矩阵
在前面的课程中,我们讨论了随机变量及其分布, 如果知道了随机变量X的概率分布,那么X的全部概 率特征也就知道了.
然而,在实际问题中,概率分布一般是较难确定 的. 而在一些实际应用中,人们并不需要知道随机变 量的一切概率性质,只要知道它的某些数字特征就够 了.
对收敛,则Y=g(X)的期望E(g(X))为
E (Y ) E[ g ( X )] g ( xk )pk .
k 1

推论: 若(X, Y) ~P{X=xi ,Y=yj}= pij, i, j=1,2,… , 则 Z= g(X,Y)的期望
E ( Z ) E[ g( X , Y )]
E ( X ) 10 (3 / 6) + 30 (2 / 6) + 50 (1/ 36) + 70 (3 / 36) + 90 (2 / 36) 27.22(分)
定义 2
若X~f(x), -<x<,




| x | f ( x )dx ,
则称 E ( X )
xf ( x )dx 为X的数学期望.
数学期望简称期望,又称为均值,是描 述随机变量X取值的平均大小的一个量.
E(X)完全由随机变量X的概率分布所确定.
二、 几个重要随机变量的期望
1.0-1分布的数学期望
X Pk
1
0
p 1 p
E(X)=p
2.二项分布b(n,p)
k P{ X k } Cn pk (1 p)nk , k 0,1,..., n
2
1 , a
x2 2



y 2
e
yb a 2
2
ax + b 1 e dy a 2

dx b.
定理2. 若X~f(x), -<x<, 若 绝对收敛,则Y=g(X)的期望





g( x ) f ( x )dx
E (Y ) E[ g( X )]
101 1000 [ 0.99100 ] 644 100
例9 若X~b(n, p), 求E(X). 解:设
1 第i次试验事件A发生 Xi 0 第i次试验事件A不发生
则 E( X i ) p, X
n
X
i 1
n
i
E ( X ) E ( X i ) p np.
1 3
0
1 3
1
1 3
求随机变量Y=X2 的数学期望.
2 1 E (Y ) 1 + 0 3 3 2 2 1 2 1 2 1 1 + ( 1) + 0 . 3 3 3 3
解: Y Pk
1
2 3
0
1 3
定理1. 若 X~P{X=xk}=pk, k=1,2,…,若∑g(x)pk绝
x0 x0

,
E ( X ) xf ( x )dx x e dx
0

1

x


xe

x

0
+ e dx e
0


x
x

0
.
6. 正态分布N(, 2)
X ~ f ( x) 1 2
( x )2 2 2
由频率和概率的关系
这是 以频率为权的加权平均
不难想到,在求废品数X 的平均值时,用概率代替 频率,得平均值为
这是 以概率为权的加权平均
0 p0 + 1 p1 + 2 p2 + 3 p3
这样得到一个确定的数. 我们就用这个数作为随机 变量X的平均值 .
一、 定义
定义 1 若X~P{X=xk}=pk, k=1,2,…,且
.
4. 均匀分布X~U(a, b)
1 , a x b, X ~ f ( x) b a 0, 其他 , b x a+b E ( X ) xf ( x )dx dx . a ba 2
5.指数分布
x 1 e X ~ f ( x ) 0
0.95.
例6:设X~N(0,1), 求Y=aX+b的数学期望(其中a>0).
yb 解: y=ax+b关于x严单,反函数为 h( y ) , a
则Y的概率密度为
yb 1 fY ( y ) f X ( ) a a
E (Y )
1 2
e
yb a 2
解: 设旅客的候车时间为X(以分记) (1) 旅客8:00到达 X 10 30 50 X 的分布率为 P 1/6 3/6 2/6
E ( X ) 10 (1/ 6) + 30 (3 / 6) + 50 (2 / 6) 33.33
(2)旅客8:20到达, X 的分布率为
X P 10 3/6 30 50 70 90 2/6 (1/6) (1/6) (3/6) (1/6) (2/6) (1/6)
j 1

g( x , y
i 1 i

j
) pij .
例5 设随机变量(X,Y)的分布律如下,求E(XY)
x 0 1 y 1 2 0.15 0.15 0.45 0.25
解: E ( XY ) 0 1 0.15 +0 2 0.15
+1 1 0.45 +1 2 0.25


4. 若X与Y独立,则E(XY)=E(X)E(Y). 证明: 设(X,Y) ~ f(x, y)

E ( XY )


xyf ( x, y)dxdy
X


xyf
X
( x ) fY ( y )dxdy


xf

( x )dx yfY ( y )dy E ( X ) E (Y )
4
3
x2 2
dx 0
x E( X ) e dx 2 x2 3 x de 2 2 x2 2 x 3 e 2 dx 3 2
4
x2 2
四.数学期望的性质
1. E(c)=c,c为常数;
2. E(cX)=cE(X), c为常数;





xf ( x, y)dxdy + yf ( x, y)dxdy

x[


f ( x, y )dy]dx + y[ f ( x, y )dx]dy


xf
X
( x )dx + yfY ( y )dy E ( X ) + E (Y )
一般来说,若统计n天, (假定小张每天至多出 三件废品)
n0天没有出废品; n1天每天出一件废品; n2天每天出两件废品; n3天每天出三件废品.
可以得到n天中每天的平均废品数为
n0 n3 n1 n2 0 + 1 + 2 + 3 n n n n
n0 n3 n1 n2 0 + 1 + 2 + 3 n n n n


g( x ) f ( x )dx .

推论 若(X,Y)~ f (x, y), 且

g( x, y) f ( x, y)dxdy

绝对收敛, 则 Z=g(X, Y)的期望
E ( Z ) E[ g( X , Y )]





g( x , y ) f ( x , y )dxdy .
1
10
X Xj
j 1
101
Pj (99%)100
1 (99%)100
E( X j ) 0.99100 + (101)(1 0.99100 )
E ( X ) E ( X j ) E ( X j )
j 1 j 1 10 10
10[0.99100 + (101)(1 0.99100 )]
i 1
i 1
n
例10 设随机变量XN(0,1),YU(0,1),Zb(5,0.5),且 X,Y,Z独立,求随机变量U=(2X+3Y)(4Z-1)的数学期 望. 27 答: E (U ) E (8 XZ 2 X + 12YZ 3Y ) 2 27 E (U ) E (2 X + 3Y ) E (4 Z 1) 2 例11 设随机变量 X 1 ,..., X n 相互独立,且均服从 1 n N ( , 2 )分布,求随机变量 X X i n i 1 的数学期望 n 答:
则 E ( X ) 0 0.1 + 1 0.2 + 2 0.7 1.6 设离散型随机变量X的分布律为: X P 0 0.7 1 0.2 2 0.1
则 E ( X ) 0 0.7 + 1 0.2 + 2 0.1 0.4 此例说明了数学期望更完整地刻化了X 的均值状态。
n! E( X ) k pk (1 p)n k k 1 k !( n k )!
n
n! k n k p (1 p) k 1 ( k 1)!( n k )!
n
( n 1)! np pk 1 (1 p)n1( k 1) k 1 ( k 1)!( n k )!
相关文档
最新文档