高考解答题训练2
高考解答题序列训练(一对一)(二)
高考解答题序列训练(二) 用时1、已知向量sin,cos ,cos ,sin 3366x x A A ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭a b ,函数()f x a b =∙(0,A x R >∈),且(2)2f π=.(1)求函数()y f x =的表达式;(2)设,[0,]2παβ∈, 16(3),5f απ+=5203213f πβ⎛⎫+=- ⎪⎝⎭;求cos()αβ+的值2、某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10﹪,可能损失10﹪,可能不赔不赚,这三种情况发生的概率分别为21,41,41;如果投资乙项目,一年后可能获利20﹪,也可能损失20﹪,这两种情况发生的概率分别为)(和1=+βαβα. (1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的概率分布及ξE ;(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.3、如图1,在Rt △ABC 中,∠C=90°,D 、E 分别是AC,AB 上的中点,将△ADE 沿DE 折起到△A 1DE 的位置,作A 1F ⊥CD ,垂足为F,如图2.(1)求证:DE ∥平面A 1CB;(2)求证:A 1F ⊥BE;(3)若∠A=45°,AC=2,在线段CD 上是否存在点F ,使得二面角A 1-BE-F 为45°。
若存在,则指出点F 的位置,若不存在,请说明理由4.数列{}n a 的前n 项和为n S ,11a =,121n n a S +=+,等差数列{}n b 满足353,9b b ==, (I )分别求数列{}n a ,{}n b 的通项公式;(II )若对任意的*n N ∈,1()2n n S k b +⋅≥恒成立,求实数k 的取值范围.一对一备考作业(二)答案1、解析:(1)依题意得()sincos cos sin 3636x x f x A A ππ=+sin 36x A π⎛⎫=+ ⎪⎝⎭又(2)2f π=得2sin 236A ππ⎛⎫+=⎪⎝⎭,即 5sin 26A π=,∴4A = ∴()4sin 36x f x π⎛⎫=+ ⎪⎝⎭(2)由16(3)5f απ+=得1164sin (3)365παπ⎡⎤++=⎢⎥⎣⎦,即164sin 25πα⎛⎫+= ⎪⎝⎭∴4cos 5α=, 又∵[0,]2πα∈,∴3sin 5α=, 由5203213f πβ⎛⎫+=- ⎪⎝⎭得15204sin (3)32613ππβ⎡⎤++=-⎢⎥⎣⎦,即5sin()13βπ+=- ∴5sin 13β=, 又∵[0,]2πβ∈,∴12cos 13β= 4123533cos()cos cos sin sin 51351365αβαβαβ+=-=⨯-⨯= 2、解:(1)依题意,ξ的可能取值为1,0,-1ξ的分布列为ξE =2141-=41(2)设η表示10万元投资乙项目的收益,则η的分布列为2422-=-=αβαηE 依题意要求42,1416αα-≥≥…3、解4.解.(I )由121n n a S +=+----①得121n n a S -=+)2(≥n ----②, ①-②得112()n n n n a a S S +--=-,),2(31≥=∴+n a a n n ; 由121n n a S +=+得112312a a a =+= 13-=∴n n a5326,3,3(3)336n b b d d b n n -==∴=∴=+-⨯=-;(II )1(1)13311132n n n n a q S q ---===--,311()3622n k n -∴+≥-对*n N ∈恒成立, 即363nn k -∴≥对*n N ∈恒成立, 令363n n n c -=,11363927333n n n n nn n n c c -----+-=-=, 当3n ≤时,1n n c c ->,当4n ≥时,1n n c c -<, max 32()9n c c ∴==,29k ≥。
2025年新高考数学模拟试题二带解析
2025年新高考数学模拟试题(卷二)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知集合{}2{Z14},40A x x B x x x =∈-≤<=-≤∣∣,则A B = ()A .{}1,2,3,4B .{}1,2,3C .{}0,1,2,3D .()0,42.已知复数z =z 的共轭复数为()A .22i-B .22i+C .11i44-+D .11i44--3.沙漏是我国古代的一种计时工具,是用两个完全相同的圆锥顶对顶叠放在一起组成的(如图).在一个圆锥中装满沙子,放在上方,沙子就从顶点处漏到另一个圆锥中,假定沙子漏下来的速度是恒定的.已知一个沙漏中沙子全部从一个圆锥中漏到另一个圆锥中需用时1小时.当上方圆锥中沙子的高度漏至一半时,所需时间为()A .12小时B .78小时C .34小时D .23小时4.若π13πtan sin123α⎛⎫-= ⎪⎝⎭,则πtan 4α⎛⎫-= ⎪⎝⎭()A B .5-C .9D .55.二项式210(1)(1)x x x ++-展开式中4x 的系数为()A .120B .135C .140D .1006.已知函数13x y m-=+(0m >且1m ≠)图像恒过的定点A 在直线()10,0x ya b a b+=>>上,若关于t 的不等式253a b t t +≥++恒成立,则实数t 的取值范围为()A .[]6,1-B .[]1,6-C .(][),16,-∞-⋃+∞D .(][),61,-∞-⋃+∞7.已知F 是双曲线E :()222210,0x y a b a b-=>>的右焦点,O 为坐标原点,A 是E 的右支上一点,若=AF a ,OA b =,则E 的离心率为()A .2B .2C D 8.设函数()f x 在R 上的导函数为()f x ',()()0f x f x +-=,对任意,()0x ∈+∞,都有()()f x f x x '>,且()12f =,则不等式22[(1)]24f x x x -<-+的解集为()A .(,0)(2,)-∞+∞ B .()0,2C .()1,3D .(,1)(3,)-∞+∞ 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数()()2sin 2(0)f x x ωϕω=+>,以下正确的是()A .若()f x 的最小正周期为π,则2ω=B .若()()124f x f x -=,且12minπ2x x -=,则1ω=C .当0,N ϕω=∈时,()f x 在ππ,55⎡⎤-⎢⎥⎣⎦单调且在ππ,33⎡⎤-⎢⎥⎣⎦不单调,则1ω=.D .当π12ϕ=时,若对任意的x 有()π3f x f ⎛⎫≤ ⎪⎝⎭成立,则ω的最小值为5810.在棱长为2的正方体1111ABCD A B C D -中,点M ,N ,P 分别是线段11C D ,线段1C C ,线段1A B 上的动点,且110MC NC =≠.则下列说法正确的有()A .1⊥MN AB B .直线MN 与AP 所成的最大角为90°C .三棱锥1N D DP -的体积为定值D .当四棱锥11P D DBB -体积最大时,该四棱锥的外接球表面积为9π11.已知圆22:(1)(1)4M x y +++=,直线:20+-=l x y ,P 为直线l 上的动点,过P 点作圆M 的切线PA ,PB ,切点为A ,B ,则下列说法正确的是()A .四边形MAPB 面积的最小值为4B .线段AB 的最小值为C .当直线AB 的方程为0x y +=时,APB ∠最小D .若动直线1//l l ,1l 且交圆M 于C 、D 两点,且弦长CD ∈,则直线1l 横截距的取值范围为2,0)(4,2)⋃-第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.盲盒,是指消费者不能提前得知具体产品款式的玩具盒子.已知某盲盒产品共有3种玩偶,小明共购买了5个盲盒,则他恰能在第5次集齐3种玩偶的概率为__________.13.过点()1,P a 作曲线ln y x x =的切线,若切线有且只有两条,则实数a 的取值范围是___________.14.已知函数()f x 定义域为(0,)+∞,(1)e f =,对任意的12,(0,)x x ∈+∞,当21x x >时,有()()21121212e e x xf x f x x x x x ->-(e 是自然对数的底).若(ln )2e ln f a a a >-,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 中,11a =,前n 项和23n n n S a +=.(1)求2a ,3a ,及{}n a 的通项公式;(2)证明:12311112na a a a ++++< .16.(15分)某加盟连锁店总部对旗下600个加盟店中每个店的日销售额(单位:百元)进行了调查,如图是随机抽取的50个加盟店的日销售额的频率分布直方图.若将日销售额在(]16,18的加盟店评定为“四星级”加盟店,日销售额在(]18,20的加盟店评定为“五星级”加盟店.(1)根据上述调查结果,估计这50个加盟店日销售额的平均数和中位数(同一组中的数据用该组区间的中点值为代表,结果精确到0.1);(2)若该加盟连锁店总部旗下所有加盟店的日销售额(),6.25X N μ ,其中μ近似为(1)中的样本平均数,根据X 的分布估计这600个加盟店中“五星级”加盟店的个数(结果精确到整数);(3)该加盟连锁店总部决定对样本中“四星级”及“五星级”加盟店进一步调研,现从这些加盟店中随机抽取3个,设Y 为抽取的“五星级"加盟店的个数,求Y 的概率分布列与数学期望.参考数据:若()2,X N μσ ,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈.17.(15分)如图,直三棱柱111ABC A B C -的体积为12,A BC 的面积为2(1)求点1C 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11A B BA ,求二面角A BD C --的正切值.18.(17分)已知椭圆()2222:10x y C a b a b+=>>,过C 的右焦点F 且垂直于长轴的弦AB 的长为1,焦点F 与短轴两端点构成等边三角形.(1)求椭圆C 的方程;(2)过点()P的直线l 与椭圆C 交于M ,N 两点,点E 在x 轴上且对任意直线l ,直线OE 都平分MEN ∠(O 为坐标原点).①求点E 的坐标;②求EMN 的面积的最大值.19.(17分)已知函数()e 1xf x x =-.(1)若直线e 1=--y kx 与曲线()y f x =相切,求k 的值;(2)若()0,x ∀∈+∞,()ln f x x ax >-,求a 的取值范围.2025年新高考数学模拟试题(卷二)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
最新高考数学三角函数解答题合集2(20道题及答案解析)
最新高考数学三角函数解答题合集2(20道题及答案解析)1.在锐角△ABC中,内角A、B、C所对的边分别是a、b、,若C=45°,b=4 √5,sinB= 2√55.(1)求c的值;(2)求sinA的值.2.设向量a⇀=(cosx,1),b⇀=( √3,4sinx).(1)若a⇀⊥b⇀,求tanx的值;(2)若( a⇀+b⇀)∥b⇀,且x∈[ 0,π4],求向量b⇀的模.3.在ΔABC中,角A,B,C的对边分别为a,b,c,且b cos C=2a cos B−c cos B.(1)求cos B的值;(2)若b=√3,求a+c的最大值.4.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.(1)求A;(2)若a=2,b=c,求△ABC的面积.5.在△ABC中,内角A,B,C所对应的边分别为a,b,c,已知b=6,c=4,B=2C. (Ⅰ)求cosC的值;(Ⅱ)试求△ABC的面积.6.在△ABC中,角A,B,C的对边分别为a,b,c,且满足2c−ba =cosBcosA.(1)求角A的大小;(2)若D为BC边上一点,且CD=2DB,b=3,AD=√21,求a.7.将函数f(x)=sin x的图象向右平移π3个单位,横坐标缩小至原来的12倍(纵坐标不变)得到函数y=g(x)的图象.(1)求函数g(x)的解析式;(2)若关于x的方程2g(x)-m=0在x∈[0,π2]时有两个不同解,求m的取值范围.8.如图,在凸四边形ABCD中,AB=1,BC= √3,AC⊥DC,CD= √3AC.设∠ABC=θ.(1)若θ=30°,求AD的长;(2)当θ变化时,求BD的最大值.9.计算:(1)已知cosα=−45,且α为第三象限角,求sinα的值(2)已知tan α=3,计算 4sinα−2cosα5cosα+3sinα 的值.10.在直角坐标系 xOy 中,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 的参数方程为 {x =2+2cosθy =2sinθ (θ为参数),直线 l 经过点 M(−1,−3√3) 且倾斜角为 α .(1)求曲线 C 的极坐标方程和直线 l 的参数方程;(2)已知直线 l 与曲线 C 交于 A, B ,满足 A 为 MB 的中点,求 tan α .11.以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程是 ρcos 2θ−4sinθ=0 ,直线 l 1 和直线 l 2 的极坐标方程分别是 θ=α ( ρ∈R )和 θ=α+π2 ( ρ∈R ),其中 α≠kπ ( k ∈z ).(1)写出曲线 C 的直角坐标方程;(2)设直线 l 1 和直线 l 2 分别与曲线 C 交于除极点 O 的另外点 A , B ,求 ΔOAB 的面积最小值. 12.化简:(1)sin420°cos330°+sin (﹣690°)•cos (﹣660°);(2)sin(π2+α)cos(π2-α)cos(π+α)+sin(π-α)cos(π2+α)sin(π+α).13.在直角坐标系 xOy 中,圆 C 的参数方程为 {x =1+cosαy =sinα ( α 为参数),以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求圆 C 的极坐标方程;(Ⅱ)设点 B 为圆 C 上一点,且 B 点的极坐标为 (ρ0,θ0),θ0∈(−π3,π6) ,射线 OB 绕 O 点逆时针旋转 π3 后得射线 OA ,其中 A 也在圆 C 上,求 |OA|+|OB| 的最大值.14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A2 = 2√55,bccosA=3.(Ⅰ)求△ABC 的面积;(Ⅱ)若 b +c =4√2 ,求a 的值.15.已知向量 a ⃗=(1,cos 2x −√3sin 2x) , b ⃗⃗=(−1,f(x)) ,且 a ⃗//b ⃗⃗ . (1)将 f(x) 表示成x 的函数并求 f(x) 的单调递增区间; (2)若 f(θ)=65 , π3<θ<π2 ,求 cos 2θ 的值.16.已知矩形纸片 ABCD 中, AB =6,AD =12 ,将矩形纸片的右下角沿线段 MN 折叠,使矩形的顶点B 落在矩形的边 AD 上,记该点为E , 且折痕 MN 的两端点M , N 分别在边 AB,BC 上.设 ∠MNB =θ,MN =l , ΔEMN 的面积为S .(1)将l表示成θ的函数,并确定θ的取值范围;(2)求l的最小值及此时sinθ的值;(3)问当θ为何值时,ΔEMN的面积S取得最小值?并求出这个最小值.17.已知关于x的方程2x2−(√3+1)x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)sinθ1−1tanθ+cosθ1−tanθ的值;(2)求m的值.18.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ≤π)一个周期内的图象,将f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把所得图象向右平移π2个单位长度,得到函数g(x)的图象.(1)求函数f(x)和g(x)的解析式;(2)若f(x0)=g(x0),求sin(x0−π3)的所有可能的值;(3)求函数F(x)=f(x)+ag(x)(a为正常数)在区间(0,19π)内的所有零点之和.19.已知A,B,C是球O的球面上三点,且AB=AC=3,BC=3√3,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半.(1)求三角形ABC外接圆的面积;(2)求三棱锥D−ABC体积的最大值.20.已知在△ABC中,∠C为钝角,sin(A+B)=35,sin(A−B)=15.(1)求证:tanA=2tanB;(2)设AB=6,求AB边上的高.答案解析部分1.【答案】(1)解:∵C=45°,b=4 √5,sinB= 2√55.∴由正弦定理可得:c= bsinCb =4√5×√222√55=5 √2(2)解:∵sinB= 2√55,B为锐角,∴cosB= √1−sin2B= √55,sinA=sin(B+C)=sinBcosC+cosBsinC= 2√55× √22+ √22× √55= 3√10102.【答案】(1)解:因为a⇀⊥b⇀,所以√3cos x+4sin x=0因为cos x≠0,所以sin xcos x =−√34,即tan x=−√34.(2)解:因为(a⇀+b⇀)//b⇀,即(cos x+√3,1+4sin x)//(√3,4sin x)所以4sin x(cos x+√3)=√3(1+4sin x),即4sin x cos x=√3,所以sin2x=√32,因为x∈[0,π4],所以2x∈[0,π2],所以2x=π3,即x=π6,此时b⇀=(√3,2),所以|b⇀|=√(√3)2+22=√7.3.【答案】(1)解:因为b cos C=2a cos B−c cos B.所以由正弦定理可得sinBcos C=2sinA cos B−sinC cos B sinBcos C+sinC cos B=2sinA cos B,sin(B+C)=sinA=2sinA cos B,因为2sinA≠0,所以cos B=12.(2)解:由(1)可得B=π3,由bsin B=√3√32=2=2R,且a=2R sin A,c=2R sin C,得a+c=2(sin A+sin C),sin A+sin C=sin A+sin(2π3−A)=√3sin(A+π6),∴a+c=2√3sin(A+π6),又有 θ<A <2π3,∴π6<A +π6<5π6,∴sin(A +π6)max =1 ,(当 A =π3 时,取最大值), ∴(a +c)max=2√3 ,此时 ΔABC 为等边三角形.4.【答案】 (1)解:由c=acosB+bsinA 及正弦定理可得:sinC=sinAcosB+sinBsinA . 在△ABC 中,C=π﹣A ﹣B ,所以sinC=sin (A+B )=sinAcosB+cosAsinB . 由以上两式得sinA=cosA ,即tanA=1,… 又A ∈(0,π), 所以A= π4 .(2)解:由于S △ABC = 12 bcsinA= √24bc ,由a=2,及余弦定理得:4=b 2+c 2﹣2bccosB=b 2+c 2﹣ √2bc , 因为b=c ,所以4=2b 2﹣ √2 b 2 , 即b 2= 2−√2 =4 +2√2 , 故△ABC 的面积S= √24bc= √24b 2= √2+1 .5.【答案】 解:(Ⅰ)在 ΔABC 中,∵ b =6,c =4,B =2C , 则由正弦定理,得b sin B =c sin C,∴ 6sin2C=4sin C,即 62sinC cos C =4sin C.又 sin C ≠0 ,∴ cos C =34 .(Ⅱ)由(Ⅰ)知 cos C =34 ,且 C 为 ΔABC 的内角,∴ sin C =√74,因此 sin B =sin2C =2sin C cos C =2×√74×34=3√78,cos B =cos2C =2cos 2C −1=2×(34)2−1=18 . 在 △ABC 中,有 sin A =sin(π−B −C )=sin(B +C ) =sin B cos C +cos B sin C =5√716.∴ S △ABC =12bc sin A =12×6×4×5√716=15√746.【答案】 (1)解:由已知 (2c −b)cos A =cos B , 由正弦定理有 (2sin C −sin B)cos A =sin A cos B , 整理的 2sin C cos A −sin B cos A =sin A cos B ,即2sin C cos A=sin(A+B)=sin C,又sin C≠0,所以cos A=12,A=π3(2)解:过D作DE//AC交AB于E,ED=13AC=1,∠DEA=2π3,由余弦定理,AD2=AE2+ED2−2AE⋅ED cos2π3,得AE=4,则AB=6,又AC=3,A=π3,则三角形ABC为直角三角形,a=BC=3√3.7.【答案】(1)解:函数f(x)=sinx的图象向右平移π3个单位,横坐标缩小至原来的12倍(纵坐标不变),得到函数y=g(x)=sin(2x- π3)的图象.所以g(x)=sin(2x- π3).(2)解:关于x的方程2g(x)-m=0,所以:g(x)=m2,由于:x∈[0,π2]时,2x- π3∈[−π3,2π3],所以:函数在[−π3,π2]上单调递增,在[π2,2π3]上单调递减.故:√32≤m2<1,则:m的取值范围为[√3,2),所以方程2g(x)-m=0在x∈[0,π2]时有两个不同解,m的取值范围为[√3,2).8.【答案】(1)解:在△ABC中,AC2=AB2+BC2﹣2AB•BC•cos∠ABC,∴AC2=1+3﹣2 √3cos30°=1,∴AC=1在△ACD中,AD2=AC2+DC2=4AC2=4,∴AD=2(2)解:设AC=x,CD= √3x,在△ABC中,AC2=AB2+BC2﹣2AB•BC•cos∠ABC,x 2=4﹣2 √3 cosθ,∵ ACsinθ = ABsin ∠ACB =1sin ∠ACB , ∴sin ∠ACB=sinθx.在△BCD 中,BD= √(√3)2+(√3x)2−2√3⋅(√3x)cos(π2+∠ACB) = √3+3x 2+6xsin ∠ACB = √3+12−6√3cosθ+6x sinθx= √15−6√3cosθ+6sinθ = √15+12(12sinθ−√32cosθ) =√15+12sin(θ−π3) , ∵θ∈(0,π), ∴θ﹣ π3 ∈(﹣ π3 ,2π3),当θ﹣ π3 = π2 ,θ= 5π6时BD 取到最大值3 √39.【答案】 (1)解:∵cos 2α+sin 2α=1,α为第三象限角, ∴ sinα=−√1−cos 2α=−√1−(−45)2=−35(2)解:显然cos α≠0, ∵tanα=3, ∴4sinα−2cosα5cosα+3sinα=4sinα−2cosαcosα5cosα+3sinαcosα=4tanα−25+3tanα=4×3−25+3×3=5710.【答案】 (1)解:由 {x =2+2cosθy =2sinθ ( θ为参数)消去参数,可得 (x −2)2+y 2=4 ,即 x 2+y 2=4x , ∴ 已知曲线 C 的普通方程为 x 2+y 2=4x , ∵ x =ρcosθ , ρ2=x 2+y 2 , ∴ ρ2=4ρcosθ ,即 ρ=4cosθ , ∴ 曲线 C 的极坐标方程为 ρ=4cosθ ,∵ 直线 l 经过点 M(−1,−3√3) ,且倾斜角为 α ,∴ 直线 l 的参数方程: {x =−1+tcosαy =−3√3+tsinα ( t 为参数, 0≤α≤π ).(2)解:设 A, B 对应的参数分别为 t A , t B . 将直线 l 的参数方程代入 C 并整理, 得 t 2−6t(√3sinα+cosα)+32=0 , ∴ t A +t B =6(√3sinα+cosα) , t A ⋅t B =32 . 又 A 为 MB 的中点, ∴ t B =2t A ,∴ t A =2(√3sinα+cosα)=4sin(α+π6) , t B =8sin(α+π6) , ∴ t A ⋅t B =32sin 2(α+π6)=32 ,即 sin 2(α+π6)=1 ,∵ 0≤α<π , ∴π6≤α+π6<7π6,∴ α+π6=π2 ,即 α=π3 , ∴ tan π3=√3 .11.【答案】 (1)解:曲线 C : ρcos 2θ−4sinθ=0 ,即 ρ2cos 2θ−4ρsinθ=0 化为直角坐标方程为: x 2=4y(2)解: {ρcos 2θ−4sinθ=0θ=α⇒ρ1=4sinαcos 2α ,即 |OA|=|ρ1|=|4sinαcos 2α| 同理 |OB|=|ρ2|=|4sin(α+π2)cos (α+π2)|=|4cosαsin α|∴ S ΔOAB =12|OA||OB|=12|4sinαcos 2α|⋅|4cosαsin 2α|=|8sinαcosα|=16|sin2α|≥16 当且仅当 sin2α=1 ,即 α=kπ+π4 ( k ∈z )时取等号 即 ΔOAB 的面积最小值为1612.【答案】 (1)解:sin420°cos330°+sin (﹣690°)•cos (﹣660°)=sin60°cos (﹣30°)+sin30°cos60° =sin60°cos30°+sin30°cos60°=sin (60°+30°)=1(2)解:sin(π2+α)cos(π2-α)cos(π+α)+sin(π-α)cos(π2+α)sin(π+α)=cosα⋅sinα-cosα+sinα⋅(-sinα)-sinα=﹣sinα+sinα=013.【答案】 解:(Ⅰ)由题意知圆 C 的普通方程为 (x −1)2+y 2=1 ,由 x =ρcosθ,y =ρsinθ 得, ρ2−2ρcosθ=0 ,即圆 C 的极坐标方程为 ρ=2cosθ ;(Ⅱ)设 A(ρA ,θ0+π3) ,则由 A,B 都在圆 C 上知 ρA =2cos(θ0+π3) 且 ρ0=2cosθ0 , 于是 |OA|+|OB|=ρA +ρ0=2cos(θ0+π3)+2cosθ0 , =3cosθ0−√3sinθ0=2√3cos(θ0+π6)又 θ0∈(−π3,π6) ,所以 θ0+π6∈(−π6,π3) ,所以当 θ0+π6=0 ,即 θ0=−π6 时, (|OA|+|OB|)max =2√3 .14.【答案】 解:(Ⅰ)∵cos A2 = 2√55,∴cos A=2cos 2 A 2 ﹣1= 35 ,sin A= 45 , 又bccosA=3, ∴bc=5,∴S △ABC = 12 bcsinA=2.(Ⅱ)由(Ⅰ)得bc=5,又b+c= 4√2 ,由余弦定理得a2=b2+c2﹣2bccos A=(b+c)2﹣2bc﹣2bccosA=16,∴a=4.15.【答案】(1)由题意知,向量a →=(1,cos2x−√3sin2x),b →=(−1,f(x)),且a →//b →,所以1×f(x)+(cos2x−√3sin2x)=0,即f(x)=−cos2x+√3sin2x=2sin(2x−π6).令2kπ−π2≤2x−π6≤2kπ+π2,解得kπ−π6≤x≤kπ+π3,故函数的增区间为[kπ−π6,kπ+π3],k∈Z.(2)若f(θ)=65,π3<θ<π2,即f(θ)=2sin(2θ−π6)=65,∴sin(2θ−π6)=35.∵2θ∈(2π3,π),2θ−π6∈(π2,5π6)∴cos(2θ−π6)=−√1−sin2(2θ−π6)=−45,∴cos2θ=cos[(2θ−π6)+π6]=cos(2θ−π6)cosπ6−sin(2θ−π6)sinπ6=−45⋅√32−35⋅12=−4√3+310.16.【答案】(1)解:∠ENM=∠MNB=θ,∠EMA=2θ,故NB=lcosθ,MB=ME=lsinθ,AM=MEcos2θ=lsinθcos2θ. 因为AM+MB=6,所以lsinθcos2θ+lsinθ=6,,所以l=6sinθ(cos2θ+1)=3sinθcos2θ,又BN≤12, BM≤6,则{BN=3sinθcosθ≤12BM=3cos2θ≤60<θ<π2,所以π12≤θ≤π4,所以l=3sinθcos2θ(π12≤θ≤π4)(2)解:记f(θ)=sinθcos2θ,π12≤θ≤π4,则f2(θ)=sin2θcos4θ,设x=cos2θ, x∈[12,2+√34],则f2(θ)=(1−x)x2,记g(x)=(1−x)x2,则g′(x)=2x−3x2,令g′(x)=0,则x=23∈[12,2+√34],当x∈[12,23]时, g′(x)>0;当x∈[23,2+√34]时, g′(x)<0,所以g(x)在[12,23]上单调递增,在[23,2+√34]上单调递减,故当 x =cos 2θ=23 时 l 取最小值,此时 sinθ=√33, l 的最小值为 9√32.(3)解: ΔEMN 的面积 S =12l 2sinθcosθ=92×1sinθcos θ(π12≤θ≤π4) , 所以 S 2=814×1sin 2θcos 6θ ,设 t =cos 2θ(π12≤θ≤π4) ,则 12≤t ≤2+√34 ,设 ℎ(t)=(1−t)t 3 ,则 ℎ′(t)=3t 2−4t 3 ,令 ℎ′(t)=0 , t =34∈[12,2+√34] ,所以当 t ∈[12,34] 时, ℎ′(t)>0 ;当 t ∈[34,2+√34] 时, ℎ′(t)<0 ,所以 ℎ(t) 在 [12,34] 上单调递增,在 [34,2+√34] 上单调递减,故当 t =34=cos 2θ ,即 θ=π6 时,面积 S 取最小值为 8√317.【答案】 (1)解:已知关于 x 的方程 2x 2−(√3+1)x +m =0 的两根为 sinθ 和 cosθ ,θ∈(0,2π),∴ sinθ+cosθ=√3+12, sinθ⋅cosθ=m2 ,∴ sinθ1−1tanθ+cosθ1−tanθ=sin 2θsinθ−cosθ+cos 2θcosθ−sinθ=(sinθ+cosθ)(sinθ−cosθ)sinθ−cosθ= sinθ+cosθ=√3+12.(2)解:∵ sinθ+cosθ=√3+12, sinθ⋅cosθ=m2 ,∴ sin 2θ+2sinθcosθ+cos 2θ=(√3+12)2,即1+m = (√3+12)2,解得m = √32 .18.【答案】 (1)解:(1)由图可知 A =2 , T 4=π4 ,即 T =π ,即 ω=2πT=2 ,则 f(x)=2sin(2x +φ)(0≤φ≤π) ,又 f(0)=2sinφ=2 ,又 0≤φ≤π ,所以 φ=π2 , 故 f(x)=2sin(2x +π2)=2cos2x ,将 y =f(x) 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得函数解析式为 y =2cos(2×12x)=2cosx ,再把所得图象向右平移 π2 个单位长度,得到函数 g(x) 的图象,则 g(x)=2cos(x −π2)=2sinx ,即 f(x)=2cos2x , g(x)=2sinx ;(2)解:当f(x0)=g(x0),即2cos2x0=2sinx0,解得2sin2x0+sinx0−1=0,即sinx0=−1或sinx0=12,即x0=2kπ−π2或x0=2kπ+π6或x0=2kπ+5π6(k∈Z)当x0=2kπ−π2时,所以sin(x0−π3)=sin(2kπ−5π6)=−sin5π6=−12,当x0=2kπ+π6时,sin(x0−π3)=sin(2kπ−π6)=sin(−π6)=−12,当x0=2kπ+5π6时,sin(x0−π3)=sin(2kπ+π2)=sinπ2=1,故sin(x0−π3)的所有可能的值为−12或1;(3)解:令F(x)=f(x)+ag(x)=0,即cos2x+asinx=0,即2sin2x−asinx−1=0,解得sinx=a±√a2+84,又因为sinx∈[−1,1],又a>0,所以a−√a2+84∈(−1,0),当sinx=a−√a2+84时,由函数y=sinx的对称轴方程可得sinx=a−√a2+84在[(2k−1)π,2kπ],( 1≤k≤9,k∈Z)有两个解,且两解之和(2k−1)π+2kπ=4kπ−π,则在(0,19π)的根之和为3π+7π+11π+...+35π=(3π+35π)×92=171π,当a+√a2+84>1,即a>1时,方程sinx=a+√a2+84无解,当a+√a2+84=1,即a=1时,方程sinx=a+√a2+84的解为x=2kπ+π2,( 1≤k≤9,k∈Z),则在(0,19π)的根之和为π2+5π2+9π2+ (37)2=(π+37π)×104=95π,当0<a+√a2+84<1,即0<a<1时,方程sinx=a+√a2+84在[2kπ,(2k+1)π],( 0≤k≤9,k∈Z)有两个解,且两解之和2kπ+(2k+1)π=4kπ+π,则在(0,19π)的根之和为π+5π+9π+...+37π=(π+37π)×102=190π,综上可得:当a>1时,函数F(x)在区间(0,19π)内的所有零点之和为171π.当a=1时,函数F(x)在区间(0,19π)内的所有零点之和为171π+95π=266π.当0<a<1时,函数F(x)在区间(0,19π)内的所有零点之和为171π+190π=361π.19.【答案】(1)解:根据题意,作图如下:在△ABC中,∵AB=AC=3,BC=3√3,∴由余弦定理可得cosA=32+32−(3√3)22×3×3=−12,∴sinA=√32.设△ABC外接圆O′的半径为r,由正弦定理则√3√32=2r,得r=3,故所求面积为9π.(2)解:设球的半径为R,连接OO′,BO′,OB,则R2=(R2)2+32,解得R=2√3.由图可知,当点D到平面ABC的距离为32R时,三棱锥D−ABC的体积最大,∵S△ABC=12×3×3×√32=9√34,∴三棱锥D−ABC体积的最大值为13×9√34×3√3=274.20.【答案】(1)证明:∵sin(A+B)=35,∴sinAcosB+cosAsinB=35,又∵sinAcosB−cosAsinB=15,∴sinAcosB=25,cosAsinB=15,∴tanA=2tanB(2)解:由(1)知cos(A+B)=45,∴tan(A+B)=34即:tanA+tanB1−tanAtanB =34,将tanA=2tanB代入上式并整理得:2tan2B+4tanB−1=0,又因为B为锐角,tanB>0,所以解得tanB=√6−22,∴tanA=2tanB=√6−2设AB上的高为CD,则AB=AD+DB=CDtanA +CDtanB=√6−2=6,得CD=2(√6−2)故AB边上的高为2(√6−2).。
高考一轮复习基本不等式
考点自测
1.(2013·株洲联考)“a>0 且 b>0”是“a+2 b≥ ab”成立的(
).
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.已知 a,b∈(0,1),且 a≠b,下列各式中最大的是( ).
A.a2+b2 B.2 ab C.2ab D.a+b
3.若 lg x+lg y=2,则1x+1y的最小值是( ).A.210 B.15 C.12 D.2
(2)等号成立的条件:当且仅当___a_=___b___时取等号.
(3)其中a+2 b称为正数 a,b 的_算__术__平__均__数__, ab称为正数 a,b 的_几 ___何__平__均__数_.
2.基本不等式的变形
(1)重要不等式:a2+b2≥___2_a_b__ (a,b∈R).当且仅当 a=b 时取等号.
高考一轮复习基本不等式
抓住3个考点
基本不等式: a b ≤
a
2
b
基本不等式的变形
利用基本不等式求最值
单击标题可完成对应小部 分的学习,每小部分独立 成块,可全讲,也可选讲
助学微博
考点自测
突破3个考向
考向一 利用基本不等式求最值 【例1】 【训练1】
考向二 利用基本不等式证明不 等式
【例2】 【训练2】
结果
AD B C 1
答案显示
考向一 利用基本不等式求最值
【审题视点 】
【例 1】►(1)已知 x,y∈R+,且满足x3+4y=1,则 xy 的最
(1) 直 接 利 用 基 本 不等式求解;
大值为________.
(2) 先 变 形 再 利 用
(2)若函数 f(x)=x+x-1 2(x>2)在 x=a 处取最小值,
2023高考数学基础强化专题训练(二)
2023高考数学基础强化专题训练(二)解析几何直线与圆1.若直线l :y =x +b 与曲线y= 有两个交点,则实数b 的取值范围是( ) A .{b |-2 <b <2 } B .{b |2<b <2 } C .{b |2≤b <2 } D .{b |b =±2}2.在平面直角坐标系xOy 中,已知点P (-3,0)在圆C :x 2+y 2+2mx -4y +m 2-12=0内,动直线AB 过点P 且交圆C 于A ,B 两点,若△ABC 的面积的最大值为8,则实数m 的取值范围是( )A .(3-2 ,1]∪[5,3+2 )B .[1,5]C .(3-2 ,3+2 )D .(-∞,3-2 )∪(3+2 ,+∞)3.(多选题)下列说法中,正确的有( ) A .直线y =ax +2a +3(a ∈R )必过定点(2,3) B .直线y =2x -1在y 轴上的截距为-1 C .直线 x -y +2=0的倾斜角为60°D .点(1,3)到直线y -2=0的距离为14.(多选题)已知圆M :(x +2)2+y 2=2,直线l :x +y -2=0,点P 在直线l 上运动,直线P A ,PB 分别于圆M 切于点A ,B .则下列说法正确的是( ) A .四边形PAMB 的面积最小值为 B .|P A |最短时,弦ABC .|P A |最短时,弦AB 直线方程为x +y -1=0D .直线AB 过定点( , ) 5. 在直线l :2x -y +1=0上一点P 到点A (-3,0),B (1,4)两点距离之和最小,则点P 的坐标为 ▲ .6.在平面直角坐标系xOy 中,点A (-2,2),B (-1,1),若直线x +y -2m =0上存在点P 使得P A = PB ,则实数m 的取值范围是 ▲ .7.已知直线:1l ax by +=是圆22220x y x y +--=的一条对称轴,则ab 的最大值为______.222224x -333333323-2128.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .9.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,若点P 到直线1349:0l x y --=和2:340l x y a -+=的距离和都与x ,y 无关,则a 的取值区间为____________.10.11.已知直线l :kx -y +2+k =0(k ∈R ).(1)若直线不经过第四象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.12.已知⊙C 的圆心在直线3x -y -3=0上,点C 在y 轴右侧且到y 轴的距离为1,⊙C 被直线l :x -y +3=0截得的弦长为2. (1)求⊙C 的方程;(2)设点D 在⊙C 上运动,且点T 满足→DT =2→TO ,(O 为原点)记点T 的轨迹为Γ. ①求Γ的方程;②过点M (1,0)的直线与Γ交于A ,B 两点,问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,求出点N 的坐标;若不存在,请说明理由.圆锥曲线1.2.3.4.在平面直角坐标系xOy 中,点B 与点31,2A ⎛⎫- ⎪⎝⎭关于原点对称,P 是动点,且直线AP 与BP 的斜率之积等于34-. (1)求动点P 的轨迹方程,并注明x 的范围;(2)设直线AP 与BP 分别与直线3x =交于M ,N ,问是否存在点P 使得PAB △与PMN △面积相等?若存在,求出点P 的坐标,若不存在,说明理由.5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,(1,32)在椭圆E 上.(1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P (-2,0),Q (2,0).若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别S △MPQ ,S △NPQ ,求S △MPQ S △NPQ 的值. 6.7.已知双曲线)0,(1:2222>=-Γb a by a x ,经过双曲线Γ上的点)1,2(A 作互相垂直的直线AN AM 、分别交双曲线Γ于N M 、两点.设线段AN AM 、的中点分别为C B 、,直线OC OB 、O (为坐标原点)的斜率都存在且它们的乘积为.41-(1)求双曲线Γ的方程;(2)过点A 作D MN AD (⊥为垂足),请问:是否存在定点E ,使得||DE 为定值?若存在,求出点E 的坐标;若不存在,请说明理由.8.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T ,使得TA →·TB →为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.函数与导数1.若直线4y x m =+是曲线313y x nx =-+与曲线22ln y x x =+的公切线, 则n m -=A. 11B. 12C. -8D. -72.已知3151log 2,log 10,sin 2a b c ===, 则A. b c a >>B. a c b >>C. a b c >>D. b a c >>【类题训练】1.若a =sin1+tan1,b =2,c =ln4+12,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .a <b <cD .b <c <a 2.3.设1.1ln =a ,11.0-=eb ,1.0tan =c ,π4.0=d ,则A .d c b a <<<B .d b c a <<<C .c d b a <<<D .b d c a <<<4.(多选题)已知0<x <y <π,e y sin x =e x sin y ,则( )A .sin x <sin yB .cos x >-cos yC . sin x >cos yD .cos x >sin y 5.2022高考三类“比大小”问题的出题背景及应用举例文/刘蒋巍第1类 出题背景1变形得:x xx e x e<+<+11)0(>x注:该不等式也可运用“移项,构造函数”的高中方法证明。
2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题 (含答案)
2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,0,1,2},B={y|y=-x-1},则A∩B=()A.{1,2} B.{-2,0}C.{-2,0,1} D.{-2}2.已知a+5i=-2+b i(a,b∈R),则复数z=a+b i5+2i=()A.1 B.-iC.i D.-2+5i3.函数f(x)=sin xln(x2+1)的大致图象是()4.已知(a+2x)7的展开式中的常数项为-1,则x2的系数为()A.560 B.-560C.280 D.-2805.已知抛物线C:y2=12x的焦点为F,经过点P(2,1)的直线l与抛物线C交于A,B两点,且点P恰为AB的中点,则|AF|+|BF|=()A.6 B.8C.9 D.106.已知等比数列{a n}的前n项和为S n,若a1=a2+2a3,S2是S1与mS3的等比中项,则m=()A.1 B.9 761则实数a的最小值为()A.1-1e B.2-1eC.1-e D.2-e8.过点M(a,0)作双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的平行线,交双曲线的另一条渐近线于点N,O为坐标原点,若锐角三角形OMN的面积为212(a2+b2),则该双曲线的离心率为()A.3 B.3或6 2C.62D. 3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某家庭2019年的总支出是2018年的总支出的1.5倍,下图分别给出了该家庭2018年、2019年的各项支出占该家庭这一年总支出的比例情况,则下列结论中正确的是()①日常生活②房贷还款③旅游④教育⑤保险⑥其他①日常生活②房贷还款③旅游④教育⑤保险⑥其他A.2019年日常生活支出减少B.2019年保险支出比2018年保险支出增加了一倍以上C.2019年其他支出比2018年其他支出增加了两倍以上D.2018年和2019年,每年的日常生活支出和房贷还款支出的和均占该年总支出的一半以上10.直线2x-y+m=0与圆(x-1)2+(y-2)2=1相交的必要不充分条件是()2C.m2+m-12<0 D.3m>111.在三棱锥D-ABC中,AB=BC=CD=DA=1,且AB⊥BC,CD⊥DA,M,N分别是棱BC,CD的中点,则下列结论正确的是()A.AC⊥BDB.MN∥平面ABDC.三棱锥A-CMN的体积的最大值为2 12D.AD与BC一定不垂直12.已知函数f(x)=2x2-a|x|,则下列结论中正确的是()A.函数f(x)的图象关于原点对称B.当a=-1时,函数f(x)的值域为[4,+∞)C.若方程f(x)=14没有实数根,则a<-1D.若函数f(x)在(0,+∞)上单调递增,则a≥0题号123456789101112答案三、填空题:本题共4小题,每小题5分,共20分.13.(一题多解)已知平面单位向量i,j互相垂直,且平面向量a=-2i+j,b=m i-3j,c=4i+m j,若(2a+b)∥c,则实数m=________.14.有一匀速转动的圆盘,其中有一个固定的小目标M,甲、乙两人站在距离圆盘外的2米处,将小圆环向圆盘中心抛掷,他们抛掷的圆环能套上小目标M的概率分别为14与15,现甲、乙两人分别用小圆环向圆盘中心各抛掷一次,则小目标M被套上的概率为________.15.如图,圆锥的高为3,表面积为3π,D为PB的中点,AB是圆锥底面圆的直径,O为AB16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =30,c =20,若b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,则sin(2C -B )=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知D 是△ABC 的边AC 上的一点,△ABD 的面积是△BCD 的面积的3倍,∠ABD =2∠CBD =2θ.(1)若∠ABC =π2,求sin Asin C 的值; (2)若BC =2,AB =3,求AC 的长.18.(本小题满分12分)给出以下三个条件:(1)S n +1=4S n +2;(2)3S n =22n +1+λ(λ∈R );(3)3S n =a n +1-2.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a 1=2,且满足________,记b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .19.(本小题满分12分)如图,已知在斜平行六面体ABCD -A 1B 1C 1D 1中,AB 1⊥A 1D 1,A 1B =AB =BB 1=4,AD =2,A 1C =2 5.(1)(一题多解)求证:平面ABB 1A 1⊥平面A 1BC ; (2)求二面角A -CA 1B 的余弦值.20.(本小题满分12分)2019年12月9日,记者走进浙江缙云北山村,调研“中国淘宝村”的真实模样,作为最早追赶电商大潮的中国村庄,地处浙中南偏远山区的北山村,是电商改变乡村、改变农民命运的生动印刻.互联网的通达,让这个曾经的空心村在高峰时期生长出400多家网店,网罗住500多位村民,销售额达两亿元.一网店经销缙云土面,在一个月内,每售出1 t 缙云土面可获利800元,未售出的缙云土面,每1 t 亏损500元.根据以往的销售统计,得到一个月内五地市场对缙云土面的需求量的频率分布直方图,如图所示.该网店为下一个月购进了100 t 缙云土面,用x (单位:t ,70≤x ≤120)表示下一个月五地市场对缙云土面的需求量,y (单位:元)表示下一个月该网店经销缙云土面的利润.(1)将y 表示为x 的函数;(2)根据直方图估计利润y 不少于67 000元的概率;(3)在直方图的需求量分组中,同一组中的数据用该组区间的中点值为代表,将需求量落入该区间的频率作为需求量取该区间中点值时的概率(例如:若需求量x ∈[80,90),则取x =85,且x =85的概率等于需求量落入[80,90)的频率),求该网店下一个月利润y 的分布列和期望.21.(本小题满分12分)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0),椭圆短轴的端点B 1,B 2与椭圆的左、右焦点F 1,F 2构成边长为2的菱形,MN 是经过椭圆右焦点F 2(1,0)的椭圆的一条弦,点P 是椭圆上一点,且OP ⊥MN (O 为坐标原点).(1)求椭圆G 的标准方程; (2)求|MN |·|OP |2的最小值.22.(本小题满分12分)已知函数f(x)=12x2ln x,函数f(x)的导函数为f′(x),h(x)=f′(x)-12x-mx2(m∈R).(1)求函数f(x)的单调区间;(2)若函数h(x)存在单调递增区间,求m的取值范围;(3)若函数h′(x)存在两个不同的零点x1,x2,且x1<x2,求证:e x1x22>1.2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题参考答案1.解析:选B.因为y =-x -1≤0,所以B ={y |y ≤0}.因为A ={-2,0,1,2},所以A ∩B ={-2,0}.故选B.2.解析:选C.由a +5i =-2+b i(a ,b ∈R )及复数相等的定义可得⎩⎨⎧a =-2,b = 5.所以z =a +b i5+2i =-2+5i 5+2i =(-2+5i )(5-2i )(5+2i )(5-2i )=9i9=i ,故选C. 3.解析:选 B.由题意知函数f (x )的定义域为{x |x ≠0}.因为f (-x )=sin (-x )ln[(-x )2+1]=-sin xln (x 2+1)=-f (x ),所以f (x )是奇函数,其图象关于原点对称,所以C 不正确;又f (k π)=0(k ∈Z ,k ≠0),所以A 不正确;当x ∈(0,π)时,f (x )>0,故D 不正确.故选B.4.解析:选B.由题意可知(a +2x )7的展开式的通项公式为T r +1=C r 7⎝⎛⎭⎪⎫2x 12r a 7-r=C r 72r a 7-rx r 2.因为展开式中的常数项为-1,所以令r =0,得C 0720a 7=-1,所以a =-1.令r =4,得x 2的系数为C 47×24×(-1)7-4=-560.5.解析:选D.分别过点A ,B ,P 向抛物线的准线x =-3作垂线,设垂足分别为A 1,B 1,P 1.由抛物线的定义及梯形的中位线定理,得|P 1P |=12(|A 1A |+|B 1B |)=12(|AF |+|BF |)=2-(-3)=5,所以|AF |+|BF |=10,故选D.6.解析:选B.设数列{a n }的公比为q ,则由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,易知a 1≠0,所以2q 2+q -1=0,解得q =-1或q =12.当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾;当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1·mS 3,即94a 21=m ·74a 21,所以m =97.故选B.7.解析:选C.f (x )=x ln x ,则f ′(x )=ln x +1.对任意的x ∈[1,+∞),f ′(x )≤a +e x 恒成立,即a ≥ln x +1-e x 对任意的x ∈[1,+∞)恒成立.设g (x )=ln x +1-e x (x ≥1),则g ′(x )=1x -e x <0,因而g (x )在[1,+∞)上单调递减,g (x )≤ln 1+1-e =1-e ,所以实数a 的最小值为1-e.8.解析:选D.不妨设点N 在第一象限,如图,由题意知∠1=∠2=∠3,所以△OMN 是以∠ONM 为顶角的等腰三角形.因为△OMN 是锐角三角形,所以∠1>45°,即有b a >1,进而e 2=1+b 2a 2>2.由y =b a x 与y =-b a (x -a ),得y N =b 2,所以12×a ×b 2=212(a 2+b 2),即9a 2(c 2-a 2)=2c 4,所以2e 4-9e 2+9=0,得e 2=32(舍)或e 2=3,所以e = 3.9.解析:选BD.设2018年的总支出为x ,则2019年的总支出为1.5x ,2018年日常生活支出为0.35x ,2019年日常生活支出为0.34×1.5x =0.51x ,故2019年日常生活支出增加,A 错误;2018年保险支出为0.05x ,2019年保险支出为0.07×1.5x =0.105x ,B 正确;2018年其他支出为0.05x ,2019年其他支出为0.09×1.5x =0.135x ,(0.135x -0.05x )÷0.05x =1.7,故C 错误;由题图可知,D 正确.10.解析:选BC.若直线2x -y +m =0与圆(x -1)2+(y -2)2=1相交,则|2×1-2+m |22+(-1)2<1,解5<m < 5.A 项中,由m 2≤1,得-1≤m ≤1,因为{m |-1≤m ≤1}⊆{m |-5<m <5},所以m 2≤1不是-5<m <5的必要不充分条件;B 项中,因为{m |m ≥-3}⊇{m |-5<m <5},所以m ≥-3是-5<m <5的必要不充分条件;C 项中,由m 2+m -12<0,得-4<m <3,因为{m |-4<m <3}⊇{m |-5<m <5},所以m 2+m -12<0是-5<m <5的必要不充分条件;D 项中,由3m >1,得0<m <3,所以3m >1不是-5<m <5的必要不充分条件.11.解析:选ABD.设AC 的中点为O ,连接OB ,OD ,则AC ⊥OB ,AC ⊥OD ,又OB ∩OD =O ,所以AC ⊥平面OBD ,所以AC ⊥BD ,故A 正确;因为M ,N 分别是棱BC ,CD 的中点,所以MN ∥BD ,且MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故B 正确;当平面DAC 与平面ABC 垂直时,V A -CMN 最大,最大值V A -CMN =V N -ACM =13×14×24=248,故C 错误;若AD 与BC 垂直,因为AB ⊥BC ,AD ∩AB =A ,所以BC ⊥平面ABD ,所以BC ⊥BD ,又BD ⊥AC ,BC ∩AC =C ,所以BD ⊥平面ABC ,所以BD ⊥OB ,因为OB =OD ,所以显然BD 与OB 不可能垂直,故D 正确.12.解析:选BD.由题意知,函数f (x )的定义域为{x |x ≠0},且f (-x )=2(-x )2-a|-x |=f (x ),因此函数f (x )是偶函数,其图象不关于原点对称,故A 选项错误;当a =-1时,f (x )=2x 2+1|x |,而x 2+1=|x |+1|x |≥2,所以f (x )=2x 2+1|x |≥4,即函数f (x )的值域为[4,+∞),B 选项正确;由f (x )=14,得x 2-a |x |=-2,得x 2+2|x |-a =0.要使原方程没有实数根,应使方程x 2+2|x |-a =0没有实数根.令|x |=t (t >0),则方程t 2+2t -a =0应没有正实数根,于是需Δ<0或⎩⎨⎧Δ≥0,-2≤0,-a ≥0,即4+4a <0或⎩⎨⎧4+4a ≥0,-2≤0,-a ≥0,解得a <-1或-1≤a ≤0,综上,a ≤0,故C 选项错误;要使函数f (x )在(0,+∞)上单调递增,需g (x )=x 2-a |x |在(0,+∞)上单调递增,需φ(x )=x 2-a x =x -a x 在(0,+∞)上单调递增,需φ′(x )=1+ax 2≥0在(0,+∞)上恒成立,得a ≥0,故D 选项正确.13.解析:方法一:因为a =-2i +j ,b =m i -3j ,所以2a +b =(m -4)i -j .因为(2a +b )∥c ,所以(2a +b )=λc ,所以(m -4)i -j =4λi +mλj ,所以⎩⎨⎧m -4=4λ,-1=mλ,所以m =2.方法二:不妨令i =(1,0),j =(0,1),则a =(-2,1),b =(m ,-3),c =(4,m ),所以2a +b =(m -4,-1).因为(2a +b )∥c ,所以m (m -4)=-4,所以m =2.答案:214.解析:小目标M 被套上包括甲抛掷的套上了、乙抛掷的没有套上;乙抛掷的套上了、甲抛掷的没有套上;甲、乙抛掷的都套上了.所以小目标M 被套上的概率P =14×⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫1-14×15+14×15=25.答案:25 15.解析:如图,连接OD ,OC ,BC ,OP ,设圆锥的底面半径为r ,由题意得,πr 2+12×2πr ×3+r 2=3π,得r =1,则OC =1,PA =2.因为点O ,D 分别为AB ,PB 的中点,所以OD ∥PA ,且OD =12PA =1,所以∠ODC 为异面直线PA 与CD 所成的角(或其补角).过点D 作DH ⊥AB ,垂足为H ,连接HC ,易得DH ⊥HC ,DH =12PO =32.由弧AC 与弧BC 的长度之比为2∶1,得△OCB 为等边三角ODC =1+⎝ ⎛⎭⎪⎫622-12×1×62=64,所以异面直线PA 与CD 所成角的正弦值为1-⎝ ⎛⎭⎪⎫642=104.答案:10416.解析:在△ABC 中,由正弦定理c sin C =b sin B ,得b sin C =c sin B .又b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,所以c sin B =c cos ⎝ ⎛⎭⎪⎫B -π6,所以sin B =cos ⎝⎛⎭⎪⎫B -π6,所以tan B = 3.又0<B <π,所以B =π3.在△ABC 中,由余弦定理得b 2=202+302-2×20×30×cos π3=700,所以b =107,由b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,得sin C =217.因为a >c ,所以cos C =277,所以sin(2C -B )=sin 2C cos B -cos 2C sinB =2sinC cos C cos π3-(cos 2C -sin 2C )sin π3=2×217×277×12-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2772-⎝ ⎛⎭⎪⎫2172×32=3314. 答案:331417.解:(1)因为∠ABC =π2,∠ABD =2∠CBD =2θ,所以θ=π6. 所以12AB ·BD sin π3=3×12BC ·BD sin π6, 所以BC AB =sin A sin C =33.(2)因为12AB ·BD sin 2θ=3×12BC ·BD sin θ, 即2AB cos θ=3BC ,所以cos θ=22,所以θ=π4,∠ABC =3θ=3π4,AC 2=9+2-2×3×2×⎝ ⎛⎭⎪⎫-22=17,所以AC =17.18.解:方案一:选(1),已知S n +1=4S n +2 ①, 当n ≥2时,S n =4S n -1+2 ②,①-②得,a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n , 当n =1时,S 2=4S 1+2,即2+a 2=4×2+2, 所以a 2=8,满足a 2=4a 1,故{a n }是以2为首项、4为公比的等比数列,所以a n =22n -1.c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1,所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.方案二:选(2),已知3S n =22n +1+λ ③, 当n ≥2时,3S n -1=22n -1+λ ④, ③-④得,3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1,当n =1时,a 1=2满足a n =22n -1, 下同方案一.方案三:选(3),已知3S n =a n +1-2 ⑤, 当n ≥2时,3S n -1=a n -2 ⑥,⑤-⑥得,3a n =a n +1-a n ,即a n +1=4a n ,当n =1时,3a 1=a 2-a 1,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项、4为公比的等比数列, 所以a n =22n -1.下同方案一.19.解:(1)证明:方法一:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC .在△A 1BC 中,A 1B =4,BC =AD =2,A 1C =25, 所以A 1B 2+BC 2=A 1C 2,所以BC ⊥A 1B .又A 1B ,AB 1是平行四边形ABB 1A 1的两条对角线, 所以BC ⊥平面ABB 1A 1.因为BC ⊂平面A 1BC ,所以平面A 1BC ⊥平面ABB 1A 1. 方法二:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC . 在平行四边形ABB 1A 1中,BB 1=AB , 所以四边形ABB 1A 1为菱形, 所以AB 1⊥A 1B .因为A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以AB 1⊥平面A 1BC , 因为AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC . (2)由(1)知BC ⊥平面ABB 1A 1,因为BC ⊂平面ABCD ,所以平面ABCD ⊥平面ABB 1A 1,所以平面ABCD ⊥平面CDD 1C 1.在斜平行六面体ABCD -A 1B 1C 1D 1中,由AB =BB 1=4得四边形ABB 1A 1为菱形, 所以四边形CDD 1C 1为菱形.连接BD ,设AC ,BD 交于点E ,取DC 的中点O ,连接D 1O ,OE ,易证得D 1O ⊥平面ABCD ,故以OE ,OC ,OD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O -xyz ,则C (0,2,0),B (2,2,0),A (2,-2,0),A 1(2,0,23),所以A 1C →=(-2,2,-23),AC →=(-2,4,0),BC →=(-2,0,0). 设平面AA 1C 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·AC →=0,即⎩⎨⎧-2x 1+2y 1-23z 1=0,-2x 1+4y 1=0,令x 1=2,得y 1=1,z 1=-33,所以平面AA 1C 的一个法向量为m =⎝ ⎛⎭⎪⎫2,1,-33.设平面BA 1C 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧-2x 2+2y 2-23z 2=0,-2x 2=0,令z 2=1,得y 2=3,所以平面BA 1C 的一个法向量为n =(0,3,1). cos 〈m ,n 〉=m ·n |m ||n |=3-3322+12+⎝ ⎛⎭⎪⎫-332×02+(3)2+12=14.由图可知二面角A -CA 1B 为锐二面角,故二面角A -CA 1B 的余弦值为14. 20.解:(1)依题意知,当x ∈[70,100)时, y =800x -500(100-x )=1 300x -50 000; 当x ∈[100,120]时,y =800×100=80 000.所以y =⎩⎨⎧1 300x -50 000,70≤x <100,80 000,100≤x ≤120.(2)由1 300x -50 000≥67 000,得x ≥90,所以90≤x ≤120.由直方图知需求量x ∈[90,120]的频率为(0.030+0.025+0.015)×10=0.7, 所以利润y 不少于67 000元的概率为0.7. (3)依题意可得该网店下一个月利润y 的分布列为所以利润y 的期望E (y )×0.4=70 900. 21.解:(1)因为椭圆短轴的端点B 1,B 2与左、右焦点F 1,F 2构成边长为2的菱形,所以a =2, 又椭圆的右焦点F 2(1,0),所以c =1, 所以b 2=a 2-c 2=3,所以椭圆G 的标准方程为x 24+y 23=1.(2)①当MN ⊥x 轴时,|MN |=2b 2a =3,|OP |=a =2, 此时|MN |·|OP |2=12.②当MN 不垂直于x 轴且斜率不为0时,可设直线MN 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2),将直线MN 的方程与椭圆G 的方程联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),化简并整理得(4k 2+3)x 2-8k 2x +4k 2-12=0, 所以x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=1+k2(x 1+x 2)2-4x 1x 2=12(1+k 2)4k 2+3.因为OP ⊥MN ,所以直线OP 的方程为y =-1k x , 将直线OP 的方程与椭圆G 的方程联立, 得⎩⎪⎨⎪⎧x 24+y 23=1,y =-1k x ,得x 2P =12k 23k 2+4,y 2P=123k 2+4,所以|OP |2=x 2P +y 2P =12(1+k 2)3k 2+4,所以|MN |·|OP |2=12(1+k 2)4k 2+3×12(1+k 2)3k 2+4=144(1+k 2)2(4k 2+3)(3k 2+4)=144⎝ ⎛⎭⎪⎫11+k 2+3⎝ ⎛⎭⎪⎫4-11+k 2. 令11+k 2=t ,因为k ∈R 且k ≠0,所以0<t <1, |MN |·|OP |2=144(t +3)(4-t )=144-t 2+t +12=144-⎝ ⎛⎭⎪⎫t -122+494, 所以当t =12时,|MN |·|OP |2取得最小值,且(|MN |·|OP |2)min =57649. ③当MN 的斜率为0时,|MN |=4,此时|OP |2=b 2=3, 所以|MN |·|OP |2=12.由①②③可知,(|MN |·|OP |2)min =57649. 22.解:(1)易知函数f (x )=12x 2ln x 的定义域为(0,+∞). f ′(x )=x ln x +12x .令f ′(x )>0,得x >e -12,令f ′(x )<0,得0<x <e -12,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫e -12,+∞,单调递减区间为⎝ ⎛⎭⎪⎫0,e -12.(2)依题意得,h (x )=x ln x -mx 2,若函数h (x )存在单调递增区间,则h ′(x )=ln x +1-2mx >0在(0,+∞)上有解,即存在x >0,使2m <ln x +1x .令φ(x )=ln x +1x ,则φ′(x )=-ln xx 2,当x >1时,φ′(x )<0,当0<x <1时,φ′(x )>0, 所以φ(x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减, 所以φ(x )max =φ(1)=1,所以2m <1,所以m <12. 故m 的取值范围为⎝ ⎛⎭⎪⎫-∞,12.(3)证明:因为函数h ′(x )存在两个不同的零点x 1,x 2,且x 1<x 2,所以h ′(x )=ln x +1-2mx =0有两个不相等的实数根x 1,x 2,且0<x 1<x 2, 所以ln x 1+1-2mx 1=0,ln x 2+1-2mx 2=0,所以ln x 1+2ln x 2=2m (x 1+2x 2)-3,ln x 1-ln x 2=2m (x 1-x 2),所以ln x 1+2ln x 2=ln x 1-ln x 2x 1-x 2(x 1+2x 2)-3.要证e x 1x 22>1,只需证ln x 1+2ln x 2>-1,即证ln x 1-ln x 2x 1-x 2(x 1+2x 2)>2(0<x 1<x 2),即证ln x 1x 2<2(x 1-x 2)x 1+2x 2,即证ln x 1x 2<2⎝ ⎛⎭⎪⎫x 1x 2-1x 1x 2+2,令t =x 1x 2,因为0<x 1<x 2,所以0<t <1,即证ln t <2(t -1)t +2在(0,1)上恒成立.令g (t )=ln t -2(t -1)t +2(t ∈(0,1)),则g ′(t )=1t -6(t +2)2=(t -1)2+3t (t +2)2>0在(0,1)上恒成立.所以g (t )=ln t -2(t -1)t +2在(0,1)上单调递增,所以g (t )<g (1)=0-0=0,所以ln t <2(t -1)t +2在(0,1)上恒成立.故e x 1x 22>1得证.。
高考专题12 方程组的解集(原卷版) (2)
提升训练2.3 方程组的解集一、选择题1.解方程组32133x y x y -=⎧⎨+=⎩加减消元法消元后,正确的方程为( )A .6x -y =4B .3y =2C .-3y =2D .-y =2【答案】B 【解析】32133x y x y -=⎧⎨+=⎩①②, ②-①得3y=2, 故选B.2.方程组221{ x y x== 的解有( )A .1组B .2组C .3组D .4组 【答案】B【解析】由2x 1=,得x=±1, 当x=1时, 2y 1=,得y=±1, 当x=-1时, 2y 1=-,无解,故方程组22x 1{ y x==的解为1{ 1x y ==,1{ 1x y ==-, 故选:B .3.已知22x y =⎧⎨=⎩是方程2x+ky=6的一个解,那么k 的值是( )A .1B .3C .1-D .3-【答案】A 【解析】将22x y =⎧⎨=⎩代入方程2x+ky=6,得4+2k=6, 解得k=1, 故选:A .4.若关于x ,y 的二元一次方程组 33224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣32,满足条件的m 的所有正整数值为( ) A .1,2,3,4,5 B .0,1,2,3,4 C .1,2,3,4 D .1,2,3 【答案】A 【解析】33224x y m x y +=-+⎧⎨+=⎩①②, ①×2-②得,65x m =-, 将65x m =-代入②得,y=2+35m,∵x +y >﹣32,∴6332552m m -++>-, 解得,m<356,∴满足条件的m 的所有正整数为:1,2,3,4,5. 故选:A.5.下列方程组是二元一次方程组的有( )①3021x yy x-=⎧⎨=+⎩;②26021x yx y+=⎧⎨+=⎩;③34521x yx z+=⎧⎨+=⎩;④21xy=⎧⎨=⎩.A.0个B.1个C.2个D.3个【答案】C【解析】①符合二元一次方程组的定义,是二元一次方程组,②中x2+2y=1是二次方程,故不是二元一次方程组,③含有三个未知数,故不是二元一次方程组,④符合二元一次方程组的定义,是二元一次方程组,∴是二元一次方程组的有①④,共两个,故选C.6.方程组34212x yx y-=⎧⎨=-⎩用代入法消去x,所得关于y的一元一次方程为( )A.3-2y-1-4y=2 B.3(1-2y)-4y=2 C.3(2y-1)-4y=2 D.3-2y-4y=2 【答案】B【解析】方程组34212x yx y-=⎧⎨=-⎩①②用代入法消去x,把②代入①得关于y的一元一次方程为3(1-2y)-4y=2,故选B.7.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.5【解析】将32xy=⎧⎨=-⎩代入23ax bybx ay+=⎧⎨+=-⎩,可得:322 323a bb a-=⎧⎨-=-⎩,两式相加:1a b+=-,故选A.8.方程组的解是()A.B.C.D.【答案】B【解析】把①化为x=1+y,代入②得:(1+y)2+2y+3=0,即y2+4y+4=0,解得:y=﹣2,代入①得x=﹣1,∴原方程组的解为 .故选B.9.下列各组数是二元一次方程组125x yx y+=⎧⎨+=⎩的解的是( )A.12xy=-⎧⎨=⎩B.23xy=-⎧⎨=⎩C.21xy=⎧⎨=⎩D.43xy=⎧⎨=-⎩【答案】D125x y x y +=⎧⎨+=⎩①②, ②-①得:x=4, 把x=4代入①得:y=-3,∴方程组的解为43x y =⎧⎨=-⎩,故选D.10.关于x 、y 的方程组222x y mx y m +=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m 的个数有( ) A .4个 B .3个 C .2个 D .无数个【答案】A 【解析】解方程组222x y mx y m +=⎧⎨+=+⎩得到242m x m y m ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m 可以为0、1、3、4,所以满足条件的m 的整数有4个,选A11.温州某中学2015学年七年级一班40名同学为某灾区捐款,共捐款2000元,捐款情况如下表:表格中捐款40元和50元的人数不小心被墨水污染已看不清楚,若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A.B.C.D.【答案】C【解析】本题等量关系为:①某中学七年级一班有40名同学;②共捐款2000元. 因此,根据七年级一班有40名同学,得方程x+y=40-10-8,即x+y=22;根据共捐款2000元,得方程40x+50y=2000-20×10-100×80,40x+50y=1000.列方程组为.故选C.12.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一根竿子一条索,索比竿子长一托,折回索子再量竿,却比竿子短一托,问索和竿子各几何?”“其大意为:“现有一根竿子和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,问绳索和竿子各多少尺?”设绳索长x尺,竿子长y尺,下列所列方程组正确的是()A.5,15.2x yy x-=⎧⎪⎨-=⎪⎩B.5,15.2y xx y-=⎧⎪⎨-=⎪⎩C.5,2 5.x yy x-=⎧⎨-=⎩D.5,2 5.y xx y-=⎧⎨-=⎩【答案】A【解析】设绳索长x尺,竿子长y尺,由题意得到5,15.2x yy x-=⎧⎪⎨-=⎪⎩,故选A二、填空题13.方程组的解是______.【答案】或【解析】,解:由①得,x=-3-y③,把③代入②得,(-3-y)y=2,解得:y1=-1,y2=-2,把y1=-1,y2=-2分别代入③得,x1=-2,x2=-1,∴原方程组的解为或故答案为:或14.方程组的解是_____.【答案】,【解析】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.15.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x 两,每枚白银重y 两,根据题意可列方程组为____.【答案】911(10)(8)13x y y x x y =⎧⎨+-+=⎩【解析】根据题意可得甲袋中的黄金9枚和乙袋中的白银11枚质量相等,可得911x y =, 再根据两袋互相交换1枚后,甲袋比乙袋轻了13两.故可得(10)(8)13y x x y +-+=.因此911(10)(8)13x yy x x y =⎧⎨+-+=⎩所以答案为911(10)(8)13x y y x x y =⎧⎨+-+=⎩16.已知方程组5x y 3ax 5y 4+=⎧⎨+=⎩和x 2y 55x by 1-=⎧⎨+=⎩有相同的解,则a +b =_____【答案】16 【解析】∵方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,∴方程组5x y 3x 2y 5+=⎧⎨-=⎩的解也它们的解,解得:12x y =⎧⎨=-⎩,代入其他两个方程得104521a b -=⎧⎨-=⎩,解得:142a b =⎧⎨=⎩,∴a+b=16. 三、解答题17.己知关于x ,y 的二元一次方程组2352x y x y k -=⎧⎨-=⎩的解满足x y >,求k 的取值范围.【答案】5k <. 【解析】2352x y x y k -=⎧⎨-=⎩①②, ①﹣②得:5x y k -=-, ∵x y >, ∴0x y ->. ∴50k ->. 解得:5k <.18.已知关于x ,y 二元一次方程组326x y n x y +=⎧⎨-=⎩.(1)如果该方程组的解互为相反数,求n 的值及方程组的解; (2)若方程组解的解为正数,求n 的取值范围. 【答案】n>1 【解析】(1)依题意得0x y +=,所以n=0026x y x y +=⎧⎨-=⎩解得2-2x y =⎧⎨=⎩ 由326x y n x y +=⎧⎨-=⎩解得222x n y n =+⎧⎨=-⎩∴20220n n +>⎧⎨->⎩ ∴n>1 19.已知方程组有两组相等的实数解,求的值,并求出此时方程组的解.【答案】,当时 ;当时【解析】把②代入①后计算得,∵方程组有两组相等的实数解, ∴△=(12m )2−4(2m 2+1)•12=0, 解得:,当时,解得 当时,解得20.有A 、B 两种型号台灯,若购买2台A 型台灯和6台B 型台灯共需610元.若购买6台A 型台灯和2台B 型台灯共需470元. (1)求A 、B 两种型号台灯每台分别多少元?(2)采购员小红想采购A 、B 两种型号台灯共30台,且总费用不超过2200元,则最多能采购B 型台灯多少台?【答案】(1) A、B两种型号台灯每台分别50、85元;(2)最多能采购B型台灯20台.【解析】(1)解:设A、B两种型号台灯每台分别x、y元,依题意可得:,解得:,答:A、B两种型号台灯每台分别50、85元.(2)解:设能采购B型台灯a台,依题意可得:,解得:.答:最多能采购B型台灯20台.21.已知是方程组的一组解,求此方程组的另一组解.【答案】【解析】将代入方程组中得:,则方程组变形为:,由x+y=1得:x=1-y,将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为: .22.“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本).其每件产品的成本和售价信息如下表:问该公司这两种产品的销售件数分别是多少?【答案】A,B两种产品的销售件数分别为160件、180件.【解析】设A,B两种产品的销售件数分别为x件、y件;由题意得:572060 2420601020x yx y+=⎧⎨+=-⎩,解得:160180xy=⎧⎨=⎩;答:A,B两种产品的销售件数分别为160件、180件.。
全国卷高考数学导数、解析几何大题专项训练含答案(二)
全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。
2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。
3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。
课后训练题及参考答案(二)--2023年高考语文一轮复习(新高考)
课时作业2正确使用实词、虚词一、实词运用训练1.下列各句中,加点的词语运用错误的一句是()A.这一幕幕场景将沉淀..在人们的记忆里,这一桩桩事情都关系到百姓的冷暖,直指人心。
B.“加息”“限购”“限贷”等都主要针对住宅类物业,于是“此消彼长”,无意中不限购、不限贷的特点成就了商业地产的花样年华....。
C.“洋河要来了?”这一消息在五粮液经销商中不胫而走....。
D.他对受灾烟农说:“你们放心,我们一定鼎力相助....,把你们的损失降到最低限度。
”2.依次填入下列各句横线处的词语,最恰当的一组是()①大中城市居民消费调查结果显示,年收入5万元左右的三口之家,要将一年的生活费用控制在3万元以内,才有可能2万元的子女教育费。
②那年11月,17名优秀勘探队员开赴西沙群岛进行资源和敌情侦察,为保卫和开发建设西沙群岛做好准备。
③李龙从小受父母自立自强思想的,勤奋学习,刻苦钻研,在生命科学方面取得了很大的成就。
A.节余勘察熏陶B.结余查看熏染C.结余查看熏陶D.节余勘察熏染3.依次填入下列横线处的词语,最恰当的一项是()①我希望读者能够原谅我讲这些私事,我之所以说明这些事情,是为了要表明我并没有地下结论。
②苏轼有“罗浮山下四时春,卢橘杨梅次第新。
日啖荔枝三百颗,不辞长作岭南人”一诗,久为人所。
③粘满了铜丝的铜胎是一件值得惊奇的东西。
且不说自在画怎么生动美妙,图案画怎么工整,单想想那么多密密麻麻的铜丝粘上去,那是多么大的工夫!A.轻率传颂细致B.轻率传诵细致C.轻易传诵细微D.轻易传颂细微4.依次填入下列句子横线处的词语,最恰当的一组是()①接到报警后,民警连夜对辖区内的各个宾馆进行了秘密,终于在某酒店客房内抓获贩毒人员郑某,缴获毒品“摇头丸”5 000多克。
②中华博物馆虽然没有特别吸引人的地方,但这里的各种古老展品似一部部厚重的历史画卷,展示了她的古代文明。
③尽管“五四运动”已经成为了历史,但“五四精神”并没有在历史的尘埃里,必将激励着一代又一代的学子奋勇前行。
(完整word版)高考数学真题导数专题及答案(2)
2017年高考真题导数专题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极,求证:)10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,综上所述a的取值范围为[﹣2,1]。
2023年高考新高考全国II卷物理试题(含答案解析)
2023年高考新高考全国II卷物理试题(含答案解析)一、选择题1. 以下哪个选项符合原子核强力的作用特点?A. 引力B. 电磁力C. 弱力D. 共振力2. 鱼的鳞片可以起到保护鱼的内部器官的作用,这是因为鱼的鳞片具有以下哪种性质?A. 导电B. 弹性C. 耐热D. 光滑3. 下列哪种材料可以用于制作防辐射服?A. 棉布B. 合金C. 塑料D. 陶瓷4. 质点沿$x$轴正方向做直线运动,设$t=0$时刻的速度为$v_0$,加速度为$a$,则$t$时刻的速度$v$与初始速度$v_0$的关系为?A. $v = v_0 + at$B. $v = v_0 + 2at$C. $v = v_0 + a^2t$D. $v = v_0 + at^2$5. 物体的重心是指?A. 物体的质心B. 物体的质量C. 物体的体积D. 物体的表面积二、填空题1. 一辆汽车以40 m/s的速度行驶5 s,速度在此过程中的变化率是8 m/s²。
8 m/s²。
2. 机械能守恒适用于力学能和势能都变化的力学系统。
力学能和势能都变化的力学系统。
3. 加速度的单位是m/s²。
m/s²。
4. 物体在自由下落过程中,重力做的功等于物体的重力势能的增量。
重力势能的增量。
5. 在电路中,电流强度的单位是安培。
安培。
三、解答题1. 请简要解释波动现象中的“衍射”和“干涉”现象。
衍射是指波沿着障碍物边缘传播时,波的传播方向发生改变,导致波的形状在障碍物后方发生扩散的现象。
干涉是指两个或多个波同时作用于同一区域,导致波的叠加,并形成新的波形的现象。
2. 当一物体从地面抛出时,最高点处速度为0,为什么还能够上升一段距离?当物体抛出时,它受到向上的初速度和重力的作用。
初速度提供了足够的动能,使物体能够克服重力的影响上升一段距离。
然后由于重力的作用,物体逐渐减速并下落。
3. 请简要解释电路中的串联和并联。
串联是指将电子器件或电池的正极与负极相连,依次排列在一条线上的方式连接的电路。
高考数学专题训练 (2)
专题训练21.设集合{|2},{|9},{4,7}A x x a B x b x A B =<<=<<⊆⋂集合若,则a b -的值可以是( ) A .1 B .2 C .3 D .42.已知i 为虚数单位,a 为实数,复数(2)(1)z a i i =-+在复平面内对应的点为M , 则“1a =”是“点M 在第四象限”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.已知命题P :“2,230x R x x ∀∈++≥”,则命题P 的否定为( )A.2,230x R x x ∀∈++<B. 2,230x R x x ∃∈++≥C. 2,230x R x x ∃∈++<D. 2,230x R x x ∃∈++≤4.若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为 ( )A 30°B 60°C 120°D 150° 5.设数列{}n a 是公差不为0的等差数列,115132,,a a a a =且成等比数列, 则数列{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+ C .2324n n+ D .2n n +6.已知一个空间几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 ( )A . 338cm B .3316cm C . 34cm D .312cm 7.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出四个函数: ()x x f 21log 2=,()()2log 22+=x x f ,223log )()(x x f =, ()x x f 2log )(24=. 则“同形”函数是 ( ) A .()x f 1与()x f 2 B .()x f 2与()x f 3 C .()x f 1与()x f 4 D .()x f 2与()x f 4主视图左视图俯视图8. 已知()f x 是定义在R 上的奇函数,当0x ≥时()3x f x m =+(m 为常数),则函数()f x 的大致图象为9.设双曲线2222:1(,0)x y C a b a b-=>的一条渐近线与抛物线2y x =的一个交点的横坐标为001,2x x >若,则双曲线C 的离心率e 的取值范围是( )A.(1,2 B.C.)+∞D.()2+∞ 10.将函数()sin()f x x ωϕ=+的图象向左平移2π个单位,若所得的图象与原图象重合, 则ω的值不可能等于( ) A .4B .6C .8D .1211.已知函数12||4)(-+=x x f 的定义域是[a ,b](a ,b ∈Z ),值域是[0,1], 则满足条件的整数对(a ,b )共有( )A .2个B .5个C .6个D .无数个12.函数()(31)2f a m a b m =-+-,当[]0,1m ∈时,0()1f a ≤≤恒成立, 则229a b ab+ 的最大值与最小值之和为( )A .18B .16C .14D .49413. 在△ABC 中,已知60,4,5,A b c ===则sin B = . 14.定义在R 上的函数()f x 满足()()f x f x -=-,(2)(2)f x f x -=+,且(1,0)x ∈-时,1()25x f x =+则2(log 20)f =____________.15.抛物线24y x =的焦点为F ,准线为l ,点(4,4)M 是抛物线上一点,则经过点F , M 且与l 相切的圆共有_________个.16. 若变量y x ,满足约束条件13215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则3log (2)w x y =+的最大值是一、选择题 DACCA CDBBB BB二、填空题13.77214.115.2 16.2。
高中数学选择性必修一 高考训练 练习习题 章末质量检测(二)
章末质量检测(二) 直线和圆的方程考试时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线 2 x - 6 y +1=0的倾斜角为( )A .π3B .2π3C .π6D .5π62.已知直线l 过点P(1,1),且其方向向量v =(1,2),则直线l 的方程为( )A .2x +y +1=0B .2x +y -1=0C .2x -y +1=0D .2x -y -1=03.如果AB >0,BC >0,那么直线Ax +By +C =0不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.“a =14”是直线l 1:(2a -1)x -ay +1=0与直线l 2:x +2ay -1=0平行的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若圆(x -1)2+y 2=2与直线x -y +λ=0相切,则实数λ的值为( )A .-1±22B .-1或3C .1±22D .1或-36.已知圆C 过点A (-2,0),B (0,4),圆心在x 轴上,则圆C 的方程为( )A .(x +1)2+(y -2)2=5B .(x -1)2+y 2=9C .(x -3)2+y 2=25D .x 2+y 2=167.已知两圆相交于两点A (1,3),B (t ,-1),两圆圆心都在直线x +2y +c =0上,则t +c 的值为( )A .-3B .-2C .0D .18.若直线x -y +2=0将圆(x -a )2+(y -3)2=9分成的两段圆弧长度之比为1∶3,则实数a 的值为( )A .-4B .-4或2C .2D .-2或4二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:3x +2y -m =0,l 2:x sin α-y +1=0,则( )A .当m 变化时,l 1的倾斜角不变B .当α变化时,l 2过定点C .l 1与l 2可能平行D .l 1与l 2不可能垂直10.已知曲线C 的方程为ax 2+ay 2-2x -2y =0(a ∈R ),则( )A .曲线C 可能是直线B .当a =1时,直线3x +y =0与曲线C 相切C .曲线C 经过定点D .当a =1时,直线x +2y =0与曲线C 相交11.垂直于直线3x +4y +10=0且与圆x 2+y 2=16相切的直线的方程是( )A .4x -3y +18=0B .4x -3y +20=0C .4x -3y -18=0D .4x -3y -20=012.已知圆C :(x -3)2+y 2=9,直线l :mx +4y -m -4=0(m ∈R ),则下列结论正确的有( )A .当m =3时,圆C 上恰有两个点到直线l 的距离等于2B .对于任意实数m ,直线l 恒过定点(1,1)C .若直线l 交圆C 于A ,B 两点,则弦长AB 的最小值为4D .D 是圆C 上的动点,点E (2,4),若动点M 满足DM → =2DE → ,则点M 的轨迹方程为(x -1)2+(y -8)2=9三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.若直线x +ay +1=0与直线(a -1)x +2y +1=0垂直,则a =________.14.一条直线l 经过P (3 ,-3),并且倾斜角是直线y =3 x 的倾斜角的2倍,则直线l 的方程为____________.15.已知直线l :2x +y +2=0和圆C :x 2+y 2-2x -2y -2=0,过直线l 上一点P 作圆C 的一条切线,切点为A ,则|P A |的最小值为________.16.在平面直角坐标系xOy 中,动点P 到两个定点O (0,0),A (3,0)的距离之比为12,设点P 的轨迹为C ,则轨迹C 的方程为________;若轨迹C 上有且只有四个点到直线l :y =-x +m 的距离为1,则实数m 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知△ABC 的三个顶点的坐标分别为A (0,1),B (1,4),C (6,3).(1)求边AC 上的中线所在直线方程;(2)求△ABC 的面积.18.(本小题满分12分)在三角形ABC 中,A (-1,0),B (3,0),AB 边上的中线所在直线的方程为x =1,AC 边上的高所在直线的方程为y =-2x +6.(1)求C 的坐标;(2)若D (1,-4),试判断A ,B ,C ,D 四点是否共圆,并说明理由.19.(本小题满分12分)已知直线方程为y+2=k(x+1).(1)若直线的倾斜角为135°,求k的值;(2)若直线分别与x轴、y轴的负半轴交于A、B两点,O为坐标原点,求△AOB面积的最小值及此时直线的方程.20.(本小题满分12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l 交圆C于A,B两点.(1)当P为弦AB的中点时,求直线l的方程;(2)若直线l与直线3x-4y-1=0平行,求弦AB的长.21.(本小题满分12分)已知圆C经过A(0,-1)和B(2,3)两点,圆心在直线x+y-1=0上.(1)求圆C的方程;(2)点P在圆C上,若|AP|=2,求直线AP的方程.22.(本小题满分12分)已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m为任意实数.(1)求证:直线l必与圆C相交;(2)m为何值时,直线l被圆C截得的弦长AB最短?最短弦长是多少?(3)若直线l被圆C截得的弦AB的中点为点M,求点M的轨迹方程.。
新教材老高考适用2023高考数学一轮总复习高考解答题专项二三角函数中的综合问题北师大版
高考解答题专项二 三角函数中的综合问题1.已知函数f (x )=2sin ωx cos ωx-π6-12(0<ω<2),函数f (x )在[a ,b ]上单调递增,且b-a 的最大值为π2,求f (x )在-π2,π2上的单调递减区间.2.(2021湖南怀化高三二模)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2tanBtanA+tanB =bc . (1)求角A ;(2)若a=√13,b=3,求△ABC 的面积.3.(2021天津静海一中高三月考)已知锐角三角形ABC的三个角A,B,C所对的边为a,b,c,且b cos C+√3b sin C=a+c.(1)求B;(2)若b=2,△ABC的面积为√3,求a,c.4.平面凸四边形ABCD中,∠BAD=∠BCD=90°,AD=3,AB=4.(1)若∠ABC=45°,求CD;(2)若BC=2√5,求AC.5.(2021江苏徐州高三二模)若f(x)=sin(ωx+φ)ω>0,0<φ<π2的部分图象如图所示,f(0)=12,f5π12=0.(1)求f(x)的解析式;(2)在锐角三角形ABC中,若A>B,f A-B2−π12=35,求cos A-B2,并证明sin A>2√55.6.(2021河南郑州高三三模)在△ABC中,AB=2AC,点D在BC边上,AD平分∠BAC.(1)若sin∠ABC=√5,求cos∠BAC;5(2)若AD=AC,且△ABC的面积为√7,求BC.高考解答题专项二 三角函数中的综合问题1.解f (x )=2sin ωx cos ωx-π6-12=2sin ωx cos ωx cos π6+sin ωx sin π6-12=√3cos ωx sin ωx+sin 2ωx-12=√32sin2ωx-12cos2ωx=sin 2ωx-π6.若f (x )在[a ,b ]上单调递增,且b-a 的最大值为π2, 则T=π=2π2ω,故ω=1,所以f (x )=sin 2x-π6.由π2+2k π≤2x-π6≤3π2+2k π(k ∈Z ),得π3+k π≤x ≤5π6+k π(k ∈Z ),令k=0,得π3≤x ≤5π6;令k=-1,得-2π3≤k ≤-π6.又-π2≤x ≤π2, 所以f (x )在-π2,π2上单调递减区间为-π2,-π6,π3,π2.2.解(1)由2tanBtanA+tanB =bc 及正弦定理可知,2sinBcosB sinA cosA +sinBcosB=sinBsinC ,所以2sinB cosB·cosA ·cosB sin(A+B)=sinB sinC,因此2cos A=1.又A ∈(0,π),所以A=π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得13=9+c 2-3c , 所以c 2-3c-4=0,即(c-4)(c+1)=0,解得c=4. 从而S △ABC =12bc sin A=12×3×4×√32=3√3.3.解(1)由正弦定理得sin B cos C+√3sin B sin C=sin A+sin C=sin(B+C )+sin C=sin B cos C+cos B sin C+sin C. 因为C 为三角形内角,sin C ≠0,所以√3sin B-cos B=1,sin B-π6=12.因为-π6<B-π6<π3,则B-π6=π6,即B=π3. (2)由已知S=12ac sin B=√34ac=√3,得ac=4.又a 2+c 2-b 2=2ac cos B ,即a 2+c 2-4=ac ,解得a=c=2.4.解(1)连接BD ,在Rt △BAD 中,由AB=4,AD=3,∠BAD=90°, 得BD=5,∴sin ∠ABD=35,cos ∠ABD=45.∵∠ABC=45°,∴∠DBC=45°-∠ABD ,∴sin ∠DBC=sin45°·cos ∠ABD-cos45°·sin ∠ABD=√22×45−√22×35=√210. 在Rt △BCD 中,由∠BCD=90°,知CD=BD ·sin ∠DBC=5×√210=√22.(2)连接AC ,由(1)知BD=5,在Rt △ABD 中易知sin ∠ABD=35,cos ∠ABD=45. 在Rt △BCD 中,由BC=2√5,BD=5,得CD=√5. 易知sin ∠CBD=√55,cos ∠CBD=2√55. ∴cos ∠ABC=cos(∠ABD+∠CBD )=cos ∠ABD ·cos ∠CBD-sin ∠ABD ·sin ∠CBD=45×2√55−35×√55=√55. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=42+(2√5)2-2×4×2√5×√55=20, ∴AC=2√5.5.解(1)由f (0)=12,得sin φ=12.又0<φ<π2,故φ=π6. 由f5π12=0,得sin ω·5π12+π6=0,所以ω·5π12+π6=2k π+π(k ∈Z ),即ω=2+24k5(k ∈Z ).由ω>0,结合函数图象可知12·2πω>5π12,所以0<ω<125.又k ∈Z ,所以k=0,从而ω=2,因此f (x )=sin 2x+π6.(2)由fA -B 2−π12=sin(A-B )=35,因为0<B<A<π2,所以0<A-B<π2,故cos(A-B )=45. 因为cos(A-B )=2cos 2A -B2-1,于是cosA -B 2=√1+cos(A -B)2=3√1010. 所以sinA -B 2=√1-cos 2A -B 2=√1010. 又A+B>π2,故A=A+B 2+A -B 2>π4+A -B 2.又y=sin x 在0,π2上单调递增,且A ∈0,π2,π4+A -B 2∈0,π2, 所以sin A>sinπ4+A -B 2=sin π4cosA -B 2+cos π4sinA -B 2=√22×3√1010+√1010=2√55.6.解(1)令△ABC 的边AC ,AB ,BC 为b ,c ,a ,由题意可得c=2b , ∵AB>AC ,∴∠ABC<∠ACB ,∴∠ABC 为锐角,即cos ∠ABC=√1-15=2√55.∵AC sin ∠ABC=AB sin ∠ACB,∴sin ∠ACB=2√55.∵∠ACB ∈(0,π),∴cos ∠ACB=±√55. ∴cos ∠BAC=-cos(∠ABC+∠ACB )=sin ∠ABC sin ∠ACB-cos ∠ABC cos ∠ACB.当cos ∠ACB=√55时,cos ∠BAC=√55×2√55−2√55×√55=0. 当cos ∠ACB=-√55时,cos ∠BAC=√55×2√55+2√55×√55=45.所以cos ∠BAC=0或45.(2)设∠CAD=∠DAB=θ,由于S △ABC =S △ACD +S △ADB , 所以12AC ·AD sin θ+12AB ·AD sin θ=12AB ·AC sin2θ, 由AD=AC ,AB=2AC 可得3sin θ=4sin θcos θ.因为sin θ≠0,则cos θ=34,sin θ=√1-cos 2θ=√74, S △ABC =12AC ·AB sin2θ=b 2sin2θ=2b 2sin θcos θ=√7,解得b 2=83.又cos2θ=2cos 2θ-1=18,∴a=√b 2+4b 2-2b ·2bcos2θ=2√3,即BC=2√3.。
2008高考解答题专题训练二 概率与统计(文)
1.袋中装有大小相同的2个白球和3个黑球.(Ⅰ)从袋中任意取两个球,求两球颜色不同的概率;(Ⅱ)从袋中任意取出一个球,记住颜色后放回袋中,再任意取出一个球,求两次取出的球颜色不同的概率.2.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得1 分 . 现从盒内任取3个球. (Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和是正数的概率.3.甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为53,甲胜丙的概率为54,乙胜丙的概率为53,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束.(Ⅰ)求只进行两局比赛,甲就取得胜利的概率;(Ⅱ)求只进行两局比赛,比赛就结束的概率;(III )求甲取得比赛胜利的概率.4.某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:(Ⅰ)从这15名教师中随机选出2名,求2人恰好是教不同版本的男教师的概率;(Ⅱ)培训活动随机选出3名教师发言,求使用不同版本教材的女教师各至少一名的概率.5.某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲工人通过每次测试的概率是43. (Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;(Ⅱ)求甲工人连续3个月参加技能测试恰好通过2次的概率;(III )工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求甲工人恰好参加4次测试后被撤销上岗资格的概率.6.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率.7.某职业联赛的总决赛在甲、乙两队之间角逐,采用七场四胜制,即有一队胜四场,则此队获胜,且比赛结束.在每场比赛中,甲队获胜的概率是32,乙队获胜的概率是31,根据以往资料统计,每场比赛组织者可获门票收入为30万元,两队决出胜负后,问: (Ⅰ)组织者在总决赛中获门票收入为120万元的概率是多少?(Ⅱ)组织者在总决赛中获门票收入不低于180万元的概率是多少?8.某车间准备从10名工人中选送4人到某生产线工作,工厂规定:这条生产线上熟练工人不得少于3人。
高考数学复习考前专题训练—解答题(二)
高考数学复习考前专题训练—解答题(二)1.(2021·广东揭阳一模)已知正项等差数列{a n}的前n项和为S n,满足6S n=a n·a n+1+2(n∈N*),a1<2,(1)求数列{a n}的通项公式;(2)若b n=(-1)n lg(a n·a n+1),记数列{b n}的前n项和为T n,求T33.2.(2021·重庆八中适应性训练)在①cos 2A+2√2cos(B+C)+2=0,②√2+2cos C cos B=cos(C-B)-cos(C+B),③2c tan B=√2b(tan A+tan B)这三个条件中任选一个,补充到下面的横线上并作答.问题:在△ABC中,角A,B,C的对边分别为a,b,c,已知a=√5,c=√2,.(1)求cos C;,求sin∠DBC.(2)在边AC上取一点D,使得cos∠ADB=453.(2021·江苏盐城三模)如图,在三棱柱ABC-A1B1C1中,AC=BB1=2BC=2,∠CBB1=2∠CAB=π,且平面3ABC⊥平面B1C1CB.(1)求证:平面ABC⊥平面ACB1;(2)设点P为直线BC的中点,求直线A1P与平面ACB1所成角的正弦值.4.(2021·广东湛江二模)某高三学生小明准备利用暑假的7月和8月勤工俭学,现有“送外卖员”和“销售员”两份工作可供其选择.已知“销售员”工作每日底薪为50元,每日销售的前5件每件奖励20元,超过5件的部分每件奖励30元.小明通过调查,统计了100名销售员1天的销售记录,其柱状图如图1;“送外卖员”没有底薪,收入与送的单数相关,在一日内:1至20单(含20单)每送一单3元,超过20单且不超过40单的部分每送一单4元,超过40单的部分,每送一单4.5元.小明通过随机调查,统计了100名送外卖员的日送单数,并绘制成如下频率分布直方图(如图2).图1图2(1)分别求出“销售员”的日薪y 1(单位:元)与销售件数x 1的函数关系式,“送外卖员”的日薪y 2(单位:元)与所送单数x 2的函数关系式;(2)若将频率视为概率,根据统计图,试分别估计“销售员”的日薪X 1和“送外卖员”的日薪X 2(同一组中的数据用该组区间的中点值代表)的数学期望,分析选择哪种工作比较合适,并说明你的理由.5.(2021·湖北襄阳模拟)在平面直角坐标系xOy 中:①已知点A (√3,0),直线l :x=4√33,动点P 满足到点A的距离与到直线l 的距离之比为√32;②已知点S ,T 分别在x 轴、y 轴上运动,且|ST|=3,动点P 满足OP⃗⃗⃗⃗⃗ =23OS ⃗⃗⃗⃗⃗ +13OT ⃗⃗⃗⃗⃗;③已知圆C 的方程为x 2+y 2=4,直线l 为圆C 的切线,记点A (√3,0),B (-√3,0)到直线l 的距离分别为d 1,d 2,动点P 满足|PA|=d 1,|PB|=d 2.(1)在①,②,③这三个条件中任选一个,求动点P 的轨迹方程;(2)记(1)中动点P 的轨迹为E ,经过点D (1,0)的直线l'交E 于M ,N 两点,若线段MN 的垂直平分线与y 轴相交于点Q ,求点Q 纵坐标的取值范围.6.(2021·山东烟台一模)已知函数f (x )=a (x 2-x )-ln x (a ∈R ). (1)讨论函数f (x )的单调性; (2)证明:当x>1时,2e x -1lnx≥x 2+1x 2-x.答案及解析1.解 (1)设等差数列{a n }的公差为d ,则由6S n =a n ·a n+1+2,得6S n-1=a n-1·a n +2(n ≥2), 相减得6(S n -S n-1)=a n (a n+1-a n-1), 即6a n =a n ·2d (n ≥2). 又a n >0,所以d=3. 由6S 1=a 1·a 2+2,得6a 1=a 1·(a 1+3)+2,解得a 1=1(a 1=2舍去),由a n =a 1+(n-1)d ,得a n =3n-2. (2)b n =(-1)n lg(a n ·a n+1)=(-1)n (lg a n +lg a n+1),T 33=b 1+b 2+b 3+…+b 33=-lg a 1-lg a 2+lg a 2+lg a 3-lg a 3-lg a 4+…-lg a 33-lg a 34=-lg a 1-lg a 34=-lg 100=-2.2.解 选①:cos 2A+2√2cos(B+C )+2=0,得2cos 2A-1-2√2cos A+2=0,即(√2cos A-1)2=0,解得cos A=√22. 因为0<A<π,所以A=π4.选②:因为√2+2cos C cos B=cos(C-B )-cos(C+B ),所以√2+2cos C cos B=cos C cos B+sin C sin B-cos C cos B+sin C sin B ,即2cos(C+B )=-√2,cos A=√22,因为0<A<π,所以A=π4.选③:2c tan B=√2b (tan A+tan B ),所以2sinBsinCcosB =√2sin B (sinA cosA +sinBcosB ),所以2sin B sinC cos A=√2sin B sin C.因为sin B ≠0,sin C ≠0,所以cos A=√22. 因为A ∈(0,π),所以A=π4.(1)在△ABC 中,由余弦定理:cos A=b 2+c 2-a 22bc =22√2b,可得b=3,所以cosC=a 2+b 2-c 22ab=2√55.(2)因为cos ∠ADB=45,所以cos ∠BDC=-45. 即∠BDC 为钝角,且sin ∠BDC=35.又∠BDC+∠C+∠DBC=180°. 由(1)知,cos C=2√55,sin C=√1-cos 2C =√55.所以sin ∠DBC=sin(∠C+∠BDC )=sin ∠BDC cos ∠C+cos ∠BDC sin ∠C=35×2√55−45×√55=2√525.3.(1)证明 连接AB 1,B 1C.因为AC=2BC=2,所以BC=1.因为2∠CAB=π3,所以∠CAB=π6. 在△ABC 中,BCsinA =ACsinB ,即1sin π6=2sinB ,所以sin B=1.即AB ⊥BC.又因为平面ABC ⊥平面B 1C 1CB ,平面ABC ∩平面B 1C 1CB=BC ,AB ⊂平面ABC ,所以AB ⊥平面B 1C 1CB.又B 1C ⊂平面B 1C 1CB ,所以AB ⊥B 1C.在△B 1BC 中,B 1B=2,BC=1,∠CBB 1=π3,所以B 1C 2=B 1B 2+BC 2-2B 1B·BC·cos π3=3,即B 1C=√3,所以B 1C ⊥BC. 而AB ⊥B 1C ,AB ⊂平面ABC ,BC ⊂平面ABC ,AB ∩BC=B ,所以B 1C ⊥平面ABC.又B 1C ⊂平面ACB 1,所以平面ABC ⊥平面ACB 1.(2)解 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,过B 作平面ABC 的垂线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (1,0,0),A (0,√3,0).∵B 1C ⊥平面ABC ,∴B 1(1,0,√3),∴BB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√3).在三棱柱中,AA 1∥BB 1∥CC 1,可得C 1(2,0,√3),A 1(1,√3,√3),∵P 为BC 中点,∴P (12,0,0).∴A 1P ⃗⃗⃗⃗⃗⃗⃗ =(-12,-√3,-√3),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,√3),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,√3).设平面ACB 1的一个法向量为n =(x ,y ,z ), 则{AB 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,CB 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{x -√3y +√3z =0,√3z =0,不妨取x=√3,可得y=1,z=0,则n =(√3,1,0). 设直线A 1P 与平面ACB 1所成角为θ,则sin θ=|cos <A 1P ⃗⃗⃗⃗⃗⃗⃗ ,n >|=|A 1P ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|A 1P ⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n ||=|-√32-√3+052×2|=3√310.故直线A 1P 与平面ACB 1所成角的正弦值为3√310.4.解 (1)“销售员”的日薪y 1(单位:元)与销售件数x 1的函数关系式为y 1={20x 1+50,x 1≤5,x 1∈N ,30x 1,x 1>5,x 1∈N ,“送外卖员”的日薪y 2(单位:元)与所送单数x 2的函数关系式为y 2={3x 2,x 2≤20,x 2∈N ,4x 2-20,20<x 2≤40,x 2∈N ,4.5x 2-40,x 2>40,x 2∈N .(2)由柱状图知,日平均销售量满足如下表格:所以X 1的分布列为所以E (X 1)=110×0.05+130×0.2+150×0.25+180×0.4+210×0.1=162(元).由频率分布直方图可知,日送单数满足如下表格:所以X 2的分布列如下表:所以E (X 2)=30×0.05+100×0.25+182×0.45+275×0.2+365×0.05=183(元).由以上计算得E (X 2)>E (X 1),做“送外卖员”挣的更多, 故小明选择做“送外卖员”的工作比较合适.5.解 (1)若选①:设P (x ,y ),根据题意,得√(x -√3)2+y 2|x -4√33|=√32,整理得x 24+y 2=1,所以动点P 的轨迹方程为x 24+y 2=1.若选②:设P (x ,y ),S (x',0),T (0,y'), 则√(x ')2+(y ')2=3.(i)因为OP ⃗⃗⃗⃗⃗ =23OS ⃗⃗⃗⃗⃗ +13OT ⃗⃗⃗⃗⃗, 所以{x =23x ',y =13y ',整理,得{x '=32x ,y '=3y , 代入(i)得x 24+y 2=1,所以动点P 的轨迹方程为x 24+y 2=1.若选③:设P (x ,y ),直线l 与圆相切于点H ,则|PA|+|PB|=d 1+d 2=2|OH|=4>2√3=|AB|. 由椭圆的定义,知点P 的轨迹是以A ,B 为焦点的椭圆, 所以2a=4,2c=|AB|=2√3,故a=2,c=√3,b=1. 所以动点P 的轨迹方程为x 24+y 2=1.(2)设Q (0,y 0),当直线l'的斜率不存在时,y 0=0.当直线l'的斜率存在时,设直线l'的斜率为k ,M (x 1,y 1),N (x 2,y 2),线段MN 的中点为G (x 3,y 3).由{x 124+y 12=1,x 224+y 22=1,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)=0,所以k=y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-2x34×2y3=-x 34y 3. 线段MN 的垂直平分线的方程为y-y 3=4y3x 3(x-x 3).令x=0,得y 0=-3y 3. 由k=-x 34y3=y 3x 3-1,得y 32=-14x 32+14x 3=-14(x 3-12)2+116.由y 32>0得0<x 3<1,所以0<y 32≤116,则-14≤y 3<0或0<y 3≤14,所以-34≤y 0<0或0<y 0≤34. 综上所述,点Q 纵坐标的取值范围是[-34,34].6.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=a (2x-1)-1x =2ax 2-ax -1x. 令g (x )=2ax 2-ax-1.①当a=0时,g (x )=-1<0,f'(x )=g (x )x <0,故f (x )在(0,+∞)上单调递减;②当a ≠0时,g (x )为二次函数,Δ=a 2+8a.若Δ≤0,即-8≤a<0,则g (x )的图象为开口向下的抛物线且g (x )≤0,所以f'(x )≤0,故f (x )在(0,+∞)单调递减;若Δ>0,即a<-8或a>0.令g (x )=0,得x 1=a -√a 2+8a 4a ,x 2=a+√a 2+8a4a. 当a<-8时,g (x )图象为开口向下的抛物线,0<x 2<x 1,所以当x ∈(0,x 2)或x ∈(x 1,+∞)时,g (x )<0, 所以f'(x )<0,f (x )单调递减;当x ∈(x 2,x 1)时,g (x )>0,所以f'(x )>0,f (x )单调递增; 当a>0时,g (x )图象为开口向上的抛物线,x 1<0<x 2,所以当x ∈(0,x 2)时,g (x )≤0,所以f'(x )<0,故f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,所以f'(x )>0,f (x )单调递增. 综上,当a<-8时,f (x )在(0,a+√a 2+8a 4a )和a -√a 2+8a4a,+∞上单调递减,在(a+√a 2+8a 4a ,a -√a 2+8a4a)上单调递增; 当a>0时,f (x )在(0,a+√a 2+8a 4a )上单调递减,在(a+√a 2+8a 4a,+∞)上单调递增;当-8≤a ≤0时,f (x )在(0,+∞)上单调递减.(2)证明 由(1)知,当a=1时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,因此对任意x>1恒有f (x )>f (1),即x 2-x>ln x. 因为0<ln x<x 2-x ,若2e x-1≥x 2+1成立,则2e x -1lnx ≥x 2+1x 2-x 成立. 令φ(x )=e x-1-12(x 2+1)(x ≥1),则φ'(x )=e x-1-x ,φ″(x )=e x-1-1.因为x ≥1,所以φ″(x )≥0,所以φ'(x )在[1,+∞)上单调递增,又φ'(1)=0,所以当x ≥1时,φ'(x )≥0,所以φ(x )在[1,+∞)上单调递增, 又φ(1)=0,所以对任意x>1恒有φ(x )>φ(1)=0,即2e x-1≥x 2+1. 当x>1时,0<ln x<x 2-x ,则1lnx >1x 2-x >0.由不等式的基本性质可得2e x-1lnx≥x2+1x2-x.因此,原不等式成立.。
2019高考数学(文)考前冲刺必刷卷:小题必刷卷8套 解答题必刷卷3套解答必刷卷(二) 三角函数、解三角形
解答必刷卷(二)三角函数、解三角形
题组一真题集训
1.[2014·全国卷Ⅱ]四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=
2.
(1)求C和BD;
(2)求四边形ABCD的面积.
2.[2018·天津卷]在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos B-.
(1)求角B的大小;
(2)设a=2,c=3,求b和sin(2A-B)的值.
3.[2016·四川卷]在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.
(1)证明:sin A sin B=sin C;
(2)若b2+c2-a2=bc,求tan B.
题组二模拟强化
4.[2018·湖南三湘名校三联]如图J2-1,a,b,c分别为△ABC中角A,B,C的对边,∠ABC=,cos∠
ADC=,c=8,CD=2.
(1)求a的值;
(2)求△ADC的外接圆的半径R.
图J2-1
5.[2018·四川内江一模]△ABC的内角A,B,C的对边分别是a,b,c,已知b cos C+c sin B=0.
(1)求C;
(2)若a=,b=,点D在边AB上,CD=BD,求CD的长.
6.[2018·武汉武昌区5月调研]在△ABC中,内角A,B,C的对边分别是a,b,c,已知△ABC的外接圆半径R=,且tan B+tan C=.
(1)求B和b的值;
(2)求△ABC面积的最大值.。
沪教版(上海) 高一第一学期 新高考辅导与训练 第2章 不等式 2.9 基本不等式及其应用(2)
沪教版(上海) 高一第一学期新高考辅导与训练第2章不等式2.9 基本不等式及其应用(2)一、解答题(★★★) 1. 已知、均为正数,,,求证:(1)如果是定值,那么当且仅当时的值最小;(2)如果是定值,那么当且仅当时的值最大.(★★★) 2. 求下列各题:(1)已知求的最大值;(2)已知,求的最小值;(3)已知,求的最大值;(4)已知,求的最小值;(5)已知,求的最小值.(★★★) 3. 若正实数 x, y满足,求的最小值.(★★★) 4. 已知,求的最小值.(★★) 5. 某自来水厂拟建一座平面图为矩形且面积为200 m 2的二级净水处理池(如图).池的深度一定,池的外围周壁建造单价为400元/ m,中间的一条隔壁建造单价为100元/ m,池底建造单价为60元/ m 2,池壁厚度忽略不计.问净水池的长为多少时,可使总造价最低?(★★★) 6. 当时求的最小值.(★★★) 7. 已知a>0,b>0,且,求的最大值.二、填空题(★★) 8. 设 x, y均为正数,则的最小值为________.(★★) 9. 设,则的最小值是________.(★★★) 10. 当时,的最小值为________.(★★) 11. 若,则的最大值为________.(★★) 12. 当时,的最小值为________.(★★★) 13. 已知,则的最大值为________.(★★★) 14. 已知,,且,则 xy的最大值是________.(★★★) 15. 周长为的直角三角形面积的最大值为 ______ .三、单选题(★★) 16. 已知,则取最大值时的值为().A.B.C.D.(★★) 17. 设,则 a= , b=1+ x, c= 中最大的一个是A.a B.b C.c D.不确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且12cos )2(
sin 22=++C B A 。
(1)求角C 的大小;
(2)若向量),3(b a m = ,向量)3/,(b a n -= ,n m ⊥,16))((-=+-+n m n m 求a 、b 、c 的值。
2. 如图,已知在直四棱柱ABCD-A 1B 1C 1D 1中,DC AD ⊥,AB//DC ,DC=DD 1=2AD=2AB=2。
(1)求证:⊥DB 平面B 1BCC 1;
(2)设E 是DC 上一点,试确定E 的位置,使得D 1E//平面A 1BD ,并说明理由。
3.从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160.第二组[)160,165;…第八组[]190,195,右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组.第七组.第八组人数依次构成等差数列。
1.估计这所学校高三年级全体男生身高180cm 以上含180cm .的人数;
2.求第六组.第七组的频率并补充完整频率分布直方图;
3.若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x y 、,求满足:
5x y -≤的事件概率。
1. 已知函数x x x x x x f cos sin sin 3)3sin(cos 2)(2+-+=π
(1)求)(x f 的最小正周期;(2)求)(x f 的单调增区间;(3)当]4
,0[π
∈x 时,求)(x f 的值域。
2.如图,四棱锥P -ABCD 的底面是正方形,PA⊥底面ABCD ,PA =2
点E 、F 分别为棱AB 、PD 的中点.
(1)求证:AF∥平面PCE ;
(2)求证:平面PC E⊥平面PCD ;
(3)求三棱锥C -BEP 的体积.
3.已知函数.2
1)(23c bx x x x f ++-= (1)若)(x f 有极值,求b 的取值范围;
(2) 若)(x f 在1=x 处取得极值时,当2)(,]2,1[c x f x <-∈时恒成立,求c 的取值范围;
(3)若)(x f 在1=x 处取得极值时,证明:对[-1,2]内的任意两个值12,,x x 都有127|()()|2f x f x -≤
.。