难点5 速度关联类问题求解
专题+关联速度的问题

N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(
)
A.v0
B.2v0
C.
D
.
ℎ
1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2
A.
B.
C.
D.
)
绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短
绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(
即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入
高三物理难点 破解连接体中速度、位移及加速度关联

难点6破解连接体中速度、位移及加速度关联在学习了运动的合成与分解后,我们经常会碰到涉及相互关联的物体的速度求解。
这样的几个物体或直接接触、相互挤压,或借助其他媒介(如轻绳、细杆)等发生相互作用。
在运动过程中常常具有不同的速度表现,但它们的速度却是有联系的,我们称之为“关联”速度。
解决“关联”速度问题的关键有两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果分解,二是沿着相互作用的方向(如沿绳、沿杆)的分速度大小相等。
下面通过三种关联媒介来破解连接体中的关联物理量的问题。
连接媒介之一:绳杆连接物体的关联 对于绳子或杆连接的两个物体,轻杆与轻绳均不可伸长,绳连或杆连物体的速度在绳或杆的方向上的投影相等。
求绳连或杆连物体的速度关联问题时,首先要明确绳连或杆连物体的速度,然后将两物体的速度分别沿绳或杆的方向和垂直于绳或杆的方向进行分解,令两物体沿绳或杆方向的速度相等即可求出。
【调研1】【2011年高考上海卷第11题】如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为α,船的速率为A 、v sin αB 、v sin αC 、v cos αD 、v cos α 【解析】本题考查运动的合成与分解。
本题难点在于船的发动机是否在运行、河水是否有速度。
依题意船沿着绳子的方向前进,即船的速度就是沿着绳子的,根据绳子连接体的两端物体的速度在绳子上的投影速度相同,即人的速度v 在绳子方向的分量等于船速,故v 船=v cos α,C 对。
【答案】C 【规律总结】绳端速度的分解是绳端物体(绳端连接体如本题小船)实际速度(对地)的分解,实际速度产生两个效果:一是绳的缩短或伸长;二是绳绕滑轮的转动,且转动线速度垂直于绳。
绕过滑轮的轻绳力的特点是两端拉力相等,速度特点是沿绳的伸长或缩短方向速度相等。
因此绳子关联的物体的分解方法有两种,①将实际速度分解为沿着绳子方向和垂直绳子方向;②绳子两端的速度在绳子上的投影速度相同,比如本题中绳子左端的速度就是拉力的速度与绳子与船连接端的小船在绳子方向上的投影速度大小相等。
几种速度牵连问题及其解题方法

几种速度牵连问题及其解题方法摘要力学问题中存在一些速度牵连的情况,在高中力学学习中,无论是运用能量守恒定理、动量守恒定理解题时,对牵连速度的分析是解题的关键。
仔细观察各物体的运动的实际情况,正确分析各运动物体牵连速度的关系,对于正确而高效地求解十分重要。
关键词力学;速度;运动在高中力学学习中,无论是运用能量守恒定理、动量守恒定理解题时,对牵连速度的分析是解题的关键。
仔细观察各物体的运动的实际情况,正确分析各运动物体牵连速度的关系,对于正确而高效地求解十分重要。
例如,下面是一些典型的情况及其分析思路。
1)物体通过绳索连接,通过杆连接。
在高中阶段物理学习中,分析时不考虑绳索的弹性伸长,杆也是不考虑其伸长和压缩的,即它们的长度都认为是不变化的。
这种情况下,被拉紧的绳索连接的物体,在绳索方向上的分速度是相等的;被杆连接着的物体,在杆的方向上的分速度是相等的。
2)相互接触并且相对运动的物体,当不考虑相互接触的摩擦和变形时,两接触且相对运动物体的速度沿垂直接触面的方向的分速度相等。
下面举几个典型实例说明分析和解题方法。
例1两根光滑的杆互相垂直地固定在一起,上面分别穿一个小球,小球a、b间用细直棒相连如图1所示。
当细直棒与竖直杆夹角为α时,求两小球实际速度之比Va、Vb。
图1解:据题设条件,a球只能沿竖直杆运动,设其速度为Va;b球只能沿水平杆运动,设其速度为Vb。
a球、b球沿细直棒方向的分速度相同,设为V0,则有:由此得:例2如图2所示,B是质量为2m、半径为R 的光滑半球形碗,放在光滑的水平桌面上,A是质量为m的细长直杆,被套在光滑套管D约束在竖直方向,A可自由上下运动,物块C的质量为m,紧靠半球形碗放置。
初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(见图2),然后从静止开始释放A,A、B、C便开始运动。
求:1)长直杆下降过程中,长直杆A与半球形碗B速度的大小(表示成θ的函数);2)长直杆的下端运动到碗的最低点时,长直杆竖直方向上的速度和B、C 水平方向的速度;3)运动过程中,长直杆的下端能上升到的最高点距离半球形碗底部的高度。
5关联速度问题

关联速度问题考点规律分析①对“关联速度”的理解用绳、杆相牵连的物体在运动过程中的速度通常不同,但两物体沿绳或杆方向的分速度大小相等。
②“关联速度”问题的解题步骤a.确定合速度:牵连物端点的速度(即所连接物体的实际速度)是合速度。
b.分解合速度:按平行四边形定则进行分解,作好矢量图。
合运动所产生的实际效果:一方面产生使绳或杆伸缩的效果;另一方面产生使绳或杆转动的效果。
两个分速度的方向:沿绳或杆方向和垂直于绳或杆方向。
常见的模型如图所示:c.沿绳或杆方向的分速度大小相等,列方程求解。
例如:v=v∥(甲图);v∥′(乙图、丙图)。
=v∥例题讲解(多选)如图所示,做匀速直线运动的汽车A通过一根绕过定滑轮的长绳吊起一重物B,设重物和汽车的速度的大小分别为v B、v A,则()A.v A=v B B.v A<v BC.v A>v B D.重物B的速度逐渐增大[规范解答]如图所示,汽车的实际运动是水平向左的运动,它的速度v A可以产生两个运动效果:一是使绳子伸长,二是使绳子与竖直方向的夹角增大,所以车的速度v A应有沿绳方向的分速度v0和垂直绳的分速度v1,由运动的分解可得v0=v A cosα;又由于v B=v0,所以v A>v B,故C正确。
因为随着汽车向左行驶,α角逐渐减小,所以v B逐渐增大,故D正确。
[完美答案]CD绳(杆)联问题,关键点是把合速度沿杆垂直杆,沿绳垂直绳分解。
沿杆或者沿绳分速度相等。
另外,实际运动方向就是合速度方向。
举一反三作业1.如图所示,用船A拖着车B前进时,若船匀速前进,速度为v A,当OA绳与水平方向夹角为θ时,则:(1)车B运动的速度v B为多大?(2)车B是否做匀速运动?答案(1)v A cosθ(2)不做匀速运动解析(1)把v A分解为一个沿绳子方向的分速度v1和一个垂直于绳的分速度v2,如图所示,所以车前进的速度v B大小应等于v A的分速度v1,即v B=v1=v A cosθ。
速度关联问题的处理方法

速度关联问题的处理方法
阜宁县第一高级中学 陈晓军 224400
求相互接触的物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力方向和垂直于弹力方向进行分解.令两物体沿弹力方向的速度相等即可求出。
例1 一个半径为R 的半圆柱体沿水平方向向右以速度V0
匀速运动,在半圆柱体上搁置一根竖直杆.此杆与半圆柱体的
接触点P 与柱心的连线与竖直方向的夹角为 时.求竖直杆的
速度大小.
解析:设竖直杆的速度大小为,方向竖直向上,由于弹力
方向沿OP 方向,所以01sin cos v v θθ=,解得:10tan v v θ=
例2一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个高为h 的物块上,如图2所示.若物块与地面间的摩擦力不计,
当物块以速度v 向右运动时,求小球A 的线速度(此时杆与
水平方向的夹角为θ)。
解析:选取物块与棒的接触点B 为连接点.因为B 点
在物块上,该点的运动方向不变且与物块的运动方向一
致.故B 点的合速度(实际速度)也就是物块的速度v ;B 又
在棒上,参与沿棒向A 点滑动的速度1v ,和绕O 点转动的
线速度2v 因此,将v 沿棒及垂直于棒的两个方向进行分解.由速度矢量分解图(如图3所示)得:2sin v v θ=
设此时OB 的长度为a ,则:sin h a θ
= 令棒绕O 点转动的角速度为ω,则:222sin v v a h
θω== 故小球A 的线速度2sin A vl v l h
θω==。
培优十——速度关联类问题求解重点讲义资料

培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是().A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt,物体前进的位移Δs1=BC,如图所示.过C点作CD⊥AB,当Δt→0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs1=BB’,如图所示. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=t BB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v2020241=21•21=21==mv v m mv E W k ∆6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin 联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2)∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B=2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v(5)θθθ2B cos 1cos 2cos +=gR v(6)。
速度分解-关联速度问题

与水面夹角为θ时,船的速度为多大?
v沿绳方向的伸来自长或收缩运动v∥ Cv船 θ A
v⊥
垂直于绳方向的 旋转运动
【练习1】如图所示,如图所示,汽车沿
水平路面以恒定速度v前进,则当拉绳与水
平方向成θ角时,被吊起的物体M的速度
vM为多大?
直墙上,b端放在水平面上,当滑到图示位 置时,b点速度为v,杆与水平方向所成夹角 为θ,则a点速度是( )
a
b
物体M 处
于平衡?超
重?失重?
v⊥
vM
θ
v
v∥
【练习3】如图所示,A、B 两物体用细绳 相连,在水平面上向左运动,当α=45 °, β=30 °时,物体 B 的速度为2 m/s ,这时A 的速度为多大?
vA⊥
vA
Aα
vA∥
vB∥ vB β B
vB⊥
杆末端速度的分解 【练习3】 放在墙角的均匀直杆的a端靠在竖
难点解析丨实际运动中的关联速度问题

难点解析丨实际运动中的关联速度问题关联速度问题一般是指物拉绳(或杆)和绳(或杆)拉物问题.高中阶段研究的绳都是不可伸长的,杆都是不可伸长且不可压缩的,即绳或杆的长度不会改变.01速度规律绳、杆等连接的两个物体在运动过程中,其速度通常是不一样的,但两个物体沿绳或杆方向的速度大小相等,我们称之为关联速度.02解决关联速度问题的一般步骤第一步:先确定合运动,即物体的实际运动.第二步:确定合运动的两个实际作用效果,一是沿绳(或杆)方向的平动效果,这个效果改变速度的大小;二是沿垂直于绳(或杆)方向的转动效果,这个效果改变速度的方向.即将实际速度分解为垂直于绳(或杆)和平行于绳(或杆)方向的两个分量.第三步:按平行四边形定则进行分解,作出运动矢量图.第四步:根据沿绳(或杆)方向的速度相等列方程求解.03常见的模型(1)车拉船模型问题:车拉船运动,车匀速前进,速度为v,当绳与水平方向成α角时,船速v′是多少?分析:绳与船接触的点M是个特殊的点,此点既在绳上又在船上.在船上,是实际运动(合运动).在绳上,同时参与两个分运动.点M从A到B的运动情况比较复杂,为了便于理解和观察,把运动过程等效分解为两个独立的运动过程.一个是绕滑轮做的圆周运动,这个运动不改变绳长,每一时刻的速度方向都垂直于绳的方向.另一个是沿着绳的方向做的直线运动,这个运动是由于车拉动绳向O点收缩引起的.所以点M的速度每时每刻都可以分解为两个速度.一个是垂直于绳的方向的v1.另一个是沿着绳的方向的v2.则有:v1=v′sin αv2=v′cos α车和船都在同一根绳上,由于绳的长度不会改变,所以车和船的实际速度沿绳方向的分速度大小相同.解决:车在绳上的分速度等于船在绳上的分速度.即v=v2v=v′sin α所以v′=v/sin α绳子的“关联”速度问题(2)其他模型(1)两个物体的绳子末端速度的分解如下图所示,两个物体的速度都需要分解,其中两个物体的速度沿着绳子方向的分速度是相等的,即vA∥=vB∥.(2)两个物体的硬杆末端速度的分解如下图所示,a、b沿杆的方向上各点的速度大小相等.vacos θ=vbcos αva:vb=cos α:cos θ杆以及相互接触物体的“关联”速度问题;【示范例题】例题1.(单选题)固定在竖直平面内的半圆形刚性铁环,半径为R,铁环上穿着小球,铁环圆心O的正上方固定一个小定滑轮.用一条不可伸长的细绳,通过定滑轮以一定速度拉着小球从A点开始沿铁环运动,某时刻小球运动至如下图所示位置,若绳末端的速度为v,则小球此时的速度为()【答案】A【解析】小球的速度方向沿铁环的切线方向,将小球的速度分解为沿绳方向和垂直于绳方向的分量,沿绳方向的速度为v,则v′cos 30°=v,选项A正确.点拨:找准合运动,分解合运动,不能分解分运动.例题2.(单选题)如下图所示,一轻杆两端分别固定质量为mA和mB的两个小球A和B(均可视为质点).将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,B球沿槽上滑的速度为vB,则此时A球的速度vA的大小为()【答案】D【解析】根据题意,将A球的速度分解成沿杆方向与垂直于杆方向的分量,同时B球的速度也分解成沿杆方向与垂直于杆方向的分量.则对A球,有v=vcos α,对B球,有v=vBsin α,则vAcos α=vBsin α,所以vA=vBtan α,选项D正确.点拨:对于杆模型(杆连接着物体相互作用的问题),杆端速度通常分解的一般原则为将实际速度(合运动的速度)分解为两个分速度,一个沿杆方向,一个垂直于杆方向.。
高中物理专题模型--速度关联问题---教师版

所以小球的速度 V1 和木块 的速度 V2 在垂直于接触面的方向上的投影相等,即:V1Cos =V2Sin
由机械能守恒定律可得: mgH=mv12/2+mv22/2
由上述二式可求得:
V1= 2gH .sin , V2= 2gH .cos .
第 4页 /共 8页
即:m1g( H 2 AB2 AB)sin30°=m2gH 利用(1)中质量关系可求得 m2 下滑的最大距离 H= 4 3 m=2.31 m
3 变式 5 一辆车通过一根跨过定滑轮的绳 PQ 提升井中质量为 m 的物体,如图 5-12 所示.绳的 P 端拴在车后 的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始 时,车在 A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为 H.提升时,车加速向左运动,沿水平方向从 A 经 B 驶向 C.设 A 到 B 的距离也为 H,车过 B 点时的速度为 vB.求在车由 A 移到 B 的过程中,绳 Q 端的拉力对物体
做的功.
分析与解答:以物体为研究对象,开始时其动能 Ek1=0.随着车的加速运动,重物上升,同时速度也不断增加. 当车子运动到 B 点时,重物获得一定的上升速度 vQ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个 分量,如图即 vQ=vB1=vBcos45°= 2 vB
2
于是重物的动能增为
Ek2 = 1 mvQ2= 1 mvB2 24
高中物理专题模型--速度关联问题
授课类型
C(求解绳联物体的速度问题)
C(面接触物体的速度问题的求解)
授课日期时段
关联速度问题——绳端、杆端或接触面速度分解模型

高考理化 2021年1月关联速廈诃题绳端、杆端或接触面速度分解模型2!■河南省实验中学 王若冰两个或两个以上物体由轻绳或轻杆连接在一起,或直接挤压在一起,称为关联体,它们的运动称为关联运动。
相互关联的两个物体在运动过程中,一般不是都沿绳、杆或接触面运动的,即二者的速度通常不同,但存在某种联系,称为关联速度。
要想求解关联速度, 就需要找到关联速度间的联系,并正确分解已知速度,下面以由两个物体组成的关联体问o 为例,具体说明。
题型一:由绳连接物体的关联速度问题! !如图1所示,光滑定滑轮固定在天花板上的o 点,一根轻绳 跨过定滑轮系在A 、B 两物体上$若物体A 以速图1度(沿水平地面向左匀速运动,某时刻,系在物体A 、B 上的两段轻 绳分别与水平方向成a 』角,则此时物体B的速度为()。
A. G l (,方向水平向左cos a B.方向水平向左cos aC.方向水平向右d . ^a ^,方向水平向右*解析:如图2所示,将物体A 的速度沿绳方向与垂直于绳方向进行分解,则v沿绳方向的分速 大小(1 = (cos a (将物体B 的速度 图2沿绳方向与垂直于绳方向进行分解,则沿绳 方向的分速度大小(3=(b C os *。
因为同一根轻绳上沿绳方向的速度大 等,所以(1 =、、、©、、、、a 、(3,解得(B =(,万向水平向右$*答案:C6评:求解由轻绳连接的两个物体的关联速度,需要先将两个物体的速度分别沿绳方向和垂直于绳方向进行分解,再根据两个 物体沿绳方向的分速度相等建立等量关系, 从而使问题得以解决。
题型二:由杆连接物体的关联速度问题!2如图3所示,一(根长直轻杆AB 在墙角沿竖 \直墙面和水平地面滑动,当轻 竖直墙面间的 为5"时,轻杆的A 端沿墙面下图3滑的速度大小为(1 B 端沿z地面滑动的速度大小为(2,则(1、(2的关系 是()$A. ( 1( 2 B . (1 ( 2 cos "C.(1 =(2>n "D.(1 =(2 sin "解析:如图4所示,将轻杆A 端的下滑 速度(1分解为沿杆方向的速度(1’和垂直于杆方向的速度5〃,将轻杆B 端的水平速度5 分解为沿杆方向的速度(乙和垂直于杆方向的速度(2〃。
速度关联问题常见模型与解题方法

速度关联问题常见模型与解题方法1. 速度与时间的关系1.1 速度、时间与距离的基本关系速度问题就像是生活中的“速食餐”,简单快捷但又能让你饱腹。
要搞懂速度问题,我们得知道几个基本概念:速度、时间和距离。
速度就像你开车的速度,时间是你开车的时长,距离则是你走过的路。
公式是这样的:距离等于速度乘以时间。
简单吧?比如说,你开车的速度是60公里每小时,开了2小时,那你就跑了120公里。
这个公式很基础,却是解题的“必杀技”。
1.2 常见的速度问题类型有时候,速度问题就像是刮风的日子,复杂又不确定。
比如说,两个小伙伴一起跑步,一个跑得快,一个跑得慢,他们要怎么才能赶到同一个地点?这时候,你得用到“相对速度”了。
相对速度就是两者之间的速度差。
比如说,甲和乙一前一后跑,甲的速度是5米每秒,乙的速度是3米每秒,那他们之间的相对速度就是2米每秒。
这种问题看似简单,但解决起来却需要耐心和细心。
2. 速度与其他因素的关系2.1 速度与加速度的关系说到加速度,这就像是在开车的时候突然踩油门,车子一下子就飞了起来。
加速度就是速度变化的快慢,越大表示速度变得越快。
公式是这样的:加速度等于速度变化量除以时间。
如果你车子的速度从0到60公里每小时用了5秒,那加速度就是12公里每小时每秒。
这种计算常见于物理题目里,不过有时候它就像是恶作剧一样,搞得你一头雾水。
2.2 速度与阻力的关系我们生活中常常会碰到阻力,比如走在风中感觉特别累,或者水里的游泳感觉有些费劲。
阻力就是影响速度的那个“无形敌人”。
在物理问题中,阻力会影响物体的速度,导致物体的运动变得缓慢。
阻力的计算有点儿复杂,通常需要考虑很多因素,比如物体的形状、表面光滑程度等。
不过,掌握了这些,你就能在遇到实际问题时得心应手。
3. 解题方法与技巧3.1 基本公式的应用速度问题最基础的解题方法就是用公式。
公式就像是你的“万用工具”,简单易懂却功能强大。
只要你把公式运用熟练了,各种速度问题就像是手到擒来的小猫咪。
五年级数学难题攻略解决复杂的速度时间和距离问题

五年级数学难题攻略解决复杂的速度时间和距离问题五年级数学难题攻略:解决复杂的速度、时间和距离问题数学是一门既有趣又具有挑战性的学科。
在五年级的数学课上,速度、时间和距离问题可能会让学生感到困惑。
这些问题需要运用一些基本的数学概念和公式,同时需要灵活运用思维来解决。
本篇文章将为大家提供一些攻略,帮助解决复杂的速度、时间和距离问题。
一、问题背景与分析在解决速度、时间和距离问题之前,我们首先需要了解问题背景,并进行分析。
假设我们遇到以下问题:甲、乙两人同时从A地到B地,甲的速度是每小时10公里,乙的速度是每小时8公里。
假设中间没有其他因素干扰,我们需要计算甲、乙到达B地所需的时间以及两人之间的相遇情况。
解决这个问题的关键是理解速度、时间和距离之间的关系。
根据公式:速度=距离÷时间,我们可以用这个公式来解决问题。
二、速度、时间和距离的计算方法1. 计算速度速度是物体在单位时间内所经过的距离。
如果我们已知距离和时间,可以用公式:速度=距离÷时间来计算速度。
例如,如果已知某个物体在2小时内行驶了120公里,则速度=120公里÷2小时=60公里/小时。
2. 计算距离距离是物体之间的间隔或者移动的总长。
如果我们已知速度和时间,可以用公式:距离=速度×时间来计算距离。
例如,如果已知某个物体的速度是60公里/小时,行驶了3小时,则距离=60公里/小时×3小时=180公里。
3. 计算时间时间是指物体行程所花费的总时间。
如果我们已知速度和距离,可以用公式:时间=距离÷速度来计算时间。
例如,如果已知某个物体的速度是40公里/小时,行驶了120公里,则时间=120公里÷40公里/小时=3小时。
三、难题攻略:应用方法解决问题现在,我们将运用上述的计算方法来解决一些更复杂的速度、时间和距离问题。
假设我们遇到以下问题:1. 问题一:一辆列车以每小时50公里的速度行驶,从A地到B地的距离是200公里,那么这辆列车需要多长时间才能到达B地?解答:由于我们已知速度和距离,我们可以用公式:时间=距离÷速度来计算。
如何解决小学数学中的速度问题

如何解决小学数学中的速度问题小学数学中的速度问题是学习数学时经常遇到的一个难点,很多学生在解决速度问题时不知道该如何下手,因此他们感到困惑和挫败。
本文将介绍一些解决小学数学中速度问题的方法和技巧,帮助学生更好地理解和解决这类问题。
一、了解速度问题的基本概念在解决速度问题之前,我们首先需要了解速度的基本概念。
速度是指某对象在运动中所走过的路程与所花费的时间的比值。
速度可以用公式“速度=路程/时间”来表示,单位通常用米/秒、千米/小时等来表示。
掌握了这些基本概念,我们就能更好地理解和解决速度问题了。
二、速度问题的类型与解题方法在小学数学中,速度问题主要分为直线速度、相对速度和平均速度三个方面。
下面将分别介绍这三个类型的速度问题及其解题方法。
1. 直线速度问题直线速度问题是最常见的速度问题类型。
这类问题一般涉及到某物体在直线上匀速或变速运动,要求我们求解该物体的速度、路程或时间等。
解决这类问题时,可以根据速度公式“速度=路程/时间”进行计算,其中已知两个变量即可求解第三个变量。
举个例子,假设一辆汽车以每小时60千米的速度行驶,要求计算它行驶1000千米所需的时间。
根据速度公式可知,时间=路程/速度,代入已知数据可得,时间=1000/60=16.67小时。
因此,这辆汽车行驶1000千米所需的时间为16.67小时。
2. 相对速度问题相对速度问题是指两个物体相对运动的速度问题。
在解决这类问题时,我们通常需要找出两个物体相对于彼此的速度差,然后利用速度公式求解所需的变量。
举个例子,假设两辆汽车在同一条直线上相向而行,一辆以每小时60千米的速度直行,另一辆以每小时40千米的速度直行。
要求计算两辆汽车相互迎面行驶100千米所需的时间。
首先,我们需要求出两辆汽车的相对速度,即60千米/小时 + 40千米/小时 = 100千米/小时。
然后,根据速度公式可知,时间=路程/速度,代入已知数据可得,时间=100/100=1小时。
速度关联问题模型

速度关联问题模型
速度关联问题模型是指用数学模型描述速度之间的相关性。
速度关联问题常见于物理学、运输学、工程学等领域,在这些领域中,我们常常需要研究速度之间的关系,以便进行预测、优化等相关工作。
常见的速度关联问题模型包括线性回归模型、多项式回归模型、指数回归模型等。
这些模型可以用来描述速度和其他变量之间的关系,通过拟合数据,可以得到关于速度的预测模型。
例如,在运输学中,我们可以使用速度关联模型来预测车辆的行驶速度。
通过收集一系列车辆的行驶数据,包括车速、车辆负载、道路条件等变量,我们可以建立一个速度关联模型来描述这些变量对车速的影响。
然后,我们可以使用该模型来预测在不同条件下的车速,从而帮助我们做出进一步的决策。
速度关联问题模型的建立需要基于实际数据的统计分析和建模技术,通过收集足够的数据,选取合适的数学模型,并运用合适的统计方法进行参数估计和模型拟合,最终得到合适的速度关联模型。
如何解答速度关联类问题

c o s O
_
,  ̄
/ 2 g h ( P - h 2 ) v
。
c . 船的 加速度 ̄ c o s O - J
,
T r
图5
三、 接触 物体 间 的关 联
D . 船 的 加 速 度 为 二 l 『 _
m
解析 : 船 的实际运动为水平 向左 , 它产生 了两个 效果 : 一是使滑轮与船问的绳缩短 , 二是使绳绕滑轮 顺时针转动 ,因此将船 的速 度按如 图2 所示 进行分
思路方法
:
何解答速 联类问题
图4
在学习运动的合成和分解时 ,经 常会遇到涉及 相互关联物体的速度的求解 。相互关联 的物体通过 轻绳 、 细杆或直 接接触 、 相互挤压等发 生相互作用 , 在运动过程中通常具有 不同的速度 ,但它们 的速度 是相互关联的。 正确建立连接体 间的速度关联关系 , 是求解连接体有关 速度 问题 的切入点 ,也是求解有 关连接体综合问题 的关键 。
放球C , 求C 下落 时球 c 的速度 。 。
—S O’
—
,
CO
s i n — O’ 义 又根据 恨 借 机械 L 1 龇日 能守恒 匕、 ]【 旦疋 定律 1 手1 得 哥 = a’ =—
: ,
,
1
删
2 1
一 脚
2 1
删
2
C。
对于绳或杆连接的两个 物体 ,由于轻绳都是不 可伸长的 , 杆都是不可伸长和压缩的 , 即绳或杆 的长 度不会改变 , 所 以沿 绳 或 杆 方 向上 的 速 度 分 量 相 等 。 解题的原则是 :把 物体 的实 际速度分解为垂直于绳 ( 或杆 ) 和沿着绳( 或杆 ) 的两 个 分 量 。 例1 如 图1 所示 , 人 在 岸上拉船 , 已知船 的质量 为 m ,水 的阻 力恒 为厂 , 当轻绳 与水 平面 的夹角 为0 时, 船 的速度为 ,人 的拉力大小 图 1 为F , 则此时( ) A . 人 拉 绳 行 走 的 速 度 为Y C O S O
速度关联类问题求解速度的合成与分解

精心整理速度关联类问题求解·速度的合成与分解 编辑杨国兴运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点1.为α和β2.●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解: 设经长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =cos BD图图图图①由速度的定义:物体移动的速度为v物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBDt s ∆=∆∆2 ③由①②③解之:v 物=θcos v系v ⊥=点转动人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).B B A .因为1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ. 令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .图●锦囊妙计一、分运动与合运动的关系 1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.1.2.终不变3.4.度关系●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.. S 为平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动图图图的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在AC.设A 速度为绳Q 6.劈B (1(2与地面作用中机械能的损失忽略不计)参考答案: [难点] 1.v B =0cos cos v βα2.略 [歼灭难点训练] 1.v =αcos 10+v2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即22B °应有: ∠m 2速度E 减′m 2下滑平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°.选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度图5′—图沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图5′—1可得: v 1=v sin60°,v 2=v cos60° 又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω. 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL . 5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点v Q E k2=21拉力T h =W G 即W T =416.当A 和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。
难点5速度关联类问题求解

难点5 速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点 ●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD①由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以图5-1图5-2图5-3图5-4图5-5v物=cosv图5-7[例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v.2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图5-10所示.试求:(1)m2在下滑过程中的最大速度.(2)m2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.图5-11图5-86.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点5 速度关联类问题求解·速度的合成与分解 运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点展台1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =t BD t s ∆=∆∆2③图5-1图5-2 图5-3 图5-4 图5-5由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v 解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,图5-6由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v . 2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—10 图5-83.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度. (2)球触地后弹起的最大高度。
(球与地面作用中机械能的损失忽略不计)参考答案[难点展台]1.v B =0cos cos v βα 2.略 [歼灭难点训练]图5-11图5-12 图5-131.v =αcos 10+v 2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m4.由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°, OS ′=L /cos60°.选取光点S ′为连结点,因为光点 S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线 OS ′的两个方向分解,由速度矢量分解图5′—1可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω.则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL .5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图5′-2,即图5′—1图5′—2v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)HW G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 6.(1)A 加速下落,B 加速后退,当A 落地时,B 速度最大,整大过程中,斜面与球之间弹力对球和斜面做功代数和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2 ①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。
图5′—3由于两物体在垂直斜面方向不发生相对运动,所以v A 2=v B 2即v A cos30°=v B sin30°③ 解得v A =2)13(gr - v B =2)13(3gr - (2)A 球落地后反弹速度v A ′=v A做竖直上抛运动的最大高度:H m =4)13(22r g v A -='。