一个正态总体参数的假设检验复习
北京工业大学《概率论与数理统计》课件 第8章 正态总体均值的假设检验
在数理统计中,把 “ X 的均值 μ =10” 这样
的一个欲检验的假设称为 “原假设” 或 “零 假设”,记成 “ H0:μ =10”。这里的“H”是 从英文“ hypothesis ”的字头而来,“ 0 ” 是从 “null”或“zero” 含义而生。
该检验称为两样本 t 检验。
说明
上面,我们假定 12=22。当然,这是个 不得已而强加上去的条件。因为,如果不加 这个条件,就无法使用简单易行的 t 检验。
在实用中,只要我们有理由认为12和22 相差不是太大,就可使用上述方法。通常的 做法是:如果方差比检验未被拒绝(见下节), 就认为12和22相差不是太大。
又如:考察一项新技术对提高产品质量是 否有效,就把新技术实施前后生产的产品质量
指标分别看成正态总体 N(1, 12)和 N(2, 22)。
这时,所考察的问题就归结为检验这两个正态
总体的均值 1和 2是否相等的问题。
设X1, X2, …, Xm与Y1, Y2, …, Yn 分别为抽
自正态总体 N(1, 12) 和N(2, 22) 的样本,记
的大小检验 H0 是否
成立。
合理的做法应该是:找出一个界限 c,
这里的问题是:如何确定常数 c 呢? 细致地分析:根据定理 6.3.1,有
于是,当原假设 H0:μ =10 成立时,有
为确定常数 c,我们考虑一个很小的正数, 如 =0.05。当原假设H0:μ =10 成立时,有
于是,我们就得到如下检验准则:
即新技术或新配方对提高产品质量确实有效。
单边检验 H0: μ =μ0 ‹–› H1: μ >μ0
正态总体方差的假设检验
方差的计算方法
简单方差
适用于数据量较小,且数据间相互独立的情况。
加权方差
适用于数据量较大,且数据间存在相关关系的 情况,需要考虑到每个数据点的重要程度。
配对样本方差检验
总结词
配对样本方差检验用于比较两个相关样本的方差是否相同。
详细描述
在配对样本方差检验中,我们首先需要设定一个零假设,即两个相关样本的方差无显著差异。然后, 通过计算检验统计量(如Wilcoxon秩和统计量或Stevens' Z统计量),我们可以评估零假设是否被拒 绝。如果零假设被拒绝,则可以得出两个相关样本方差不相同的结论。
方差齐性检验的目的是为了后续 的方差分析提供前提条件,确保 各组数据具有可比性。
方差分析
方差分析(ANOVA)是
1
用来比较多个正态总体均
值的差异是否显著的统计
方法。
4
方差分析的结果通常以p值 表示,若p值小于显著性水 平(如0.05),则认为各组 均值存在显著差异。
2
方差分析的前提条件是各
组数据具有方差齐性和正
正态总体方差假设检验的未来发展
改进假设检验方法
结合其他统计方法
结合其他统计方法,如贝叶斯推断、机器学习等, 可以更全面地分析数据和推断总体特征。
针对正态总体方差假设检验的局限性,未来 研究可以探索更灵活、适应性更强的检验方 法。
拓展应用领域
正态总体方差假设检验的应用领域可以进一 步拓展,特别是在大数据和复杂数据分析方 面。
数学表达式
假设检验基础知识
6.检验方法 p值法:计算检验统计量以及p值 当p值≤α,拒绝H 当p值>α,不能拒绝H0 临界值法:计算检验统计量以及临界值 当检验统计量在临界阈中时,拒绝H 当检验统计量不在临界阈中时,不能拒绝H0
7.非技术用于的总结:使用非技术用语对原命题进行总结 第一类错误和第二类错误
第一类错误:当原假设为真时,拒绝原假设的错误 第二类错误:当原假设为假时,没有拒绝原假设的错误 统计功效 统计功效是当原假设为假时,正确拒绝原假设的概率,即1-β
总体均值的假设检验
t分布 正态性或者n>30的条件 大样本的样本均值的分布趋于正态分布 小样本的正态性条件 样本数据的分布应该接近于轴对称 样本数据的分布应该有一个众数 样本数据不应包括任何异常值 t分布重要性质 t分布随着样本量的不同而不同 与正态分布具有相同的钟形曲线,但因样本小而具有更大的变异性 t分布的均值为0 t分布的标准差随着样本量的变化而变化,但肯定大于1 随着样本量n的增大,t分布越来越接近于正态分布
总体标准差或方差的假设检验
卡方分布的性质 卡方分布为非负数,且分布不具有对称性 卡方分布随着自由度的不同而不同
显著性水平α 总体参数的估计值,该值不能等于原假设中的总体参数值
总体比例的假设检验
正态近似法 等价法:使用p值法或临界值法来进行假设检验,而使置信区间来估计总体比例 样本为简单随机样本 满足二项分布的所有条件 有固定的实验次数 试验之间相互独立 结果有且仅有两种可能 每次试验概率不变
精确法 假设已知样本量n、成功次数x,以及原假设中的总体比例p 左侧检验:p值=P(在n次实验中,x或更少的成功次数) 右侧检验:p值=P(在n次实验中,x或更多的成功次数) 双侧检验:p值=2*min(左侧值,右侧值)
第二节 正态总体均值的假设检验
σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ
正态总体方差的假设检验
正态总体方差的假设检验一、引言假设检验是统计学中常用的一种方法,用于判断关于总体参数的某种陈述是否成立。
在实际应用中,我们经常需要对总体方差进行假设检验,以确定样本数据是否能够代表总体的特征。
二、正态总体方差的假设检验在正态总体方差的假设检验中,我们通常使用方差比检验来判断总体方差是否有显著差异。
具体而言,我们设立原假设H0和备择假设H1,然后利用样本数据进行检验。
1. 原假设和备择假设原假设H0通常为总体方差等于某个特定值,记为σ^2 = σ0^2;备择假设H1通常为总体方差不等于该特定值,记为σ^2 ≠ σ0^2。
2. 检验统计量在正态总体方差的假设检验中,我们使用F检验统计量来进行判断。
F检验统计量的计算公式为F = S^2 / σ0^2,其中S^2为样本方差。
3. 拒绝域和接受域在给定显著性水平α的情况下,我们可以根据F检验统计量的分布来确定拒绝域和接受域。
一般来说,当F检验统计量落在拒绝域内时,我们拒绝原假设;当F检验统计量落在接受域内时,我们接受原假设。
4. F分布表的使用由于F检验统计量的分布是F分布,因此我们可以利用F分布表来确定拒绝域和接受域的临界值。
F分布表中给出了不同自由度和显著性水平下的临界值。
5. 计算步骤进行正态总体方差的假设检验时,我们需要按照以下步骤进行计算:(1) 提出原假设H0和备择假设H1;(2) 选择适当的显著性水平α;(3) 根据样本数据计算样本方差S^2;(4) 根据样本量n和显著性水平α确定F分布的自由度;(5) 根据F分布表找到对应的临界值;(6) 比较计算得到的F检验统计量与临界值,判断是否拒绝原假设。
三、实例分析为了更好地理解正态总体方差的假设检验,我们以某电子产品的寿命为例进行实例分析。
假设我们对该电子产品的寿命进行了100次观测,得到样本方差为S^2 = 200。
现在我们想要判断该电子产品的寿命是否满足某个特定的标准。
我们设立原假设H0:电子产品的寿命方差等于标准值,备择假设H1:电子产品的寿命方差不等于标准值。
高考正态分布知识点归纳
高考正态分布知识点归纳作为中国高等教育的重要选拔方式,高考在很大程度上决定了学生的命运。
而统计学中的正态分布是高考中常出现的一个重要概念。
了解和掌握正态分布的相关知识点对于高考数学考试至关重要。
本文将从不同角度对高考正态分布知识点进行归纳和总结,以帮助考生更好地应对相关考题。
一、正态曲线和标准正态分布正态曲线是一种在统计学中经常使用的函数图形。
它呈现出钟形曲线的形状,具有中心对称、均值和标准差两个重要参数的特征。
高考中常见的正态分布问题会涉及到正态曲线的图形特点、标准差的计算等内容。
标准正态分布是指均值为0、标准差为1的正态分布。
对于任意一个正态分布,我们都可以通过标准化处理,将其转化为标准正态分布。
标准正态分布具有良好的性质,比如其面积一定等于1,可以使用标准正态分布表进行查找。
二、正态分布的性质和应用正态分布具有许多重要的性质,这些性质在高考中常常会涉及到。
首先是标准差的性质。
标准差越大,曲线越扁平;标准差越小,曲线越陡峭。
这个性质可以帮助我们察觉数据的分散程度。
其次是与正态分布有关的概率问题。
根据正态分布的特点,我们可以计算某个数值在一定范围内的概率。
例如,高考中常见的题目会要求计算某个班级或某个学生在全省排名中的百分位数。
最后是正态分布在抽样理论中的应用。
正态分布是许多统计方法的基础,比如样本均值的抽样分布、样本比例的抽样分布等。
这些应用在高考数学考试中也经常会出现。
三、正态分布与假设检验高考中的数学考卷通常涉及到学生的实际生活问题。
与实际问题相关的统计假设检验也常常和正态分布有关。
假设检验是一种通过收集样本数据,根据样本数据对总体参数进行推断的方法。
在高考中,常见的假设检验问题可能涉及到学生的身高、成绩等方面。
其中,若总体服从正态分布,则可以使用正态分布的性质进行假设检验。
对于高考数学考试中的假设检验问题,我们需要熟悉正态分布的假设检验步骤和相关公式,以便正确地解答相关题目。
四、高考试题中的正态分布问题在高考数学试卷中,正态分布相关的题目通常出现在概率与统计部分。
7-2正态总体参数的检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
单个正态总体参数的假设检验
单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。
在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。
2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。
根据显著性水平,我们可以决定接受还是拒绝原假设。
3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。
在单个正态总体参数的情况下,通常使用t统计量或z统计量。
4.计算统计量的值:根据样本数据,计算所选统计量的值。
如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。
5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。
根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。
6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。
下面以一个具体的例子来说明单个正态总体参数的假设检验。
假设我们要检验一些公司员工的平均工资是否等于5000元。
我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。
现在我们要进行假设检验。
1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。
2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。
z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。
4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。
5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。
在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。
6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。
如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。
关于假设检验的详细总结与典型例题
关于假设检验的详细总结与典型例题假设检验是数一考生普遍反映非常头疼的一块内容,因为它入门较难,其思想在初次复习时理解起来较难。
虽然这一部分在历年真题中考查次数很少,但为了做到万无一失,我们也应该准备充分,何况相对来说这一部分内容的难度和变化并不大。
为了让各位考生对假设检验有一个全面深入的理解和掌握,我们给出如下总结与例题。
对于假设检验,首先要理解其基本原理,即小概率原理,假设检验的方法即是从此原理衍生而来;其次,要掌握其步骤,会根据显著性水平α,即第一类心理学考研错误,来求拒绝域与接收域,其求法要根据不同的条件来套用公式,能根据理解推导公式是上策,如果时间不够,可以选择记忆各种不同条件下的求拒绝域的公式。
最后,相比之下两个正态总体参数的假设检验的考查可能性要低于一个正态总体参数的假设检验。
假设检验的基本概念数理统计的基本任务是根据样本推断总体,对总体的分布律或者分布参数作某种假设,然后根据抽得的样本,运用统计分析的方法来检验这一假设是否正确,从而作出接受假设或者拒绝假设的决定,这就是假设检验.根据实际问题提出的假设0H 称为原假设,其对立假设1H 称为备择假设. 假设检验中推理的依据是小概率原理:小概率事件在一次试验中实际上不会发生. 假设检验中的小概率α称为显著性水平,通常取0.05α=或者0.01α=.假设检验中使用的推理方法是:为了检验原假设0H 是否成立,我医学考研论坛们先假定原假设0H 成立. 如果抽样的结果导致小概率事件在一次试验中发生了,根据小概率原理,有理由怀疑0H 的正确性,从而拒绝0H ,否则接受0H .假设检验的步骤⑴根据实际问题提出原假设0H 和备择假设1H ; ⑵确定检验统计量T ;⑶根据给定的显著水平α,查概率分布表,确定拒绝域W ;⑷利用样本值计算统计量T 的值t ,若t W ∈,则拒绝0H ,否则接受0H .假设检验中可能犯的两类错误由于小概率事件还是可能发生的,根据小概率作出的判断可能是错误的. 事件0H 真而拒绝0H ,称为第一类(弃真)错误,犯第一类错误的概率为{}0P t W H α∈≤,因此显著性水平α是用来控制犯第一类错误的概率的. 0H 假而接受0H ,称为第二类(纳伪)错误,犯第二类错误的概率为{}1P t W H ∉,记作β.典型例题1.136,,X X 是取自正态总体(,0.04)N μ的简单随机样本,检验假设0:0.5H μ=,备择假设11:0.5H μμ=>,检验的显著水平0.05α=,取否医学考研论坛定域为X c >,则c = ,若10.65μ=,则犯第二类错误的概率β= .解 ⑴0H 成立时,0.04~(0.5,)36X N , {}00.50.051()0.1/3c P X c H αΦ-==>=-,0.5()0.95(1.645)0.1/3c ΦΦ-==,0.51.6450.1/3c -=,得0.5548c =.⑵1H 成立时,0.04~(0.65,)36X N{}10.55480.65()( 2.856)0.1/3P X c H βΦΦ-=≤==-.1(2.856)10.99790.0021Φ=-=-=2.设总体20~(,)X N μσ,20σ已知,检验假设00:H μμ=,备择假设10:H μμ>,取否定域为X c >,则对固定的样本容量n ,犯第一类错误的概率α随c 的增大而 .(减小)解 0H 成立时,200~(,)X N nσμ,犯第一类(弃真)错误的概率{}001(/P X c H nαΦσ=>=-,故犯第一类错误的概率α随c 的增大而减小.一个正态总体2(,)N μσ参数的假设检验 ⑴ 2σ已知,关于μ的检海文考研验(u 检验) 检验假设00:H μμ= 统计量X U =拒绝域2U u α>检验假设00:H μμ>统计量X U =拒绝域U u α<-检验假设00:H μμ<统计量X U =拒绝域U u α>⑵2σ未知,关于μ的检验(t 检验) 检验假设00:H μμ=统计量X t =拒绝域2(1)t t n α>-检验假设00:H μμ> 统计量0/X t S n = 拒绝域(1)t t n α<--检验假设00:H μμ< 统计量0/X t S n=拒绝域(1)t t n α>-⑶μ未知,关于2σ的检验(2χ检验) 检验假设2200:H σσ=统计量2220(1)n S χσ-=拒绝域222(1)n αχχ>-或者2212(1)n αχχ-<-检验假设2200:H σσ>统计量2220(1)n S χσ-=拒绝域221(1)n αχχ-<-检验假设2200:H σσ< 统计量2220(1)n S χσ-= 拒绝域22(1)n αχχ>-▲拒绝域均采用上侧分位数.两个正态总体21(,)N μσ、22(,)N μσ参数的假设检验.⑴两个正态总体21(,)N μσ、22(,)N μσ均值的假设检验(t 检验) 检验假设012:H μμ=统计量X Yt =拒绝域122(2)t t n n α>+-检验假设012:H μμ>统计量X Yt =拒绝域12(2)t t n n α<-+-检验假设012:H μμ<统计量X Yt =拒绝域12(2)t t n n α>+-⑵两个正态总体211(,)N μσ、222(,)N μσ方差的假设检验(F 检验) 检验假设22012:H σσ=统计量2122S F S = 拒绝域122(1,1)F F n n α>--或者1212(1,1)F F n n α-<--检验假设22012:H σσ>统计量2122S F S = 拒绝域112(1,1)F F n n α-<--检验假设22012:H σσ< 统计量2122S F S = 拒绝域12(1,1)F F n n α>--▲拒绝域均采用上侧分位数. 典型例题1.设n X X X ,,,21 是来自正态总海文考研体2(,)N μσ的简单随机样本,其中参数2,μσ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t = .解 统计量2(1)//(1)n n XX nXt S n Q n -===-2.某酒厂用自动装瓶机装酒,每瓶规定重500克,标准差不超过10克,每天定时检查,某天抽取9瓶,测得平均重X =499克,标准差S =16.03克. 假设瓶装酒的重量X 服从正态分布.问这台机器是否工作正常?(05.0=α).解 先检验0H :500μ=,统计量X t =, 拒绝域0.025(8) 2.3060t t >=,4995000.18716.03/3X t -===-,接受0H ;再检验0H ':2210σ≤,统计量222(1)10n S χ-=, 拒绝域220.05(8)15.507χχ>=, 22222(1)816.0320.5571010n S χ-⨯===,拒绝220:10H σ'≤, 故该机器工作无系统误差,但不稳定3.设127,,,X X X 是来自正态总体211(,)N μσ的简单随机样本,设128,,,Y Y Y 是来自正态总体222(,)N μσ的简单随机样本,且两个样本相互独立,它们的样本均值分别为13.8,17.8X Y ==,样本标准差123.9, 4.7S S ==,问在显著性水平0.05下,是否可以认为12μμ<?解 先检验0H :2212σσ=,检验统计量2122S F S =,拒绝域0.025(6,7) 5.12F F >=或者0.9750.02511(6,7)(7,6) 5.70F F F <==,221222 3.90.68854.7S F S ===,接受0H ; 再检验0H ':12μμ<,统计量1211w X Yt S n n =+, 拒绝域0.05(13) 1.7709t t >=,1.7773X Yt ==-,接受0H ',即可以认为12μμ<. ▲检验两个正态总体均值相等时,应先检验它们的方差相等.。
正态总体下参数的假设检验
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假
单个正态总体参数的假设检验
单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。
在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。
同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。
通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。
二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。
2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。
一般情况下,我们常使用0.05作为显著性水平。
3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。
在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。
4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。
5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。
6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。
三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。
2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。
3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。
例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。
4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。
总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。
概率论 正态总体的均值和方差的假设检验
H 0 : μ 1600,
2
H1 : μ 1600
由于方差σ 未知,故选择统计量
X 1600 T Sn / n
当H0 成立时,T ~ t ( n-1) = t (9) ,由所给的样本值
求得x 1582 ,
*2 16528.89 Sn
故
1582 1600 t 10 0.443 16528.89
1 提出待检验的假设H0及备择假设H1; 2 选择适当的检验统计量,在H0成立的条件 下,确定它的概率分布; 3 给定检验水平 ,(依前所得的概率分布)确 4 由样本观测值计算统计量的值; 5 根据统计量的观测值落入拒绝域W1内,还 是W1外进行判断,落入拒绝域W1内,拒绝H0;落入
拒绝域W1外,接受H0.
解
本题归结为检验假设
H 0 : μ 800,
选择统计量
H1 : μ 800;
X 800 U 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函
数表查得u /2=u0.025 =1.96,从而得检验的拒绝域为 W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 },
χ 2 的值进行判断:
若χ 2 W1,则拒绝 H0;若χ 2 W1,则接受 H0 .
2 拒绝域: W 1 {( x1 , x2 , , xn ) : χ 2 χ1 α / 2 ( n 1)} 2 n 1}. {( x1 , x2 , , xn ) : χ 2 χα /2
H 0 : μ1 μ2 , H1 : μ1 μ2
由样本值求得统计量 T 的观测值
t x y
2 ( n 1) s2 ( n1 1) s1 2 n 2n
正态总体参数的假设检验
正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。
有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。
(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。
5.判断(同前) 注:这个检验法称为u检验。
(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。
(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。
在基础上依据抽样分布特点可构造统计量作为检验之⽤。
具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。
注:关于正态标准差的假设与上述三对假设等价,不另作讨论。
(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。
续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。
某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。
③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。
⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。
[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。
已知废⽔中该有毒化学物质的含量X服从正态分布。
该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。
概率论与数理统计假设检验正态总体参数的假设检验(2)
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
5.4,5.5一个正态总体参数的假设检验
提出待检验假设
H 0 : µ = 23. 取α = 0.05
X − 23 X −µ 如果 H 0成立 U0 = 2 ~ N (0,1) U= ~ N (0,1) 2 6 6 X − 23 P > uα = α 2 2 6
X = 20.5, U 0 = 3.06 > 1.96 X − 23 P > 1.96 = 0.05 2 不能接受 " µ = 23" 这一假设 6
判 等 "EX = 23"成 与 ? 断 式 立 否
例 2, 用传统工艺加工的红果 罐头 , 每瓶平均维生素 C 的含量为 19毫克 , 现改进加工工艺,抽查 16 瓶罐头,测得 VC 含量为 现改进加工工艺, 瓶罐头, 23; .5; ; ; ; .5; ; ; ; .5; .8; ; .5; ; ; .(毫克 ) 20 21 22 20 22 19 20 23 20 18 20 19 22 18 23 若假定新工艺的方差 (1)σ 2 = 4为已知 ; ( 2 )σ 2 未知 , 问新工艺下 VC 的含量是否比旧工艺下 含量高 ?
2. H 0 : µ ≤ µ 0
解 .待检验的假设是 H 0 : µ ≤ 19. 设 α = 0 .05 , σ 2 = 4
分析
U= X −µ
σ
~ N(0,1)
U0 =
X − 19
σ
. U 0的分布不能确定
当H 0 成立时
n
U ≥ U0
P {U 0 > uα } ≤ P{U > uα }
X − 19 > uα ≤ α 则P σ n
α
第二类错误 当原假设 H0 不成立时,而样本值却落入了接受域,从而 不成立时,而样本值却落入了接受域, 的结论。也就是说, 作出接受 H0的结论。也就是说,把不符合 H0 的总体当 成符合 H0 的总体加以接受 . “纳伪”的错 纳伪” 误
假设检验
第一节 假设检验的基本原理 第二节 单个正态总体的假设检验 第三节 两个正态总体的假设检验
第一节:假设检验的基本原理
一、基本概念 假设检验是统计推断的另一种重要形式,
其任务是通过样本对未知的总体分布特征作 出合理的推测。
先对总体分布中的某些参数或对总体分布类 型做某种假设,然后根据样本值做出接受还 是拒绝所做假设的结论。
例如 若H0 : m = m0, 则H1 有以下三种情况: (1) H0 : m = m0, H1: m m0 (2) H0 : m = m0, H1 : m > m0 (3) H0 : m = m 0, H1 : m < m0
其中(1)称为双边检验.
其中(2), (3)称为单边检验.
第二步:选取一个合适的检验统计量,并根据原假设 H0和备择假设 H1 确定H0的拒绝域.
0.05 6
因为4.9>1.96 ,即观测值落在拒绝域内
所以拒绝原假设。
二 当2未知时, 均值m的检验(t检验)
1 (双边检验) H0: m = m0 H1: m m0
此时2未知, 不能用
U
X
m0
n
用
T
X
m0
S
n
当H0成立时,
T
X m0
S
~ t(n 1)
n
因此, 对给定的, 查t分布表, 使
X
m0
~ N(0, 1)
n
当H0 成立时, u的值不应太大.
而当H1 成立时, u的值往往偏大.
因此, P{uu}=
于是得到H0的拒绝域为 (u, )
类似地, 若检验的假设是
第二节 正态总体参数的检验
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S
~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )
第七章假设检验
第七章 假设检验一、教材说明本章主要讲假设检验的基本思想与概念、正态总体参数的假设检验这2节的内容. 1、本章的教学目的与要求(1)使学生了解假设检验的基本概念; (2)使学生了解假设检验的基本思想; (3)使学生掌握假设检验的基本步骤;(4)使学生会计算检验的两类错误,搞清楚两类错误的关系;(5)使学生掌握正态总体参数的假设检验,主要是检验统计量及其分布,检验拒绝域的确定;(6)使学生灵活运用所学知识解决实际问题. 2、本章的重点与难点本章的重点是正态总体参数的各种假设检验中的检验统计量及其分布,难点是假设检验拒绝域的确定.二、教学内容下面主要分2节来讲解本章的主要内容.§7.1 假设检验的基本思想与概念教学目的:要求学生了解假设检验的基本思想,理解假设检验的基本概念,认识假设检验问题,熟悉假设检验的基本步骤.教学重点:基本概念,假设检验的基本步骤. 教学难点:基本概念的理解.教学内容:本节内容包括假设检验的基本概念,假设检验的基本步骤. 7.1.1 假设检验的基本概念1.统计假设、原假设、备择假设把任意一个有关未知分布的假设统称为统计假设,简称假设.例7.1.1 某厂生产的合金强度服从正态分布)16,(θN ,其中θ的设计值为不低于110(Pa ),为保证质量,该厂每天都要对生产情况做例行检查,以判断生产是否正常进行,即该合金的平均强度不低于110(Pa ),某天从生产中随机抽取25块合金,测得强度值为2521,,,x x x ,其均值为)(108Pa x =,问当时生产是否正常?如果生产是正常进行的,则合金平均强度不低于110(Pa ),而合金强度服从)16,(θN ,故平均强度110≥θ,如果生产不正常,则110<θ.现在的问题是据样本得到的信息来判断110≥θ还是110<θ,此问题不是参数估计问题,而是一假设检验问题.这样对未知参数,提出两个对立的假设:称110:0≥θH 为原假设,110:1<θH 为备择假设.通常将不应轻易加以否定的假设做为原假设,以0H 记,当0H 被拒绝时而接受的假设称为备择假设,用1H 表示.2.参数假设、非参数假设参数假设:总体分布类型已知,对分布中的未知参数的假设. 非参数假设:不同于参数假设的其他假设(包括对母体分布函数的类型及分布的某些特征的假设).我们的任务就是根据样本得到的信息,在原假设0H 与备择假设1H 两者中做出一个判断:拒绝还是接受0H .7.1.2 假设检验的基本步骤1、建立假设依据实际问题建立一对假设,例7.1.1的假设为110:110:10<≥θθH vsH2、选择检验统计量,给出拒绝域形式在0H 与1H 两者中做出一个选择,也即完成一次判断,必须建立一个检验法则,而由样本对原假设进行判断总是通过一个统计量完成的,该统计量称为检验统计量.一般而言,检验统计量的选择应该使在0H 、1H 分别成立时,统计量的值有较大差异,从而能够做出判断.在例7.1.1中,样本均值x 就是一个很好的检验统计量,它是总体参数θ的无偏估计.样本均值x 愈大,意味着总体均值θ也大;样本均值愈小,意味着总体均值θ也小.由于样本的随机性,只有当x 小到一定程度,则应认为原假设0H 不正确.故在样本均值x 的取值中有一个临界值C (待定),使得当C x ≤时,认为0H 不正确,也即拒绝0H ,此时称}:{C x x W ≤=为该检验的拒绝域,当C x >时,认为0H 正确,则接受0H ,对应的}:{C x x W >=为该检验的接受域.一般地,使原假设0H 被拒绝的样本观测值所在区域称为拒绝域,记为W ,从而规定:当W x x n ∈),,(1 时,拒绝0H ;当W x x n ∈),,(1 时 ,接受0H .从而一个拒绝域W 唯一确定一个法则.3、选择显著性水平 α 通常=α0.05,0.01,0.1.4、给出拒绝域W利用统计量),,(1n x x T ,使得01),,((H W x x T P n ∈ 为真)α=5、做判断将样本观测值代入检验统计量,看该统计量的值是否落入拒绝域W ,当W x x T n ∈),,(1 时,拒绝0H ,当W x x T n ∉),,(1 时,接受0H .三、假设检验的两类错误与势函数 1、两类错误对给出的拒绝域W ,由于样本的随机性,我们做出的判断不可能100%正确,它可能会犯两类错误:第一:0H 为真时,W x x n ∈),,(1 ,从而拒绝0H .这种错误称为第一类错误,其发生的概率称为犯第一类错误的概率或拒真概率,通常记为α,即α=P (拒绝0H 0H 为真)=01),,((H W x x T P n ∈ 为真)=01],),,[(Θ∈∈θθW x x P n第二:在0H 不真时,W x x n ∈),,(1 ,从而接受0H .这种错误称为第二类错误,其发生的概率称为犯第二类错误的概率或受伪概率,通常记为β,即β=P (接受0H 0H 不真)=01),,((H W x x T P n ∈ 不真)=111],),,[(1]),,[(Θ∈∈-=∈θθθW x x P W x x P n n2、势函数定义7.1.1 设检验问题1100::Θ∈Θ∈θθH vs H 的拒绝域为W ,则样本观测值),,(1n x x 落入拒绝域W 内的概率称为该检验的势函数,即101],),,[()(Θ⋃Θ=Θ∈∈=θθθW x x P g n其中10,ΘΘ是参数空间两个互不相交的子集. 注 由以上α、β及势函数的定义知⎩⎨⎧Θ∈-Θ∈=10),(1),()(θθβθθαθg3、两类错误的关系对例7.1.1,}:{c x x W ≤=,故)4()44(][)(θθθθθ-Φ=-≤-=≤=c c c x P c x P g ,从而犯两类错误的概率)(θα,)(θβ分别为:0),54()(Θ∈-Φ=θθθαc1),54(1)(Θ∈-Φ-=θθθβc从而当α减少时,c 也减少,而c 的减少必导致β的增大;当β减少时,c 会增大,而c 的增大必导致α的增大,故得到两类错误的关系:(1)在样本容量n 一定时,α、β不能同时小,α的增大必导致β的减少;α的减少必导致β的增大;(2)要使α、β同时小,则必须n 充分大,但这又是不现实的.为此,采用折中的方法:控制α,使β尽量小,但有时这样的检验也不存在,从而我们只控制α,而不管β,此时求拒绝域W 只涉及原假设0H ,而不管备择假设1H .4、水平为α的显著性检验 定义7.1.2 对检验问题1100::Θ∈Θ∈θθH vs H ,如果一个检验满足对任意的0Θ∈θ,都有αθ≤)(g则称该检验是显著性水平为α的显著性检验,简称水平为α的检验. 在例7.1.1 取=α0.05,则110≥∀θ有05.0)54()(≤-Φ=θθc g ,由于)(θg 是θ的减函数,故只须05.0)54110()110(=-Φ=c g ,即05.0)]110(45[=-Φc从而684.108645.18.0110645.1)110(4595.0)]110(45[=⨯-=⇒=-⇒=-Φc c c 拒绝域为}684.108:{≤=x x W ,又因为684.108108<=x ,所以拒绝0H ,认为该日生产不正常.§7.2 正态总体参数假设检验教学目的:理解和掌握单个以及两个正态总体均值的假设检验的方法与思想,掌握正态总体方差检验的方法.教学重点:检验方法的掌握,检验方法思想的理解. 教学难点:检验方法的掌握.教学内容:本节内容包括单个正态总体均值的假设检验,两个正态总体均值差的检验,正态总体方差的检验.参数假设检验常见的有三种基本形式 (1)0010::H vs H θθθθ≤>(2)0010::<H vs H θθθθ≥ (3)0010:=:H vs H θθθθ≠一般来说,对这三种假设采取的检验统计量是相同的,差别在拒绝域上.当备择假设1H 在原假设0H 一侧时的检验称为单侧检验,当备择假设1H 分散在原假设0H 两侧时的检验称为双侧检验.(1),(2)是单侧检验,(3)是双侧检验.7.2.1 单个正态总体均值的假设检验设n x x x ,,,21 是来自正态总体),(2σμN 的样本,对均值μ考虑如下的检验: 0100::μμμμ>≤H vs H (1) 0100::μμμμ<≥H vs H (2) 0100::μμμμ≠=H vs H (3)一 2σ已知时的u 检验对单侧检验(1),由于x 是μ的无偏估计,选取统计量u=故当样本均值x 不超过设定均值0μ时,应接受0H ,而当样本均值x 超过设定均值0μ时,应拒绝0H ,但由于样本的随机性,x 比0μ大一点就拒绝0H 似乎不当,只有当x 比0μ大到一定程度时拒绝0H 才是恰当的.故存在临界值c ,拒绝域12{(,,,);}n W x x x u c =≥ ,常简记为{}u c ≥.若要求水平为α,则c 应满足0()=P u c μα≥,因为21~(,)x N nμσ,故0μμ=时~(0,1)x u N =知1c u α-=,所以拒绝域1{;}W u u u α-=≥.该检验用的检验统计量是u 统计量,一般称为u 检验. 易验证1{;}W u u u α-=≥是检验0100::μμμμ>≤H vs H 的显著性水平为α的检验.类似地对0100::μμμμ<≥H vs H 的显著性水平为α的拒绝域{;}W u u u α=<;0100::μμμμ≠=H vs H 的显著性水平为α的拒绝域12{;}W u u u α-=≥.例7.2.1 从甲地发送一个讯号到乙地,设乙地接受到的讯号值是一个服从正态分布)2.0,(2μN 的随机变量,其中μ为甲地发送的真实讯号值.现甲地重复发送同一讯号5次,乙地接受到的讯号值为8.05 8.15 8.2 8.1 8.25设接受方有理由猜测甲地发送的讯号值为8,问能否接受该猜测?=α0.05 分析 此时正态分布的方差已知,对均值进行检验,利用U —检验. 解 总体2~(,0.2)X N μ ,待检验的原假设0H 与备择假设分别为1H :01:8:8H vs H μμ=≠.这是一个双侧检验问题,检验的拒绝域为12{;}u u uα-≥,取0.975=0.05,=1.96u α,计算得=8.15,15-8)/0.2=1.68x u ,u 值未落入拒绝域内,故不能拒绝原假设,及接受原假设,可认为猜测成立.2、σ未知时的t 检验若2σ未知,则上述的随机变量x u =不再是统计量,自然我们要用2σ的无偏估计2211()1n ii s x x n ==--∑代替2σ,此时有0()x t s μ-=,且0μμ=时~(1)t t n =-,类似于2σ已知时均值μ的检验问题的讨论得到:0100::μμμμ>≤H vs H 的水平为α的拒绝域为1{;(1)}W t t t n α-=≥- 0100::μμμμ<≥H vs H 的水平为α的拒绝域为{;(1)}W t t t n α=≤-0100::μμμμ≠=H vs H 的水平为α的拒绝域为12{;(1)}W t t tn α-=≥-例7.2.2 某厂生产的某种铝材的长度服从正态分布,其均值设定为240cm ,现从该厂抽取5件产品,测得其长度为(单位:cm )239.7 239.6 239 240 239.2试判断该厂此类铝材的长度是否满足设定要求?=α0.05分析 此时正态分布的方差未知,对均值进行检验,利用T —检验. 解 略.综上,关于单个正态总体均值的假设检验问题可汇总成如下的表:7.2.2 两个正态总体均值差的检验设m x x x ,,,21 是来自总体X 服从),(211σμN 的样本,n y y y ,,,21 是来自总体Y 服从),(222σμN 的样本,且两样本相互独立,考虑如下的三种检验:0:0:211210>-≤-μμμμH vs H (1)0:0:211210<-≥-μμμμH vs H (2)0:0:211210≠-=-μμμμH vs H (3)主要分两种情况讨论.12,σσ已知时的两样本u 检验此时21μμ-的估计y x -的分布完全已知,),(~222121nmN y x σσμμ+--,由此可采用u 检验法,检验统计量为x yu =在21μμ=时,~(0,1)x yu N =.检验的拒绝域取决于备择假设的形式.上述三对假设检验的拒绝域分布为:1{;}W u u u α-=≥ {;}W u u u α=<12{;}W u u uα-=≥σσσ==21但未知时的两样本t 检验在22221σσσ==未知时,类似于单个正态总体方差未知时均值的检验,我们仍用2σ的无偏估计代替2σ,而此时可以证明2σ的无偏估计为:2222211(1)(1)1[()()]22m n x y wi i i i m s n s s x x y y m n m n ==-+-=-+-=+-+-∑∑ 于是有~(2)x y t t m n =+-从而检验统计量为x yt =在021=-μμ时,)2(~11-++-=n m t nm S y x T w.上述三对假设检验的拒绝域分布为:1{;(2)}W t t t m n α-=≥+-{;(2)}W t t t m n α=≤+-12{;(2)}W t t tm n α-=≥+-例7.2.3 某厂铸造车间为提高铸件的耐磨性而试制了一种镍合金铸件以取代铜合金铸件,从两种铸件中各抽取一个容量分别为8和9的样本,测得其硬度(一种耐磨性指标)为:镍合金 76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34铜合金 73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61 根据专业经验,硬度服从正态分布,且方差保持不变,试在显著性水平=α0.05下判断镍合金的硬度是否有明显提高? 解 略.一、 单个正态总体方差的2χ检验设总体),(~2σμN X ,n x x x ,,,21 是来自该总体的样本,对方差2σ考虑如下的三种检验:221220::σσσσ>≤H vs H (1) 221220::σσσσ<≥H vs H (2)2212020::σσσσ≠=H vs H (3)1、均值μ未知时方差的检验由于μ未知,2211()1n ii s x x n ==--∑是2σ的无偏估计,且202σσ=有)1(~)1(22022--=n S n χσχ对于显著性水平α,对应上述三种假设检验的拒绝域分布为:2221{;(1)}W n αχχχ-=≥- 222{;(1)}W n αχχχ=≤-22212{;(1)W n αχχχ-=≥-或222(1)}n αχχ≤-例7.2.4 某类钢板每块的重量X 服从正态分布,其一项质量指标是钢板重量的方差不得超过0.0162kg .现从某天生产的钢板中随机抽取25块,得其样本方差2S =0.0252kg .问该天生产的钢板重量的方差是否满足要求?=α0.05.解 略.2、均值μ已知时方差的检验此时,检验统计量取为20212)(σμχ∑=-=ni ix,且220σσ=时)(~)(220212n xni iχσμχ∑=-=故对均值μ已知时方差的三种检验,我们只需将均值μ未知时方差的三种检验中2χ—分布的自由度变一下就可得到检验的拒绝域.)二 两个正态总体方差比的F 检验设m x x x ,,,21 是来自总体X 服从),(211σμN 的样本,n y y y ,,,21 是来自总体Y 服从),(222σμN 的样本,且两样本相互独立,考虑如下的三种检验:2221122210::σσσσ>≤H vs H (1) 2221122210::σσσσ<≥H vs H (2) 2221122210::σσσσ≠=H vs H (3) 此处21,μμ均未知,22,x y s s 分别表示总体X 、Y 的样本方差,易知221()x E s σ=,222()yE s σ= 从而建立检验统计量22xys F s =当2212σσ=时,22~(1,1)xys F F m n s =--,此时,上述三个检验的拒绝域分别为:)}1,1(;{1--≥=-n m F F F W α )}1,1(:{--≤=n m F F F W α)1,1(:{21--≥=-n m FF F W α或)}1,1(2--≤n m F F α例7.2.5 甲、乙两台机床加工零件,零件的直径服从正态分布,总体方差反映了加工的精度,为比较两台机床的加工精度有无区别,现从各自加工的零件中分别抽取7件产品和8件产品,测得直径为:X (机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8Y (机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 取 =α0.05. 解 略.)1)1§7.3 其他分布参数的假设检验教学目的:了解指数分布参数的假设检验,比例的检验,大样本检验,会解决简单的实际问题.教学重点:对于检验方法的理解. 教学难点:解决简单的实际问题.教学内容:本节内容包括指数分布参数的假设检验,比例p 的检验,大样本检验,检验的p 值.7.3.1 指数分布参数的假设检验设n x x x ,,,21 是来自指数分布1()Exp θ的样本,现考虑关于θ的如下检验问题:0010::H vs H θθθθ≤>,拒绝域的自然形式是={}W x c ≥,下面讨论x 的分布.考虑θ的充分统计量x ,在0=θθ时,0=1=~(,1)ni i nx x Ga n θ∑,由咖玛分布的性质可知2202=~(2)nxn χχθ,于是可用2χ作为检验统计量并利用2(2)n χ的分位数建立检验的拒绝域221-={(2n)}W αχχ≥.类似可得,对关于θ的另两种检验问题:0010::<H vs H θθθθ≥, 0010:=:H vs H θθθθ≠检验统计量仍是2χ,拒绝域分别是22={(2n)}W αχχ≤,22221-22={(2n)(2n)}W ααχχχχ≤≥或.例7.3.1 设我们要检验某种元件的平均寿命不小于6000h ,假定元件寿命为指数分布,现取5个元件投入试验,观测到如下5个失效时间(h ) 395 4094 119 11572 6133 解:这是一个假设检验问题,检验的假设为 01:6000:<6000H vs H θθ≥经计算=4462.6x ,故检验的统计量为201044626===7.43776000xχθ, 若取=0.05α,查表得20.05(10)=3.94χ,由于220.05>(10)χχ,故接受原假设,可以认为平均寿命不低于6000h.7.3.2 比例p 的检验比例p 可看做某时间发生的概率,即看作二点分布(1,)b p 中的参数.作n 次独立重复试验,以x 记该事件发生的次数,则~(n,)x b p . 现考虑如下单边假设检验问题 0010::H p p vs H p p ≤>,找一个0c ,使得00--0000==+1(1-)>>(1-)nni n ii n i i c i c n n p p p p i i α⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∑∑,0=+1c c 可得水平为α的检验.对检验问题0010::<H p p vs H p p ≥,检验的拒绝域为={x }W c ≤,c 为满足-00=0(1-)ci n ii n p p i α⎛⎫≤ ⎪⎝⎭∑的最大正整数. 对检验问题0010:=:H p p vs H p p ≠,检验的拒绝域为12={x x c }W c ≤≥或,1c 为满足1-00=0(1-)2c i n i i n p p i α⎛⎫≤ ⎪⎝⎭∑的最大正整数,2c 为满足2-00=c (1-)2ni n i i n p p i α⎛⎫≤ ⎪⎝⎭∑的最小正整数.例7.3.2 某厂生产的产品优质品率一直保持在40%,近期对该厂生产的该类产品抽检20件,其中优质品7件,在=0.05α下能否认为优质品率仍保持在40%?解:这是一个假设检验问题,以p 表示优质品率,以x 表示20件产品中的优质品数,则~(20,)x b p ,待检验的原假设为01:=0.4:0.4H p vs H p ≠,拒绝域为12={x x c }W c ≤≥或,下求1c ,2c .由于(3)=0.0160<0.P x P x ≤≤,故取1=3c ,又由于(11)=0.0565>0.025>(12)=0.0210P x P x ≥≥,故取2=12c ,拒绝域为={x 3x 12}W ≤≥或由于观测值没有落入拒绝域,故接受原假设.7.3.2 大样本检验设12,,,n x x x 是来自某总体的样本,该总体均值为θ,方差为θ的函数,记为2σθ(),则对下列三类假设检验问题:(1)0010::H vs H θθθθ≤>; (2)0010::<H vs H θθθθ≥, (3)0010:=:H vs H θθθθ≠.在样本容量n 充分大时,利用中心极限定理2~(,()/n)x N θσθ故在0=θθ时.可采用检验统计量(0,1)u N,对应上述三类假设检验问题的拒绝域分别为1-={u}W uα≥,={u}W uα≤,1-2={}W u uα≥.例7.3.3例7.3.47.3.4 检验的p值例7.3.5 略从例7.3.5可以看到,对同一个假设检验问题,若取不同的显著水平α,会得到不同的结论,0.0179是能用观测值2.10做出“拒绝H”的最小的显著性水平,这就是p值.定义7.3.1 在一个假设检验问题中,利用观测值能够做出拒绝原假设的最小显著性水平称为检验的p值.引进检验的p值的概念有如下好处:(1)它比较客观,避免了事先确定显著水平.(2)由检验的p知与人们心目中的显著性水平α进行比较可以很容易做出检验的结论:如果pα≥,则在显著性水平α下拒绝H;如果<pα,则在显著性水平α下应接受H.例7.3.6 设nxxx,,,21是来自(1,)bθ的样本,要检验如下假设0010::H vs Hθθθθ≤>设检验的显著性水平为α,则检验的拒绝域为={}iW x c≥∑,在得到观测值0=i x t∑后,计算={}ip P x tθ≥∑,就是检验的p值.例如,00=40,=0.1,=8n tθ,则40397334040=1-0.9-0.10.9--0.10.9=0.0419 17p⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭,若取=0.05α,则>pα,应拒绝原假设.例7.3.7 略§7.4 分布拟合检验教学目的:了解有限离散总体分布的拟合检验、列联表的独立性检验和正态性检验.教学重点:列联表的独立性检验和正态性检验.教学难点:解决简单的实际问题.教学内容:本节内容包括总体分布只取有限个值的情况,列联表的独立性检验.正态性检验.前面讨论的检验问题都是在总体分布形式已知的前提下对分布的参数建立假设并进行检验,它们都属于参数假设检验问题.这一节我们对总体分布的形式建立假设并进行检验,这一类检验问题统称为分布的拟合检验,属于非参数假设检验.7.4.1 总体分布只取有限个值的情况设总体X 可以分成k 类,记为12,,,k A A A ,现对该总体做了n 次观测,k 个类出现的频数分别为12,n ,,n k n ,且=1=ki i n n ∑,要检验的假设为0:P(A )=,=1,2,,.i i H p i k (7.4.1)=1=1,p0.ki ii p ≥∑其备择假设是(7.4.1)诸等式不全成立.下面我们分两种情况讨论7.4.1的检验问题. 一 诸i p 均已知如果0H 成立,则对每一类i A ,其频率in n与概率i p 应较接近.据此,选用检验统计量22=1(-)=ni i i i n np np χ∑,可证明在0H 成立时,对充分大的n ,2χ近似服从自由度为-1n 的2χ分布.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={(-1)}W k αχχ≥. 例7.4.1 二 诸i p 不完全已知诸i p =1,2,,.i k 可由(<)r r k 个未知参数1,,r θθ 确定,即1=),i=1,k.i i r p p θθ (,, 为对假设(7.4.1)做检验,由样本给出诸i θ,=1,2,,r.i 的最大似然估计^^1,,r θθ ,再给出诸i p ,=1,2,,.i k 的最大似然估计^^^1=),r i i p p θθ (,,取检验统计量 ^22^=1(-)=ki i i in n p n p χ∑,可证明2χ近似服从自由度为k-r-1的2χ分布.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={(--1)}W k r αχχ≥.例7.4.27.4.2 列联表的独立性列联表是将观测数据按两个或更多属性(定性变量)分类时所列出的频数表. 一般,若总体中的个体可按两个属性,A B 分类, A 有r 个类1,,r A A , B 有c 个类1,,B c B ,从总体中抽取大小为n 的样本,设其中有ij n 个个体既属于A 类,又属于B 类,ij n 称为频数,将r c ⨯个ij n 排列为一个r 行c 列的二维列联表,简称r c ⨯表.对二维列联表,提出假设“,A B 两属性独立”,即0:=p p ,=1,2,,r,j=1,2, c.ij i j H p i 取检验统计量^22^=1=1(-)=rcij ij i j ijn n p n p χ∑∑,则在原假设成立时,2χ近似服从自由度为-(+-2)-1=(-1)(-1)rc r c r c 的2χ分布,其中^ij p 是ij p 的最大似然估计.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={((-1)(c-1))}W r αχχ≥. 例7.4.37.4.3 正态性检验用来判断总体分布是否为正态分布的检验方法称为正态性检验. 一正态概率纸概率纸是一种具有特殊刻度的坐标纸.使用这种坐标纸即可以很快判断总体分布的类型又能粗略地估计总体的参数,是检验总体分布的一种简单工具.正态概率纸是一张刻有直角坐标的图纸,它的横坐标轴的刻度是均匀的,表示观察值,纵坐标轴的刻度是不均匀的,表示概率,具体的刻度是按标准正态分布换算出来的,即在普通的直角坐标xot 的纵坐标轴(t 轴)上原坐标为t 的点刻度为du et u t2221)(-∞-⎰=Φπ,例如纵轴上,原坐标为1处的刻度为8413.0)1(=Φ,原坐标为2处的刻度为9772.0)2(=Φ,原坐标为-1处的刻度为1587.0)1(=-Φ,但习惯上,在正态概率纸上的纵坐标轴上标明的数字是换算出的刻度的100倍,又由于x 是在+∞∞-~取值,概率不可能为0,也不可能为1,故一般概率纸的纵轴的刻度都是从99.99~01.0.例7.4.4 随机选取10个零件,测得其直径与标准尺寸的偏差如下: 9.4 8.8 9.6 10.2 10.1 7.2 11.1 8.2 8.6 9.6 利用正态概率纸作正态性检验的步骤如下:1. 首先把样本观察值按从小到大的次序排列:(n)(2)(1)x x x ≤≤≤ 9.6 9.810.1 10.2 11.1具体数据为 7.2 8.2 8.6 8.8 9.42. 对每一个i ,计算修正的频率n ,,2,1i ),25.0n /()375.0i (F i=+-=结果为12345F =0.061F =0.159F =0.256F =0.354F =0.451 ,,,,,678910F =0.549F =0.646F =0.743F =0.841F =0.939 ,,,,3. 将点n ,,2,1i ),F ,x (i (i)=逐一点在正态概率纸上 4. 判断若诸点在一条直线附近,则认为该样本来自正态总体;若诸点明显不在一条直线附近,则认为该样本不是来自正态分布总体.如果从正态概率纸上确认总体是非正态分布时,可对原始数据进行变换后再在正态概率纸上描点,若变换后的点在正态概率纸上近似在一条直线附近,则可认为变换后的数据来自正态分布,这样的变换称为正态性变换.常用的正态性变换有:对数变换,倒数变换和根号变换.例7.4.5 利用对数变换二 夏皮洛-威尔克检验夏皮洛-威尔克检验也简称W 检验,这个检验当850n ≤≤时可以使用,过小样本对偏离正态分布的检验不太有效.W 检验是建立在次序统计量的基础上,将n 个独立观测值按非降次序排列,记为(1)(2)(n)x ,x ,,x ,检验统计量为2=1=122=1=1[(-)(-)]=(-)(-)n ni i i i n niii i a a x x W a a x x ∑∑∑∑,系数12,,,n a a a 在样本容量为n 时有特定的值,可查附表.系数12,,,n a a a 还具有性质:+1-=-,=1,2,,[]2i n i n a a i2=1=1=0,=1n ni ii i a a∑∑故可将统计量简化为[]22(+1-)()=12()=1[(-)]=(-)n i n i i i ni i a x x W xx ∑∑,可以证明,在原假设成立,即总体分布为正态分布时,W 的值应该接近1,因此在显著性水平α下,如果统计量W 的值小于其α分位数,则拒绝原假设,即拒绝域为{}W W α≤. 例7.4.6 略。
单个正态总体参数的假设检验
576.2 576 x 576 0.079 其中 | U | 8 / 10 8/ n
查表 z / 2 z0.025 1.96 0.079 故未落在拒绝域之内,故接受H0 ,即可以认为 576.
综合⑴与⑵,该生跳远成绩水平与鉴定成绩无显著差异.
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n 计算 | t | 2.6
| t | 2.6 t0.025 (35) 2.0301
故落在拒绝域之内,拒绝H0 ,接受H1 即不能认为全体考生的平均成绩为70分。 ⑵ μ的置信水平为0.95的置信区间为
2 2 2 双边假设检验 H 0 : 2 0 , H1 : 0
拒绝域为
(n 1) s 2
2 0
12 / 2 (n 1) 或 f y
2 2
(n 1) s 2
2 0
2 / 2 ( n 1)
2 12 / 2 (n 1) / 2 ( n 1)
观测5台压缩机的冷却用水的升高温的平均值为 x 5.34,
样本方差为 s 2 0.631. ⑴ 在显著水平α=0.05下是否可以
认为冷却用水升高温度的平均值不多于5°?(2)求σ2的
置信水平为0.95的置信区间。
解: ⑴ 先提出假设 H 0 : 0 5, H1 : 0
H1 : 0 ,拒绝域为
| x -0 | | u | z / 2 / n
2. σ2未知,检验μ (t 检验法)
n 1 2 可用样本方差 S 2 ( X X ) 代替σ2 k n 1 k 1
正态总体参数假设检验公式
正态总体参数假设检验公式正态总体参数假设检验,这可是统计学里挺重要的一块知识呢!咱先来说说啥是正态总体。
简单来讲,就是一堆数据形成的分布,长得像个“钟形”,两边低中间高,挺对称的那种。
那为啥要对正态总体的参数进行假设检验呢?比如说,咱们想知道某个班级学生的考试成绩是不是符合某种预期,或者工厂生产的零件尺寸是不是在规定的范围内。
这时候,就需要用假设检验的公式来判断啦。
假设检验的公式有好几个,咱先来说说关于均值的。
比如说,有一个总体的均值我们假设是μ0,然后从这个总体里抽了个样本,算出样本均值是x,样本标准差是 s 。
这时候,就可以用 t 检验的公式:t = (x - μ0) / (s / √n) 。
这里的 n 是样本的数量。
我给您讲个我遇到的真事儿吧。
有一次,我去一个工厂,他们生产一种零件,标准的长度应该是10 厘米。
我随机抽了50 个零件来测量,算出来样本均值是 9.8 厘米,样本标准差是 0.5 厘米。
然后我就用这个t 检验的公式来算算,看这批零件的长度是不是跟标准的有显著差别。
再来说说关于方差的假设检验。
比如说,我们想知道一个总体的方差是不是等于某个值σ0² ,这时候就要用到卡方检验的公式啦。
假设检验可不是随便乱用的哦,得先搞清楚一些条件。
比如说,样本是不是独立的呀,是不是来自正态总体呀等等。
而且,在实际应用中,可不能光套公式,得理解背后的原理。
就像刚才说的工厂零件的例子,如果不理解为啥要这么做,就算算出结果来,也不知道到底意味着啥。
总之,正态总体参数假设检验公式是个很有用的工具,但要用好它,得下点功夫,多练习,多琢磨。
希望您在学习和使用这些公式的时候,能顺顺利利的,别被它们给难住啦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设技术革新后方差不变,问革新后产品质量较以前是 否显著提高?(=0.05)
分析: 质量显著提高的含义是寿命均值μ>40. 解:这个问题即在水平=0.05下,检验假设
H0 :=0=40 H1 : >u0= 40 哪一个成立
作为检验统计量.
对给定的水平=0.05,查表知: Z0.05=1.645
作为检验统计量.
对给定的水平 =0.05,查表知2 0.05(24)=36.415
计算k
24 1482 1302
31.106 ;
k<36.415,
接受H0 , 即认为标准差不超过130小时. 由以上说明在水平 =0.05下,认为这批元件合格.
复习 一、概率的计算、事件间关系 二、一维与二维随机变量的概率分布问题 三、会求随机变量函数的概率分布 四、数学期望、方差、协方差的定义、性质及计算 五、会求矩估计量与极大似然估计量 六、会求置信区间 七、会判断估计量的无偏性 八、掌握假设检验的基本步骤
2 1 2
2
2
y
2
三、方差σ2的假设检验 假设的提法
(1)H0
:
2
2 0
,
H1
:
2
2 0
(2)H0
:
2
2 0
,
H1
:
2
2 0
(3)H0
:
2
2 0
,
H1
:
2
2 0
第一种类型的假设检验 称为双边检验,第二、 三种类型的检验称为单 边检验。
(1)在水平α下,检验假设
H0
:
2
2 0
是否成立?
解:考虑到
(n 1)S 2
2、方差σ2已知时,在水平α下,检验假设
H0 := 0 H1 : > 0 哪一个成立。
与第1种情况类似, 作为检验统计量.
对给定的检验水平α,求临界点Zα使
1-
接受域
Z
拒绝域
代入样本值计算U的值u 当 Z时,拒绝H0;
当u Z时,接受H0 .
例2: 某工厂产品寿命X~N(,2),正常情况下0=40, 0=2,
解:本题要在显著水平α=0.02 下检验假设
H0 : 2 5000 , H1 : 2 5000
n
26,
2
(n
1)
2 0.01
(25
)
44.314
,
2
2 1
(n
1)
2 0.99
(25)
11
.524
,
2 0
5000
2
拒绝域为:
(n 1)S 2
2 0
11.524
,
(n 1)S 2
2 0
44.324
代入样本值计算统计量的值
(41.25 40) 25
U
3.125 >1.645
2
拒绝H0,接受H1,即在水平α= 0.05下,认为革新后的质 量有显著提高.
3、方差σ2已知时,在水平α下检验假设
H0 := 0 H1 : < 0 哪一个成立
__
取U ( X 0 ) n 作为检验统计量
对给定的水平α,求临界点Zα使 -Zα
sn
估计2
用Y
(n 1)S 2 2
~
2(n 1);
由上节课我们知道,假设检验就是先对总体的未知 参数提出某种假设H0,然后再根据小概率事件是否发 生作出拒绝假设H0 或是接受假设H0 的。
弃真错误的概率α即为小概率事件发生的概率。
我们把只关心犯第一类错误而不考虑犯第二类错误 的检验称为显著性检验。
2 1 2
)
1
2
(2)H0
:
2
2 0
,
H1
:
2
2 0
检验统计量 K (n 1)S 2
2 0
f ( y)
2 1
2
y
(3)H0
:
2
2 0
,
H1
:
2
2 0
参看P145表
例1:某种电子元件的寿命X~ N(,2),合格标准
为: ≥2000, 2 ≤1302,现从一批该种元件中任
抽25只,测得寿命均值为 x 1950,方差s2 1482
2
~
2 (n 1)
当H0为真时,取
K
(n 1)S 2
2 0
~
2(n 1)
作为检验统计量.
对给定的水平α,查 2 分布表,找到临界点
( 2 n - 1)和12-( n - 1),使得
2
2
由于α很小,故事件
是小概率事件. 代入样本值计算统计量K的值k.
f ( y)
2 1 2
2
2
y
2
注意:P ( K
检验统计量 T ( (n 1);
2
T t (n 1) T t (n 1)
参看P143表
此方法称为T检验法
-t
t
例1 在正常情况下,某工厂生产的灯泡的寿命X服从正态分 布,今测得10个灯泡寿命为:1490 1440 1680 1610 1500 1750 1550 1420 1800 1580 。问能否认为该工厂生产的灯 泡寿命为1600(=0.05)? (注:此题是第141页例3)
检验统计量 U ( X 0 )
n
~ N (0,1).
参看P143表
H0的 拒绝域
此方法称为U检验法
Z
2
Z
2
二、方差σ2未知,对均值μ的假设检验
拒绝域
与方差σ2已知的情况类似
假设提法
① H0 := 0 ② H0 : =0 ③ H0 : =0
H1 : ≠ 0 H1 : > 0 H1 : < 0
由观察值s2=9200 得
(n 1)S2 02
46 44.314
结论:拒绝H0, 认为这批灯泡的 寿 命的波动性较以往有显著变化。
试在水平=0.05下,检验是否合格. (注:此题是 第145页例6)
①解: 此题为在水平= 0.05下,检验假设 H0: =2000 H1: <2000 哪一个成立?
取T X 0 ~ t(n 1) 作为检验统计量. S/ n
拒绝域为:T<-t (n-1) 对给定的水平= 0.05,查表知t 0.05(24)=1.7109
二、三种类型的检验称为单边检验。并将H0称 为原假设, H1称为备择假设。
一、方差σ2已知时,对总体均值μ的假设检验 1、方差σ2已知时,在水平α下,检验假设 H0 := 0 (0为已知) 是否成立
考虑到 样本均值X 是 μ的一个无偏估计量,
若H 0成立, 则X
~
N (0 ,
2 ), 从而X
~
N
(0
2
以上方法称为U检验法。
小结:U检验法的一般步骤
(1)提出假设 H0: = 0 H1: ≠ 0
(2)选定检验统量:
(3)对给定的显著水平α,确定临界值点
P(U Z )
2
(4)计算检验统计量的观察值 u
Z ,使
2
(5)下结论 当 u Z 时, 接受H0 2
当 u Z时, 拒绝H0
2
例1:某车间用一台包装机装箱,额定标准为每箱 重100kg,设每箱重量服从正态分布,且σ=1.15,某 日开工后,随机抽取10箱,测得重量为(kg):
s
129
0.44 t 9 2.262
2
在水平=0.05下, 接受H0.
即认为该工厂生产的灯泡寿命为 = 1600小时.
三、方差σ2的假设检验
假设的提法
(1)H0
:
2
2 0
,
H1
:
2
2 0
(2)H0
:
2
2 0
,
H1
:
2
2 0
(3)H0
: 2
2 0
,
H1
:
2
2 0
f ( y)
第一种类型的假设检验 称为双边检验,第二、 三种类型的检验称为单 边检验。
例2:某厂生产某种型号的电池,其寿命服从 方差σ2=5000(小时2)的正态分布,现有一批 这种电池,从它的生产情况来看,寿命的波动 性有所改变。现随机抽取26只,测出其寿命的 样本方差S2=9200(小时2),问根据这批数据能 否推断这批电池的寿命的波动性较以往有显著 变化。(α=0.02)
分析:寿命的波动性由方差反应。
代入样本值,计算t 1950 2000 1.689
148/ 5 ∴t= -1.689> - 1.7109, 应接受H0 , 即认为元件寿命不低于2000小时.
②在水平在水平 =0.05下,检验假设
H0: 2 = 1302 H1: 2 >1302 哪一个成立?
取K
n 1S 2
2 0
~
2 n 1
§2 一个正态总体参数的假设检验
设X
~
N (, 2 ) ,(X1
,
X2
,
,
X
)是其
n
样本.
一、方差σ2已知时,对均值μ的假设检验
二、方差σ2未知时,对均值μ的假设检验
三、方差σ2的假设检验
复习: 置信区间
2已知,估计 用U X ~ N(0,1)
/ n
2未知,估计 用 T X ~ t(n 1).
99.3 98.9 101.5 101.1 99.6 98.7 102.2 100.8 99.8 100.9 试在水平α=0.05下,检验假设
H0 : 0 100
是否成立?