电子电路设计与制作章

合集下载

电子电路的设计与调试方法

电子电路的设计与调试方法

电子电路的设计与调试方法电子电路设计与调试是电子工程师日常工作的重要部分。

它涉及到电子元件的选择、电路图的绘制、电路板的设计与制作以及电路的调试和优化等环节。

在这篇文章中,我将详细介绍电子电路设计与调试的方法和步骤。

一、电子电路设计方法:1. 确定电路的功能和性能要求:首先要明确电路的功能和所需的性能指标,包括输入输出电压范围、电流要求、频率特性等。

在设计之前,需要对电路的整体框架进行合理的规划和选择。

2. 确定元件的选择和参数设计:根据电路的功能要求,选择合适的电子元件,如电阻、电容、电感、二极管、晶体管等。

同时根据电路的特性要求,进行参数设计,如电阻电容的大小、电感的匹配等。

3. 绘制电路图:在确认了电路的功能需求和元件选择以后,需要绘制电路图。

电路图应该包括所有的元件连接方式,电源线的方向和连接方式,以及元件之间的连接关系。

4. 进行电路仿真:使用电路仿真软件,对设计的电路进行验证。

通过仿真软件,可以模拟电路的工作情况,并能够分析电路的性能指标,如频率响应、输出电压波形等。

二、电子电路调试方法:1. 准备好所需的仪器和设备:在进行电子电路调试之前,需要准备好所需的仪器和设备,如示波器、信号发生器、万用表等。

这些仪器和设备可以帮助我们进行电路的测量和分析。

2. 检查电路连接:在调试之前,需要仔细检查电路的连接,确保没有接错线或者松动的连接。

同时,需要确认电源的正负极是否正确连接。

3. 逐个部分检测和调试:可以将电路分为不同的部分,逐个进行检测和调试。

首先,可以先测试电源模块,确认输出电压是否达到指定范围。

然后,逐个测试各个模块的输入和输出信号,确认信号的正常传递和变换。

4. 使用示波器观察信号波形:示波器是电子电路调试中最常用的仪器之一,可以显示电路中的信号波形。

通过观察信号波形,可以分析电路中的问题,如信号失真、幅度衰减、频率偏差等。

5. 根据问题进行修改和优化:根据调试过程中发现的问题,可以对电路进行修改和优化。

电子产品设计与制作课程设计

电子产品设计与制作课程设计

电子产品设计与制作课程设计课程目标本课程旨在培养学生对电子产品设计的理论和实践能力,让学生了解电子器件的基本工作原理和常用电路设计方法,学习利用各种工具和平台进行电路设计和模拟仿真,并通过实际的电子产品制作项目,让学生将理论知识应用于实际生产实践中。

课程大纲第一章:电子器件基础知识1.1 电子器件的种类和工作原理1.2 二极管和晶体管的基本原理以及常用电路应用1.3 MOSFET和JFET的基本原理以及常用电路应用1.4 放大电路和逻辑电路的基本原理和设计方法第二章:电路设计工具和平台2.1 常用的电路设计工具和仿真软件的介绍和使用2.2 基于EDA工具进行电路设计与模拟仿真2.3 电路板设计和焊接技术第三章:实践项目3.1 学生通过实际的电子产品制作项目,将所学到的理论知识应用于实际的生产实践中3.2 学生自行设计并制作一个基于Arduino或者树莓派等单片机的智能家居控制设备考核与评分本课程主要通过学生的课堂表现、作业和实践项目来进行考核和评分。

学生须按时完成作业和实践项目,并在课堂上积极参与讨论,提交电路设计和仿真报告,以及最终的实物产品。

考核项目权重课堂表现20%电路设计与仿真报告30%实践项目50%参考书目•《电子电路分析与设计》,美国约翰·威雷利,中国电力出版社,2012•《单片机原理及应用》,朱桂芳等,清华大学出版社,2015•《Arduino入门教程》,Simon Monk,人民邮电出版社,2015总结本课程旨在帮助学生掌握电子产品设计和制作的理论知识和实践技能。

通过系统地学习电子器件的基本原理、电路设计和仿真工具的使用方法、电路板设计和焊接技术以及实际项目制作经验,学生可以深入理解电子产品的内部结构和工作原理,提高自己的电子工程能力并应用于实际生产实践中。

同时,通过本课程的学习和实践,也可以为学生的创新和创业提供有力的支持。

电子制作实践课程设计

电子制作实践课程设计

电子制作实践课程设计一、课程目标知识目标:1. 学生能够理解并掌握电子制作的基本原理,包括电路的组成、电子元件的功能及其在电路中的应用。

2. 学生能够识别并正确使用常见的电子元器件,如电阻、电容、二极管、三极管等。

3. 学生能够描述并解释简单电子电路的工作原理,如放大器、振荡器等。

技能目标:1. 学生能够运用所学知识,设计并搭建简单的电子制作项目,如电子音乐盒、简单机器人等。

2. 学生能够运用问题解决策略,对电子制作过程中遇到的问题进行分析、调试和优化。

3. 学生能够熟练使用基本电子制作工具和仪器,如万用表、电烙铁、面包板等。

情感态度价值观目标:1. 学生通过电子制作实践,培养创新意识、动手能力和团队合作精神。

2. 学生能够认识到电子技术在日常生活中的重要性,激发对电子技术的学习兴趣。

3. 学生能够在电子制作过程中,遵循安全规范,养成严谨、细致的工作态度。

本课程旨在结合学生年级特点,以提高学生的动手实践能力、创新能力和团队合作精神为目标,注重培养学生的实际操作技能和解决问题的能力。

课程内容与教材紧密关联,确保学生在掌握基本电子知识的基础上,能够运用所学进行实际制作。

通过本课程的学习,使学生能够在实践中体验电子制作的乐趣,提高对电子技术的认识和兴趣。

二、教学内容本课程教学内容主要包括以下三个方面:1. 电子元件知识:介绍常见电子元器件如电阻、电容、二极管、三极管等的基本原理、分类、符号及其在电路中的作用。

关联教材第三章第一至第三节内容。

2. 电子电路原理:讲解简单电子电路的组成、工作原理及设计方法,包括放大器、振荡器等。

关联教材第四章第一至第四节内容。

3. 电子制作实践:指导学生运用所学知识,进行实际电子制作项目的设计、搭建和调试。

结合教材第五章内容,安排以下实践项目:- 电子音乐盒:让学生设计并搭建一个简单的电子音乐盒,了解振荡器、放大器等电路的应用。

- 简单机器人:引导学生制作一个基于微控制器的小型机器人,学习传感器、执行器等元件的连接和使用。

电子技术课程设计

电子技术课程设计

电子技术课程设计一、课程目标知识目标:1. 让学生理解并掌握电子技术基础理论知识,如电路组成、工作原理等;2. 使学生掌握常见电子元器件的识别、选用和使用方法;3. 培养学生运用电子技术解决实际问题的能力。

技能目标:1. 培养学生具备电子电路图的设计、绘制和解读能力;2. 提高学生动手实践能力,能够搭建和调试简单的电子电路;3. 培养学生运用电子测量仪器和设备进行数据采集和处理的能力。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发创新意识和探索精神;2. 培养学生严谨、细致、负责的学习态度,养成良好的学习习惯;3. 培养学生团队合作意识,学会与他人分享、交流、协作。

课程性质:本课程为实践性较强的学科,要求学生在掌握理论知识的基础上,注重实践操作和创新能力培养。

学生特点:本课程面向初中年级学生,学生对电子技术有一定的好奇心,具备基本的物理知识和动手能力。

教学要求:结合课程性质和学生特点,教师应注重理论与实践相结合,以学生为主体,引导学生主动参与,培养其解决问题的能力。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 电路基础知识:包括电路的概念、组成、工作原理等,对应教材第一章内容。

- 电路元件:电阻、电容、电感等;- 电路基本连接方式:串联、并联;- 电路分析方法:欧姆定律、基尔霍夫定律。

2. 常见电子元器件:二极管、三极管、晶体管等,对应教材第二章内容。

- 元器件的识别、选用和使用方法;- 特性曲线及其应用。

3. 电子电路设计与制作:对应教材第三章内容。

- 电路图的绘制与解读;- 简单放大电路、滤波电路、振荡电路的设计与搭建;- 动手实践:制作小型电子设备。

4. 电子测量与数据处理:对应教材第四章内容。

- 电子测量仪器的使用;- 数据采集与处理方法;- 实际操作:对电子电路进行测量与调试。

5. 创新实践与团队协作:结合前述内容,开展创新设计活动。

- 设计具有实际应用价值的电子电路;- 团队合作,分工明确,共同完成任务;- 展示与分享:向同学和老师展示成果,互相交流学习。

电子线路课程设计ad

电子线路课程设计ad

电子线路课程设计ad一、教学目标本节课的教学目标是使学生掌握电子线路的基本原理和实验技能,培养学生分析和解决电子电路问题的能力。

具体目标如下:1.知识目标:学生能够理解电子元件的工作原理,掌握基本电路的分析和设计方法,了解电子电路在实际应用中的作用。

2.技能目标:学生能够使用电子仪器和工具进行电路的搭建和测试,具备电子线路实验的基本技能,能够独立完成简单的电子电路设计和制作。

3.情感态度价值观目标:培养学生对电子技术的兴趣和好奇心,使学生认识到电子技术在现代社会中的重要性,培养学生的创新意识和团队合作精神。

二、教学内容本节课的教学内容主要包括电子元件的学习、基本电路的分析方法和电子电路实验。

具体内容包括:1.电子元件的学习:介绍电阻、电容、电感等基本电子元件的性质和应用,讲解它们在电路中的作用。

2.基本电路的分析方法:讲解欧姆定律、基尔霍夫定律等基本电路定律,介绍电压、电流、功率等基本电路参数的计算方法。

3.电子电路实验:进行简单的电子电路搭建和测试,让学生亲手操作,加深对电子电路的理解和掌握。

三、教学方法本节课采用多种教学方法相结合的方式,以激发学生的学习兴趣和主动性。

具体方法包括:1.讲授法:讲解电子元件的性质和应用,基本电路定律和参数计算方法。

2.讨论法:学生进行小组讨论,分享对电子电路的理解和实验经验。

3.案例分析法:分析实际应用中的电子电路案例,让学生了解电子电路在实际中的作用。

4.实验法:进行电子电路实验,培养学生的实验技能和动手能力。

四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备。

具体资源如下:1.教材:选用权威出版的电子线路教材,为学生提供系统、科学的学习材料。

2.参考书:提供相关的电子线路参考书籍,丰富学生的学习资源。

3.多媒体资料:制作精美的PPT和教学视频,直观地展示电子电路的原理和实验过程。

4.实验设备:准备充足的实验设备,保证每个学生都能亲手操作,提高实验效果。

电子电路设计方法PPT教学课件

电子电路设计方法PPT教学课件

集成电路的选择
• 集成电路的种类繁多,选用方法一般是“先粗后 细”,即先根据主体方案考虑应选用什么功能的 集成电路,再进一步考虑它的具体性能,然后再 根据价格等因素选用什么型号。选择的集成电路 不仅要在功能和特性上实现设计方案,而且要满 足功耗、电压、温度、价格等多方面的要求。
阻容元件的选择
• 电阻和电容种类很多,正确选择电阻和电容是很 重要的,不同的电路对电阻和电容性能要求也不 同,有些电路对电容漏电要求很严格,还有些电 路对电阻和电容的精度要求很严,设计时要根据 电路的要求选择性能和参数合适的阻容元件,并 要注意功耗、容量、频率、耐压范围是否满足要 求。
分立元器件的选择
• 分立元器件包括二极管、三极管、场效应管和晶 闸管等,选择器件的种类不同,注意事项也不同。 例如三极管,在选用时应考虑是NPN管还是PNP 管,是大功率管还是小功率管,是高频管还是低 频管,并注意管子的电流放大倍数、击穿电压、 特征频率、静态功耗等是否满足电路设计的要求。
元器件的参数计算
• ⑵ 尽量把总电路图画在同一张图上,如果 电路比较复杂,一张图画不下,应把主电 路画在同一张图上,而把一些比较独立或 次要的部分(例如直流稳压电源)画在另一张 或者几张图上,并用适当的方式说明各图 之间的信号联系。
• ⑶ 电路图中所有的连线都要表示清楚,各元器件 之间的绝大多数连线应在图上直接画出。连线通 常画成水平线或竖线,一般不画斜线。互相连通 的交叉线,应在交叉处用圆点标出。连线要尽量 短。电源一般只标出电源电压的数值(例如+5V, +15V,-15V)。电路图的安排要紧凑、协调,疏 密恰当,避免出现有的地方画得很密,有的地方 却空出一大块。总之,要清晰明了,容易看懂, 美观协调。
电子电路的安装

电子电路制作课程设计

电子电路制作课程设计

电子电路制作课程设计一、课程目标知识目标:1. 让学生掌握电子电路的基本原理和制作流程,包括电路图的识别、电子元件的功能及其在电路中的应用。

2. 使学生了解不同类型电子电路的特点,如放大电路、振荡电路等,并理解其工作原理。

3. 培养学生对电子电路中常见参数的认识,如电压、电流、电阻等,并学会使用仪器进行测量。

技能目标:1. 培养学生能够运用所学知识,独立设计并制作简单的电子电路。

2. 提高学生动手实践能力,学会正确使用电子仪器、工具,并能进行基本的故障排查。

3. 培养学生具备团队协作能力,能够在小组内共同完成电子电路的制作和调试。

情感态度价值观目标:1. 培养学生对电子科学的兴趣和求知欲,激发他们探索科学的精神。

2. 培养学生具备创新意识和实践精神,敢于尝试新事物,勇于面对挑战。

3. 增强学生的环保意识,学会珍惜资源,养成良好的电子垃圾回收习惯。

本课程针对中学生设计,结合学生年龄特点和知识水平,注重理论知识与实践操作的相结合。

通过本课程的学习,使学生能够将所学知识应用于实际生活中,提高他们的电子技术水平,培养创新精神和团队合作能力。

同时,注重情感态度价值观的培养,使学生在学习过程中形成正确的价值观和科学态度。

二、教学内容本课程教学内容主要包括以下几部分:1. 电子电路基础知识:介绍电路的基本概念、电路图的识别、电子元件的种类及其功能,对应教材第一章内容。

2. 常见电子电路原理:讲解放大电路、振荡电路、滤波电路等常见电路的工作原理,对应教材第二章内容。

3. 电子元件的应用:学习电阻、电容、二极管、晶体管等电子元件在电路中的应用,对应教材第三章内容。

4. 电路制作与调试:学习电子电路的制作流程,包括焊接技术、仪器使用、故障排查等,对应教材第四章内容。

5. 实践项目:设计并完成一个简单的电子电路制作项目,如音乐门铃、小型放大器等,培养学生动手实践能力。

教学进度安排如下:第一周:电子电路基础知识学习,进行电路元件识别和电路图识别训练。

PCB印制电路板设计与制作

PCB印制电路板设计与制作

第一章初识Protel99SE电子线路设计是众多工程技术人员和无线电爱好者经常遇到的问题,如何快捷、高效、准确地完成电子线路的设计工作也使很多人一筹莫展。

您或许为使电路板尽量紧凑而绞尽脑汁,为布通电路板的线路而废寝忘食,为手绘的电路板歪歪扭扭而感到悲不雅丧气。

卓越的Protel99将彻底把您从懊恼的工作中解放出来,在它的帮忙下,您的电子线路设计工作将变得轻松愉快。

第一节Protel99SE的开展与演变随着现代科学日新月异的开展,现代电子工业也取得了长足的进步,大规模、超大规模集成电路的使用使电路板的走线愈加精密和复杂。

在这种情况下,传统的手工方式设计和制作电路板已显得越来越难以适应形势了。

幸运的是电子计算机的飞速开展有效地解决了这个问题,精明的软件厂商针对广阔电子界人士的需求及时推出了本身的电子线路软件。

这些软件有一些共同的特征:它们都能够协助用户完成电子产物线路的设计工作,比拟完善的电子线路软件至少具有自动布线的功能,更完善的还应有自动布局、逻辑检测、逻辑模拟等功能。

Protel99继续保持了ProtelTechnology公司的革新传统,它具有极为全面的东西、文档以及设计工程的组织功能,使用户可比以往任何时候更轻松地把握电子线路设计的全过程。

Protel软件的良好信誉以及Protel99的卓越表示使之很快成为众多用户的首选软件。

第二节Protel99SE的特点Protel99主要有两大局部组成:一.道理图设计系统。

它主要用于电路道理图的设计,为印制电路板的设计打好根底。

二.印制电路板设计系统。

它主要用于印制电路板的设计,发生最终的PCB文件,直接联系到印制电路板的出产。

一.道理图设计系统Protel99的道理图编纂器提供高速,智能的道理图编纂手段,发生高质量的道理图输出成果,它的元件库提供了超过六万种元件,最大限度地覆盖了众多的电子元件出产厂家的繁复错乱的元件类型。

元件的连线使用自动化的画线东西,然后通过功能强大的电气法那么检测〔ERC〕,对所绘制的道理图进行快速查抄。

《电子电路设计》课程教学大纲

《电子电路设计》课程教学大纲

武汉工程职业技术学院《电子电路设计》课程教学大纲一、课程性质和任务电子电路设计是应用电子专业一门理论性、实践性均较强的重要专业课。

它的目的与任务是:使学生通过大纲所规定的全部教学内容的学习与设计,获得电路设计必要的基本理论、基本知识和基本技能,为学习后续专业知识以及今后从事工程技术工作打下初步基础。

二、课程的基本要求1.通过本课程的学习,使学生:(1)了解并掌握电路的一般设计方法,具备初步的独立设计能力;(2)初步掌握对普通电子线路画出电路方框图、完成电路各部分的指标分配等基本技能;(3)提高综合运用所学的理论知识独立分析和解决问题的能力;(4)进一步掌握电子线路设计仿真与制作方法。

2.教学中应注意的问题(1)注意和横向课程的衔接,注意理论和实际相联系。

(2)注意拓展学生的知识面。

三、教学内容第一章电子电路设计基础知识教学要求1.掌握电子电路设计的一般方法。

2.掌握电子电路的安装调试的一般方法。

3.掌握整机电路技术指标测量的方法。

教学内容1.概述2.电子电路设计的一般方法3.电子电路的安装技术4.电子电路的调试技术5.Proteus的使用及电子电路设计与仿真6.举例:简易电容测试仪的设计教学建议重难点是简易电容测试仪的设计。

第二章常用集成电路介绍教学要求1.熟悉常用数字集成电路的性能及应用。

2.熟悉常用模拟集成电路的性能及应用。

教学内容(根据需要选择教学)1.常用数字集成电路2.常用模拟集成电路教学建议重难点是常用模拟集成电路及数字集成电路。

第三章数字电路的设计教学要求1.掌握数字电路性能指标要求的总体方案的选择。

2.掌握数字电路各单元电路设计参数值的计算。

3.掌握数字电路各单元电路的调试及参数修改。

4.掌握整机电路的调试和技术指标测量。

教学内容(选其一教学)1.数字钟的设计2.智力竞赛抢答计时器的设计3.交通灯控制电路的设计教学建议重难点是数字钟的设计。

第四章模拟电子电路设计教学要求1.掌握模拟电子电路性能指标要求的总体方案的选择。

电子设计技术手册

电子设计技术手册

电子设计技术手册电子设计技术是电子工程学科的基础和核心,是诸多工程应用的基石。

在现代高科技产业中得到广泛的应用,涉及到诸多学科领域,如通信、控制、计算机、自动化等。

本手册旨在帮助开发者和电子工程师学习电子设计的相关技术,提高电路设计的效率和质量。

第一章:基础知识在学习电子设计技术之前,必须掌握基础电子学知识,包括电路分析与设计、电子元器件和电子仪器及测试。

1.1 电路分析与设计电路分析与设计是电子设计的核心内容,掌握好电路分析与设计方法可以提高电路设计效率和成功率。

电路分析包括直流电路分析、交流电路分析和数字电路分析。

电路设计包括模拟电路设计和数字电路设计。

在电路分析和设计的过程中,需要根据具体的需要选择不同的电子元器件进行组合。

1.2 电子元器件电子元器件是电路设计的基础,掌握好电子元器件的基本参数和特性对电路设计至关重要。

电子元器件可以分为有源元器件和无源元器件两种类型。

有源元器件包括三极管、场效应管、集成电路等;无源元器件包括电阻、电容、电感等。

不同的电子元器件在电路中有不同的作用和应用场景。

1.3 电子仪器及测试电子仪器是电子工程师必备的工作工具,掌握好电子仪器的使用方法可以提高工作效率。

电子仪器包括示波器、函数发生器、多用表等。

电子测试是电子工程师必须掌握的技能之一,可以使用测试方法验证电路设计的正确性和稳定性。

第二章:模拟电路设计模拟电路在现代电子工程中得到广泛的应用,涉及到电源电路、放大电路、滤波电路、混频电路、振荡电路等。

2.1 电源电路设计电源电路是保证电子设备正常工作的基石,设计合适的电源电路可以保证设备工作的稳定性和可靠性。

电源电路的设计需要确定电源的类型、输出电压和电流,选择合适的变压器和电源滤波电容等元器件。

2.2 放大电路设计放大电路是模拟电路的重要组成部分,可以将微小的信号放大到一定的幅度,涉及到放大器的类型、放大倍数、带宽等参数的选择。

放大电路的设计需要注意防止幅度失真、相位失真和噪声的干扰。

第9章-集成电路设计与制造讲义

第9章-集成电路设计与制造讲义

第9章-集成电路设计与制造讲义第九章表⾯钝化§9.1 概述⼀、钝化膜及介质膜的重要性和作⽤1、改善半导体器件和集成电路参数2、增强器件的稳定性和可靠性⼆次钝化可强化器件的密封性,屏蔽外界杂质、离⼦电荷、⽔汽等对器件的有害影响。

3、提⾼器件的封装成品率钝化层为划⽚、装架、键合等后道⼯艺处理提供表⾯的机械保护。

4、其它作⽤钝化膜及介质膜还可兼作表⾯及多层布线的绝缘层。

⼆、对钝化膜及介质膜性质的⼀般要求1、电⽓性能要求(1)好的绝缘性能。

介电强度应⼤于5MV/cm;(2)⼩的介电常数。

除了作MOS电容等电容介质外,介电常数愈⼩,容性负载则愈⼩。

(3)能渗透氢。

器件制作过程中,硅表⾯易产⽣界⾯态,经H退⽕处理可消除。

2(4)离⼦可控。

在做栅介质时,希望能对正电荷或负电荷进⾏有效控制,以便(5)良好的抗辐射。

防⽌或尽量减⼩辐射后氧化物电荷或表⾯能态的产⽣,提⾼器件的稳定性和抗⼲扰能⼒。

2、材料-物理要求(1)低的内应⼒。

⾼的张应⼒会使薄膜产⽣裂纹,⾼的压应⼒使硅衬底翘曲变形。

(2)⾼度的结构完整性。

针孔缺陷或⼩丘⽣长会有造成漏电、短路、断路、给光刻造成困难等技术问题。

(3)良好的粘附性。

对Si、⾦属等均有良好的粘附性。

3、⼯艺-化学性质(1)有良好的淀积性质,有均匀的膜厚和台阶覆盖性能,适于批量⽣产。

(2)便于图形制作。

能与光刻,特别是细线光刻相容;应有良好的腐蚀特性,包括能进⾏各向异性腐蚀,与衬底有良好的选择性。

(3)可靠性好。

包括可控的化学组分,⾼的纯度,良好的抗湿性,不对⾦属产⽣腐蚀等。

三、钝化膜及介质膜的种类钝化膜及介质膜可分为⽆机玻璃及有机⾼分⼦两⼤类,如表9.1。

§9.2 Si-SiO2系统⼀、SiO2膜在半导体器件中的主要⽤途膜⽤作选择扩散掩膜1、SiO2对磷、硼、砷等杂质较强的掩蔽能⼒,在硅上的⼆氧化硅层上刻蚀出选利⽤SiO2择扩散区窗⼝,则在窗⼝区可以向硅中扩散杂质,形成PN结。

南邮电子电路课程设计

南邮电子电路课程设计

南邮电子电路课程设计一、课程目标知识目标:1. 让学生掌握电子电路基本原理,理解常用电子元件的功能及在电路中的作用。

2. 使学生能够运用所学的知识,分析并设计简单的电子电路。

技能目标:1. 培养学生具备使用万用表、示波器等常用电子仪器的能力,能够对电子电路进行调试和检测。

2. 提高学生运用电子设计软件(如Multisim)进行电路仿真和绘制电路图的能力。

情感态度价值观目标:1. 培养学生对电子电路的兴趣和热情,激发他们探索电子科技领域的积极性。

2. 培养学生具备团队协作精神,学会与他人共同分析问题、解决问题。

3. 培养学生严谨的科学态度,注重实践操作的安全性和规范性。

课程性质:本课程为实践性较强的电子电路设计与分析课程,结合理论教学和实验操作,旨在提高学生的实际动手能力和创新能力。

学生特点:学生具备一定的电子电路基础知识,对电子技术有一定了解,但实践经验不足。

教学要求:注重理论联系实际,强化实践教学,鼓励学生动手操作和独立思考,培养解决实际问题的能力。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 电子元件基础:讲解常用电子元件(电阻、电容、电感、晶体管等)的原理、特性及在电路中的作用,对应教材第1章内容。

2. 简单电子电路设计:介绍放大电路、滤波电路、振荡电路等基本电路的设计方法,对应教材第2章内容。

3. 电子电路仿真:运用Multisim软件进行电路仿真,使学生了解电路在实际工作中的性能,对应教材第3章内容。

4. 电子电路制作与调试:指导学生动手制作简单的电子电路,学会使用万用表、示波器等仪器进行调试,对应教材第4章内容。

5. 故障分析与排查:培养学生分析电路故障、找出问题原因并解决问题的能力,对应教材第5章内容。

6. 课程项目实践:组织学生进行团队项目设计,从电路设计、仿真、制作、调试到故障排查,全面巩固所学知识。

教学大纲安排:第1周:电子元件基础第2周:简单电子电路设计第3周:电子电路仿真第4周:电子电路制作与调试第5周:故障分析与排查第6-8周:课程项目实践教学内容确保科学性和系统性,结合教材章节,注重理论与实践相结合,培养学生实际动手能力和创新能力。

电子电路分析与设计--模拟电子技术(答案)第14章

电子电路分析与设计--模拟电子技术(答案)第14章

Chapter 1414.1 80(max) 4.5(max)56.25 mV o d io i v A v v v ==−=⇒=So(max)i rms v = ______________________________________________________________________________________14.2(a) 2 4.50.028125 mA 1604.5 4.5 mA 1L i i ==== Output Circuit 4.528 mA = 4.50.05625 V 80o i i v v v A −=−=⇒=−(b) 4.515 mA (min)300o o L L L v i R R R ≈==⇒=Ω______________________________________________________________________________________14.3 (1)2 V o v = (2)212.5 mV v = (3)4210OL A =× (4) 18 V v μ=(5)1000OL A =______________________________________________________________________________________14.4(a) ()42857.216.512012−=−=−=∞R R A CL 42376.211042857.22142857.215−=+−=CL A ()%0224.0%10042857.2142857.2142376.21−=×−−−− (b) ()634146.142.812012−=−=−=∞R R A CL 63186.1410634146.151634146.145−=+−=CL A ()%0156.0%100634146.14634146.1463186.14−=×−−−− ______________________________________________________________________________________14.5(a) (i) 90863.710291176.7191176.71028.647118.647144=×+=×⎟⎠⎞⎜⎝⎛+++=CL A (ii) %03956.0%10091176.791176.790863.7−=×− (b) (i) 84966.71091176.7191176.73=+=CL A (ii) %785.0%10091176.791176.784966.7−=×− ______________________________________________________________________________________14.6(a) 12091.151050005.1102110.15121241231212=⇒⎟⎠⎞⎜⎝⎛×+−=×⎟⎠⎞⎜⎝⎛++−=−−R R R R R R R R R R (b) 1160.1510512091.16112091.154−=×+−=CL A ______________________________________________________________________________________14.7()()5109991.890190900001.01×=⇒+=−OL OLA A ______________________________________________________________________________________14.8()()499911110002.01=⇒+=−=OL OLCL A A A ______________________________________________________________________________________14.9(a) ()()001.0121001.0121012±±=+=R R A 02.10979.2021.210max ==A 98.9021.2179.209min ==A So 02.1098.9≤≤A (b) 009.101002.11102.104max =+=A 969.91098.10198.94min =+=A So 009.10969.9≤≤A ______________________________________________________________________________________14.1010110012010011212and so that 111I L iL I i v v v v v v A R R R v v A v v v R R R R R −−=+=−=−⎛⎞+=++⎜⎟⎝⎠1vSo 01201211111I L i v v R R A R R R ⎡⎤⎛⎞=−+++⎢⎥⎜⎟⎝⎠⎣⎦ Then 012012(1/)11111CL I L i v R A v R A R R R −==⎡⎤⎛⎞+++⎢⎥⎜⎟⎝⎠⎣⎦ From Equation (14.20) for and L R =∞00R =02(1)1111L if i A R R R +=+⋅ a. For1 k i R =Ω 33(1/20)11111100201001100.05[0.01 1.0610]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+×or3 4.521111090.8 1100CL if if A R R ⇒=−+=+⇒=Ω b. For10 k i R =Ω 34(1/20)111111002010010100.05[0.01 1.610]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+× or 4.92CL A ⇒=−31111098.9 10100if if R R +=+⇒=Ω c. For100 k i R =Ω 35(1/20)1111110020100100100.05[0.01710]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+×or 3 4.9651111099.8 100100CL if if A R R ⇒=−+=+⇒=Ω ______________________________________________________________________________________14.1121211111o CL i OL R R v A v R A R ⎛⎞+⎜⎟⎝⎠==⎡⎤⎛⎞++⎢⎥⎜⎟⎝⎠⎣⎦ For the ideal: 210.10150.002R R ⎛⎞+==⎜⎟⎝⎠0 ()(0.10)(10.001)0.0999ov actual =−= So 0.09995049.9510.0021(50)OL A ==+which yields 1000OLA = ______________________________________________________________________________________14.12From Equation (14.18) 211121111OL o o vf L o A R R v A v R R R ⎛⎞−−⎜⎟⎝⎠==⎛⎞++⎜⎟⎝⎠ Or 331131151011100(4.9999910)111 1.111011004.50449510o o v v v v ⎛⎞×−−⎜⎟−×⎝⎠=⋅=⎛⎞++⎜⎟⎝⎠=−×⋅1v ⋅ Now 11111i v v i K v R v −=≡Then 11i v v KR v −=1 which yields 111i v v KR =+ Now, from Equation (14.20) 3311510111011101001101005.001110(0.1)(0.01)45.154951.11K ⎡⎤+×+⎢⎥=+⎢⎥⎢⎥++⎢⎥⎣⎦⎡⎤×=+=⎢⎥⎣⎦Then ()()145.15495101452.5495i i v v v ==+We find31 4.50449510452.5495i o v v ⎡⎤=−×⎢⎥⎣⎦ Or 119.9536o vf i v A v ==− For the second stage,L R =∞ 332131111151011100 4.9504851011110011151049.6148511010011001(49.61485)(10)1497.1485o o o o v v K v v v v KR ⎛⎞×−−⎜⎟⎝⎠′′=⋅=−⎛⎞+⎜⎟⎝⎠⎡⎤⎢⎥+×≡+=⎢⎥⎢⎥+⎢⎥⎣⎦′===++1v ×⋅ Then 321 4.950485109.95776497.1485o o v v −×==−So 2(9.9536)(9.95776)99.12o vf vf iv A A v ==−−⇒= ______________________________________________________________________________________14.13a.10113120I i v v v v v R R R R −−++=+ (1) 0131223111I i i v v v R R R R R R R ⎡⎤++=+⎢⎥++⎣⎦00001020L d L v v A v v v R R R −−++= (2) or 010*******L dL A v v v R R R R R ⎡⎤++=+⎢⎥⎣⎦ 13I d i i v v v R R R ⎛⎞−=⋅⎜⎟+⎝⎠ (3)So substituting numbers:011110201040401020I v v v 1⎡⎤++=+⎢⎥+⎣⎦+ (1)or10[0.15833][0.025][0.03333]I v v v =+ 410(10)11110.540400.5d v v v ⎡⎤++=+⎢⎥⎣⎦ (2) or[][]()4013.0250.025210dv v =+×v ()11200.66671020I d v v v v −⎛⎞=⋅=⎜⎟+⎝⎠I v − (3)So[][]()()()4013.0250.0252100.6667I v v v =+×−1v (2) or []44013.025 1.33310 1.33310I v v =×−×v ) From (1):()(100.15790.2105I v v v =+ Then []()()44003403.025 1.33310 1.333100.15790.21052.107810 1.052410I I I v v v v v v =×−×+⎡⎤⎣⎦⎡⎤⎡⎤×=×⎣⎦⎣⎦or 0 4.993CL I v A v == To find:if R Use Equation (14.27) ()31210.50.5114010110.50.50.51104014040(40)(1.5125){(0.125)(1.5125)0.0003125}25I d I d i v v i v ⎛⎞++⎜⎟⎝⎠⎧⎫⎛⎞⎛⎞=+++−−⎨⎬⎜⎟⎜⎟⎝⎠⎝⎠⎩⎭=−v −or (1.5125){0.18875}25I I d i v =−v I Nowand(20)d I i I v i R i ==1(20)I I v v i =− So(1.5125)[(20)][0.18875]25(20)[505.3](0.18875)I I I I I i v i i i v =−⋅−= or 2677 k I I v i =Ω Now 102677 2.687 M if if R R =+⇒=ΩTo determine 0:f R Using Equation (14.36)30200111110400.5111020L f i A R R R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⋅=⋅′⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦or0 3.5 f R ′=Ω Then 0 1 k f R =ΩΩ0 3.49 f R ⇒=Ωb. Using Equation (14.16) 35(10)(0.05)%10CL CL CL CL dA dA A A ⎛⎞=−⇒=−⎜⎟⎝⎠ ______________________________________________________________________________________14.14(a)(b) (i)()o O I OL O i O I R A R υυυυυ−−=− ⎟⎟⎠⎞⎜⎜⎝⎛++=+o OL o iO o I OL i IR A R R R A R 11υυυ ⎟⎟⎠⎞⎜⎜⎝⎛×++=⎟⎟⎠⎞⎜⎜⎝⎛×+110511101110510133O I υυ()(33100011.5100001.5×=×O I υυ) 9998.0=IO υυ (ii) ()ix o x OL x x R V R V A V I +−−= 101110511113+×+=++==i o OL of x x R R A R V IΩ≅2.0of R______________________________________________________________________________________14.151011210121201040111201040201040I I I I v v v v v v v v v v −−−+=⎡⎤++=++⎢⎥⎣⎦ andso that 00L v A =−1v 010L v v A =−Then 1203200120000117(0.05)(0.10)4040210[2.5087510]1.993 3.9862 1.9930.352I I I I v v v v v v v v v %v v −⎧⎫⎛⎞+=−+⋅⎨⎬⎜⎟×⎝⎠⎩⎭=−×⇒=−−ΔΔ−=⇒= ______________________________________________________________________________________14.16224040.840105B v v v ⎛⎞⎛⎞===⎜⎟⎜⎟+⎝⎠⎝⎠2v (1) 011040A A v v v v −−= 011110401040A v v v ⎛⎞+=+⎜⎟⎝⎠ (2)10(0.1)(0.025)(0.125)A v v v += 000()L d L B A v A v A v v ==−(3)or002020020[0.8]0.80.8L A A LA L v A v v v v v A v v v A =−−=−⇒=−Then 01020120320021(0.1)(0.025)(0.125)0.80.125(0.1)(0.1)0.02510[2.512510]3.98010.01990.49754L d d d v v v v A v v v v v A v v A %A −⎡⎤+=−⎢⎥⎣⎦⎡⎤−=−+⎢⎥⎣⎦=−×⇒==−Δ⇒=⇒ ______________________________________________________________________________________14.17a. Considering the second op-amp and Equation (14.20), we have 211111001010.101100.1(0.1)(11)10.1if R ⎡⎤⎢⎥+=+⋅=+⎢⎥⎢⎥+⎢⎥⎣⎦ So 20.0109 k if R =ΩThe effective load on the first op-amp is then 120.10.1109 k L if R R =+=Ω Again using Equation (14.20), we have 11100111110.0170.11090.101110111.01710.11091if R ++=+⋅=+++ so that 99.1 if R =Ω b. To determine 0:f RFor the first op-amp, we can write, using Equation (14.36) 020101111100401111||10||L f i A R R R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⋅=⋅⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦ which yields010.021 k f R =Ω For the second op-amp, then020*******()||11000.1011(0.121)||10L f f i A R R R R R R ⎡⎤⎢⎥⎢⎥=⋅⎢⎥+⎢⎥+⎣⎦⎡⎤⎢⎥⎢⎥=⋅⎢⎥+⎢⎥⎣⎦ or018.4 f R =Ω c. To find the gain, consider the second op-amp.0122202()0.10.1d d d i v v v v v R −−−−+= (1) 010221110.10.1100.10.1d v v v ⎛⎞+++=−⎜⎟⎝⎠ or 01202(10)(20.1)(10)d v v v +=−02020220()00.1L d d v A v v v R −−−+= (2) 0202202210010110.10.1(11)(90)0d d v v v v v ⎛⎞−−+⎜⎟⎝⎠−==−or 202(0.1222)d v v = Then Equation (1) becomes010202(10)(0.1222)(20.1)(10)v v v += or0102(1.246)v v =− Now consider the first op-amp.1110()11I d d d i v v v v v R −−−−+=1 (1) 10111(1)(1)1101I d v v v ⎛⎞+++=−⎜⎟⎝⎠1(1)(2.1)(1)v v v +=− or101I d 010*******()00.11091L d d v v A v v v R −−−++= (2) 011011111100100.11091111(11.017)(99)0d d v v v v ⎛⎞⎛++−−=⎜⎟⎜⎝⎠⎝−=⎞⎟⎠−or 101(0.1113)d v v = Then Equation (1) becomes0101(1)(0.1113)(2.1)I v v v += or01(1.234)I v v =− We had0102(1.246)v v =− So02(1.246)(1.234)I v v = or 020.650I v v =d. Ideal021Iv v = So ratio of actual to ideal0.650.=______________________________________________________________________________________14.18(a) For the op-amp. 60310L dB A f ⋅= 6341050 Hz 210dB f ==× For the closed-loop amplifier. 631040 kHz 25dB f == (b) Open-loop amplifier.444310A f f ==×=10 Closed-loop amplifier330.2524.255dB dB f f f f −===⇒______________________________________________________________________________________14.19dB,100=o A 510=⇒o A dB,38=A 43.79=A Then 2451011043.79⎟⎟⎠⎞⎜⎜⎝⎛+=PD f 94.743.79101054=⇒≅PD PD f f Hz Hz()()551094.794.710×==GBW ______________________________________________________________________________________14.20(a) 11151501112=⎟⎠⎞⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛+=R R A CLO kHz()10911102.1336=⇒=×=−−dB dB T f f f (b) ()()()()⎥⎦⎤⎢⎣⎡±±+=05.011505.011501CLO A ()05.1225.145.1571max =+=CLO A ()05.1075.155.1421min =+=CLO A Then05.1205.10≤≤CLO AkHz ()6.9905.12102.1336=⇒=×=−−dB dB T f f f kHz()4.11905.10102.1336=⇒=×=−−dB dB T f f f Then kHz4.1196.993≤≤−dB f ______________________________________________________________________________________14.21The open loop gain can be written as 006()11510L PD A A f f f j j f =⎛⎞⎛⎞+⋅+⋅⎜⎟⎜⎟×⎝⎠⎝⎠ where 50210.A =× The closed-loop response is 001L CL LA A A β=+ At low frequency, 552101001(210β×=+×) So that39.99510.β−=× Assuming the second pole is the same for both the open-loop and closed-loop, then116tan tan 510PD f f f φ−−⎛⎞⎛⎞=−−⎜⎟⎜⎟×⎝⎠⎝⎠ For a phase margin of80 ,°100.φ=−°So 1610090tan 510f −⎛⎞−=−−⎜⎟×⎝⎠ or58.81610 Hz f =× Then051L A == or 558.81610 1.969610PD f ×≅× or 4.48 HzPD f = ______________________________________________________________________________________14.22(a) 1st stage33(10) 1 100dB dB f MHz f kHz −−=⇒= 2nd stage33(50) 1 20dB dB f MHz f kHz −−=⇒= Bandwidth of overall system20 kHz ≅(b) If each stage has the same gain, so 250022.36K K =⇒= Then bandwidth of each stage33(22.36) 1 44.7dB dB f MHz f kHz −−=⇒= ______________________________________________________________________________________14.23(a) 9978.91051110.101141212−=×+−=⎟⎠⎞⎜⎝⎛++−=O CLO A R R R R A kHz()033.1509978.9105.1336=⇒=×=−−dB dB T f f f (b) ()34.9999978.93−=−=CLO A At ; dB f −364.706234.999==⇒CL AThen 323310033.150134.99964.706⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛×+=−dB f 49.7664.70634.99910033.1501323233=⇒⎟⎠⎞⎜⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛×+−−dB dB f f kHz ______________________________________________________________________________________14.24466333(510)1020 (25)1040 1PD PD dB dB vov v dB f f Hzf f kHzA A A fj f −−−×=⇒=⇒==⇒=+ At 30.520 dB f f k −==Hz22.36v AAt 3280 dB f f k −==Hz11.18v A = ______________________________________________________________________________________14.25 36(2010)1050vf vf MAX MAX A A ×⋅=⇒= ______________________________________________________________________________________14.26(a) ()159521052max 6max =⇒×==f V SR f PO ππkHz (b) ()5.5305.12105max 6max =⇒×=f f πkHz (c) ()99.14.02105max 6max =⇒×=f f πMHz ______________________________________________________________________________________14.27a. Using Equation (14.55), 6038102(25010)P V π×=× or 0 5.09 V P V =b.Period 6311410 s 25010T f −===××One-fourth period 1 sμ= 00Slope 8 V/s 18 VP P V SR s V μμ===⇒= ______________________________________________________________________________________14.28 PO V SR f π2max = V/s()()531054.71012102×=×=πSR Or V/754.0=SR μs______________________________________________________________________________________14.29(a) 0.521063.0102063max =⇒×=×=PO POV V f πV (b) ()87.231020210336=××=πPO V V ______________________________________________________________________________________14.30For input (a), maximum output is 5 V. 1 V/μs S R =soFor input (b), maximum output is 2 V.For input (c), maximum output is 0.5 V so the output is______________________________________________________________________________________14.31 For input (a),01max 3 V.v =Then02max 3(3)9 V v ==For input (b),01max 1.5 V.v =Then()02max 31.5 4.5V v ==______________________________________________________________________________________14.32111exp ,BE S T V I I V ⎛⎞=⎜⎟⎝⎠ 222exp BE S T V I I V ⎛⎞=⎜⎟⎝⎠ Want so12,I I = 1411214212510(1)exp 1510(1)exp (1)exp (1)BE T BE T BE BE T V x V I I V x V V V x x V −−⎛⎞×+⎜⎟⎝⎠==⎛⎞×−⎜⎟⎝⎠⎛⎞−+=⎜⎟−⎝⎠Or 211exp exp 10.0025exp 1.100.026OS BE BE T T V V V x x V ⎛⎞⎛−+==⎜⎟⎜−⎝⎠⎝⎛⎞==⎜⎟⎝⎠V ⎞⎟⎠Now 1(1)(1.10)x x +=−⇒ 0.0476 4.76%x =⇒______________________________________________________________________________________14.33(a) Balanced circuit, A154105−×=S I (b) From Eq. (14.62), 51=CE υV, 4.42.16.52=−=CE υV⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⋅=++802.111204.41806.011205143S S I I()()015.1036667.10075.1041667.143⋅=S S I I 1544310939.40123.1−×=⇒=S S S I I I A (c) 51=CE υV, 1.35.26.52=−=CE υV ⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⋅=++805.211201.31806.011205143S S I I()()03125.1025833.10075.1041667.143⋅=S S I I 1544310811.403937.1−×=⇒=S S S I I I A ______________________________________________________________________________________14.34μ150=n K A/V 2()()μx x x K n 30011501150=−−+=ΔA/V2 ⎟⎟⎠⎞⎜⎜⎝⎛Δ=n n n Q OS K K K I V 221()01837.08165.015030015022002110153=⇒=⎟⎠⎞⎜⎝⎛=×−x x x ______________________________________________________________________________________14.35(a) V()()3310603001021030−−×±−=×±−=O υ So 240.0360.0−≤≤−O υV (b) V()06.0310*******±−=×±−=−O υ So 94.206.3−≤≤−O υ V______________________________________________________________________________________14.36()2sin 2530±−=t O ωυmV06.0sin 75.0±−=t O ωυVSo ()(06.0sin 75.006.0sin 75.0)+−≤≤−−t t O ωυω V______________________________________________________________________________________14.373840.510510 10I A −−×==×Also 01i o o dV I I C V Idt t dt C C =⇒==∫⋅Then 836510511010t t s −−×=⇒=×0______________________________________________________________________________________14.38(a) (31010011±⎟⎠⎞⎜⎝⎛+=O υ) mV, 33331≤≤−O υmV ()33310502±±⎟⎠⎞⎜⎝⎛−=O υ mV, 1801802≤≤−O υmV (b) ()()310111±=O υ mV, 143771≤≤⇒O υmV()730314352−=+−=O υmV()37037752−=−−=O υmVSo 37.073.02−≤≤−O υV(c) ()()3100111±=O υ mV133.1067.11≤≤O υV()68.5003.0133.152−=+−=O υV()32.5003.0067.152−=−−=O υVSo 32.568.52−≤≤−O υV______________________________________________________________________________________14.39 due to 0v I v 01(0.5)10.9545 V 1.1v ⎛⎞=+=⎜⎟⎝⎠ Wiper arm at (using superposition) 10 V,V +=151154||0.0909(10)(10)||0.0909100.090R R v R R R ⎛⎞⎛⎞==⎜⎟⎜⎟++⎝⎠⎝⎠= Then 011(0.090)0.0901v ⎛⎞=−=−⎜⎟⎝⎠Wiper arm in center, and10v =020v = Wiper arm at10 V,V −=−10.090v =− So030.090v = Finally, total output (from superposition)0:v Wiper arm at,V + 00.8645 Vv = Wiper arm in center, 00.9545 V v = Wiper arm at,V − 0 1.0445 V v = ______________________________________________________________________________________14.40 a.120.5||250.490 k R R ′′===Ω or 12490 R R ′′==Ωb. From Equation (14.75), 6114621412510(0.026) ln (0.125)21012510(0.026) ln (0.125)2.210R R −−−−⎛⎞×′+⎜⎟×⎝⎠⎛⎞×′=+⎜⎟×⎝⎠12210.586452(0.125)0.583974(0.125)0.002478(0.125)()R R R R ′′+=+′′=−So210.0198 k 19.8 R R ′′−=Ω⇒Ω Then 2121(1)0.0198(1)(0.5)(1)(50)(0.5)(50)0.0198(0.5)(1)(50)(0.5)(50)25(1)250.019850.5500.550(0.550)(2525)(25)(50.550)0.0198(50.550)(0.550)x x x xR x R R R R x R R xR x x x x x x x xx x x x x x −×−=+−+−−=+−+−−=−++−−−=−+{}{}{}{}22222250.50.5505050.5500.019825.252525252500250.50.019825.25250025000.50.019998 1.98 1.981.98 2.980.4802x x x x x x x x x x x x x x x x x −+−−+=+−−−=+−−=+−−+==So 0.183x = and 10.81x −=7ΩΩ ______________________________________________________________________________________14.411122||150.5||150.4839 k ||350.5||350.4930 k R R R R ′===′=== From Equation (14.75), 121122341221121112222211222(0.026) ln (0.026) ln (0.026) ln (0.026) ln 1(0.026) ln (0.4930)1(0.9815)C C C C S S C C C C C C C C C C C C C C i i i R i R I I i i R i R i i i R i R i i R i i i i i ⎛⎞⎛⎞′′+=+⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞′′=−⎜⎟⎝⎠′⎛⎞⎡⎤′=−⋅⎜⎟⎢⎥′⎝⎠⎣⎦⎛⎞=−⎜⎟⎝⎠⎡⎤⎛⎞⎢⎥⎜⎟⎝⎠⎣⎦ By trial and error: 1252 A C i μ= and 2248 A C i μ=or 12 1.0155C C i i = ______________________________________________________________________________________14.42(a) ()()()2.010********=×=−A O μυV Insert resistor3R ()()09.92020011022.03362=⇒⎟⎠⎞⎜⎝⎛+×−=−=−R R A O μυk Ω (b) ()()()16.010200108.0368.0=××=−A O μυV ()()09.29202001105.016.03365.0=⇒⎟⎠⎞⎜⎝⎛+×−=−=−R R A O μυk Ω ______________________________________________________________________________________14.43(a) V ()()3.010*********−=××−=−=−R I B O υ(b) ()5.03.002.015150−=−−=O υV (c) ()1.03.002.015150−=−−−=O υV (d) ()3.13.01.015150−=−−=O υV ______________________________________________________________________________________14.44(a) V ()()15.010250106.036=××=−O υ(b) ()()478.015.0008.041=+=O υV(c) ()()0065.015.00035.041=+−=O υV(d) ()()15.0sin 205.015.0sin 005.041+=+=t t O ωωυ (V)______________________________________________________________________________________14.45a.For 2 1 A,B I μ= then()(6401010v −=−) or00.010 Vv =− b. If a 10 resistor is included in the feedback loop k ΩNow021(10)(10)0B B v I I =−+= Circuit is compensated if12.B B I I =______________________________________________________________________________________14.46From Equation (14.83), we haveΩ 020S v R I = where and 240 k R =0 3 A.S I μ= Then()(3604010310v −=××) or 00.12 V v = ______________________________________________________________________________________14.47a. Assume all bias currents are in the same direction and into each op-amp.()()()6501101100 k 10100.1 V B v I v −=Ω=⇒=Then ()()()()()(020******* k 0.15105100.50.05B v v I −=−+Ω=−+×=−+)or 020.45 V v =− b. Connect resistor to noninverting terminal of first op-amp, and310||1009.09 k R ==ΩΩ resistor to noninverting terminal of second op-amp.310||508.33 k R ==______________________________________________________________________________________14.48a. For a constant current through a capacitor. 001 t v I C =∫dt or 60060.110(0.1)10v t v −−×=⋅⇒=t b.At10 s,t =0 1 V v = c. Then 1240010010(10)10v t v −−−×=⋅⇒=t At10 s,t =0 1 mV v = ______________________________________________________________________________________14.49(a) V()()15.010********=××=−O υ 15.02=O υV ()()()09.010*******.02020363−=××+−=−O υV (b) 33.85010==A R k Ω 102020==B R k Ω(c) V()()015.0103.01050631±=××±=−O υ 015.02±=O υVV()()021.0015.0103.01020633±=±××±=−O υ______________________________________________________________________________________14.50a. Using Equation (14.79),Circuit (a),()()()()63630500.81050100.8102510150v −−⎛⎞=××−××+⎜⎟⎝⎠ or 00v = Circuit (b),()()()()636302500.81050100.81010150410 1.6v −−−⎛⎞=××−×+⎜⎟⎝⎠=×− or 0 1.56 V v =− b. Assume 10.7 AB I μ= and 20.9 A,B I μ= then using Equation (14.79): Circuit (a),()()()()63630500.71050100.91025101500.0350.045v −−⎛⎞=××−××+⎜⎟⎝⎠=− or00.010 V v =−Circuit (b), ()()()()63660500.71050100.910101500.035 1.8v −−⎛⎞=××−×+⎜⎟⎝⎠=− or 0 1.765 Vv =−______________________________________________________________________________________14.51(a) For : OS V ()333101001±=±⎟⎠⎞⎜⎝⎛+=O υmV For : B I ()()()043.010*******.0max 36=××=−O υ V()()()037.010*******.0max 36=××=−OυVSo 764≤≤O υmV(b) For : OS V 33±=O υmV For : VOS I ()()006.010*******.036±=××±=−O υSo 3939≤≤−O υmV(c) ()039.02.0101001±⎟⎠⎞⎜⎝⎛+=O υ So 239.2161.2≤≤O υV______________________________________________________________________________________14.52a. 2(15)0.010 V i i R R R ⎛⎞=⎜⎟+⎝⎠ 22150.00066671515(10.0006667)0.0006667 R R =+−= Then 222.48 M R =Ωb.11||15||10 6 k i F R R R R ==⇒=Ω ______________________________________________________________________________________14.53a. Assume the offset voltage polarities are such as to produce the worst case values, but the bias currents are in the same direction.Use superposition:Offset voltages 010********||1(10)110 mV ||1050||(5)(110)1(10)10||610 mV v v v v ⎛⎞=+==⎜⎟⎝⎠⎛⎞=++⎜⎟⎝⎠⇒=Bias Currents: 6301(100 k )(210)(10010)0.2 V B v I −=Ω=××= Then6302(5)(0.2)(210)(5010)0.9 V v −=−+××=− Worst case: is positive and is negative, then01v 02v 010.31 V v = and 021.51 V v =−b. Compensation network:If we want20 mV and 10 V 8.33(10)0.0208.33B B C C R V V R R R ++⎛⎞==⎜⎟+⎝⎠⎛⎞=⎜⎟+⎝⎠ or 4.15 M C R ≅Ω______________________________________________________________________________________14.54(a) Offset voltage: ()122105011±=±⎟⎠⎞⎜⎝⎛+=O υmV 142122±=±±=O υmV ()()()16221220203±=±+±⎟⎠⎞⎜⎝⎛−=O υmV Bias current:V()()0105.010501021.0361=××=−O υ or V ()()0095.010501019.0361=××=−O υ 12O O υυ= ()()()()0042.010201021.0113613+−=××+−=−O O O υυυor()()0038.010201019.013613+−=××+−=−O O O υυυ By superposition5.225.21≤≤−O υmV5.245.42≤≤−O υmV7.103.223≤≤−O υmV(b) Bias currents:()()()110501002.010*******±=⇒××±=×±=−O OS O I υυmV()()()4.010201002.010*******±=⇒××±=×±=−O OS O I υυmVBy superposition: ()4.02213±±±=O O υυ13131≤≤−O υmV15152≤≤−O υmV4.174.173≤≤−O υmV______________________________________________________________________________________14.55For circuit (a), effect of bias current:390(5010)(10010) 5 mV v −=××⇒ Effect of offset voltage 050(2)1 4 mV 50v ⎛⎞=+=⎜⎟⎝⎠ So net output voltage is09 mV v = For circuit (b), effect of bias current:Let then from Equation (14.79),2550 nA,B I =1450 nA,B I = 93960250(45010)(5010)(55010)(10)1502.2510 1.1v −−−⎛⎞=××−×+⎜⎟⎝⎠=×− or0 1.0775 V v =− If the offset voltage is negative, then0(2)(2)4mV v =−=− So the net output voltage is 0 1.0815 Vv =− _____________________________________________________________________________________14.56a. At so the output voltage for each circuit is25C,T =°0 2 mV S V = 0 4 mV v = b. Forthe offset voltage for is 50C,T =° 0 2 mV (0.0067)(25) 2.1675 mV S V =+= so the output voltage for each circuit is 0 4.335 mVv = ______________________________________________________________________________________14.57 a. At then25C,T =°0 1 mV,S V = 010150(1)1 6 mV 10v v ⎛⎞=+⇒=⎜⎟⎝⎠and 020********(1)120206(4)(1)(4)28 mV v v v ⎛⎞⎛⎞=+++⎜⎟⎜⎟⎝⎠⎝⎠=+⇒= b. Atthen 50C,T =°01(0.0033)(25) 1.0825 mV,S V =+= 0101(1.0825)(6) 6.495 mV v v =⇒=and 02(6.495)(4)(1.0825)(4)v =+ or 0230.31 mVv = ______________________________________________________________________________________14.580025C;500 nA,200 nA50C,500 nA (8 nA /C)(25C)700 nA200 nA (2 nA /C)(25C)250 nA B S B S I I I I °==°=+°°==+°°= a. Circuit (a): For ,B I bias current cancellation, 00v =Circuit (b): For ,B I Equation (14.79), 93960050(50010)(5010)(50010)(10)1500.025 1.000.975 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=− b. Due to offset bias currents.Circuit (a): 930(20010)(5010)0.010 V v −=××⇒=0vCircuit (b): 21Let 600 nA400 nA B B I I == Then93960050(40010)(5010)(60010)(10)1500.020 1.20 1.18 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=−c. Circuit (a): Due to ,B I 0v = Circuit (b): Due to ,B I93960050(70010)(5010)(70010)(10)1500.035 1.40 1.365 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=−Circuit (a): Due to 0,S I930(25010)(5010)0.0125 V v v −=××⇒=0Circuit (b): Due to0,S I 21Let 825 nA575 nA B B I I == Then 93960050(57510)(5010)(82510)(10)1500.02875 1.65 1.62 Vv v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=− ______________________________________________________________________________________14.590025C; 2 A,0.2 A 50C, 2 A (0.020 A /C)(25C 2.5 A 0.2 A (0.005 A /C)(25C)0.325 A B S B S I I I )I μμμμμμμμ°==°=+°°==+°°= a. Due to :B I (Assume bias currents into op-amp). 630101(50 k )(210)(5010)0.10 VB v I v −=Ω=××⇒= 020*********(60 k )(50 k )12020(0.1)(4)(210)(6010)(210)(6010)4B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−××3 or020.12 V v = b. Due to0:S I1121st op-amp. Let 2.1 A2nd op-amp. Let 2.1 A1.9 A B B B I I I μμμ===6301101(50 k )(2.110)(5010)0.105 V B v I v −=Ω=××⇒= 020112636360601(60 k )(50 k )12020(0.105)(4)(2.110)(6010)(1.910)(5010)(4)B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.166 V v =c. Due to :B I 63010101026363(2.510)(5010)0.125 V60601(60 k )(50 k )12020(0.125)(4)(2.510)(6010)(2.510)(5010(4)B B v v v v I I −−=××⇒=⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.15 V v =Due to0:S I12Let 2.625 A2.3375 A B B I I μμ== 6301101(50 k )(2.662510)(5010)1.133 V B v I v −=Ω=××⇒= 020112636360601(60 k )(50 k )12020(0.133)(4)(2.662510)(6010)(2.337510)(5010)(4)B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.224 Vv = ______________________________________________________________________________________14.60(a) 0.51050==d A For common-mode, 21I I υυ=From Chapter 9, 12431211R R R R R R A cm −⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛+= If , ()75.50015.1502==R ()85.9015.01101=−=R, ()85.9015.01103=−=R ()75.50015.1504==R Then 610046.515228.519409.115228.685.975.5075.5085.9185.975.501−×=−=−++=cm A If , ()15.10015.1103==R ()25.49015.01504=−=R Then 051268.015228.520609.115228.685.975.5025.4915.10185.975.501−=−=−++=cm A If , 25.492=R 15.101=R Then 04877.085222.419409.185222.515.1025.4975.5085.9115.1025.491+=−=−++=cm A Now ()8.39051268.05log 20min 10=⎟⎠⎞⎜⎝⎛=dB CMRR dB (b) , ()5.5103.1502==R ()70.997.0101==R, ()5.4897.0504==R ()3.1003.1103==R。

电子技术项目式样章

电子技术项目式样章

项目一制作整流/滤波电路在电子电路及设备中,一般都需要稳定的直流电源供电。

本项目所介绍的直流电源为单相小功率电源,它将频率为50Hz、有效值为220V的单相交流电压转换为平滑的、输出电流为几十安以下的直流电压。

单相交流电经过电源变压器、整流电路、滤波电路而转换成平滑的直流电压。

通过本项目的练习,使学生掌握直流电源的制作,理解直流的概念,知道元器件的选择方法。

1.熟悉晶体二极管的结构及用途。

2.掌握晶体二极管的特性和整流电路。

3.掌握电容滤波电路,了解滤波电路的几种类型。

4.了解晶闸管的特性和用途。

1.会用万用表判断二极管极性。

2.会用示波器观察整流电路和滤波电路的波形。

3.会制作整流电路和滤波电路。

电子技术基础与技能任务一利用二极管整流整流电路和滤波电路是电子技术课程中很重要的内容。

我们大家都知道,由于交流电在电力传输中的优点,工业发电和用电是以交流电为标准的。

但是许多电子设备以及工业生产却需要直流电,这样,就需要把整流滤波电路将交流电转化为直流电。

由于二极管有单向导电的特性,再将交流变为直流中使用二极管进行整流,把交流电转化为直流。

通过本任务的学习,能够识读和制作整流电路。

教学步骤阅读教材知识点讲授(含课堂演示)任务操作评估检测时间安排课余2课时2课时教学方式(供参考)自学、查资料、相互讨论在课程学习中,应结合多媒体课件演示整流过程,使对整流中的导电机理和内容有形象的认识在交流整流实训内容,学生应该边学边练,同时教师应该在学生实训中有针对性地向学生提出问题,引发思考。

教师与学生共同完成任务的检测与评估,并能对问题进行分析与处理知识1 晶体二极管的分类晶体二极管也称二极管,它是在PN结上加接触电极、引线和管壳封装而成的。

1.按结构分类通常有点接触型和面结型两类。

其结构如图1-1所示。

点接触型适用于工作电流小、工作频率高的场合;面结型适用于工作电流较大、工作频率较低的场合。

外壳型引线触丝 NPN结P型30 点接触型面结型ᆅ၍છ൰QO၍Q၍O၍图1-1 二极管的结构图电子技术基础与技能二极管时,加在二极管上的反向电压峰值不允许超过U RM,以保证二极管正常工作,不致反向击穿而损坏。

Proteus教程—电子线路设计、制版与仿真(第3版)第1章 Proteus快速入门

Proteus教程—电子线路设计、制版与仿真(第3版)第1章 Proteus快速入门

图1-7 741放大电路的失真分析
第1章 Proteus快速入门
4. Proteus微处理器系统仿真 单片机系统的仿真是Proteus VSM的主要特色。用户可在Proteus中直接编
辑、编译、调试代码,并直观地看到仿真结果。 CPU模型有ARM7(LPC21xx)、PIC、Atmel AVR、Motorola HCXX以及 8051/8052系列。同时模型库中包含了LED/LCD显示、键盘、按钮、开关、常 用电机等通用外围设备。VSM甚至能仿真多个CPU,它能便利处理含两个或 两个以上微控制器的系统设计。
“Keywords”栏,在中间的查找结果“Results”中显示所有电容元件列表, 用鼠标拖动右边的滚动条,出现灰色标示的元件即为找到的匹配元件,如图 1-17所示。
第1章 Proteus快速入门
这种方法主要用于对元件名熟悉之后,为节约时间而直接查找。对于初 学者来说,还是分类查找比较好,一是不用记太多的元件名,二是对元件的 分类有一个清楚的概念,利于以后对大量元件的拾取。
Keil处于运行状态
第1章 Proteus快速入门
1.1.3 Proteus ARES的应用预览功能 Proteus的ARES软件具有PCB(印刷电路板)设计的强大功能。Proteus支
持PCB板的三维预览,便于观察器件布局和展示设计结果,如图1-11所示。
第1章 eus快速入门
1.2 Proteus跟我做
12V
第1章 Proteus快速入门
单击界面左侧预览窗口下面的“P”按钮,如图1-14所示,弹出“Pick Devices”(元件拾取)对话框,如图1-15所示。
ISIS 7 Professional的元件拾取就是把元件从元件拾取对话框中拾取到图 形编辑界面的对象选择器中。元件拾取共有两种办法。

《电路基础电子教案》课件

《电路基础电子教案》课件

《电路基础电子教案》PPT课件第一章:电路基本概念1.1 电路的定义与组成介绍电路的定义:电流流动的路径解释电路的组成:电源、导线、用电器、开关1.2 电路的分类直流电路:电流方向不变交流电路:电流方向周期性变化1.3 电路的状态开路:电路中断,电流无法流动短路:电路两点之间直接连接,电流极大第二章:电路元件2.1 电阻定义:阻碍电流流动的元件单位:欧姆(Ω)2.2 电容定义:储存电荷的元件单位:法拉(F)2.3 电感定义:阻碍电流变化的一种元件单位:亨利(H)第三章:电压与电流3.1 电压定义:电势差的度量单位:伏特(V)3.2 电流定义:单位时间内电荷流动的数量单位:安培(A)3.3 欧姆定律表达式:U = IR解释:电压(U)等于电流(I)乘以电阻(R)第四章:简单电路分析4.1 串联电路特点:电流相同,电压分配公式:U = U1 + U2 + + Un4.2 并联电路特点:电压相同,电流分配公式:I = I1 + I2 + + In4.3 串并联电路分析:串并联电路的电压和电流分配规律第五章:电路图与测量5.1 电路图介绍电路图的符号和表示方法练习绘制简单电路图5.2 测量工具介绍多用电表、示波器等测量工具的使用方法5.3 测量电路参数测量电压、电流、电阻等电路参数的方法和技巧《电路基础电子教案》PPT课件第六章:复杂电路分析6.1 串并联电路的进一步分析分析多个电阻的串并联组合应用节点电压法与网孔电流法6.2 独立源与受控源独立源:电压源与电流源受控源:电压控制电压源、电流控制电流源、电压控制电流源、电流控制电压源6.3 频率响应分析交流稳态分析交流小信号分析第七章:电路仿真软件使用7.1 电路仿真软件介绍常见电路仿真软件:Multisim、Proteus、LTspice等软件功能与操作界面简介7.2 电路仿真原理仿真电路的搭建与测试观察电路性能与参数变化7.3 仿真实验案例利用仿真软件完成简单的电路实验分析实验结果与实际电路的差异第八章:交流电路8.1 交流电的基本概念交流电的定义与特点交流电的频率、周期与角频率8.2 阻抗与导纳阻抗的定义与计算导纳的定义与计算8.3 交流电路的功率分析有功功率、无功功率与视在功率功率因数的计算与改善第九章:电路设计与制作9.1 电路设计的基本步骤确定电路功能与性能指标选择电路元件与参数9.2 电路原理图设计与绘制利用绘图工具完成电路原理图设计检查电路图的正确性与可行性9.3 电路制作与调试制作电路板(PCB)进行电路焊接与组装调试电路与测试性能第十章:电路实验与创新10.1 电路实验完成一系列电路实验测量与分析实验数据10.2 电路创新设计与实践结合所学知识进行电路创新设计制作创新电路实物与演示《电路基础电子教案》PPT课件第十一章:数字电路基础11.1 数字电路概述数字电路的特点与分类数字逻辑与模拟逻辑的区别11.2 数字逻辑门与门、或门、非门、异或门等的基本原理与真值表逻辑门电路的实现与仿真11.3 组合逻辑电路半加器、全加器、编码器、译码器等的设计与分析组合逻辑电路的应用实例第十二章:时序逻辑电路12.1 触发器基本触发器:SR触发器、JK触发器、T触发器、CP触发器触发器的真值表与功能描述12.2 时序逻辑电路的设计计数器、寄存器等时序逻辑电路的设计方法时序逻辑电路的仿真与测试12.3 数字电路设计工具介绍可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)等设计工具第十三章:模拟电路基础13.1 模拟电路概述模拟电路的特点与分类模拟信号与数字信号的区别13.2 模拟电路元件电阻、电容、电感等的基本特性与使用operational amplifier(运算放大器)的应用13.3 模拟信号处理滤波器、放大器等模拟信号处理电路的设计与分析第十四章:集成电路14.1 集成电路概述集成电路的类型与结构集成电路的制造工艺14.2 集成电路的封装与测试集成电路的封装形式与特点集成电路的测试方法与设备14.3 集成电路的应用微处理器、存储器、接口电路等集成电路的应用实例第十五章:电路与现代技术15.1 电路与现代科技的关系电路技术在现代通信、计算机、家电等领域的应用15.2 电路发展趋势微电子技术、光电子技术、生物电子技术等的发展趋势15.3 电路技术的社会影响电路技术对人类生活的影响电路技术的可持续发展与环境保护重点和难点解析。

电子电路设计与制作教学大纲

电子电路设计与制作教学大纲

《电子电路设计与制作》教学大纲1.课程中文名称:电子电路设计与制作2.课程代码:3.课程类别:实践教学环节4.课程性质:必修课5.课程属性:独立设课6.电子技术课程理论课总学时:256总学分:16电子电路设计与制作学时:3周课程设计学分:37.适用专业:电子信息类各专业8.先修课程:电路分析基础、模拟电子技术、数字电子技术、PCB电路设计一、课程设计简介实验课、课程设计、毕业设计是大学阶段既相互联系又相互区别的三大实践性教学环节。

实验课是着眼于实验验证课程的基本理论,培养学生的初步实验技能;毕业设计是针对本专业的要求所进行的全面的综合训练;而课程设计则是针对某几门课程构成的课程群的要求,对学生进行综合性训练,培养学生运用课程群中所学到的理论学以致用,独立地解决实际问题。

电子电路设计与制作是电子信息类各专业必不可少的重要实践环节,它包括设计方案的选择、设计方案的论证、方案的电路原理图设计、印制板电路(即PCB)设计、元器件的选型、元器件在PCB板上的安装与焊接,电路的调试,撰写设计报告等实践内容。

电子电路设计与制作的全过程是以学生自学为主,实践操作为主,教师的讲授、指导、讨论和研究相结合为辅的方式进行,着重就设计题目的要求对设计思路、设计方案的形成、电路调试和参数测量等展开讨论。

由指导教师下达设计任务书(学生自选题目需要通过指导教师和教研室共同审核批准),讲解示范的案例,指导学生各自对自己考虑到的多种可行的设计方案进行比较,选择其中的最佳方案并进行论证,制作出满足设计要求的电子产品,撰写设计报告。

需要注意是,设计方案的原理图须经Proteus软件仿真确信无误后,才能进行印刷电路图的制作,硬件电路的制作,以避免造成覆铜板、元器件等材料的浪费。

电路系统经反复调试,完全达到(或超过)设计要求后,再完善设计报告。

设计的整个过程在创新实验室或电子工艺实验室中完成。

二、电子电路设计与制作的教学目标与基本要求教学目标:1、通过课程设计巩固、深化和扩展学生的理论知识,提高综合运用知识的能力,逐步提升从事工程设计的能力。

电子设计课本目录

电子设计课本目录

第1章电子设计基础1.1 电子设计技术的发展1.1.1 从功能固定的电子器件到可编程器件1.1.2 从传统的电子电路设计方法到EDA技术1.2 电子电路设计的几个基本问题1.2.1 电子电路设计方案的选择1.2.2 元器件的选择1.2.3 单元电路之间的级联1.3 电子电路的安装调试与抗干扰措施1.3.1 电路安装布局的一般原则1.3.2 电路的调试与抗干扰技术1.3.3 设计指标及测量误差分析1.3.4 电子设计报告1.4 EDA技术中使用的电子器件1.4.1 可编程模拟器件l.4.2 可编程逻辑器件1.4.3 Xilinx公司的CPLD——XC95001.4.4 Altera公司的 FPGA——FDEX 10Kl.5 FPGA/CPLD产品及应用开发1.5.1 FPGA/CPLD产品概述l.5.2 FPGA/CPLD应用开发流程第2章用传统方法设计数字电路2.l 数字电路设计方法2.1.l 数字电路系统的组成2.1.2 数字电路的设计步骤2.2 中小规模数字集成电路的应用2.2.1 常用中规模组合集成电路(MSI)的功能与应用2.2.2 中规模时序逻辑电路的功能与应用2.2.3 集成锁相环及其应用2.2.4 常用 A/D和 DIA转换电路的功能与应用2.2.5 常用集成稳压电路与稳压电源2.3 数字电路小系统设计举例2.3.l 出租车计费器设计2.3.2 红外遥控发射、接收系统设计第3章 VHDL语言应用基础3.1 VHDL语言及其程序基本结构3.1.l 硬件描述语言VHDL3.1.2 VHDL程序的基本结构3.1.3 VHDL中的程序库、包和配置3.2 VHDL语言的基本要素3.2.1 文字规则3.2.2 数据类型3.2.3 VHDL的数据对象3.3 VHDL的操作符3.3.1 逻辑操作符3.3.2 算术运算符3.3.3 关系运算符3.4 VHDL的基本语句解析3.4.1 顺序语句(Sequential Statements)3.4.2 并行语句(Concurrent Statements)3.5 用VHDL语言设计数字电路3.5.1 组合电路设计3.5.2 时序电路设计3.5.3 有限状态机设计第4章用EDA技术设计数字电路4.l 用Foundation软件的原理图输入法设计4.1.l 原理图编辑器的功能4.1.2 原理图设计中的项目管理器4.1.3 原理图编辑器4.1.4 功能仿真和时序仿真4.1.5 设计制作示例4.2 用Foundation的文本输入法设计4.2.1 为设计项目创建“New Project”4.2.2 创建HDL源文件CNT.VHD4.2.3 逻辑综合4.2.4 功能仿真4.2.5 CNT设计实现4.2.6 芯片编程4.2.7 Foundation中的语言助手4.3 用 MAX+PlusⅡ软件的原理图输入法设计4.3.1 MAX+PlusⅡ概述4.3.2 用原理图输入法设计举例4.3.3 将原理图输入到MAX+Plus Ⅱ软件中4.3.4 选择目标器件并编译4.3.5 时序仿真4.3.6 引脚锁定4.3.7 编程下载4.3.8 设计顶层文件4.3.9 设计过程中的其他信息4.4 用 MAX+Plus Ⅱ的文本输入法设计4.4.1 创建 VHDL源文件4.4.2 选择器件4.4.3 编译4.4.4 定义引脚4.4.5 波形仿真4.4.6 器件编程4.5 用PLD设计专用集成电路芯片(ASIC)4.5.1 ASIC设计方法4.5.2 设计任务与要求4.5.3 数字电压表的组成4.5.4 VHDL程序设计及仿真验证4.5.5 数字电压表ASIC实验第5章模拟电路设计5.1 模拟电路设计方法5.1.1 运算放大器的分类及选择方法5.1.2 基于集成运算放大器的基本电路5.1.3 直流稳压电源的设计5.1.4 波形产生电路的设计5.1.5 有源滤波器的设计5.2 模拟电路应用实例——微弱信号最大电路5.2.1 任务与要求5.2.2 电路设计5.2.3 单元电路分析5.3 实用的模拟电路参考模块5.3.1 电源电路5.3.2 信号放大器5.3.3 信号产生电路5.3.4 测量与控制电路5.3.5 信号运算与处理电路5.3.6 其他电路第6章模拟电路计算机辅助分析6.l 电路分析软件OrCAD/Pspice简介6.1.1 OrCAD/Pspice与 SPICE6.1.2 PspiceA/D的配套软件6.1.3 电路基本模拟过程6.1.4 Pspice的有关规定6.2 绘制电路图6.2.l 启动电路图绘制软件Capture6.2.2 电路图编辑器Page Editor6.2.3 电路各元素属性参数的编辑6.3 电路的基本分析6.3.1 直流偏置计算Bias Point6.3.2 直流传输特性分析(TF)6.3.3 直流扫描分析(DC Sweep)6.3.4 频率特性分析(AC Sweep)6.3.5 瞬态分析(TRAN)6.3.6 参数扫描分析6.4 应用举例6.4.1 BJT的输出特性6.4.2 分压式偏置电路的基本分析6.4.3 乙类互补对称功率放大器分析6.4.4 用运算放大器构成的波形变换电路分析6.4.5 用运算放大器构成线性整流电路分析6.5 在系统可编程模拟器件ispPAC及其应用6.5.1 在系统可编程模拟器件ispPAC介简6.5.2 在系统可编程模拟器件 ispPAC的应用举例第7章综合性电子系统设计课题7.l 数字式竞赛抢答器设计7.2 微波炉控制器设计7.3 可编程时钟控制器设计7.4 步进电机控制器设计7.5 交通信号灯控制器设计7.6 简易数字频率计设计7.7 数字温度表设计7.8 多路远程数据采集系统设计7.9 低频功率放大器设计7.10 实用信号源设计7.11 数字多用测量仪设计7.12 字符显示控制电路设计。

电子课程设计diy

电子课程设计diy

电子课程设计diy一、教学目标本课程的目标是让学生了解和掌握电子课程设计的基本知识和技能,培养他们动手实践的能力和创新思维。

在知识目标方面,学生需要了解电子元器件的工作原理、电路图的阅读和绘制、电子制作的基本流程等。

在技能目标方面,学生需要掌握基本的焊接技能、电路调试方法、电子作品的组装和调试等。

在情感态度价值观目标方面,学生应该培养对电子科技的兴趣和热情,增强自信心和团队合作精神。

二、教学内容本课程的教学内容主要包括电子元器件的认识和应用、电路图的阅读和绘制、电子制作的基本流程和技巧等。

具体包括以下几个方面:1.电子元器件的学习:包括电阻、电容、电感、二极管、三极管等基本元器件的识别和应用。

2.电路图的阅读和绘制:学习电路图的符号和表示方法,能够阅读和理解复杂的电路图,并能够绘制简单的电路图。

3.电子制作的基本流程:学习电子制作的工具和设备的使用方法,掌握焊接技能,了解电子作品的组装和调试过程。

4.实例讲解和实操:通过具体的实例讲解,让学生了解电子制作的全过程,并亲自动手实践,提高动手能力和创新思维。

三、教学方法为了达到课程目标,我们将采用多种教学方法,包括讲授法、实践操作法、小组讨论法等。

通过理论讲解和实践操作相结合的方式,让学生在理解的基础上能够动手实践,培养他们的创新思维和团队合作精神。

四、教学资源我们将准备以下教学资源,以支持课程的进行:1.教材:选择适合学生水平的电子课程设计教材,为学生提供系统的学习材料。

2.多媒体资料:制作课件和教学视频,帮助学生更好地理解电子元器件的工作原理和电子制作的过程。

3.实验设备:准备足够的实验设备和工具,让学生能够进行实践活动,提高他们的动手能力。

4.在线资源:提供相关的在线学习资源,让学生能够进行自主学习和拓展学习。

五、教学评估为了全面、客观地评价学生的学习成果,我们将采取以下评估方式:1.平时表现:通过学生在课堂上的参与度、提问回答、小组讨论等表现,评估他们的学习态度和理解程度。

电子电路分析与设计-半导体器件及其基本应用第三版教学设计

电子电路分析与设计-半导体器件及其基本应用第三版教学设计

电子电路分析与设计-半导体器件及其基本应用第三版教学设计一、教学目标本次课程教学旨在使学生理解半导体器件的基本工作原理、常用类型、主要特性参数和基本应用,以及掌握半导体器件的基础电路计算方法和应用技巧,为后续电路设计与分析课程打下基础。

二、教学内容1. 半导体物理基础1.1 常见的半导体材料和性质分析1.2 PN结的基本构成、硅PN结的特性及其工作原理1.3 热平衡状态下PN结结电容、逆向击穿及其应用1.4 光电二极管和光敏电阻的基本原理及其应用2. 半导体二极管及其应用2.1 硅PN结二极管的基本特性参数、符号标志和重要性能指标2.2 压敏二极管、稳压二极管和二极管电路的设计和分析2.3 高频二极管应用技术、振荡器和测量仪器中的应用3. 半导体三极管及其应用3.1 NPN和PNP三极管的基本结构和性质分析3.2 放大三极管和稳压三极管的工作原理和应用技巧3.3 交流工作状态下的三极管单管和共射/共基/共集放大电路分析4. 可控硅和场效应晶体管4.1 可控硅的基本原理、结构和性能参数分析4.2 可控硅的应用:触发电路和直流控制电路4.3 动态场效应晶体管和MOSFET的特性、工作原理及其应用技巧5. 电路计算和分析5.1 半导体器件的基本电路计算方法和步骤5.2 基于器件的实际参数,设计和计算半导体电路的基本原理和技巧5.3 通过电路仿真软件验证理论设计的正确性和实用性三、教学方法本课程采用网络课堂教学的方式,学生通过在线观看视频,完成在线测验和互动交流,深入理解课程核心内容的基本原理和实践操作技巧。

四、教学资源本课程的主要教学资源包括以下内容:1.讲授视频:通过网络课堂教学平台提供,供学生随时观看和复习。

2.电子教材:根据教学大纲编写的电子教材,方便学生随时查阅和学习。

3.实验器材和电路仿真软件:为学生提供必要的实验器材和电路仿真软件,帮助学生深入理解半导体器件的工作原理和应用技巧。

4.课后作业:通过网络课堂教学平台提交,检验学生对课程内容的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖9.1.2 印制电路板干扰的产生及其抑制
❖ 抑制电源干扰的基本方法: ① 印制电路板布线时,交、直流回路不能彼此相连; ② 电源线不要大环形走线; ③ 电源线与信号线不要靠得太近,并且避免平行; ④ 必要时,要在供电电源的输出端和用电器之间增加
滤波器。
❖9.1.2 印制电路板干扰的产生及其抑制
2.地线干扰及其抑制
任何电路都存在一个自身的接地点(不一定是真正的 大地)。电路中接地点在电位的概念中表示零电位, 其他点的电位均以此点电位为参考。但在印制板电路 中,即印制板上的地线并不能保证是绝对的零电位, 往往存在一定的电位数值,虽然电位值很小,但是由 于电路的放大作用,这个小小的电位值就可能产生严 重影响电路性能的干扰。为了克服地线干扰,在设计 中,应尽量避免不用回路电流同时流经某一段共用地 线,同级电路的几个接地点要尽量集中(即一点接 地)。
❖9.1.1 印制电路板设计的一般原则
根据电路的功能单元,对电路的全部元器件进行布局 时,要符合下面3条原则:
(1)在高频下工作的电路,要考虑元器件之间的分布 参数。
(2)按照电路的信号流程来安排各个功能电路单元的 位置,使布局便于信号流通,并使信号尽可能保持方 向一致。
(3)以每个功能电路的核心器件(如集成芯片)为中 心,围绕它来进行布局。
❖9.1.2 印制电路板干扰的产生及其抑制
干扰现象在电子产品调试、使用时经常出现,其原因 涉及许多方面,除外界因素干扰外,印制板布线不合 理、元器件安装位置不当等都可能产生干扰。
❖有以下几个方面:
1.电源干扰及其抑制
电源电路的工艺布线和印制板设计不合理都会产生干 扰,主要包括交流电源的干扰和直流电源电路产生的 电场对其他电路的干扰。
④ 使用高频电缆直接传送信号时,电缆的屏蔽层应一端 接地。
❖9.1.2 印制电路板干扰的产生及其抑制
4.热干扰及其抑制
电子产品中因为有大功率器件的存在,在工作时表 面温度较高,另外电路中还有其他发热器件,这些 都是热源,因而不可避免地存在热干扰。
❖9.1.2 印制电路板干扰的产生及其抑制
抑制对策:
① 排版时要分析原理图,区别强弱信号线,使弱信号线 尽量短,并避免与其他信号线平行靠近;
② 不同回路的信号线尽量避免相互平行,布设双面板上 的两面印制线要相互垂直,尽量做到不平行布设;
③ 对某些信号线密集平行,无法摆脱强信号干扰的情况 下,可采用屏蔽线将弱信号屏蔽以抑制干扰。
❖9.1.1 印制电路板设计的一般原则
(4)电路中的输入及输出印制导线应尽量避免相邻平 行,以免发生干扰,在这些导线之间的空间最好安装 一根隔离线接地。
(5)双面板布线时,两面的导线宜相互垂直,斜交或 弯曲走线,避免相互平行,以减少寄生耦合。
(6)充分考虑可能产生的干扰,并同时采取相应的抑 制措施,良好的布线方案是电子产品可靠工作的重要 保证。
❖9.1.2 印制电路板干扰的产生及其抑制
3.电磁场干扰及其抑制
印制板的特点是使元器件安装紧凑,连接密集,但 如果设计不当,这一特点也会给整机带来麻烦,如 分布参数造成干扰、元器件间的磁场干扰等。
磁性元器件安装位置不当产生相互间的干扰。如扬声 器、电磁铁、永久性仪表等产生的恒定磁场;高频 变压器、继电器等产生的交变磁场。
(5)对可调元器件的布局应考虑到整机的结构要求, 其位置布局应方便调整操作。
❖9.1.1 印制电路板设计的一般原则
❖2.布线的原则 应遵守的6条原则:
(1)对于高频电路应采用岛型焊盘,并采用大面积接 地布线。
(2)印制导线的宽度要满足电流的要求,且布设尽可 能短,在高频电路中更应如此。
(3)印制导线的拐角应弯成圆角,若弯成直线或尖角 在高频电路和布线密度高的情况下会影响电气性能。
❖9.1.1 印制电路板设计的一般原则
❖1.元器件的布局原则
元器件在印制板上布局时,要根据元件确定印制板的 尺寸。确定PCB后,再确定特殊元器件的位置。最后, 根据电路的功能单元,对电路的元器件进行合理的布 局。
确定特殊元器件的位置遵守的5条原则:
(1)重量较大的元器件,安装时应留足固定支架的空 间,或装在整机的机箱底板上,对一些发热元器件应 考虑散热的方法,热敏元件应远离发热元件。
第9章 电子产品制作工艺
❖ 一台性能优良的电子产品,除选择高质量的元器 件和合理的电路外,印制电路板的组件布局和电 气连线方式及正确的结构设计,是决定产品能否 正常工作的关键环节。
❖ 下面三个方面结合起来考虑:
1. 正确设计印制电路板
2. 正确布线方向
3. 整体的工艺结构
❖9.1 印制电路板的排版设计与布线 ❖9.2 印制电路板的制作工艺 ❖9.3 焊接工艺 ❖9.4 表面安装技术 ❖9.5 整机生产工艺介绍
❖9.1.2 印制电路板干扰的产生及其抑制
抑制地线干扰的基本方法:
① 大面积覆盖接地。这样可以减小地线中的感抗,屏蔽 电场干扰;
② 尽量加粗接地线。通常使它能通过3倍于电路板允许 电流的粗细;
③ 正确选择接地方式。在很多高增益、联接地。
④ 将数字电路地与模拟电路地分开。一块电路板上,同 时有模拟电路和数字电路,应把两种电路的地线、供 电电源都完全分开,抑制它们之间的干扰。
抑制对策:
① 减小磁力线对印制导线的切割。
❖9.1.2 印制电路板干扰的产生及其抑制
② 两个磁元件的相互位置应使两个元件磁场方向相互 垂直,以减少彼此间的耦合。
③ 对干扰源进行磁屏蔽,磁屏蔽罩应良好接地。
④ 印制导线间的寄生耦合干扰。
⑤ 两条相距很近的平行导线,它们之间的分布参数 可以等效为相互耦合的电感和电容,当其中一条导 线中流过信号时,另一条导线内也会产生感应信号, 这就是干扰源。
❖9.1.1 印制电路板设计的一般原则
(2)在印制板上应留出定位孔及固定支架所占用的位 置。
(3)高频元器件之间的连线应尽可能缩短,以减少它 们间的分布参数和相互间的电磁干扰。
(4)对某些电位差较高的元器件或导线,应加大它们 之间的距离,以避免放电引起意外短路,带高电压的 元器件应尽量布置在调试时手不易触及到的地方。
相关文档
最新文档