人教版数学必修一练习题集

合集下载

人教新课标高中数学必修1同步训练资料(有答案)

人教新课标高中数学必修1同步训练资料(有答案)

必修1—集合【基础知识】①();();()Cu A B CuA CuB Cu A B CuA CuB A B A B A A B B ==⊆⇔==②A 集合中有n 个元素时,其子集个数:2n 真子集个数: 21n-非空真子集个数:22n -【题型训练】【题型1】集合定义及基本运算类 1.如图,阴影部分表示的集合是( D )(A )B ∩ [C U (A ∪C)] (B )(A ∪B)∪ (B ∪C) (C )(A ∪C) ∩( C U B) (D )[C U (A ∩C)]∪B2.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是B3.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( C ) A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅变式:1. 如果{}|3,x S y y x R ==∈,{}2|1,T y y x x R ==-∈,则S T = S .2.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂= ( C ) (A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,13.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( B )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 4.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( C ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 5.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( A )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}4.已知集合{}2,0xA y y x -==<,集合{}12B x y x ==,则A B ⋂=( B )A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞5.设集合{|101},{|5}A x Z x B x Z x =∈--=∈≤≤≤,则A B 中元素的个数是( C )A 、11B 、10C 、16D 、15 6.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= ( B ) A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤7.设集合1|,24K M x x K Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42K N x x K Z ⎧⎫==+∈⎨⎬⎩⎭,则( B ) A.M=N B.M N ⊂ C. M N ⊃ D.M N φ= 【题型2】点集问题1.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( D ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}-2.设集合13{(,)|log }A x y y x ==,{(,)|3}xB x y y ==,则A B ⋂的子集的个数是(C )A .4B .3C .2D .1【题型3】子集问题1.已知全集 u={1、2、3、4、5},A={1、5},B C U A,则集合B 的个数是( D )(A )5(B) 6(C) 7(D)83.若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( C )A .2B .3C .4D .162.集合{},,,,S a b c d e =,包括{},a b 的S 的子集共有( D ) A.2个 B.3个 C.4个 D.8个变式:1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( B ) A .1B .2C .3D .42.已知集合M={2,0,11},若A M ≠⊂,且A 的元素中至少含有一个偶数,则满足条件的集合A 的个数为 5 .【题型4】集合运算1.设全集{,,,,}I a b c d e =,集合{,,},{,,}M a b c N b d e ==,那么I I M N 痧是( A ) A 、∅ B 、{}d C 、{,}a c D 、{,}b e变式:1.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞2.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B = ð D (A ){1,3,4} (B ){3,4} (C ){3} (D ){4}2.若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð( A )A.2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭ B.2,2⎛⎫+∞ ⎪ ⎪⎝⎭C.2(,0][,)2-∞+∞D.2[,)2+∞ 3.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于( A ) A 、{|}xx <-2 B 、{|}x x -<<21 C 、{|}xx <1 D 、{|}x x -≤<21 4.设集合U 为全集,集合,M N U ≠⊂,若M N N = ,则( C )A.U U C M C N ⊇B.U M C N ⊆C.U U C M C N ⊆D.U M C N ⊇5.设集合{|12},{|}M x x N x x a =-<=≤≤,若M N ≠∅ ,则a 的取值范围是1a ≥-.6.已知集合2{|||1},{|40}A x x a B x x x =-≤=-≥,若A B φ= ,则实数a 的取值范围是( C )A .(0,4)B .(0,3)C .(1,3)D .(2,3)变式:1.{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( C ) A {}a |0a 6≤≤ B {}|2,a a ≤≥或a 4 C {}|0,6a a ≤≥或a D {}|24a a ≤≤设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( A ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞7.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是C A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞)变式:设集合{}|||2A x x a =-<,21|12x B x x -⎧⎫=<⎨⎬+⎩⎭,若A B A = ,求实数a 取值范围.([0,1]) 8.设A 、B 、C 是三个集合,若A B B C = ,则有( D ) A. A B = B. C B ⊆ C. B A ⊆ D. A C ⊆变式:设I 为全集,123,,S S S 是I 的三个非空子集且123S S S I = ,则下面论断正确的是( C ) A.123()I C S S S φ⋂⋃= B.123()I I S C S C S ⊆ C.123I I I C S C S C S φ= D.123()I I S C S C S ⊆ 【题型4】集合与函数综合运用1. 知集合A={-1,a²+1,a²-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值。

人教版高中数学必修一综合测试题与答案

人教版高中数学必修一综合测试题与答案

人教版高中数学必修一测试题一一、选择题<本大题共10小题,每小题5分,共60分> 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 〔A.{x |x ∈R }B.{y |y ≥0}C.{<0,0>,<1,1>}D.∅2. 函数2x y -=的单调递增区间为 〔A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在<0,+∞>上为增函数的是 〔A.f <x >=3-xB.f <x >=x 2-3xC.f <x >=-11+xD.f <x >=-|x |4.函数f <x >=x 2+2<a -1>x +2在区间<-∞,4]上递减,则a 的取值范围是 〔A.[-3,+∞]B.<-∞,-3>C.<-∞,5]D.[3,+∞>5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 〔.A.y =x 2-2x +2<x x 2-2x +2<x ≥1> C.y =x 2-2x <x <1> D.y =x 2-2x <x ≥1>7. 已知函数f <x >=12++mx mx 的定义域是一切实数,则m 的取值范围是 〔A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤4 8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:<1>如果不超过200元,则不给予优惠;<2>如果超过200元但不超过500元,则按标价给予9折优惠;<3>如果超过500元,其500元内的按第<2>条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 〔A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =<ab >x的图象只可能是 〔 10. 已知函数f <n >=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f <8>等于 〔A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序〔 A 、a<b<c<d B 、a<b<d<c C 、b<a<d<c D 、b<a<c<d12.已知0<a<1,b<-1,函数f<x>=a x +bA.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题<本大题共4小题,每小题5分,共20分> 13.已知f <x >=x 2-1<x <0>,则f -1<3>=_______. 14.函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______. 三、解答题。

人教版高一数学必修一-第一章练习测试题与参考答案

人教版高一数学必修一-第一章练习测试题与参考答案

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

人教版高一数学必修一各章节同步练习(含答案)

人教版高一数学必修一各章节同步练习(含答案)

第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。

(人教版新课标)高中数学必修1所有课时练习(含答案)

(人教版新课标)高中数学必修1所有课时练习(含答案)

第一章 集合与函数的概念课时作业(一) 集合的含义姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .无限接近于0的数 C .美丽的小女孩D .方程x 2-1=0的实数根解析: 选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合,故选D.答案: D2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉M D .0∉M,2∉M解析: 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M . 答案: B3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a 的值是________. 解析: 由(x -a )(x -a +1)=0得x =a 或x =a -1, 又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意; 当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3. 答案: 2或36.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a ,0三个元素构成的集合,若A =B ,则实数a =________.解析: 由集合相等的概念得⎩⎨⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案: 1三、解答题(每小题10分,共20分)7.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 解析: 当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A 中只有一个元素2.当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根, 需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或1.8.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解析: ∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 中含有两个元素-3、-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,a =0或a =-1. 尖子生题库☆☆☆9.(10分)设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得 x ≠3,x 2-2x ≠x 且x 2-2x ≠3, 解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2.课时作业(二) 集合的表示姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N +,且s ≤5}解析: A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.答案: D2.下列集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2} C .{2} D .{x |x 2-4x +4=0}解析: {x =2}表示的是由一个等式组成的集合,而其他三个集合均表示由元素2组成的集合.答案: B 3.(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析: 由x ∈A ,y ∈A 得x -y =0或x -y =±1或x -y =±2或x -y =±3或x -y =±4,故集合B 中所含元素的个数为10个. 答案: D4.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0};②方程x -2+|y +2|=0的解集为{-2,2};③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .0个解析: 直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎨⎧ x -2=0,y +2=0,即⎩⎨⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.答案: A二、填空题(每小题5分,共10分)5.用列举法写出集合⎩⎨⎧⎭⎬⎫33-x ∈Z | x ∈Z =________.解析: ∵33-x∈Z ,x ∈Z ,∴3能被3-x 整除,即3-x 为3的因数. ∴3-x =±1或3-x =±3, ∴33-x =±3或33-x=±1. 综上可知,-3,-1,1,3满足题意. 答案: {-3,-1,1,3}6.若3∈{m -1,3m ,m 2-1},则m =________. 解析: 由m -1=3,得m =4;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故填4或±2. 答案: 4或±2三、解答题(每小题10分,共20分) 7.用列举法表示下列集合: ①{x ∈N|x 是15的约数};②{(x ,y )|x ∈{1,2},y ∈{1,2}}; ③{(x ,y )|x +y =2且x -2y =4}; ④{x |x =(-1)n ,n ∈N};⑤{(x ,y )|3x +2y =16,x ∈N ,y ∈N}; ⑥{(x ,y )|x ,y 分别是4的正整数约数}. 解析: ①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}(注:防止把{(1,2)}写成{1,2}或{x =1,y =2})③⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫83,-23 ④{-1,1}⑤{(0,8),(2,5),(4,2)}⑥{(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 8.用描述法表示下列集合: ①{3,9,27,81};②{-2,-4,-6,-8,-10}. 解析: ①{x |x =3n ,n ∈N *且n ≤4} ②{x |x =-2n ,n ∈N *且n ≤5} 尖子生题库☆☆☆9.(10分)定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?解析: 当x =1或2,y =0时,z =0, 当x =1,y =2时,z =2; 当x =2,y =2时,z =4. ∴A *B ={0,2,4},∴所有元素之和为0+2+4=6.课时作业(三) 集合间的基本关系姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列命题: ①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅A ,则A ≠∅. 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析: ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( ) A .2 B .-1 C .2或-1 D .4解析: ∵A =B , ∴m 2-m =2,∴m =2或m =-1. 答案: C3.已知全集U =R ,则正确表示集合U ,M ={-1,0,1},N ={x |x 2+x =0}之间关系的Venn 图是( )解析: 由N ={x |x 2+x =0},得N ={-1,0},则N M U . 答案: B4.下列集合中,结果是空集的为( ) A .{x ∈R |x 2-4=0} B .{x |x >9或x <3} C .{(x ,y )|x 2+y 2=0} D .{x |x >9且x <3}解析: {x ∈R |x 2-4=0}={2,-2},{(x ,y )|x 2+y 2=0}={(0,0)},显然{x |x >9或x <3}不是空集,{x |x >9且x <3}是空集,选D. 答案: D二、填空题(每小题5分,共10分)5.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为________.解析: 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 答案: a ≥26.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析: ∵∅{x |x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A . 解析: 当A 中含有两个元素时, A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1. (2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与元素互异性矛盾, 故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A . 综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}. (1)若A B ,求实数a 的取值范围; (2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .课时作业(四) 交集、并集姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知集合M ={-1,1,2},集合N ={y |y =x 2,x ∈M },则M ∩N 是( ) A .{1,2,4} B .{1} C .{1,2} D .∅ 解析: ∵M ={-1,1,2},x ∈M , ∴x =-1或1或2. 由y =x 2得y =1或4,∴N ={1,4},M ∩N ={1}. 答案: B 2.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( ) A .10 B .11 C .15 D .16 解析: A ={-10,-9,-8,-7,-6,…,-1}, B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}, ∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5},A ∪B 中共16个元素. 答案: D3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}解析: M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}. 答案: D4.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4} D .{x |1≤x ≤4} 解析: 在数轴上表示出集合A 与B ,如下图.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案: A二、填空题(每小题5分,共10分)5.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R6.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)7.已知M ={1},N ={1,2},设A ={(x ,y )|x ∈M ,y ∈N },B ={(x ,y )|x ∈N ,y ∈M },求A ∩B 和A ∪B .解析: A ∩B ={(1,1)},A ∪B ={(1,1),(1,2),(2,1)}8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =R ,求a 的取值范围. 解析: 若A ∪B =R ,如图所示,则必有2a ≤-1且a +3≥5,∴a ≤-12且a ≥2,此时a 无解.尖子生题库☆☆☆9.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.课时作业(五)补集及综合应用姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个解析:A={0,1,3},集合A的真子集共有8个.答案: D2.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)解析:阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(∁U A).答案: B3.已知U为全集,集合M,N⊆U,若M∩N=N,则()A.∁U N⊆∁U M B.M⊆∁U NC.∁U M⊆∁U N D.∁U N⊆M解析:由M∩N=N知N⊆M.∴∁U M⊆∁U N.答案: C4.(2012·山东卷)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.答案: C二、填空题(每小题5分,共10分)5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于________________________________________________________________________.解析:∁U B={x|-1≤x≤4},A∩(∁U B)={x|-1≤x≤3}.答案:{x|-1≤x≤3}6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a的取值范围是________.解析:∵∁R B=(-∞,1)∪(2,+∞)且A∪∁R B=R,∴{x|1≤x≤2}⊆A,∴a≥2.答案:[2,+∞)三、解答题(每小题10分,共20分)7.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解析:由下图可知,∁U A ={x |x ≤-2或3≤x ≤4}, A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解析: ∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2. (2)若A ≠∅,则有⎩⎨⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2. 尖子生题库☆☆☆9.(10分)已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意. (2)若x +2=-x 3,则x =-1不符合题意. ∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.课时作业(六) 函数的概念姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来.A .1个B .2个C .3个D .4个 答案: B2.函数f (x )=⎝⎛⎭⎫x -120+|x 2-1|x +2的定义域为( )A.⎝⎛⎭⎫-2,12 B .(-2,+∞) C.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,+∞解析: 要使函数式有意义,必有x -12≠0且x +2>0,即x >-2且x ≠12.答案: C3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧1+p +q =0,4+2p +q =0,∴⎩⎪⎨⎪⎧p =-3,q =2,∴f (x )=x 2-3x +2, ∴f (-1)=(-1)2-3×(-1)+2=6. 答案: C4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3解析: g (3)=g (1+2)=2×1+3=5. 答案: C二、填空题(每小题5分,共10分)5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 解析: 显然二次函数的定义域为A =R , 又∵f (x )=x 2-2x +5=(x -1)2+4≥4, ∴B =[4,+∞),∴A B . 答案: A B6.设f (x )=11+x,则f [f (x )]=________.解析: f [f (x )]=f ⎝ ⎛⎭⎪⎫11+x =11+11+x =x +1x +2(x ≠-1且x ≠-2). 答案:x +1x +2(x ≠-1且x ≠-2) 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2;(2)f (x )=x 3+xx 2+1,g (x )=x .解析: (1)∵f (x )=(x -2)2=|x -2|,g (x )=x -2,∴两函数的对应关系不同,故不是相等函数. (2)∵f (x )=x 3+xx 2+1=x ,g (x )=x ,又∵两个函数的定义域均为R ,对应关系相同,故是相等函数.8.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞).(2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.尖子生题库☆☆☆9.(10分)已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12, f (3)与f ⎝⎛⎭⎫13. (2)由(1)中求得结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 013. 解析: (1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15, f (3)=321+32=910,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1321+⎝⎛⎭⎫132=110. (2)由(1)发现f (x )+f ⎝⎛⎭⎫1x =1. 证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, …,f (2 013)+f ⎝⎛⎭⎫12 013=1,∴原式=12+1+1+1+…+1 2 012个=2 012+12 =4 0252.课时作业(七) 函数的三种表示法姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D.答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5 D .-1解析: 由f (2x +1)=3x +2,令2x +1=t , ∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )x 1 2 3 4 f (x ) 3 2 41A.1 C .3 D .4 解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A4.(2012·临沂高一检测)函数y =f (x )的图象如图所示,则函数y =f (x )的解析式为( ) A .f (x )=(x -a )2(b -x ) B .f (x )=(x -a )2(x +b ) C .f (x )=-(x -a )2(x +b ) D .f (x )=(x -a )2(x -b )解析: 由图象知,当x =b 时,f (x )=0,故排除B ,C ;又当x >b 时,f (x )<0,故排除D.故应选A.答案: A二、填空题(每小题5分,共10分)5.(2011·济南高一检测)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.解析: ∵f (3)=1,1f (3)=1,∴f ⎝⎛⎭⎫1f (3)=f (1)=2. 答案: 26.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )=________.解析: 设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-3.故所求的函数为f (x )=2x +1或f (x )=-2x -3. 答案: 2x +1或-2x -3三、解答题(每小题10分,共20分) 7.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.8.作出下列函数的图象: (1)y =1-x ,x ∈Z ;(2)y =x 2-4x +3,x ∈[1,3].解析: (1)因为x ∈Z ,所以图象为一条直线上的孤立点,如图1所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图2所示.尖子生题库☆☆☆9.(10分)求下列函数解析式.(1)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x , ∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .课时作业(八) 分段函数和映射姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.如图中所示的对应:其中构成映射的个数为( )A .3B .4C .5D .6解析:序号 是否为映射原因① 是 满足取元任意性,成象唯一性 ② 是 满足取元任意性、成象唯一性 ③ 是 满足取元任意性、成象唯一性 ④ 不是 是一对多,不满足成象唯一性 ⑤ 不是 是一对多,不满足成象唯一性 ⑥不是a 3,a 4无象、不满足取元任意性答案: 2.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤0)-2x (x >0),使函数值为5的x 的值是( )A .-2或2B .2或-52C .-2D .2或-2或-52解析: 若x ≤0,则x 2+1=5 解得x =-2或x =2(舍去).若x >0,则-2x =5,∴x =-52(舍去),综上x =-2. 答案: C3.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( )A .7B .6C .5D .4解析: |-3|=|3|,|-2|=|2|,|-1|=1,|4|=4,且集合元素具有互异性,故B 中共有4个元素,∴B ={1,2,3,4}. 答案: D4.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3)为( )A .3B .2C .4D .5解析: f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2. 答案: B二、填空题(每小题5分,共10分)5.f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析: ∵f (x )=⎩⎪⎨⎪⎧3x +2 x <1x 2+ax x ≥1,∴f (0)=2,∴f (f (0))=f (2)=4+2a , ∴4+2a =4a ,∴a =2.答案: 26.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为________.解析: 由题意知⎩⎪⎨⎪⎧ x +y =4x -y =-2∴⎩⎪⎨⎪⎧x =1y =3答案: (1,3)三、解答题(每小题10分,共20分)7.已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤11, x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解析: (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].8.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解析: (1)直接由图中观察,可得 f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .∴⎩⎪⎨⎪⎧b =4,k =-2. ∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2≤x ≤6).∴f (x )=⎩⎪⎨⎪⎧-2x +4, 0≤x ≤2,x -2, 2<x ≤6.尖子生题库☆☆☆9.(10分)“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y .(单位:元)解析: 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6. 当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎨⎧1.2x (0<x ≤5)2.4x -6 (5<x ≤6)4.8x -20.4 (6<x ≤7).课时作业(九) 函数的单调性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1. (2010·北京)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数,③y =|x -1|在(0,1)上为减函数,④y =2x +1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,4答案 D解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调减区间为⎣⎡⎭⎫32,4.点评 本题的易错点是:易忽略f (x )的定义域.一定注意定义域优先的原则. 3. 若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数.4. 已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)答案 C解析 显然(4-6)(f (4)-f (6))>0⇒f (4)<f (6),结合奇函数的定义,得-f (4)=f (-4),-f (6)=f (-6). 故f (-4)>f (-6).二、填空题(每小题5分,共15分)5. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号) 答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数.6. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤-14,0 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.点评 本题首先应该对参数a 进行分类讨论,然后再针对a ≠0时的情况,根据二次函数的对称轴与单调区间的位置关系确定参数的取值范围.本题易出现的问题是默认函数f (x 为二次函数,忽略对a 是否为0的讨论.7. 已知函数f (x )=⎩⎪⎨⎪⎧e -x -2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________. 答案 ①③④ 解析根据题意可画出草图,由图象可知,①显然正确; 函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确; 由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 三、解答题8. (10分)已知函数y =f (x )在[0,+∞)上是减函数,试比较f ⎝⎛⎭⎫34与f (a 2-a +1)的大小.解 ∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0, 又∵y =f (x )在[0,+∞)上是减函数, ∴f (a 2-a +1)≤f ⎝⎛⎭⎫34.点评 本题是应用函数单调性的定义来比较函数值的大小,在应用函数单调性的定义时,必须要求自变量的值都在函数的同一单调区间内.课时作业(十) 函数的最大(小)值姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14 B .-1 C .4 D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4.答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6. 答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a . ∴函数f (x )图象的对称轴为x =2, ∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1. 答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0) C .(-∞,0] D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0. 答案: B二、填空题(每小题5分,共10分)5.函数f (x )=xx +2在区间[2,4]上的最大值为________,最小值为________.解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2,∴函数f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=22+2=12,f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m2×4=-2,m =-16,∴f (x )=4x 2+16x +1 =4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49]. 答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值. (1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x=1.(1)A=[-2,0]为函数的递减区间,∴f(x)的最小值是2,最大值是10;(2)A=[2,3]为函数的递增区间,∴f(x)的最小值是2,最大值是5.8.已知函数f(x)=x-1x+2,x∈[3,5],(1)判断函数f(x)的单调性并证明.(2)求函数f(x)的最大值和最小值.解析:(1)任取x1,x2∈[3,5]且x1<x2,则f(x1)-f(x2)=x1-1x1+2-x2-1x2+2=(x1-1)(x2+2)-(x2-1)(x1+2)(x1+2)(x2+2)=x1x2+2x1-x2-2-x1x2-2x2+x1+2(x1+2)(x2+2)=3(x1-x2) (x1+2)(x2+2).∵x1,x2∈[3,5]且x1<x2,∴x1-x2<0,x1+2>0,x2+2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)=x-1x+2在x∈[3,5]上为增函数.(2)由(1)知,当x=3时,函数f(x)取得最小值为f(3)=2 5;当x=5时,函数f(x)取得最大值为f(5)=47.尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m,问:每间笼舍的宽度x为多少时,才能使得每间笼舍面积y达到最大?每间笼舍最大面积为多少?解析:设总长为b,由题意知b=30-3x,可得y=12xb,即y=12x(30-3x)=-32(x-5)2+37.5,x∈(0,10).当x=5时,y取得最大值37.5,即每间笼舍的宽度为5 m时,每间笼舍面积y达到最大,最大面积为37.5 m2.课时作业(十一) 函数的奇偶性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.函数f (x )=x 2+3的奇偶性是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 解析: 函数f (x )=x 2+3的定义域为R ,f (-x )=(-x )2+3=x 2+3=f (x ),所以该函数是偶函数,故选B. 答案: B2.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4解析: 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x ,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.答案: A3.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)等于( ) A .-10 B .-18 C .-26 D .10解析: 由函数g (x )=x 5+ax 3+bx 是奇函数,得g (-x )=-g (x ),∵f (2)=g (2)-8,f (-2)=g (-2)-8,∴f (2)+f (-2)=-16.又f (-2)=10,∴f (2)=-16-f (-2)=-16-10=-26. 答案: C4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)解析: 函数f (x )在[-5,5]上是偶函数,因此f (x )=f (-x ),于是f (-3)=f (3),f (-1)=f (1),则f (3)<f (1).又∵f (x )在[0,5]上是单调函数,从而函数f (x )在[0,5]上是减函数,观察四个选项,并注意到f (x )=f (-x ),易知只有D 正确. 答案: D二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,则m =________.解析: 当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数, ∴f (-x )=-f (x )=-x 2-2x .∴f (x )=x 2+2x =x 2+mx ,∴m =2. 答案: 26.若函数f (x )=ax 2+2在[3-a,5]上是偶函数,则a =________.解析: 由题意可知3-a =-5,∴a =8. 答案: 8三、解答题(每小题10分,共20分)7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解析: ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又f ⎝⎛⎭⎫12=12a 1+14=25,∴a =1, ∴f (x )=x1+x 2.8.已知函数f (x )是定义域为R 的奇函数,当x >0时, f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式; (2)画出函数f (x )的图象.解析: (1)①由于函数f (x )是定义域为R 的奇函数, 则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (x )=-f (-x ) =-[(-x )2-2(-x )] =-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , (x >0)0, (x =0)-x 2-2x . (x <0)(2)图象如图:尖子生题库☆☆☆9.(10分)已知函数y =f (x )不恒为0,且对于任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),求证:y =f (x )是奇函数.证明: 在f (x +y )=f (x )+f (y )中, 令y =-x ,得f (0)=f (x )+f (-x ),令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0. 所以f (x )+f (-x )=0, 即f (-x )=-f (x ), 所以y =f (x )是奇函数.第二章 基本初等函数(Ⅰ)课时作业(十二) 指数与指数幂的运算姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.5m -2可化为( )A .m -25B .m 52C .m 25D .-m 52答案: A2.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 解析:2-x 有意义,须有2-x ≥0,即x ≤2,x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=2-x -(3-x ) =-1. 答案: C3.计算0.25-0.5+⎝⎛⎭⎫127-13-416的值为( )A .7B .3C .7或3D .5解析: 0.25-0.5+⎝⎛⎭⎫127-13-416=⎝⎛⎭⎫122×⎝⎛⎭⎫-12+⎝⎛⎭⎫133×⎝⎛⎭⎫-13-424=2+3-2=3. 答案: B4.下列式子中,错误的是( )A .(27a 3)13÷0.3a -1=10a 2B .(a 23-b 23)÷(a 13+b 13)=a 13-b 13C .[(22+3)2(22-3)2]12=-1D.4a 3a 2a =24a 11解析: 对于A ,原式=3a ÷0.3a -1=3a 20.3=10a 2,A 正确; 对于B ,原式=(a 13-b 13)(a 13+b 13)a 13+b 13=a 13-b 13,B 正确;对于C ,原式=[(3+22)2(3-22)2]12=(3+22)·(3-22)=1,这里注意3>22,a12(a ≥0)是正数,C 错误;对于D ,原式=4a 3a 52=4a ·a 56=a 1124=24a 11,D 正确. 答案: C二、填空题(每小题5分,共10分) 5.有下列说法: ①3-27=3;②16的4次方根是±2;③481=±3;④(x +y )2=|x +y |.其中,正确的有________(填上正确说法的序号). 解析: 当n 是奇数时,负数的n 次方根是一个负数,故3-27=-3,故①错误;16的4次方根有两个,为±2,故②正确;481=3,故③错误;(x +y )2是正数,故2(x +y )2=|x +y |,故④正确.答案: ②④6.化简(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得________.解析: 原式=-6a -4b134a -4b -53=-32b 2.答案: -32b 2三、解答题(每小题10分,共20分) 7.计算下列各式:(1)481×923;(2)23×31.5×612. 解析: (1)原式=[34×(343)12]14=(34+23)14=3143×14=376 =363.(2)原式=2×312×⎝⎛⎭⎫3213×(3×22)16=21-13+13×312+13+16=2×3=6.8.计算下列各式:(1)823×100-12×(0.25)-3×⎝⎛⎭⎫1681-34; (2)(2a 23b 12)·(-6a 12b 13)÷(-3a 16·b 56).解析: (1)原式=(23)23×(102)-12×(2-2)-3×⎣⎡⎦⎤⎝⎛⎭⎫234-34 =22×10-1×26×⎝⎛⎭⎫23-3=28×110×⎝⎛⎭⎫323=8625.(2)原式=4a 23+12-16·b 12+13-56=4ab 0=4a . 尖子生题库☆☆☆9.(10分)已知a 12+a -12=5,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)a 2-a -2.解析: (1)将a 12+a -12=5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9,则a 2+a -2=7. (3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.课时作业(十三) 指数函数及其性质姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M N B .M ⊆N C .N M D .M =N 解析: x ∈R ,y =2x >0,y =x 2≥0, 即M ={y |y >0},N ={y |y ≥0}, 所以M N . 答案: A2.函数y =2x +1的图象是( )解析: 函数y =2x的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1的图象单调递增且过点(0,2),故选A.答案: A3.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( ) A .2或-3 B .-3C .2D .-12解析: ∵函数y =b ·a x 为指数函数,∴b =1.当a >1时,y =a x 在[1,2]上的最大值为a 2,最小值为a , 则a 2+a =6,解得a =2或a =-3(舍);当0<a <1时,y =a x 在[1,2]上的最大值为a ,最小值为a 2,则a +a 2=6,解得a =2(舍)或a =-3(舍)综上可知,a =2. 答案: C4.若函数f (x )与g (x )=⎝⎛⎭⎫12x的图象关于y 轴对称,则满足f (x )>1的x 的取值范围是( ) A .RB .(-∞,0)C .(1,+∞)D .(0,+∞)解析: 根据对称性作出f (x )的图象,由图象可知,满足f (x )>1的x 的取值范围为(0,+∞).答案: D二、填空题(每小题5分,共10分)5.函数y =2x -1的定义域是________. 解析: 要使函数y =2x -1有意义,只须使2x -1≥0,即x ≥0,∴函数定义域为[0,+∞). 答案: [0,+∞)6.函数y =a x -2 013+2 013(a >0,且a ≠1)的图象恒过定点____________. 解析: ∵y =a x (a >0且a ≠1)恒过定点(0,1), ∴y =a x -2 013+2 013恒过定点(2 013,2 014). 答案: (2 013,2 014)三、解答题(每小题10分,共20分) 7.下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ; (4)y =x x ;(5)y =x α(α是常数).解析: (1)y =10x 符合指数函数定义,是指数函数; (2)y =10x +1中指数是x +1而非x ,不是指数函数; (3)y =-4x 中系数为-1而非1,不是指数函数;(4)y =x x 中底数和指数均是自变量x ,不符合指数函数定义,不是指数函数; (5)y =x α中底数是自变量,不是指数函数.8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.尖子生题库☆☆☆9.(10分)(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,求a .解析: 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.。

人教版数学必修一集合专项练习(一)(含答案)

人教版数学必修一集合专项练习(一)(含答案)

人教版数学必修一集合专项练习(一)第I卷(选择题)一、选择题(共10题,每题5分,共50分)1.已知全集U={0,1,2,3}且C U A={0,2},则集合A的真子集共有A.3个B.4个C.5个D.6个2.设U是全集,M,P,S是U的三个子集,则阴影部分所示的集合为A.(M∩P)∩SB.(M∩P)∪(∁U S)C.(M∩P)∪SD.(M∩P)∩(∁U S)3.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2} 4.若U={1,2,3,4},M={1,2},N={2,3},则∁U(M∩N)=A.{1,2,3}B.{1,3,4}C.{2}D.{4}5.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断,对于任一戴德金分割(M,N),下列选项中不可能成立的是A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素6.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=A.{3}B.{0,1,2}C.{1,2}D.{0,1,2,3}7.已知A={x|3-3x>0},则有A.3∈AB.1∈AC.0∈AD.-1∉A8.下列图形中,表示M⊆N的是A. B.C. D.9.下列四个命题::①a∈(A∪B)⇒a∈A; ②a∈(A∩B)⇒a∈(A∪B); ③A⊆B⇒A∪B=B; ④A∪B=A⇒A∩B=B.其中正确命题的个数是A.1B.2C.3D.410.设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)= A.M B.N C.M∩∁U N D.N∩∁U M第II卷(非选择题)二、填空题(共5题,每题5分,共25分)11.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=.12.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=.},N=14.已知全集U=R,实数a,b满足a>b>0,集合M={x|b<x<a+b2{x|√ab<x<a},则M∩∁U N= .15.若数集A同时满足:(1)至少含有2个元素;(2)对任意不相等的a,b∈A,都有ab∈A,则称数集A关于乘法运算封闭.试写出一个关于乘法运算封闭的有限集合A=.三、解答题(共6题,共75分)16.(本题11分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有:A×B={(1,3),(1,4),(2,3),(2,4)}, B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)}, B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B有几个元素.17.(本题12分)已知:集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0}(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.18.(本题13分)设非空数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},若B∪C=B,求实数a的取值范围.19.(本题13分)己知集合A={x|0≤x−1≤2},R为实数集,B={x|1<x−a<2a+3}.(1)当a=1时,求A∪B及A∩C R B;(2)若A∩B≠φ,求a的取值范围.和g(x)=ln(−x2+4x−3)的定义域分别为集合A和B. 20.(本题13分)设函数f(x)=√a−x(1)当a=2,求函数y=f(x)+g(x)的定义域;(2)若A∩(∁R B)=A,求实数a的取值范围.21.(本题13分)已知集合A={x|ax2+x+1=0,x∈R},且A∩{x|x≥0}=∅,求实数a的取值范围.参考答案1.A【解析】本题考查集合的运算和真子集.因为U={0,1,2,3}且C U A={0,2},所以A={1,3},则A的真子集有3个;故选A.【备注】无2.D【解析】本题主要考查运用集合表示阴影部分.由题意,U是全集,M,P,S是U的三个子集,阴影部分是M与P的交集中的元素,同时还不在集合S中,即为(M∩P)∩(∁U S),故选D.【备注】无3.A【解析】本题考查集合的基本运算.由题意得A∩B={x|1<x<2}.选A.【备注】无4.B【解析】本题主要考查集合的交集补集的运算.由题意,M={1,2},N={2,3},M∩N ={2},则∁U(M∩N)={1,3,4},选B【备注】无5.C【解析】本题考查了学生对新定义的接受与应用能力,属于基础题.解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<√2},N={x∈Q|x≥√2};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.【备注】无6.B【解析】B={x∈N||x|≤2}={0,1,2},A∩B={0,1,2}.【备注】无7.C【解析】集合A是不等式3-3x>0的解集,即A={x|x<1},可知3∉A,1∉A,0∈A,-1∈A.故选C. 【备注】无8.C【解析】本题考查用韦恩图表示集合间的基本关系.对A,M与N相交;对B,N⊆M;对D,M与N没关系;对C,M⊆N.选C.【备注】无9.C【解析】a∈(A∪B)⇒a∈A或a∈B,所以①错,由交集、并集的定义,易知②③④正确.【备注】无10.A【解析】本题考查新定义问题.如图所示,由定义可知N*M为图中的阴影区域,∴N*(N*M)为图中阴影Ⅰ和空白的区域,∴N*(N*M)=M.选A.【备注】无11.{1,4,7}【解析】因为M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.【备注】无12.12【解析】本题主要考查了集合中元素的个数问题.根据题意可知喜爱篮球运动的人数为21,喜爱乒乓球运动的人数为18,20人对这两项运动都不喜爱,设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则21+18+20−x=50,解得x=9,所以喜爱篮球运动但不喜爱乒乓球运动的人数为21−9=12,故填12.【备注】无13.4【解析】思维导图由S和∁S A可求得A中元素确定x2-5x+m=0的根确定m的值因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得:m=1×4=4.【备注】无14.(b,√ab]【解析】本题主要考查不等式的性质、基本不等式、集合的基本运算.因为a>b>0,所以>√ab>b,则∁U N={x|x≤√ab或x≥a}, 则M∩∁U N={x|b<x≤√ab}a>a+b2【备注】无15.{0,1}(或{0,-1},{0,1,-1},{1,2}等)【解析】若集合A中有0,则0与任何实数的乘积均为0,满足条件,所以集合中可以有元素0.同理,可知集合中也可以有元素1.再适当补充其他元素即可.【备注】无16.(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)从以上解题过程可以看出,A×B中元素的个数与集合A和B中的元素个数有关,即集合A 中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有(m×n)个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.【解析】集合中的创新问题是近年来高考命题的热点,这类问题主要以教材知识为背景,进行移植、迁移,旨在考查学生的理解能力和运用数学思想方法分析问题、解决问题的能力.求解集合中的新定义问题,主要抓两点:(1)紧扣新定义——首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在;(2)用好集合的性质——集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键处用好集合的性质.【备注】无17.(1)A ={-4,0},若A ∪B =B,则B =A ={-4,0},解得a =1.(2)若A ∩B =B,则①若B 为空集,则Δ=4(a +1)2-4(a 2-1)=8a +8<0,则a <-1;②若B 为单元素集合,则Δ=4(a +1)2-4(a 2-1)=8a +8=0,解得a =-1,将a =-1代入方程x 2+2(a +1)x +a 2-1=0,得x 2=0得,x =0,即B ={0},符合要求;③若B =A ={-4,0},则a =1,综上所述,a ≤-1或a =1.【解析】本题主要考查集合的基本运算、集合间的基本关系,考查了分类讨论思想思想.(1)根据题意,由A ∪B =B 可得B =A ={-4,0},则结论易得;(2)由A ∩B =B 可得B ⊆A ,再分B 为空集、B 为单元素集合、B =A 三种情况讨论求解即可.【备注】无18.因为A ={x|-2≤x ≤a },B ={y|y =2x+3,x ∈A },所以B ={y|-1≤y ≤2a+3}.又B ∪C =B ,所以C ⊆B.①当-2≤a <0时,C ={y|a 2≤y ≤4},所以2a+3≥4,所以a ≥12,与条件矛盾. ②当0≤a ≤2时,C ={y|0≤y ≤4},所以4≤2a+3,解得a ≥12,此时12≤a ≤2.③当a >2时,C ={y|0≤y ≤a 2},所以a 2≤2a+3,结合二次函数y =a 2-2a-3的图象,可得-1≤a ≤3,此时2<a ≤3.综合①②③,得实数a 的取值范围为{a|12≤a ≤3}.【解析】无【备注】无19.(1)A ={x|0≤x −1≤2}={x|1≤x ≤3},当a =1时,B ={x|1<x −1<2×1+3}={x|2<x <6},A ∪B ={x|1≤x <6},C R B ={x|x ≤2或x ≥6},A ∩C RB ={x|1≤x ≤2},(2)由已知得A ={x|1≤x ≤3},B ={x|a +1<x <3a +3},∵A ∩B ≠φ,∴{a +1<33a +3>1a +1<3a +3,解得−23<a <2, 则a 的取值范围为(−23,2). 【解析】本题考查集合间的基本运算及关系.(1)先化简两集合,再借助数轴完成求解;(2)根据数轴分析两集合中不等式端点的大小关系,列出不等式即可得到参数a 的取值范围.【备注】无20.(1)a =2时,函数f (x )=√a−x =√2−x,g (x )=ln(−x 2+4x −3),∴函数y =f (x )+g (x )=√2−x ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得{x <21<x <3,即1<x <2, 所以函数y 的定义域为(1,2).(2)∵A =(−∞,a),B =(1,3),∴∁R B =(−∞,1]∪[3,+∞),若A ∩(∁R B)=A ,则a ≤1,∴实数a 的取值范围是(−∞,1].【解析】本题考查对数函数,函数定义域的求解,集合的基本运算.(1)a =2时,求得y =f (x )+g (x )=√2−x +ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得1<x <2,所以函数y 的定义域为(1,2).(2)求得A =(−∞,a),∁R B =(−∞,1]∪[3,+∞),因为A ∩(∁R B)=A ,则a ≤1.【备注】无21.当a =0时,A ={x|x+1=0,x ∈R }={-1},此时A ∩{x|x ≥0}=∅;当a ≠0时,∵A ∩{x|x ≥0}=∅,∴A =∅或关于x 的方程ax 2+x+1=0的根均为负数.①当A =∅时,关于x 的方程ax 2+x+1=0无实数根,Δ=1-4a <0,解得a >14 .②当关于x 的方程ax 2+x+1=0的根x 1,x 2均为负数时,{Δ=1-4a ≥0x 1+x 2=-1a <0x 1x 2=1a >0,解得{a ≤14a >0,即0<a ≤14. 综上所述,实数a 的取值范围为{a|a ≥0}.【解析】无【备注】无。

人教版高中数学必修一《集合》同步练习(含答案)

人教版高中数学必修一《集合》同步练习(含答案)

1.1 集合一、选择题(本大题共10小题,每小题5分,共50分)1.若{1,2}⊆A⊆{1,2,3,4,5},则这样的集合A有()A.6个B.7个C.8个D.9个2.设A={y|y=a²-6a+10,a∈N*},B={x|x=b²+1,b∈N*},则()A.A⊆BB.A∈BC.A=BD.B⊆A3.设A={x|x=6m+1,m∈Z},B={y|y=3n+1,n∈Z},C={z|z=3p2,p∈Z},D={a|a=3q²2,q∈Z},则四个集合之间的关系正确的是()A.D=B=CB.D⊆B=CC.D⊆A⊆B=CD.A⊆D⊆B=C4.A={a,a+b,a+2b},B={a,ac,ac²},若A=B,则c的值为()A.1B.1或C. D.15.映射f:A→A满足f()≠,若A={1,2,3},则这样的映射有()A.8个B.18个C.26个D.27个6.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A.35B.25C.28D.157.设S={x||x2|>3},T={x|a<x<a+8},S∪T=R,则 a 的取值范围是()A.3<a<1B.3≤a≤1C.a≤3或a≥1D.a<3或a>18. 设全集U={(x,y)|x,y∈R},集合M={(x,y)|32yx--=1},N={(x,y)|y≠x+1},那么(U M)∩(U N)=( )A. ∅B.{(2,3)}C.(2,3)D.{(x,y)|y=x+1}9.设U 为全集,123,,S S S 为U 的三个非空子集且1S ∪2S ∪3S =U ,下列推断正确的是( )A.( U 1S )∩(2S ∪3S )=∅B. (U1S )∩(U2S )∩(U3S )=∅C. 1S ⊆(U2S )∩(U3S )D. 1S ⊆(U2S )∪(U3S )10.集合A ={a ²,a +1,3},B ={a 3,2a 1,a ²1},若A ∩B ={3},则a 的值是( )A.0B.1 C .1 D.2二、 填空题(本大题共5小题,每小题5分,共 25分) 11.M ={65a-∈N |a ∈Z },用列举法表示集合 M =___ ___. 12.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B C =() . 13.已知集合P 满足{}{}464P=,,{}{}81010P =,,并且{}46810P ⊆,,,,则P =14.某校有17名学生,每人至少参加全国数学、物理、化学三科竞赛中的一科,已知其中参加数学竞赛的有11人,参加物理竞赛的有7人,参加化学竞赛的有9人,同时参加数学和物理竞赛的有4人,同时参加数学和化学竞赛的有5人,同时参加物理和化学竞赛的有3人,则三科竞赛都参加的人数是_ __.15.A ={2,1,x ²x 1},B ={2y ,4,x 4},C ={1,7},A ∩B =C ,则x ,y 的值分别是__ _. 三、解答题 (本大题共5小题,共75分) 16.(12分)已知集合A ={x |x ²3x 10≤0}.(1)设U =R ,求UA ;(2)B ={x |x <a },若A ⊆B ,求a 的取值范围.17. (15分)设A ={x ∈R |ax ²+2x +1=0,a ∈R }. (1)当A 中元素个数为1时,求a 和A ;(2)当A 中元素个数至少为1时,求a 的取值范围; (3)求A 中各元素之和.18.(15分)已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围19.(16分)已知A ={12345,,,,a a a a a },B ={2222212345,,,,a a a a a },其中12345,,,,a a a a a ∈Z ,12345a a a a a <<<<,且A ∩B ={14,a a },14a a +=10,又A ∪B 的元素之和为224,求:(1)14,a a ;(2)5a ;(3)A .20.(17分)设}019|{22=-+-=a ax x x A ,22{|560}{|280}B x x x C x x x =-+==+-=,.(1)AB =A B ,求a 的值;(2)A B =A C ≠∅,求a 的值一、选择题1.C 解析:列举法,易知满足条件的集合共8个,选C.2.D 解析:A ={y |y =(a 3)²+1,a ∈N *},因此a 3∈N ,故集合A 比集合B 多出一个元素,为1,选D.3.B 解析:首先看B 和C ,这两个集合都表示被3除余1的所有整数,故B =C. 而D 相对于C 而言,相当于C 中的p 只能取完全平方数,故D ⊆C ,也可以说D ⊆B . A 表示被6除余1的所有整数,与D 是交叉的关系,故选B. 4.C 解析:A =B 有两种可能:①2,2,a b ac a b ac +=⎧⎨+=⎩易解出c =1,但此时a =ac =ac ²,与集合元素的互异性矛盾,故c ≠1. ②2,2,a b ac a b ac ⎧+=⎨+=⎩易解出c =12-或,经检验c =12-符合题意.综上,应选C.5.A 解析:直接列举出每种情况即可,共有8种,选A.6. B 解析:全班分4类人:设两项测验成绩都及格的人数为x ;仅跳远及格的人数为40x -;仅铅球及格的人数为31x -;两项均不及格的人数为4 .∴4031450x x x -+-++=,∴25x =.7.A 解析:易解出S =(∞,1)∪(5,∞),因此可列出不等式组1,85,a a <-⎧⎨+>⎩解得3<a <1,选A.8. B 解析:(UM )∩(UN )=U(M ∪N ),集合M 表示直线y =x +1上除(2,3)点外的所有点,集合N 表示不在直线y =x +1上的所有点,因此所求的集合是一个单元素点集{(2,3)},选B. 9.B 解析:排除法,对于A 选项,不在1S 中的元素可以在2S 或3S 中,即一定在集合(2S ∪3S )中,故两集合的交集不为空,A 错,对于C,D 两项画出Venn 图易知C,D 均错,选B. 10.B 解析:集合A 中已经有元素3,集合B 中a ²+1不会为负,故a 3=3或2a 1=3,解出a =0或a =1,但a 0时a 1a ²11,不合题意,故a 不为0,而a =1符合题意,选B. 二、填空题11. {1,2,3,6} 解析:注意集合中的元素是65a-而不是a ,否则极易出错.要满足集合的条件只需让5a 为6的正约数,相应地得出集合中的4个元素:1,2,3,6. 12.{}1234,,, 解析:{}12A B =,,故(){}12,3,4.A B C =,13. {4,10} 解析:由第一个条件知P 中有元素4而没有元素6,由第二个条件知P 中有元素10而没有元素8,再由最后一个条件知P ={4,10}.14. 2 解析:设三科竞赛都参加的人数为,由题意可列方程1179453x =17,解得x =2.15. 3,0.5 解析:对于集合A 易得x ²x +1=7,解得x =3或x =2,但x =2时B 中有元素2不满足题意,故x =3,对于B 易得2y =1,故y =0.5. 三、解答题16.解:(1)A ={x |x ²3x 10≤0}={x |2≤x ≤5}.∵ U =R,∴UA ={x |x <2或x >5}.(2)∵A ⊆B ={x |x <a }, ∴a >5. 故a 的取值范围是(5,+∞). 17. 解:(1)当A 中元素个数为1时,包括两种情况,分类讨论如下: 当0a =时,有210x +=,解得12x =-,此时12A ⎧⎫=-⎨⎬⎩⎭;当0a ≠时,有∆=044a -=,得1a =,代入解得x =-1,此时{}1A =-. 综上可得0a =,12A ⎧⎫=-⎨⎬⎩⎭或1a =,{}1A =-.(2)当A 中元素个数至少为1时有0a =或∆=044a -≥,解得1a ≤. 即a 的取值范围是(]1,-∞.(3)当∆=044a -<,即a >1时,A =∅,无元素; 当a =1时,元素之和为1-;当∆=4-4a >0,即a <1且时,元素之和为2a-. 当a =0时,元素之和为12-. 18.解: {}|123B y y a =-≤≤+,当20a -≤≤时,{}2|4C z a z =≤≤,而C B ⊆,则1234,,20,2a a a +≥≥-≤≤即而 这是矛盾的;当02a <≤时,{}|04C z z =≤≤,而C B ⊆,则1234,,22a a a +≥≥≤≤1即所以2; 当2a >时,{}2|0C z z a=≤≤,而C B ⊆,则223,323a a a a a +≥>即-1≤≤,又,所以2<≤.综上所述,132a ≤≤.19.解:(1)∵A ∩B ={14,a a }, ∴14,a a ∈B ,因此14,a a 均为完全平方数.∵14a a +=10,14a a <,∴只能有1a =1,4a =9. (2)∵1234a a a a <<<,∴2a =3或3a =3 . 若3a =3,则2a =2,这时A ∪B 的元素之和224=1+2+4+3+9+81+5a +25a ,此时5a 不是整数,因此应该是2a =3.这时224>1+3+9+81+5a +25a ,故5a <11,而5a >4a =9,故5a =10. (3)由上面的结论知道224=1+3+9+81+10+100+3a +23a ,解得3a =4. ∴A ={1,3,4,9,10} . 20.解:(1)∵AB =A B ,∴A =B ,∴25196a a =⎧⎨-=⎩,,解得a =5.(2)∵AB =AC ≠∅,∴A B =A C ={2},∴ 2A .将x =2代入A 中的方程得a =5或a =3 . a =5时经检验A B ≠A C ,舍去.∴ a =3。

人教版高中数学必修一《集合》同步练习(含答案)

人教版高中数学必修一《集合》同步练习(含答案)

1.1 集合一、选择题(本大题共10小题,每小题5分,共50分)1.若{1,2}⊆A⊆{1,2,3,4,5},则这样的集合A有()A.6个B.7个C.8个D.9个2.设A={y|y=a²-6a+10,a∈N*},B={x|x=b²+1,b∈N*},则()A.A⊆BB.A∈BC.A=BD.B⊆A3.设A={x|x=6m+1,m∈Z},B={y|y=3n+1,n∈Z},C={z|z=3p2,p∈Z},D={a|a=3q²2,q∈Z},则四个集合之间的关系正确的是()A.D=B=CB.D⊆B=CC.D⊆A⊆B=CD.A⊆D⊆B=C4.A={a,a+b,a+2b},B={a,ac,ac²},若A=B,则c的值为()A.1B.1或C. D.15.映射f:A→A满足f()≠,若A={1,2,3},则这样的映射有()A.8个B.18个C.26个D.27个6.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A.35B.25C.28D.157.设S={x||x2|>3},T={x|a<x<a+8},S∪T=R,则 a 的取值范围是()A.3<a<1B.3≤a≤1C.a≤3或a≥1D.a<3或a>18. 设全集U={(x,y)|x,y∈R},集合M={(x,y)|32yx--=1},N={(x,y)|y≠x+1},那么(U M)∩(U N)=( )A. ∅B.{(2,3)}C.(2,3)D.{(x,y)|y=x+1}9.设U 为全集,123,,S S S 为U 的三个非空子集且1S ∪2S ∪3S =U ,下列推断正确的是( )A.( U 1S )∩(2S ∪3S )=∅B. (U1S )∩(U2S )∩(U3S )=∅C. 1S ⊆(U2S )∩(U3S )D. 1S ⊆(U2S )∪(U3S )10.集合A ={a ²,a +1,3},B ={a 3,2a 1,a ²1},若A ∩B ={3},则a 的值是( )A.0B.1 C .1 D.2二、 填空题(本大题共5小题,每小题5分,共 25分) 11.M ={65a-∈N |a ∈Z },用列举法表示集合 M =___ ___. 12.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B C =() . 13.已知集合P 满足{}{}464P=,,{}{}81010P =,,并且{}46810P ⊆,,,,则P =14.某校有17名学生,每人至少参加全国数学、物理、化学三科竞赛中的一科,已知其中参加数学竞赛的有11人,参加物理竞赛的有7人,参加化学竞赛的有9人,同时参加数学和物理竞赛的有4人,同时参加数学和化学竞赛的有5人,同时参加物理和化学竞赛的有3人,则三科竞赛都参加的人数是_ __.15.A ={2,1,x ²x 1},B ={2y ,4,x 4},C ={1,7},A ∩B =C ,则x ,y 的值分别是__ _. 三、解答题 (本大题共5小题,共75分) 16.(12分)已知集合A ={x |x ²3x 10≤0}.(1)设U =R ,求UA ;(2)B ={x |x <a },若A ⊆B ,求a 的取值范围.17. (15分)设A ={x ∈R |ax ²+2x +1=0,a ∈R }. (1)当A 中元素个数为1时,求a 和A ;(2)当A 中元素个数至少为1时,求a 的取值范围; (3)求A 中各元素之和.18.(15分)已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围19.(16分)已知A ={12345,,,,a a a a a },B ={2222212345,,,,a a a a a },其中12345,,,,a a a a a ∈Z ,12345a a a a a <<<<,且A ∩B ={14,a a },14a a +=10,又A ∪B 的元素之和为224,求:(1)14,a a ;(2)5a ;(3)A .20.(17分)设}019|{22=-+-=a ax x x A ,22{|560}{|280}B x x x C x x x =-+==+-=,.(1)AB =A B ,求a 的值;(2)A B =A C ≠∅,求a 的值一、选择题1.C 解析:列举法,易知满足条件的集合共8个,选C.2.D 解析:A ={y |y =(a 3)²+1,a ∈N *},因此a 3∈N ,故集合A 比集合B 多出一个元素,为1,选D.3.B 解析:首先看B 和C ,这两个集合都表示被3除余1的所有整数,故B =C. 而D 相对于C 而言,相当于C 中的p 只能取完全平方数,故D ⊆C ,也可以说D ⊆B . A 表示被6除余1的所有整数,与D 是交叉的关系,故选B. 4.C 解析:A =B 有两种可能:①2,2,a b ac a b ac +=⎧⎨+=⎩易解出c =1,但此时a =ac =ac ²,与集合元素的互异性矛盾,故c ≠1. ②2,2,a b ac a b ac ⎧+=⎨+=⎩易解出c =12-或,经检验c =12-符合题意.综上,应选C.5.A 解析:直接列举出每种情况即可,共有8种,选A.6. B 解析:全班分4类人:设两项测验成绩都及格的人数为x ;仅跳远及格的人数为40x -;仅铅球及格的人数为31x -;两项均不及格的人数为4 .∴4031450x x x -+-++=,∴25x =.7.A 解析:易解出S =(∞,1)∪(5,∞),因此可列出不等式组1,85,a a <-⎧⎨+>⎩解得3<a <1,选A.8. B 解析:(UM )∩(UN )=U(M ∪N ),集合M 表示直线y =x +1上除(2,3)点外的所有点,集合N 表示不在直线y =x +1上的所有点,因此所求的集合是一个单元素点集{(2,3)},选B. 9.B 解析:排除法,对于A 选项,不在1S 中的元素可以在2S 或3S 中,即一定在集合(2S ∪3S )中,故两集合的交集不为空,A 错,对于C,D 两项画出Venn 图易知C,D 均错,选B. 10.B 解析:集合A 中已经有元素3,集合B 中a ²+1不会为负,故a 3=3或2a 1=3,解出a =0或a =1,但a 0时a 1a ²11,不合题意,故a 不为0,而a =1符合题意,选B. 二、填空题11. {1,2,3,6} 解析:注意集合中的元素是65a-而不是a ,否则极易出错.要满足集合的条件只需让5a 为6的正约数,相应地得出集合中的4个元素:1,2,3,6. 12.{}1234,,, 解析:{}12A B =,,故(){}12,3,4.A B C =,13. {4,10} 解析:由第一个条件知P 中有元素4而没有元素6,由第二个条件知P 中有元素10而没有元素8,再由最后一个条件知P ={4,10}.14. 2 解析:设三科竞赛都参加的人数为,由题意可列方程1179453x =17,解得x =2.15. 3,0.5 解析:对于集合A 易得x ²x +1=7,解得x =3或x =2,但x =2时B 中有元素2不满足题意,故x =3,对于B 易得2y =1,故y =0.5. 三、解答题16.解:(1)A ={x |x ²3x 10≤0}={x |2≤x ≤5}.∵ U =R,∴UA ={x |x <2或x >5}.(2)∵A ⊆B ={x |x <a }, ∴a >5. 故a 的取值范围是(5,+∞). 17. 解:(1)当A 中元素个数为1时,包括两种情况,分类讨论如下: 当0a =时,有210x +=,解得12x =-,此时12A ⎧⎫=-⎨⎬⎩⎭;当0a ≠时,有∆=044a -=,得1a =,代入解得x =-1,此时{}1A =-. 综上可得0a =,12A ⎧⎫=-⎨⎬⎩⎭或1a =,{}1A =-.(2)当A 中元素个数至少为1时有0a =或∆=044a -≥,解得1a ≤. 即a 的取值范围是(]1,-∞.(3)当∆=044a -<,即a >1时,A =∅,无元素; 当a =1时,元素之和为1-;当∆=4-4a >0,即a <1且时,元素之和为2a-. 当a =0时,元素之和为12-. 18.解: {}|123B y y a =-≤≤+,当20a -≤≤时,{}2|4C z a z =≤≤,而C B ⊆,则1234,,20,2a a a +≥≥-≤≤即而 这是矛盾的;当02a <≤时,{}|04C z z =≤≤,而C B ⊆,则1234,,22a a a +≥≥≤≤1即所以2; 当2a >时,{}2|0C z z a=≤≤,而C B ⊆,则223,323a a a a a +≥>即-1≤≤,又,所以2<≤.综上所述,132a ≤≤.19.解:(1)∵A ∩B ={14,a a }, ∴14,a a ∈B ,因此14,a a 均为完全平方数.∵14a a +=10,14a a <,∴只能有1a =1,4a =9. (2)∵1234a a a a <<<,∴2a =3或3a =3 . 若3a =3,则2a =2,这时A ∪B 的元素之和224=1+2+4+3+9+81+5a +25a ,此时5a 不是整数,因此应该是2a =3.这时224>1+3+9+81+5a +25a ,故5a <11,而5a >4a =9,故5a =10. (3)由上面的结论知道224=1+3+9+81+10+100+3a +23a ,解得3a =4. ∴A ={1,3,4,9,10} . 20.解:(1)∵AB =A B ,∴A =B ,∴25196a a =⎧⎨-=⎩,,解得a =5.(2)∵AB =AC ≠∅,∴A B =A C ={2},∴ 2A .将x =2代入A 中的方程得a =5或a =3 . a =5时经检验A B ≠A C ,舍去.∴ a =3。

数学必修一练习题汇总(含答案)

数学必修一练习题汇总(含答案)

第一章综合练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x=-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f(x)=(m-1)x2+6mx+2是偶函数,∴m=0.∴f(x)=-x2+2.∴f(0)=2,f(1)=1,f(-2)=-2,∴f(-2)<f(1)<f(0).答案:f(-2)<f(1)<f(0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1},(1)当x∈N*时,求A的子集的个数;(2)当x∈R且A∩B=Ø时,求m的取值范围.解:(1)∵x∈N*且A={x|-2≤x≤5},∴A={1,2,3,4,5}.故A的子集个数为25=32个.(2)∵A∩B=Ø,∴m-1>2m+1或2m+1<-2或m-1>5,∴m<-2或m>6.18.(12分)已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠Ø且B⊆A,求a,b的值.解:(1)当B=A={-1,1}时,易得a=0,b=-1;(2)当B含有一个元素时,由Δ=0得a2=b,当B={1}时,由1-2a+b=0,得a=1,b=1当B={-1}时,由1+2a+b=0,得a=-1,b=1.19.(12分)已知函数f(x)=xax+b(a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.解:∵f(x)=xax+b且f(2)=1,∴2=2a+b.又∵方程f(x)=x有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章综合练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下() A.0.015克B.(1-0.5%)3克C.0.925克 D.1000.125克解析:设该放射性元素满足y=a x(a>0且a≠1),则有12=a100得a=(12)1100.可得放射性元素满足y=[(12)1100]x=(12)x100.当x=3时,y=(12)3100=100(12)3=1000.125.答案:D6.函数y=log2x与y=log 12x的图象()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于y=x对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y=lg(21-x-1)的图象关于()A.x轴对称B.y轴对称C.原点对称D.y=x对称解析:f(x)=lg(21-x-1)=lg1+x1-x,f(-x)=lg1-x1+x=-f(x),所以y=lg(21-x-1)关于原点对称,故选C.答案:C8.设a>b>c>1,则下列不等式中不正确的是() A.a c>b c B.log a b>log a cC.c a>c b D.log b c<log a c解析:y=x c在(0,+∞)上递增,因为a>b,则a c>b c;y=log a x在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是()A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.(2)当0<a<1时,图象如上图2,不满足题意.答案:A12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1. 答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12. 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22. 当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1. (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-ax 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-ax >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.第三章综合练习一、选择题(每小题5分,共60分)1.二次函数f(x)=2x2+bx-3(b∈R)的零点个数是() A.0B.1C.2D.4解析:∵Δ=b2+4×2×3=b2+24>0,∴函数图象与x轴有两个不同的交点,从而函数有2个零点.答案:C2.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.0解析:令1+1x=0,得x=-1,即为函数零点.答案:B3.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()解析:把y=f(x)的图象向下平移1个单位后,只有C图中图象与x轴无交点.答案:C4.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0 B.小于0C.无法判断D.等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为() 答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l2.答案:y=x(l-2x)(0<x<l 2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c , 得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52, ∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.必修1综合练习一、选择题(每小题5分,共60分)1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝ ⎛⎭⎪⎫12的值为( )A .1B .3C .15D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝ ⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C 6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ) A .单调递减无最小值 B .单调递减有最大值 C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <3415.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎪⎨⎪⎧ 2k -1<2,2k -1≥k +1,或⎩⎪⎨⎪⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎪⎨⎪⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎪⎨⎪⎧ f (2)=2f (3)=5,即⎩⎪⎨⎪⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎪⎨⎪⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎪⎨⎪⎧f (2)=5f (3)=2,即⎩⎪⎨⎪⎧4a -4a +2+b =59a -6a +2+b =2,解得⎩⎪⎨⎪⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎪⎨⎪⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x , 又x ∈(-∞,2],u =42x 的最小值1.所以符合题意的实数k 的范围是(-∞,1).。

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题人教版高中数学材必修第一册集合测试题班级_________;姓名____________;座号__________;分数_________一、选择题(每小题7分,每小题给出的四个选项中,只有一项是符合题目要求的)1.如果集合P={x|x>-1},那么()A) ∅⊆ PB) { } ∈ PC) ∅∈ PD) { } ⊆ P解析:P中的元素都是大于-1的实数,∅既不是P的子集也不是P中的元素,故选项B、C、D均不符合题目要求,选A。

2.如果集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么(U∪A)∩B等于()A) {5}B) { }C) {2,8}D) {1,3,7}解析:U∪A={1,2,3,4,5,6,7,8},(U∪A)∩B={5},故选A。

3.如果集合M={x|x=k/k,k∈Z},N={x|x=2k/4,k∈Z},那么M∩N=∅。

A) M=NB) XXXC) XXXD) MN解析:M中的元素为所有形如k/k的实数,N中的元素为所有形如2k/4的实数,显然M和N没有相同的元素,故M∩N=∅,选项D符合题目要求。

4.集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A) a<2B) a≥-1C) a>-1D) -1<a≤2解析:A∩B≠∅,即存在一个数x既满足-1≤x<2,又满足x<a,即-1≤x<a,故a的取值范围为选项B。

5.满足{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数为()A) 6B) 7C) 8D) 9解析:M中的元素有2个或3个或4个,分别对应{a,b}、{a,b,c}、{a,b,c,d}、{a,b,c,d,e},故M的个数为4,选项D。

6.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A) S∩PB) S∪PC) V∖SD) V∖P解析:阴影部分表示的是在S和P中都出现过的元素,即S∩P,选项A。

人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)

人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)

人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。

人教版高中数学必修1训练试题全集

人教版高中数学必修1训练试题全集

人教版高中数学必修1训练试题全集高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。

⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。

⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。

例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。

例4.用列举法和描述法表示方程组的解集。

典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。

题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。

若aA,bB,试判断a+b与A,B的关系。

2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。

3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。

⑵若A中至多有一个元素,求a的取值范围。

题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。

数学必修1测试题及答案

数学必修1测试题及答案

数学必修1测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 计算(2x - 3)(x + 1)的结果,其中x = 2。

A. 5B. 7C. 9D. 11答案:B5. 已知a = 3,b = 4,c = 5,下列哪个等式是正确的?A. a² + b² = c²B. a² + b² > c²C. a² + b² < c²D. a² + b² = 2bc答案:C6. 函数y = sin(x)在区间[0, π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D7. 计算极限lim(x→0) (sinx/x)的值。

A. 0B. 1C. πD. ∞答案:B8. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第5项a5的值是?A. 9B. 11C. 13D. 15答案:A9. 计算定积分∫(0 to 1) x² dx的值。

A. 1/3B. 1/2C. 1D. 2答案:B10. 已知函数f(x) = x³ - 3x + 2,求其导数f'(x)。

A. 3x² - 3B. x² - 3C. 3x - 3D. x³ - 3答案:A二、填空题(每题4分,共20分)1. 计算(3x + 2)(2x - 1) = ________。

答案:6x² - x - 22. 已知函数f(x) = x² - 4x + 4,求其对称轴方程。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案) 人教版数学必修I测试题一、选择题(共10题,每题5分,共50分)1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(CU B)=()A、{2}B、{2,3}C、{3}D、{1,3}2、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN ()A、{}B、{0,1}C、{1,2}D、{0,2}3、函数y=1+log2x,(x≥4)的值域是()A、[2,+∞)B、(3,+∞)C、[3,+∞)D、(-∞,+∞)4、在y=1/x2,y=2x,y=x2+x,y=3x5四个函数中,幂函数有()A、1个B、2个C、3个D、4个5、如果a>1,b<-1,那么函数f(x)=ax+b的图象在()A第一、二、三象限 B第一、三、四象限C第二、三、四象限 D第一、二、四象限6、设集合M={x|x2-6x+5=0},N={x|x2-5x=0},则MN等于()A.{}B.{5}C.{1,5}D.{-1,-5}7、若102x=25,10x则等于()A、-15B、5C、11/50D、6258、函数y=ax+2(a且a≠1)图象一定过点()A(0,1)B(0,3)C(1,0)D(3,0)9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟。

骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()10、若f(2x)=x2,则f(3)=()A、9B、49/4C、9/4D、3/2二、填空题(共4题,每题4分,共16分)11、函数y=x+1+1/(2-x)的定义域为(-∞,2)U(2,∞)。

12、f(x)=x2+1,x≤0;f(x)= -2x,x>0.若f(x)=10,则x=-2.13、函数f(x)=2+log5(x+3)在区间[-2,2]上的值域是[2,3]。

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为( ) A .0或12-B .0C .12-D .0或122.设()f x 在区间[],a b 上是连续变化的单调函数,且()()0f a f b ⋅<,则方程()0f x =在[],a b 内( ) A .至少有一实根 B .至多有一实根 C .没有实根D .必有唯一实根3.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.54.设函数()26x f x e x =+-, 在用二分法求方程()0f x =在()12x ∈,内的近似解过程中得(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,,,则方程的解所在的区间是( )A .()01,B .()11.25,C .()1.251.5,D .()1.52,5.函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.若23691log 3log log 62m ⨯⨯=,则实数m 的值为( ) A .4B .6C .9D .127.若函数f (x )唯一零点同时在(0,4),(0,2),(1,2),3(1,)2内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f 3()28.通过下列函数的图象,判断能用“二分法”求其零点的是( )A .B .C. D .二、多选题9.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:则方程ln 260x x +-=的近似解(精确度0.1)可取为A .2.52B .2.56C .2.66D .2.75三、填空题10.若函数()0y kx b k =+≠有一个零点是2,则函数2y bx kx =+的零点是______.11.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()2e 1xg x =+,()ln h x x =和()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为_______.12.已知函数()226xf x x =+-的零点为0x ,不等式04x x ->的最小整数解为k ,则k =______.13.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时()4f x x =,则方程1()=01f x x +-在[]2,4-上的所有根之和为____.四、解答题14.已知A 地到B 地的电话线路发生故障(假设线路只有一处发生故障),这是一条10km 长的线路,每隔50m 有一根电线杆,如何迅速查出故障所在(精确到50m )?15.已知函数()2283f x x x m =-++为R 上的连续函数.(1)若函数()f x 在区间[]1,1-上存在零点,求实数m 的取值范围.(2)若4m =-,判断()f x 在()1,1-上是否存在零点?若存在,请在误差不超过0.1的条件下,用二分法求出这个零点所在的区间;若不存在,请说明理由. 16.设函数32()613123g x x x x =----.(1)证明:()g x 在区间(-1,0)内有一个零点;(2)借助计算器,求出()g x 在区间(-1,0)内零点的近似解.(精确到0.1) 17.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.参考答案与解析1.A【分析】根据函数f (x )=ax +b 有一个零点是2,得到b =-2a ,再令g (x )=0求解. 【详解】因为函数f (x )=ax +b 有一个零点是2 所以b =-2a所以g (x )=-2ax 2-ax =-a (2x 2+x ). 令g (x )=0,得x 1=0,x 2=-12. 故选:A 2.D【分析】根据零点存在性定理及函数的单调性判断即可.【详解】解:因为()f x 在区间[],a b 上连续的单调函数,且()()0f a f b ⋅<所以函数()f x 的图象在[],a b 内与x 轴只有一个交点,即方程()0f x =在[],a b 内只有一个实根. 故选:D 3.C【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果.【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数2yx 和2log 6y x =+在()0,∞+上都是增函数当()1,2x ∈时,则2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,则22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,则222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立又22(2.5) 2.5log 2.560f =--< 2(3)9log 360f =-->根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C.【点睛】方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 4.C【分析】先判断函数()f x 的单调性,再根据已知条件确定方程的解所在的区间即可. 【详解】函数()26x f x e x =+-在R 上为增函数又(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,, 则方程的解所在的区间为()1.251.5,. 故选:C.【点睛】本题主要考查了利用二分法求方程的解所在的区间问题.属于较易题. 5.B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<- ()23ln 3ln 31031f =-=->- 所以()()230f f <所以函数的零点所在的区间是()2,3. 故选:B 6.A【分析】由换底公式对原式变型即可求解.【详解】∵2369lg3lg lg 6log 3log log 6lg 2lg36lg9m m ⨯⨯=⨯⨯ 2lg3lg lg 6lg 11log lg 22lg 62lg34lg 242m m m =⨯⨯=== ∴2log 2m =,∴4m =. 故选:A . 7.C【分析】根据零点存在定理判断,注意零点的唯一性.【详解】由题意()f x 的唯一零点在3(1,)2上,因此(1)f 与(0)f 符号相同,3()2f ,(2)f 和(4)f 符号相同且与(0)f 符号相反故选:C . 8.C【解析】利用二分法的定义依次判断选项即可得到答案. 【详解】在A 中,函数无零点,故排除A在B 和D 中,函数有零点,但它们在零点左右的函数值符号相同 因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点. 故选:C【点睛】本题主要考查二分法的定义,同时考查学生分析问题的能力,属于简单题. 9.AB【分析】根据表格中函数值在0的左右两侧,最接近的值,即()2.50.084f ≈-,()2.56250.066f ≈可知近似根在()2.5,2.5625之内,再在四个选项中进行选择,得到答案.【详解】由表格函数值在0的左右两侧,最接近的值,即()2.50.084f ≈- ()2.56250.066f ≈ 可知方程ln 260x x +-=的近似根在()2.5,2.5625内 因此选项A 中2.52符合,选项B 中2.56也符合 故选AB .【点睛】本题考查利用二分法求函数零点所在的区间,求函数零点的近似解,属于简单题.10.0或12【分析】先求得,k b 的关系式,然后求得函数2y bx kx =+的零点. 【详解】由于函数()0y kx b k =+≠有一个零点是2 所以20k b += 2b k =-所以()22221y bx kx kx kx kx x =+=-+=--由于0k ≠,所以()2100kx x x --=⇒=或12x =. 故答案为:0或12 11.c b a >>【分析】先根据函数的新定义分别求出a ,b ,c ,然后再比较大小【详解】由()2e 1x g x =+,得()22e xg x '=所以由题意得22e 12e a a +=,解得0a = 由()ln h x x =,得()1h x x'= 所以由题意得1ln b b=令1()ln t x x x=-,(0x >),则211()0t x x x '=+>所以()t x 在(0,)+∞上递增因为(1)10t =-< ()1212ln 2ln 202t lne =-=->所以存在0(1,2)x ∈,使0()0t x =,所以(1,2)b ∈由()31x x ϕ=-,得()23x x ϕ'=所以由题意得3213c c -=令32()31m x x x =--,则2()36m x x x '=- 令()0m x '=,则0x =或2x =当0x <或2x >时()0m x '>,当02x << ()0m x '< 所以()m x 在(,0)-∞和()2,+∞上递增,在()0,2上递减所以()m x 的极大值为(0)1m =-,极小值为()283415m =-⨯-=-因为(3)2727110m =--=-< (4)64121510m =--=> 所以()m x 存在唯一零点0(3,4)x ∈,所以(3,4)c ∈ 所以c b a >> 故答案为:c b a >> 12.6【分析】利用()f x 单调性和零点存在定理可知012x <<,由此确定04x +的范围,进而得到k .【详解】函数()226xf x x =+-为R 上的增函数,()120f =-< ()220f =>∴函数()226x f x x =+-的零点0x 满足012x << 0546x ∴<+<04x x ∴->的最小整数解6k =. 故答案为:6. 13.6【分析】由奇函数()f x 满足(1)()f x f x +=-,可知函数的周期性与对称性,作出函数图象,判断函数()f x 与函数11y x =--的交点情况. 【详解】因为函数()f x 满足(1)()f x f x +=-,所以函数()f x 的对称轴为直线12x = 又因为函数()f x 为奇函数,所以()()f x f x =--又(1)()f x f x +=-,所以(1)()f x f x +=-,所以函数()f x 的周期为2又因为当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,作出函数()f x 和()11y g x x ==--的简图如图所示由411y x y x =⎧⎪⎨=-⎪-⎩可得122x y ⎧=⎪⎨⎪=⎩故当102x ≤≤时,线段4y x =与曲线11y x =--仅有一个交点 故由图可知,有6个交点,这6个交点是关于点()1,0对称的,且关于点()1,0对称的两个点的横坐标之和为2则所有根之和为326⨯=. 故答案为:6. 14.见解析【解析】利用二分法取线段的中点即可迅速查出故障所在. 【详解】如图:可首先从中点C 开始检查,若AC 段正常,则故障在BC 段; 再到BC 段中点D 检查,若CD 段正常,则故障在BD 段;再到BD 段中点E 检查……每检查一次就可以将待查的线路长度缩短一半 经过8次查找,可将故障范围缩小到50m 之内,即可迅速找到故障所在. 【点睛】本题考查了二分法在生活中的应用,理解二分法的定义,属于基础题. 15.(1)[]13,3-; (2)存在,区间为1,08⎛⎫- ⎪⎝⎭.【分析】(1)根据()2283f x x x m =-++,结合二次函数的图象与性质,可知()f x 在区间[]1,1-上单调递减,结合条件()f x 在区间[]1,1-上存在零点,则有()()1010f f ⎧-≥⎪⎨≤⎪⎩,解不等式组即可求出实数m 的取值范围;(2)当4m =-时,得()2281f x x x =--,可知()f x 在区间()1,1-上单调递减,并求得()()110f f -⋅<,根据零点存在性定理可知()f x 在()1,1-上存在唯一零点0x ,最后利用二分法和零点存在性定理,求出在误差不超过0.1的条件下的零点所在的区间. (1) 解:()2283f x x x m =-++为二次函数,开口向上,对称轴为2x =可知函数()f x 在区间[]1,1-上单调递减∵()f x 在区间[]1,1-上存在零点,∴()()1010f f ⎧-≥⎪⎨≤⎪⎩即28302830m m +++≥⎧⎨-++≤⎩,解得:133m -≤≤∴实数m 的取值范围是[]13,3-. (2)解:当4m =-时,()2281f x x x =--为二次函数,开口向上,对称轴为2x =所以()f x 在区间()1,1-上单调递减()19f ∴-=,()17f =-则()()110f f -⋅<∴函数()f x 在()1,1-上存在唯一零点0x 又()f x 为R 上的连续函数∵()010f =-<,∴()()100f f -⋅<,∴()01,0x ∈- ∵17022f ⎛⎫-=> ⎪⎝⎭,∴()1002f f ⎛⎫-⋅< ⎪⎝⎭,∴01,02x ⎛⎫∈- ⎪⎝⎭ ∵19048f ⎛⎫-=> ⎪⎝⎭,∴()1004f f ⎛⎫-⋅< ⎪⎝⎭,∴01,04x ⎛⎫∈- ⎪⎝⎭∵110832f ⎛⎫-=> ⎪⎝⎭,∴()1008f f ⎛⎫-⋅< ⎪⎝⎭,∴01,08x ⎛⎫∈- ⎪⎝⎭此时误差为10.1610218-=<-,即满足误差不超过0.1 ∴零点所在的区间为1,08⎛⎫- ⎪⎝⎭.16.(1)证明见解析;(2)0.4-.【分析】(1)令32()6131230g x x x x =----=,转化为函数()()326,13123h x x r x x x =-=++的交点问题,利用数形结合法证明;(2)利用函数零点存在定理,根据(1)的建立求解. 【详解】(1)令32()6131230g x x x x =----= 则32613123x x x -=++令()()326,13123h x x r x x x =-=++在同一坐标系中作出函数()(),h x r x 的图象,如图所示:因为()()()()11,00h r h r ><,即(1)0,(0)0g g ->< 所以()g x 在区间(-1,0)内有零点再由图象知()g x 在区间(-1,0)内有一个零点.(2)由()0(0.5)00.5,0(0)30g x g ->⎧⇒∈-⎨=-<⎩; 由()0(0.25)00.5,0.25(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.375)00.5,0.375(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.4375)00.4375,0.375(0.375)0g x g ->⎧⇒∈--⎨-<⎩ 所以00.4x ≈-. 17.3,2⎛⎫+∞ ⎪⎝⎭【分析】求出导函数()e 2xf x m '=-,由题意,原问题等价于2e 3x m =+有解,从而即可求解.【详解】解:函数()f x 的导数()e 2xf x m '=-由题意,若曲线C 存在与直线13y x =垂直的切线,则()1e 213x m -=-,即2e 3x m =+有解第 11 页 共 11 页 又因为e 33x +>,所以23m >,即32m >所以实数m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.。

新人教版高中数学必修一《集合间的基本关系》同步练习(含答案)

新人教版高中数学必修一《集合间的基本关系》同步练习(含答案)

集合间的基本关系1.下列说法:①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅⊂≠A ,则A ≠∅, 其中正确的个数是( )¥A .0B .1C .2D .32.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值 是( ) A .1 B .-1 C .0,1 D .-1,0,1 3.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A,4.下列五个写法:①{0}∈{0,1};②∅⊂≠{0};③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0},其中写法错误的个数是( )A .2B .3C .4D .5 5.}0352|{2=--=x x x M ,}1|{==mx x N ,若M N ≠⊂,则m 的取值集合为( )A.{2}-B.13⎧⎫⎨⎬⎩⎭ C.12,3⎧⎫-⎨⎬⎩⎭D.12,0,3⎧⎫-⎨⎬⎩⎭6. 满足{1,2,3}{1,2,3,4,5,6}M ⊂⊂≠≠的集合的个数为( )》二、填空题(本大题共3小题,每小题6分,共18分) 7.满足{1}A {1,2,3}的集合A 的个数是________.8.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、 B 、C之间的关系是________.9.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.三、解答题(本大题共3小题,共46分)`10.(14分)下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,分别是哪种图形的集合*11.(15分)已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.~12.(17分)设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求a的值[一、选择题解析:空集只有一个子集,就是它本身,空集是任何非空集合的真子集,故仅④是正确的.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈)仅有一个根或两个相等的根.(1)当a =0时,方程为2x =0,此时A ={0},符合题意. (2)当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1, ∴a =±1. ;此时A ={-1}或A ={1},符合题意. ∴a =0或a =±1.3. D 解析:∵B 的子集为{1},{2},{1,2},,∴A ={x |x ⊆B }={{1},{2},{1,2},},∴B ∈A . 4. B 解析:只有②③正确.5. D 解析: 1{,3},2M =-(1)0,N m =∅⇒=(2)1{}2,2N m =-⇒=-(3)1{3},3N m =⇒=∴ 的取值集合为12,0,.3⎧⎫-⎨⎬⎩⎭~6. B 解析:集合M 真包含集合}3,2,1{,M 中一定有元素1,2,3且除此之外至少还有一个元素. 又集合M 真包含于集合}6,5,4,3,2,1{,所以M 中最少有4个元素,最多有5个元素,集合M 的个数等于集合}6,5,4{非空真子集的个数,即6223=-. 二、填空题7. 3 解析:A 中一定有元素1,所以A 可以为{1,2},{1,3},{1,2,3}. 8. AB =C 解析:用列举法寻找规律.9. 1 解析:∵BA ,∴m 2=2m -1,即(m -1)2=0,∴ m =1.当m =1时,A ={-1,3,1},B ={3,1},满足BA . 三、解答题10.解:观察Venn 图,得B 、C 、D 、E 均是A 的子集,且有E D ,D C .#梯形、平行四边形、菱形、正方形都是四边形, 故A ={四边形};梯形不是平行四边形,而菱形、正方形是平行四边形, 故B ={梯形},C ={平行四边形};正方形是菱形,故D ={菱形},E ={正方形}.11.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =,则m +1>2m -1,即m <2,此时满足B ⊆A .,②若B ≠,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈,即不存在m 值使得A =B .12.解:(方法一) A ={x |x 2-5x +6=0}={2,3}, 由B ⊆A ,得B =,或B ={2},或B ={3},或B ={2,3}. 因为Δ=(2a +1)2-4a 2-4a =1>0, 所以B 必有两个元素.则B ={2,3},需2a +1=5和a 2+a =6同时成立,所以a =2. 综上所述:a =2.(方法二) A ={x |x 2-5x +6=0}={2,3},B ={x |x 2-(2a +1)x +a 2+a =0}={x |(x -a )(x -a -1)=0}={a ,a +1}, 因为a ≠a +1,所以当B ⊆A 时,只有a =2且a +1=3.所以a =2。

人教版高一数学必修一-第一章练习题与答案汇编

人教版高一数学必修一-第一章练习题与答案汇编

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B. 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a M N A M N B N M C M N D=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修1练习题集第一章、集合与函数概念 集合的含义与表示 例1. 用符号∈和∉填空。

⑴ 设集合A 是正整数的集合,则0_______A ,2________A ,()01- ______A ; ⑵ 设集合B 是小于11的所有实数的集合,则23______B ,1+2______B ;⑶ 设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度_____A ,英国____A例 2. 判断下列说法是否正确,并说明理由。

⑴ 某个单位里的年轻人组成一个集合;⑵ 1,23,46,21-,21这些数组成的集合有五个元素; ⑶ 由a ,b ,c 组成的集合与b ,a ,c 组成的集合是同一个集合。

例3. 用列举法表示下列集合:⑴ 小于10的所有自然数组成的集合A ;⑵ 方程x 2= x 的所有实根组成的集合B ;⑶ 由1~20中的所有质数组成的集合C 。

例4. 用列举法和描述法表示方程组⎩⎨⎧-=-=+11y x y x 的解集。

典型例题精析题型一 集合中元素的确定性例 1. 下列各组对象:① 接近于0的数的全体;② 比较小的正整数全体;③ 平面上到点O 的距离等于1的点的全体;④ 正三角形的全体;⑤ 2的近似值得全体,其中能构成集合的组数是( ) A. 2 B. 3 C. 4 D. 5题型二 集合中元素的互异性与无序性例 2. 已知x 2∈{1,0,x },求实数x 的值。

题型三 元素与集合的关系问题1. 判断某个元素是否在集合内例3.设集合A={x ∣x =2k , k ∈Z},B={x ∣x =2k + 1, k ∈Z}。

若a ∈A ,b ∈B ,试判断a + b 与A ,B 的关系。

2. 求集合中的元素例4. 数集A 满足条件,若a ∈A ,则aa -+11∈A ,(a ≠ 1),若31∈A ,求集合中的其他元素。

3. 利用元素个数求参数取值问题例5. 已知集合A={ x ∣ax 2+ 2x + 1=0, a ∈R },⑴ 若A 中只有一个元素,求a 的取值。

⑵ 若A 中至多有一个元素,求a 的取值范围。

题型四 列举法表示集合例6. 用列举法表示下列集合⑴ A={x ∣x ≤2,x ∈Z};⑵ B={ x ∣()21-x ()2-x = 0} ⑶ M={()y x , x+ y= 4,x ∈N *,y ∈N *}.题型五 描述法表示集合例7. ⑴ 已知集合M={ x ∈N ∣x +16∈Z},求M ; ⑵ 已知集合C={x+16∈Z ∣x ∈N},求C.例8. 用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。

例9. 已知集合A={a + 2,(a + 1)2,a2+ 3a + 3},若1∈A,求实数a的值。

例10. 集合M的元素为自然数,且满足:如果x∈M,则8 - x∈M,试回答下列问题:⑴写出只有一个元素的集合M;⑵写出元素个数为2的所有集合M;⑶满足题设条件的集合M共有多少个?创新、拓展、实践1、实际应用题例11. 一个笔记本的价格是2元,一本教辅书的价格是5元,小明拿9元钱到商店,如果他可以把钱花光,也可以只买一种商品,请你将小明购买商品的所有情况一一列举出来,并用集合表示。

2、信息迁移题例12. 已知A={1,2,3},B={2,4},定义集合A、B间的运算A*B={x∣x∈A且x∉B},则集合A*B等于()A. {1,2,3}B. {2,4}C. {1,3}D. {2}3、开放探究题例13. 非空集合G 关于运算⊕满足:⑴ 对任意a 、b ∈G ,都有a ⊕b ∈G ;⑵ 存在e ∈G ,使得对一切a ∈G ,都有a ⊕e = e ⊕a = a ,则称G 关于运算⊕为“融洽集”。

现给出下列集合与运算:① G={非负整数},⊕为整数的加法。

② G={偶数},⊕为整数的乘法。

③ G={二次三项式},⊕为多项式的加法。

其中G 关于运算⊕为“融洽集”的是__________。

(写出所有“融洽集”的序号) 例14. 已知集合A={0,1,2,3,a},当x ∈A 时,若x - 1∉A ,则称x 为A 的一个“孤立”元素,现已知A 中有一个“孤立”元素,是写出符合题意的a 值_______(若有多个a 值,则只写出其中的一个即可)。

例15. 数集A 满足条件;若a ∈A ,则a-11∈A (a ≠1)。

⑴ 若2∈A ,试求出A 中其他所有元素;⑵ 自己设计一个数属于A ,然后求出A 中其他所有元素;⑶ 从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”。

高考中出现的题例1. (2008·江西高考)定义集合运算:A *B={z ∣z = xy ,x ∈A ,y ∈B}。

设A={1,2},B={0,2},则集合A *B 的所有元素之和为( )A. 0B. 2C. 3D. 6例2. (2007·北京模拟)已知集合A={a 1,a 2,…,a k }(k ≥2),其中a i ∈Z (i =1,2,…,k ),由A 中的元素构成两个相应的集合:S={(a ,b )∣a ∈A ,b ∈A ,a + b ∈A};T={(a ,b)∣a ∈A ,b ∈A ,a - b ∈A },其中(a ,b )是有序数对。

若对于任意的a ∈A ,总有- aA ∉A ,则称集合A 具有性质P 。

试检验集合{0,1,2,3}与{-1,2,3}是否具有性质P ,并对其中具有性质P 的集合,写出相应的集合S 和T 。

集合间的基本关系例1 用Venn 图表示下列集合之间的关系:A={x ∣x 是平行四边形},B={ x ∣x 是菱形},C={ x ∣x 是矩形},D={ x ∣x 是正方形}。

例2 设集合A={1,3,a},B={1,a 2- a + 1},且A ⊇B ,求a 的值例3 已知集合A={x ,xy ,x - y},集合B={0,x ,y},若A=B ,求实数x ,y 的值。

例4 写出集合{a 、b 、c}的所有子集,并指出其中哪些是真子集,哪些是非空真子集。

例5 判断下列关系是否正确:(1)0∈{0};(2)∈∅{0};(3)=∅{0};(4)题型一 判断集合间的关系问题例1 下列各式中,正确的个数是( )(1) {0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)⊆∅{0,1,2};(4)=∅{0};(5){0,1}={(0,1)};(6)0={0}。

A. 1B. 2C. 3D. 4题型二确定集合的个数问题例2 已知{1,2}⊆M⊆{1,2,3,4,5},则这样的集合M有__________个。

题型三利用集合间的关系求字母参数问题例3 已知集合A={x︱1<ax<2},B={x∣x<1},求满足A⊆B的实数a的范围。

例4 设集合A={x∣x2+ 4x=0,x∈R},B={x∣x2+ 2(a + 1)x + a2- 1=0,x∈R },若B⊆A,求实数a的值。

一、数形结合思想:1. 用Venn图解题例5 设集合A={x︱x是菱形},B={x︱x是平行四边形},C={x︱x是正方形},指出A、B、C之间的关系。

例6 (2. 用数轴解题)已知A={x︱x<-1或x>5},B={x∈R︱a<x<a + 4},若A⊇B,求实数a的取值范围。

二、分类讨论思想例7 已知集合A={a,a + b,a + 2b},B={a,ac,ac2},若A=B,求c的值。

创新、拓展、实践1. 数学与生活例8 写出集合{农夫,狼,羊}的所有子集,由此设计一个方案:农夫把狼、羊、菜从河的一岸送到另一岸,农夫每次乘船只能运送一样东西,并且农夫不在场的情况下,狼和羊不能在一起,羊和菜不能在一起。

2. 开放探究题x-= 4},集合B={1,2,b}.例9 已知集合A={x∣a(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出对应的a值,若不存在,说明理由。

(2)若A⊆B成立,求出对应的实数对(a,b)高考要点阐释例1 (山东模拟)设a 、b ∈R ,集合{1,a + b ,a }={0,ab ,b},则b – a =( ) (请写出解题过程)A. 1B. -1C. 2D. -2例 2 (湖北模拟)已知集合A={-1,3,2m -1},集合B={3,m 2},若B ⊆A ,则实数m=___________.例3 (2008·福建高考)设P 是一个数集,且至少含有两个数,若任意a 、b ∈P ,都有a + b 、a b 、ba ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域;数集F={a +b 2∣a 、b ∈Q}也是数域。

有下列命题:①整数集是数域;②若有理数Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域。

其中正确的命题的序号是__________.(把你认为正确的命题的序号都填上)<名师专家专辑1·空集>1. 空集的概念及性质例1 在(1){0};(2){∅};(3){x∣3m<x <m};(4){x∣a + 2<x <a};(5){x∣x 2+1=0,x ∈R}中表示空集的是__________.2. 空集性质的应用例2 已知集合A={x∣x >0,x ∈R},B={x∣x 2- x + p=0},且B ⊆A ,求实数p 的范围。

例3 已知A={x∣x 2- 3x + 2=0},B={x∣ax - 2=0},且B ⊆A ,求实数a 组成的集合C.集合的基本运算例1 设集合A={x ︱-1<x <2},集合B={ x ︱1<x ≤3 },求A B.例2 A={ x ︱-1<x ≤4},B={ x ︱2<x ≤5},求A B.例3 若A 、B 、C 为三个集合,A B = B C ,则一定有( )B. C ⊆AC. A≠CD. A = ∅ A. A ⊆C的解为A ,U=R ,试求A 及C U A ,并把它们分别表示在 例 4 不等式组数轴上。

题型一 基本概念例1 设集合A={(x ,y )∣a 1x + b 1y + c 1= 0},B={(x ,y )∣a 2x + b 2y + c 2= 0},则方程组⎩⎨⎧=++=++0,0222111c y b x a c y b x a 的解集是__________;方程(a 1x + b 1y + c 1)(a 2x + b 2y +c 2)= 0的解集是__________.题型二 集合的并集运算例2 若集合A={1,3,x},B={1,x 2},A B ={1,3,x},则满足条件的实数有( )A. 1个B. 2个C. 3个D. 4个题型三 集合的交集运算例3 若集合A={x∣x2- ax + a2- 19 = 0},B={x∣x2- 5x + 6 = 0},C={x∣x2+ 2x∅(A B)与A C=∅同时成立。

相关文档
最新文档