金属有机化学第六章
有机化学第六章烯烃
CH3
CH2CH3
CC
H
H
顺-2-戊烯
H
CH2CH3
CC
CH3
H
反-2-戊烯
Z式:双键碳原子上两个较优基团或原子处于双键同侧。
E式:双键碳原子上两个较优基团或原子处于双键异侧。
(优)CH3 C
H
CH2CH3(优)
CH3
C
C
CH3
(优)CH3CH2
CH(CH3)2(优) C
CH2CH2CH3
(Z)- 3-甲基-2-戊烯 (E)- 3-甲基-4-异丙基-3-庚烯
68% 17%
Br + C6H5CH CHCH3
-Br 环正离子
C6H5CH=CHCH3 Cl2
+ Cl C6H5CH CHCH3 Cl-
*
碳正离子
Cl- Cl
+
C6H5CH CHCH3
离子对
一般情况,加溴通过环正离子中间体 进行。
加氯通过环正离子中间体、碳正离子 或离子对进行。
立体选择性反应(stereoselective reaction)
0.33 0 /10-30 c.m 4oC -138.9oC
反式异构体对称性较高,熔点高于顺式异构体。 顺式异构体极性较强,沸点高于反式异构体。
第五节 化学反应
(一)催化氢化 (二)亲电加成反应 (三)自由基加成反应 (四)硼氢化反应 (五)氧化反应 (六) -氢卤代反应 (七) 聚合反应
(一) 催化氢化
顺式烯烃
H
H
C C Br2
CH3
CH3
H
H
Br
CH3
a Br-
CH3 b
Br
有机化学b教学课件-第6章卤代烃金属有机化合物-课后更新
有机化学B第六章卤代烃基本内容和重点要求z卤代烃的结构特点、化学性质代结构特性z亲核取代反应的类型、机理及影响因素亲核取代反应的类型机理及影响因素z消除反应的类型、机理及影响因素z卤代烃与活泼金属的反应及应用重点要求掌握卤代烃的重要反应。
亲核取代反应、消除反应机理及影响因素。
概念及应用卤代烃可以看作是烃分子中一个或多个氢原卤代烃可以看作是烃分子中个或多个氢原子被卤原子取代后所生成的化合物。
应用:制冷剂、干洗剂、涂改液、不粘锅涂层、人造血液等。
卤代烃分类z烃基:饱和卤代烃、不饱和卤代烃和芳香卤代烃。
代烃z卤素数目:一卤、二卤、多卤代烃。
z卤素所连接的碳原子不同:一级、二级、三级卤代烃1.选择主链系统命名法中卤代烃与烷烃命名类似,将卤素视为取代基。
2.主链编号3取代基列出顺序写出名称3.取代基列出顺序、写出名称1375642137564224-45-2,4-二甲基-5-氯庚烷4,5-二甲基-2-溴庚烷顺-1-甲基-2-溴环己烷(1S, 2R)-1-甲基-2-溴环己烷(1S2R)12卤代烃的物理性质z除氯甲烷、氯乙烷、溴甲烷、氯乙烯、溴乙烯外,15个碳以下的卤代烃都是液体。
外15个碳以下的卤代烃都是液体z沸点:碘代烃>溴代烃>氯代烃(同种烷基) z密度:一氯代烃<水;溴代烃,碘代烃,多卤代烃>水溴代烃碘代烃多卤代烃z卤代烃无色,碘代烃常显棕红色,是因为碘代烷易分解生成游离的碘。
烯烃加卤化氢++ 烯烃加卤素烷烃卤代反应++ 醇的卤代反应HCl+乙醚,0 o C卤代烷的结构δ+δ−H 2.1F 4.0Li 1.0Be1.5B2.0C2.5N3.0O3.5Cl3.0Br2.8诱导效应I2.5卤代烷的反应H 具有酸性,可与X C −H:415KJ/mol X :离去基团δ基团同时离去,消除反应。
H: 415 KJ/mol C −C: 347 KJ/mol C −Cl: 326 KJ/mol δ+δ−C −Br: 285 KJ/mol C −I: 213 KJ/molαβ带正电荷,具有负电荷及孤对电子的分子进攻,亲核取代反应。
有机化学课后习题及答案(第六章)
有机化学课后习题及答案(第六章)6章思考题6.1 试解释实验中所遇到的下列问题:(1)(1)⾦属钠可⽤于除去苯中所含的痕量H2O,但不宜⽤于除去⼄醇中所含的⽔。
(2)(2)为什么制备Grignard试剂时⽤作溶剂的⼄醚不但需要除去⽔分,并且也必须除净⼄醇(⼄醇是制取⼄醚的原料,常参杂于产物⼄醚中)。
(3)(3)在使⽤LiAlH4的反应中,为什么不能⽤⼄醇或甲醇作溶剂?6.2 叔丁基醚[(CH3)3C]2O既不能⽤Williamson法也不能⽤H2SO4脱⽔法制得,为什么?6.3 苯酚与甲苯相⽐有以下两点不同的物理性质:(a)苯酚沸点⽐甲苯⾼;(b)苯酚在⽔中的溶解度较甲苯⼤。
你能解释其原因吗?6.4 解释下列现象(1)(1)从2-戊醇所制得的2-溴戊烷中总含有3-溴戊烷。
(2)(2)⽤HBr处理新戊醇(CH3)2C-CH2OH时只得到(CH3)2CBrCH2CH3。
解答6.1 答(1)⼄醇的活泼氢能与Na发⽣反应,苯与Na⽆反应。
(2)RMgX不仅是⼀种强的亲核试剂,同时⼜是⼀种强碱,可与醇羟基中的H结合,即RMgX可被具活性氢的物质所分解,如(3)LiAlH4既是⼀种强还原剂,⼜是⼀种强碱,它所提供H-与醇发⽣反应,如6.2叔丁基醚⽤H2SO4脱⽔法合成时,主要产⽣烯烃。
6.3 答甲苯和苯酚的相对分⼦质量相近,但是甲苯的沸点110.6℃,⽽苯酚的沸点181.8℃,这是由于苯酚可以形成分⼦间氢键;甲苯不溶于⽔,⽽苯酚易溶于⽔,是由于苯酚与⽔分⼦之间会形成氢键:6.4习题6.1⽐较下列各组化合物与卢卡斯试剂反应的相对速度:(1) 正戊醇, 2-甲基-2-戊醇, ⼆⼄基甲醇(2) 苄醇, 对甲基苄醇, 对硝基苄醇(3)(3)苄醇, α-苯基⼄醇, β-苯基⼄醇6.26.2区别下列各组化合物:(1) CH2=CHCH2OH, CH3CH2CH2OH , CH3CH2CH2Br, (CH3)2CHI(2) CH3CH(OH)CH3, CH3CH2CH2OH , C6H5OH , (CH3)3COH , C6H5OCH3(3) α-苯基⼄醇, β-苯基⼄醇, 对⼄基苯酚, 对甲氧基甲苯6.36.3写出下列各反应主要产物:6.4合成题:(1)(1)甲醇, 2-丁醇→ 2-甲基丁醇(2)(2)正丙醇, 异丙醇→ 2-甲基-2-戊醇(3)(3)甲醇, ⼄醇→正丙醇, 异丙醇(4)(4)2-甲基丙醇, 异丙醇→ 2,4-⼆甲基-2-戊烯(5)(5)丙烯→⽢油→三硝酸⽢油酯(6)(6)苯, ⼄烯, 丙烯→ 3-甲基-1-苯基-2-丁烯(7)(7)⼄醇→ 2-丁醇(8)(8)叔丁醇→ 3, 3-⼆甲基-1-丁醇(9)(9)⼄烯→三⼄醇胺(10)(10)丙烯→异丙醚(11)(11)苯, 甲醇→ 2,4-⼆硝基苯甲醚(12)(12)⼄烯→正丁醚(13)(13)苯→间苯三酚(14)(14)苯→对亚硝基苯酚(15)(15)苯→ 2,6-⼆氯苯酚(16)(16)苯→对苯醌⼆肟6.5某醇C5H12O氧化后⽣成酮,脱⽔则⽣成⼀种不饱和烃, 将此烃氧化可⽣成酮和羧酸两种产物的混合物, 试推测该醇的结构.6.6有⼀化合物(A)的分⼦式为C5H11Br, 和NaOH⽔溶液共热后⽣成C5H12O(B). B具有旋光性.能和钠作⽤放出氢⽓, 和浓硫酸共热⽣成C5H10(C). C经臭氧化和在还原剂存在下⽔解, 则⽣成丙酮和⼄醛. 试推测A, B, C的结构, 并写出各步反应式.6.7新戊醇在浓硫酸存在下加热可⽣成不饱和烃. 将这不饱和烃经臭氧化后, 在锌粉存在下⽔解, 可得到⼀种醛和⼀种酮. 试写出反应历程及各步反应产物的构造式.6.8分离下列各组化合物:(1)(1)⼄醚中混有少量⼄醇(2)(2)戊烷, 1-戊炔和1-甲氧基-3-戊醇6.9 下列各醚和过量的浓氢碘酸反应, 可⽣成何种产物?(1)(1)甲丁醚(2)(2)2-甲氧基⼰烷(3)(3)2-甲基-1-甲氧基戊烷6.10有⼀化合物的分⼦式为C6H14O, 常温下不与⾦属钠反应, 和过量的浓氢碘酸共热时⽣成碘烷, 此碘烷与氢氧化银作⽤则⽣成丙醇. 试推测此化合物的结构, 并写出反应式.6.11 有⼀化合物的分⼦式为C7H16O, 并且:(1)(1)在常温下它不和⾦属钠反应;(2)(2)它和过量浓氢碘酸共热时⽣成C2H5I和C5H11I . 后者与氢氧化银反应⽣成的化合物的沸点为138℃.试推测原化合物的结构, 并写出各步反应式.6.12有⼀化合物的分⼦式为C20H21O4N, 与热的浓氢碘酸反应可⽣成碘甲烷. 当此化合物4.24 mg与氢碘酸反应, 所⽣成的碘甲烷通⼈硝酸银的醇溶液, 得到11.62mg碘化银. 问此化合物含有⼏个甲氧基?6.13 写出环氧⼄烷与下列试剂反应的⽅程式:(1)(1)有少量硫酸存在下的甲醇(2)(2)有少量甲醇钠存在下的甲醇6.14 推测下列反应的机理。
有机化学第6章卤代烃12.概要
CH3CH2CH2CH2MgBr
Br + Mg THF THF MgBr 苯基溴化镁
四氢呋喃
Grignard Reagent在有机合成中应用非常广泛,是最
重要的有机金属化合物(金属原子直接与C原子连接的有 机物)之一。
R
R
O R Mg X O R R
以无水乙醚作溶剂,因为它可与格氏试剂形成路易 斯酸和路易斯碱的络合物而使格氏试剂稳定。
一般过渡态能量最高一步的反应的活化能最高反应的速率最小这一多步反应的整个反应的速率就取决于这最慢的一步即决定整个反应速率的一步叫作速率决定步骤ratedeterminingstep简rds在一个多步反应中每一步的反应速率是不同的有快bimolecularnucleophlicsubstitutionunimolecularnucleophilicsubstitution631双分子亲核取代反应s2p138bimolecularnucleophlicsubstitutionchhochbroh二级反应反应速率与溴甲烷及碱的浓度成正比
而把有Grignard试剂参与的反应,称为Grignard反应。
重点掌握
卤代烷与金属镁反应的活性顺序是:
> RF RI > RBr > RCl >
CH3CH2Br
+
RX > ArX
Mg
无水乙醚
CH3CH2MgBr 乙基溴化镁
Mg 无水乙醚
CH3CH2CH2CH2OH
HBr
CH3CH2CH2CH2Br
*卤代烷水解制醇较少应用。
2)醇解反应----被烷氧基取代 (-OR)
卤代烷与醇钠(或酚钠)作用, X 被 -OR取代, 生成醚。
R—X + NaOR’——> R—O—R’+ NaX
有机化学-第六章
按与烯烃加成的试剂不同,可把加成反应分成若 干类型进行研究。
一、催化加氢反应
烯烃与氢作用生成烷烃的反应称为加氢反应,又 称氢化反应。
加氢反应的活化能很大,即使在加热条件下也难 发生,而在催化剂的作用下反应能顺利进行,故 称催化加氢。
4.应用 用硼氢化、碱性氧化水解制备醇的另一优点是烯烃的碳 架不发生重排,这在有机合成中很有意义:
5.反应的特点 气体的硼烷和高挥发性的低碳烷基硼对空气极敏感,在 空气中自燃,硼氢化反应需在惰性气体保护下进行。 烯烃硼氢化反应是间接水合生成反马氏产物,是高区域 选择性、高立体选择性、不发生碳架重排的反应。烷基硼 对氧很敏感,遇氧燃烧,但对水很稳定,可以用水洗的方 法纯化烷基硼。
3.质子酸酸性的影响
酸性越强加成反应越快,卤化氢与烯烃加成反应 的活性: HI > HBr > HCl
酸是弱酸如H2O和ROH,则需要强酸做催化剂,如
四、加次卤酸反应
烯烃与卤素的水溶液反应生成β-卤代醇。例:
丙烯与氯的水溶液反应,生成1-氯代-2-丙醇, 又称β-氯醇。后者脱HCl,是工业上制备环氧丙 烷的方法。
写成通式:
三、烯烃与质子酸反应的立体化学——碳原子 的构型
在前面讨论了烯烃与溴的加成反应中,讨论了C原 子的构型,在烯烃与质子酸加成反应中,C原反应得到的活泼中间体及产物的 构型。
烯烃的硼氢化反应
一、硼氢化反应
烯烃与硼烷加成反应生成烷基硼的反应称为烯烃的硼氢 化反应。 这个反应是美国化学家布朗发现的,因此布朗获1979年 Noble化学奖。最简单的硼烷应是甲硼烷(BH3),但硼和 铝一样是缺电子的,甲硼烷很不稳定,两个甲硼烷结合生 成乙硼烷:
有机化学第06章 芳烃
第六章芳烃在有机化学发展初期,曾把从天然树脂、香精油中得到的一类性质上和脂肪族化合物明显不同,具有高度的不饱和性(C/H高),且具有特殊的稳定性和芳香气味的有机化合物称为芳香族化合物,仅由碳氢两种元素组成的芳香族化合物称为芳香烃,简称芳烃。
因当时发现的这些芳香族化合物经递降后最终得到苯,故人们把苯及其衍生物称为芳香族化合物。
随着有机化学的不断发展,又发现了一些非苯构造的环状烃,它们与苯及其衍生物的性质相似,成环原子间的键长也趋于平均化,性质上表现为易发生取代反应,不易发生加成反应,不易被氧化,它们的质子与苯的质子相似,在核磁共振谱中显示相似的化学位移。
这些特性统称为芳香性。
后经研究发现,具有芳香性的化合物在结构上都符合休克尔规则。
所以近代有机化学把结构上符合休克尔规则,性质上具有芳香性的化合物称为芳香族化合物。
芳烃不一定具有“香”味。
根据是否含有以及所含苯环的数目和联结方式不同,芳烃又可分为如下三类:(1)单环芳烃:分子中只含有一个苯环结构,如苯、甲苯、苯乙烯等。
CH3CH CH2(2)多环芳烃:分子中含有两个或两个以上的苯环结构,如联苯、萘、蒽等。
(3)非苯芳烃:分子中不含苯环结构,但含有结构和性质与苯环相似的芳环,并具有芳香族化合物的共同特性。
如环戊二烯负离子,环庚三烯正离子等。
+(一) 单环芳烃最简单的单环芳烃是苯,其分子式为C6H6。
现代物理方法测得苯的结构为:苯分子的六个碳原子和六个氢原子都在同一平面上,六个碳原子构成正六边形,C-C键长0.140nm,C-H 键长为0.108nm,键角∠CCH及∠CCC均为120º。
(缺图)图6-1 苯分子环状结构及π电子云分布图(1)价键理论对苯结构的处理杂化轨道理论认为苯环中碳原子为sp2杂化状态,三个sp2杂化轨道分别与另外两个碳原子的sp2杂化轨道形成C-Cσ键以及与一个氢原子的s轨道形成C-Hσ键,而没有杂化的p轨道互相平行且垂直于σ键所在平面,它们侧面互相重叠形成闭合大π键(图6-1)共扼体系。
有机化学上第六章-立体化学
第三十四页,共63页。
注意
• 外消旋体与内消旋体都没有旋光性,但 它们有本质的不同:
• 外消旋体是等量左旋体和右旋体的混合 物,可拆分;
• 内消旋体是分子内有对称面的单一化合 物,不可拆分。
第三十五页,共63页。
(六) 手性中心的产生
• 〔2〕判断分子中有无对称面和对称中心 在立体化学中有重要意义。
第九页,共63页。
(三) 手性分子的性质——光学活性
光学活性:手性分子可以使平面偏振光发生偏转的性质〔旋光性〕
(1) 偏振光
• 光是一种电磁波,光波的振动方向与其前进方向垂直。
• 普通光在所有垂直于其前进方向的平面上振动。
• 偏振光——只在一个平面上振动。
手性中心的产生与手性合成有密切关系。
(1) 第一个手性中心的产生 (自学)
产 生 第 一 手 性 碳
CH3CH2CH2CH3 Cl2
CH3*CHCH2CH3 +其 他 产 物 Cl
前 手 性 碳
外 消 旋 体
当产生第一个手性中心时,两个氢原子被取代的概率
均等,生成的对映体的量相等,产物没有旋光性,是一 个外消旋体。即从非手性反响物合成手性产物时常得到 外消旋体。
HO CH3 赤式
前后
H
H3C
Cl
HO
CH3
H
赤式 前后
前后碳旋转方向不同
前后碳旋转方向相同
“苏式〞、“赤式〞的概念在研究有机反响的立体化 学关系和反响机理时常会遇到。
第三十三页,共63页。
(2) 具有两个相同手性碳原子的对映异构
酒石酸分子中含有2个*C,可能的异构体有:
有机化学课后习题及答案(第六章)
6章思考题6.1 试解释实验中所遇到的下列问题:(1)(1)金属钠可用于除去苯中所含的痕量H2O,但不宜用于除去乙醇中所含的水。
(2)(2)为什么制备Grignard试剂时用作溶剂的乙醚不但需要除去水分,并且也必须除净乙醇(乙醇是制取乙醚的原料,常参杂于产物乙醚中)。
(3)(3)在使用LiAlH4的反应中,为什么不能用乙醇或甲醇作溶剂?6.2 叔丁基醚[(CH3)3C]2O既不能用Williamson法也不能用H2SO4脱水法制得,为什么?6.3 苯酚与甲苯相比有以下两点不同的物理性质:(a)苯酚沸点比甲苯高;(b)苯酚在水中的溶解度较甲苯大。
你能解释其原因吗?6.4 解释下列现象(1)(1)从2-戊醇所制得的2-溴戊烷中总含有3-溴戊烷。
(2)(2)用HBr处理新戊醇(CH3)2C-CH2OH时只得到(CH3)2CBrCH2CH3。
解答6.1 答(1)乙醇的活泼氢能与Na发生反应,苯与Na无反应。
(2)RMgX不仅是一种强的亲核试剂,同时又是一种强碱,可与醇羟基中的H结合,即RMgX可被具活性氢的物质所分解,如(3)LiAlH4既是一种强还原剂,又是一种强碱,它所提供H-与醇发生反应,如6.2叔丁基醚用H2SO4脱水法合成时,主要产生烯烃。
6.3 答甲苯和苯酚的相对分子质量相近,但是甲苯的沸点110.6℃,而苯酚的沸点181.8℃,这是由于苯酚可以形成分子间氢键;甲苯不溶于水,而苯酚易溶于水,是由于苯酚与水分子之间会形成氢键:6.4习题6.1比较下列各组化合物与卢卡斯试剂反应的相对速度:(1) 正戊醇, 2-甲基-2-戊醇, 二乙基甲醇(2) 苄醇, 对甲基苄醇, 对硝基苄醇(3)(3)苄醇, α-苯基乙醇, β-苯基乙醇6.26.2区别下列各组化合物:(1) CH2=CHCH2OH, CH3CH2CH2OH , CH3CH2CH2Br, (CH3)2CHI(2) CH3CH(OH)CH3, CH3CH2CH2OH , C6H5OH , (CH3)3COH , C6H5OCH3(3) α-苯基乙醇, β-苯基乙醇, 对乙基苯酚, 对甲氧基甲苯6.36.3写出下列各反应主要产物:6.4合成题:(1)(1)甲醇, 2-丁醇→ 2-甲基丁醇(2)(2)正丙醇, 异丙醇→ 2-甲基-2-戊醇(3)(3)甲醇, 乙醇→正丙醇, 异丙醇(4)(4)2-甲基丙醇, 异丙醇→ 2,4-二甲基-2-戊烯(5)(5)丙烯→ 甘油→ 三硝酸甘油酯(6)(6)苯, 乙烯, 丙烯→ 3-甲基-1-苯基-2-丁烯(7)(7)乙醇→ 2-丁醇(8)(8)叔丁醇→ 3, 3-二甲基-1-丁醇(9)(9)乙烯→ 三乙醇胺(10)(10)丙烯→ 异丙醚(11)(11)苯, 甲醇→ 2,4-二硝基苯甲醚(12)(12)乙烯→ 正丁醚(13)(13)苯→ 间苯三酚(14)(14)苯→ 对亚硝基苯酚(15)(15)苯→ 2,6-二氯苯酚(16)(16)苯→ 对苯醌二肟6.5某醇C5H12O氧化后生成酮,脱水则生成一种不饱和烃, 将此烃氧化可生成酮和羧酸两种产物的混合物, 试推测该醇的结构.6.6有一化合物(A)的分子式为C5H11Br, 和NaOH水溶液共热后生成C5H12O(B). B具有旋光性.能和钠作用放出氢气, 和浓硫酸共热生成C5H10(C). C经臭氧化和在还原剂存在下水解, 则生成丙酮和乙醛. 试推测A, B, C的结构, 并写出各步反应式.6.7新戊醇在浓硫酸存在下加热可生成不饱和烃. 将这不饱和烃经臭氧化后, 在锌粉存在下水解, 可得到一种醛和一种酮. 试写出反应历程及各步反应产物的构造式.6.8分离下列各组化合物:(1)(1)乙醚中混有少量乙醇(2)(2)戊烷, 1-戊炔和1-甲氧基-3-戊醇6.9 下列各醚和过量的浓氢碘酸反应, 可生成何种产物?(1)(1)甲丁醚(2)(2)2-甲氧基己烷(3)(3)2-甲基-1-甲氧基戊烷6.10有一化合物的分子式为C6H14O, 常温下不与金属钠反应, 和过量的浓氢碘酸共热时生成碘烷, 此碘烷与氢氧化银作用则生成丙醇. 试推测此化合物的结构, 并写出反应式.6.11 有一化合物的分子式为C7H16O, 并且:(1)(1)在常温下它不和金属钠反应;(2)(2)它和过量浓氢碘酸共热时生成C2H5I和C5H11I . 后者与氢氧化银反应生成的化合物的沸点为138℃.试推测原化合物的结构, 并写出各步反应式.6.12有一化合物的分子式为C20H21O4N, 与热的浓氢碘酸反应可生成碘甲烷. 当此化合物4.24 mg与氢碘酸反应, 所生成的碘甲烷通人硝酸银的醇溶液, 得到11.62mg碘化银. 问此化合物含有几个甲氧基?6.13 写出环氧乙烷与下列试剂反应的方程式:(1)(1)有少量硫酸存在下的甲醇(2)(2)有少量甲醇钠存在下的甲醇6.14 推测下列反应的机理。
有机化学第六章卤代烃
第六章卤代烃卤代烃是一种简单的烃的衍生物,它是烃分子中的一个或多个氢原子被卤原子(F, CL, Br, I)取代而生成的化合物。
一般可以用R-X表示,X代表卤原子。
由于卤代烃的化学性质主要有卤原子决定,因而X是卤代烃的官能团。
根据卤代烃分子中烃基的不同,可以将卤代烃分为卤代烷烃、卤代烯烃、卤代炔烃和卤代芳烃等。
第一节卤代烷烃一. 卤代烷烃的分类和命名(一) 卤代烷烃的分类1. 根据卤代烷烃分子中所含卤原子的种类,卤代烷烃分为:氟代烷:如CH3-F氯代烷:如:CH3-CL溴代烷:如:CH3-Br碘代烷:如:CH3-I2. 根据卤代烷烃分子中所好卤原子的数目的多少,卤代烷烃分为:一卤代烷:如:CH3CL, CH3-CH2-Br二卤代烷:如:CH2CL2,多卤代烷:CHCL33. 根据卤代烷烃分子中与卤原子直接相连的碳原子的类型的不同,卤代烷烃可以分为:伯卤代烷(一级卤代烷)R-CH2-Br仲卤代烷(二级卤代烷)叔卤代烷(三级卤代烷)(二)卤代烷烃的命名1. 普通命名使用范围:结构比较简单的卤代烷常采用普通命名法命名:原则:根据卤原子的种类和与卤原子直接相连的烷基命名为“某烷”,或按照烷烃的取代物命名为“卤某烷”。
如:CH 3CL甲基氯(氯甲烷)CH 3CH2Br乙基溴(溴乙烷)CH 3CH2CH 2CH2I正丁基碘(正碘丁烷)CH 3BrCH 3I1H 3 C -------- CH -------- CH CL1H 3 C -------- CH --------- CH 2CH 3H3C-—C------------- CL11CH 3异丁基氯仲丁基溴叔丁基氯(异氯丁烷)(仲溴丁烷)(叔氯丁烷)2.系统命名法范围:复杂的卤代烷烃一般采用系统命名法原则:将卤原子作为取代基,按照烷烃的命名原则来R进行命名。
方法:1) 选择连有卤原子的最长碳链为主链,并根据主链 所含碳原子的数目命名为“某烷”作为母体;2)将支链和卤原子均作为取代基;3) 对于主链不带支链的卤代烷烃,主链编号从距离 卤原子最近的一端开始;4) 对于主链带支链的卤代烷烃,主链的编号应遵循 “最低系列规则”;5)把取代基和卤原子的名称按“次序规则”依次写 在“某烷”之前(次序按先后顺序写),即得该卤代烷 烃的名称。
有机化学 第6章 对映异构
手性中心的存在与否不是唯一判断手性分子的标准 许多含有手性中心的分子不是手性的.(例外: meso) 许多手性分子不含有手性中心.(例外: 联苯型, 丙二烯型)
2018/10/17
5
(二) 对映异构体的表示法:
Fischer Projection: 把立体的结构式用平面表示出来
CH3 Cl H CH2CH3
I
赤式-2,3-二氯戊烷
最小基团在横键上
2018/10/17
34
H
H
CO2H H2N CH3 S
HO2C H3C R NH2
2018/10/17
35
问题 3-3 用R/S法标示下列各化合物的构型:
Cl (1) ClCH2 CH(CH3)2 CH3 (2) CH2=CH Br H CH2CH3
2018/10/17
36
手性分子具有旋光性(Rotation ) ——光学活性(optically active )
2018/10/17
9
问题 3-3 用R/S法标示下列各化合物的构型:
Cl (1) ClCH2 CH(CH3)2 CH3 (2) CH2=CH
H CH2CH3 Br
(3)
Cl (H3C)2HC C CH2CH2OH Br
2018/10/17
10
2018/10/17
11
2018/10/17
12
2018/10/17
trans chiral
Without symmetrical plane, with chirality!
2018/10/17
18
How about cis-1,2-dimethylcyclohexane and trans-1,2-dimethylcyclohexane?
有机化学-第六章不饱和烃
KMnO4 H2SO4
R-COOH HCOOH
羧酸
CO2 + H2O
R′
KMnO4
C CHR''
R
H2SO4
R′ CO
R
酮
R''-COOH
羧酸
烯烃高锰酸钾氧化产物与烯烃结构的关系为:
烯烃结构
高锰酸钾氧化产物
CH2=
CO2 + H2O
R CH=
R COOH
RR1C=
R COR1
2、臭氧化反应(用含有臭氧6~8%的氧气作氧化剂)
常用催化剂:Pt、Pd、Ni等。 其反应历程可表示如下:
HH
HH
C3H C3H HH
CH 3C3H
HH
CH 3C3H
HH
吸附
活泼氢原子
烯烃与被吸附 的氢原子接触
双键同时加氢
完成加氢
脱离催化剂表面
1 mol不饱和烃催化加氢所放出的热量称为氢化热 不饱和烃的氢化热↑,说明原不饱和烃分子的内能 ↑,该不饱和烃的相对稳定性↓。
C2H -C2H BrBr
Br
Br
溴 褪 色 ( 黄 无 ) 实 验 室 里 , 常 用 此
反 应 来 检 验 烯 烃
卤素的反应活性次序: F2 > Cl2 > Br2 > I2 。
氟与不饱和烃的加成异常猛烈,而碘与不饱和烃的加 成较为困难。因此,加卤素通常指的是加氯和加溴。
②与酸的加成
C=C
H-Nu
H
H
C=C
CH 3
C6H5
C=C
HH
顺,顺_1_苯基_1,3_戊二烯 (1Z,3Z)_1_苯基_1,3_戊二烯
有机化学 第六章 立体化学
观察方向
C d
b
c R构型 CHO ex: H OH CH2OH
Cl C2H5 H
Cl>C2H5>CH3>H
CH3
OH>CHO>CH2OH>H
R-(+)-甘油醛
S-(+)-2-氯丁烷
* R/S是基于次序规则确定的,与原来的基团没有联系。
OH OH 还原 C2H5 CH3 C2H5 CH2Br H H OH>CH2Br>CH2CH3>H OH>CH2CH3>CH3>H S构型 R构型 * CH 还原时,与 C 相连的键没有断裂,因此构型保持不变,但CH3 和 2Br 次序改变
R-2-溴丙酸
Ag2O. H2O
COOH H OH CH3
R-乳酸
六. 外消旋体的拆分 1. 机械拆分法 2. 选择吸附拆分法 3. 微生物拆分法 4. 化学拆分法 ex: 拆分酸
(+)RCOOH ( )RCOOH
-
2( ) RNH2
-
RCOO( )RNH3 (+)
( ) ( )
- RCOO - RNH3
H CH3
H P H
H
COOH
3. 对称轴(Cn) 360°/n (n=正整数,且n>1)
H3C C H C2
4.交替对称轴(旋转反应轴) 设想分子中有一跳直线,当分子以此直线为轴旋转360°/n 后,再用一个与此直线 垂直的平面进行反映(即以次平面为镜面,作出镜像),如果得到的镜像与原来分子 完全相同,这条直线就是交替对称轴。例如:
α C10H7
如果a=b,则由于有m. 因而不是手性分子
有机化学 第6章 立体化学
CH3
HO
H
(–)–2–丁醇
CH3 HO C H
CH2CH3
CH3
CH2CH3
C
H5C2
H
OH
Fischer 投影式的特性:
• 将投影式在纸面上旋转90°,得到它的
对映体:
CH3
CH3
H Br
Br H
CH2CH3
CH2CH3
S-(+)–2–溴丁烷
R-(–)–2–溴丁烷
沿着纸平面旋转 90° Br
CH3 CH2CH3 H
比旋光度的数值要标明测定时的条件。
例:
果糖水溶液的比旋光度
[α]20
D
=
92.8(。水 )
( ) 2 丁醇
CH3 HO H
CH2CH3
[α]
20
D
=
13.25 。
(+)2 丁醇
CH3 H OH
CH2CH3
[α]D20 = +13.25。
6.4 具有一个手性中心的对映异构 分子构型
6.4.1 对映体和外消旋体的性质
手性中心(不对称中心): ——与四个不同原子或基团相连的碳原子
CH3 CH3CH2 C Br
H
2–溴丁烷
COOH H C CH3 HO
(–)–乳酸
CH3
1
6
2
5 *3
H4 C
CH2
CH3
柠檬油精
含一个手性中心的分子具有一对对映体
CH3
D C* H
Cl
CH3
*C D
Cl
H
H2C C* H O CH3
COOH OH
HC CH3
(R)–(–)–乳酸
金属有机化学 第6章 过渡金属卡宾卡拜
Fischer Carbene
反应性质类似羧酸酯
bond order LnM=CR2 less than 2 Fischer carbene L-type ligand like CO
OEt
OEt
Cr
N (iP r) 2
OEt
2 .1 3 Å (C r-R sin g le b o n d d is ta n c e s a re 2 .0 -2 .2 Å)
OMe (C O ) 5 C r 30 C Me 31 + RNH2 (C O ) 5 C r C
NHR (7 ) Me
Schrock Carbene
亲核性金属卡宾 这类卡宾又被称之为“Schrock 型”卡宾,可被看作是一三线态卡宾与金属中 心离子中的两个电子相互成对的结果[4]。这类金属卡宾是亲核性的,金属中心离子 往往是前期过渡金属元素。
2
O X X Y + Y H (M e 3 CC H 2 ) 3 T a CMe 40 CO2 H M e 3C 42
3
H [(Me 3 C CH 2 ) 3 TaO]
x
CMe X = R, H
3
Y = R , OR, NH 41
2
H CMe
3
两类金属卡宾对比
Fischer Schrock
Carbene carbon R substituent
第六章 过渡金属卡宾和卡拜配合物
本章要点: 1. 掌握金属卡宾和卡拜配合物的种类和结构特点; 2.了解金属卡宾和卡拜配合物的典型反应性,掌握 部分重要反应。
E. O. Fischer
Fischer卡宾 (金属卡宾配合物)
金属卡宾 卡宾 :CR2 Carbene
有机原理06.还原反应
低
RCHO RCH2NH2 RCH=CHR’(Z,cis) 氢化 RCH2CH2R’ RCH2OH RCHOHR’ ArCH3 氢解 RCH2OH + R’OH RCH2NHR’ RCH2NH2
R
炔烃的加氢
顺式加氢 Lindlar 催化剂:Pd/CaCO3, 喹啉 反式加氢 Na, 液氨 炔烃 + H2 Lindlar Catalyst ( Pd/ BaSO4/ quinoline) 部分毒化用于还原反应活性高的官能团 cis olefins (Lindlar Reduction) 酰氯+ H2, Pd/BaSO4 醛 (Rosemund Reduction) Org. Rxn. 1948, 4, 362 烯烃
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。 缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
钯碳催化剂(10%)的制备 在200ml烧杯中加入5.0氯化钯,65ml水和8.8mL浓 盐酸,加热助溶。呈棕色溶液,待用。在1000ml三 口瓶中放人250g粉状活性碳(化学纯)和200mL水。 加热煮沸15 min。在搅拌下加入上述棕色氯化钯溶 液。在剧烈搅拌下,维持温度在90-95oC之间,徐 徐加入22m1甲醛(40%)。加毕,继续搅拌15min。 然后冷却到20oC以下,在搅拌下慢慢加入30%氢氧 化钾水溶液,使反应混合液的pH=5~6。再搅拌 20mL 过滤,水洗二、三次,转移到烧杯中,用5% 硝酸浸泡过夜,或更长时间。过滤,水洗至中性, 取出干燥,密闭保存,待用。
还原硝基化合物:
还原肟:
有机化学 第6章 旋光异构
COOH C H CH3 OH H3C HO
COOH C H
③ Fescher投影式
COOH H CH3 OH HO
COOH H CH3
费歇尔投影式投影原则:把与手性碳原子结合
的左右横向的两个键伸向手性碳原子的前面 ,
即伸向观察者;把上下竖立的两个键伸向手性
碳原子的后面。 常称为“横前竖后”,即横
R
4、三基团轮换操作,不改变其构型。
CO2H NH2 CH3 H CH3 H CO2H NH2 H NH2 CO2H CH3 H CH3 NH2 CO2H
(3)构型的标记法
① D、L命名法(相对构型) 1951年前人们用甘油醛提出了D、L命名法:
CHO H OH CH2OH I D-(+)-甘油醛 HO
第六章 旋光异构
以三维空间研究分子结构和性质的科学 分子中原子或基团在空间的排列状况
不同的排列对分子性质的影响
具有相同分子式,但结构不同的化合物称为同分异构体 有机化合物的异构情况:
碳链异构
CH3
CH3CH2CH2CH3与CH3CHCH 3
OH
构造异构
位置异构CH3CH2CH2OH与 CH3CHCH 3
设想分子中有一个点,从分子中任何一个原子出 发,向这个点作直线,再从这个点将直线延长出 去,则在该点前一线段等距离处,可以遇到一个 同样的原子,这个点就是对称中心
Cl H H H F H Cl F
H
Cl F
H
P
H
H Cl
F
③ 手性分子的对称要素
一个分子在结构上具有对称面或对称中心,就无 手性,没有旋光性。 一个分子在结构上即无对称面,也无对称中心, 就具有手性,有旋光性。
有机化学第六章立体化学
顺反异构 对映异构 非对映异构
6.2 手性和对称性
6.2.1 分子的手性 对映异构 对映体
当一个碳原子与四个不同的原子或基团相连时,分子在空间有两种 不同的排列方式。
两个分子为实物和镜像的关系:如同人的左、右手。
2−溴丁烷
一些概念:
非手性分子 (achiral molecule)
(±)–3–苯基丁酸 手性底物
一对非对映异构体,数量不等, 可用常规方法分离
6.10 对映异构在研究反应机理中的应用
立体专一性(stereospecific)反应
(Z)–2–丁烯 (E)–2–丁烯
Br2
一对对映体
Br2
内消旋体
反应物: 互为立体异构体 :A 和A’ 反应条件: 相同
产物:
不同的立体异构体:A只生成B, A’只生成B’
对映体的特点
具有相同的分子构造 两者的关系为:实物与镜像 不能相互重叠 物理性质相同 化学性质相似 对偏振光有不同旋转方向
手性分子一定有其对映体,对映体也称旋光异构体.
2–丁醇
6.2.2 对称因素
(1) 对称面 (σ):
2–氯丙烷
对称面把分子分成互为影象的两部分。
平面型分子
6.4.2 构型的表示法
(1) 透视式
(+)–乳酸
(–)–乳酸
(+)–2–丁醇
(2) Fischer投影式
用平面形式表示的手性碳原子的分子立体模型。
规则:
如:
将最长的碳链置于垂直的位置上;
将编号最小的碳原子置于顶端;
两线的交点为手性碳原子;
竖线两端上的基团在纸面的下方;
横线两端上的基团在纸面的上方。
金属有机化合物催化聚烯烃
TDS
RAIRS
200K
100K
Model RAIRS
4、金属与配体的成键,要求相互作用的轨道具有相同的对称
性。由于金属的配体环境不同,金属将采用不同的轨道(dx2-y2 或dxy)形成/ 键。如配体环境为八面体或平面四边形,金属 可采用dx2-y2形成键;而配体环境为四面体时,金属则要用dxy 形成键。
Keys to the success of the rhodium phosphine complexes in olefin hydrogenation catalyst are the following: 1. Rh exists in two oxidation states separated by two unites, allowing the oxidative addition and reductive elimination to occur readily; 2. There are no intermediates that are so stable as to form bottlenecks in the cycle. The intermediates are in delicate balance. They are all present in low concentrations, and they react predominantly within the cycle rather than to give dead-end complexes. When the phosphine concentration is too high or the hydrogen concentration is too low, most of the rhodium is present as RhCl(PPh3)3 and the dimeric complex
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L L • L = CO is 800 times faster than L = I at 85 C under 400 psi CO in chlorobenzene. • L = CO: ΔH‡ = 89 kJ/mol, ΔS‡ = -36 J/mol•K • L = I-: ΔH‡ = 109 kJ/mol • Extrapolation of these results to 185 C would predict that the neutral species would undergo migratory insertion 9 times faster than the anionic species.
Chapter 6 Carbonylations
The Acetic Acid process
Approximately 60 % of the 5 million tons of acetic acid made each year is produced by the carbonylation of methanol.
The use of I- is critical. Bromide gives rates that are 10X slower than iodide. • Iodide is a good nucleophile • Iodide is a weak Brønsted base • Iodide is a good ligand for Rh Rate = k[Rh]1[I-]1[CO]0[CH3OH]0
M = Ir, improved catalyst stability, very high rates, and good product selectivity relative to both MeOH and CO
Rhodium: The Monsanto Acetic Acid Process:
Recent studies of the catalytic cycle have shown the key intermediate to be [MeIr(CO)3I2], which undergoes migratory insertion much faster than [MeIr(CO)2I3]-. (Chem. Comm. 1998, 1023-1024)
I[Ir(CO)3I] I-
CO [Ir(CO)2I2]-
-CO
O I
CO
CH3I
Ir(CO)2I
CO CH3 I I CO Ir O CO
CH3 I I CO
CH3 I I CO Ir CO CO
I I I CO IIr
CH3 O CO
CH3 I I I Ir CO CO
CH3I
CO
Ir
O CO
CO CO Pd
PPh3
BrBrPPh3 NhomakorabeaPPh3
O OR
ROH Et3N
O NHR
O
PPh3 Pd PPh3 Br
RNH2
HCO2H
O H
RSnBu3
O R
I M I CO CO CH3I kIr / kRh CH3 I I I M CO CO
L L I Ir I
CH3 O CO
kRh / k Ir I
Under protic conditions, migratory insertion is greatly accelerated for the Ir complex (Chem. Commun. 1995, 1045). Protic solvents facilitate dissociation of iodide from [MeIr(CO)2I3]-, which occurs prior to migratory insertion.
Rh
CO
CO
O CCH3 I
The Me-Rh species can only be observed spectroscopically (J. Am. Chem. Soc. 1993, 115, 4093), while the acyl rhodium species has not been observed.
Adv. Organomet. Chem. 1979, 17, 255 Chemtech, 1971, 1, 600 U.S. Patent 3,769,329, 1973
[Rh(CO)2I2]CH3OH + CO (30~ 40 atm) HI 180 C
O OH 99%
Virtually any source of Rh(I) and iodide catalysts can be used. These are converted under the reaction conditions to [RhI2(CO)2]- and CH3I
Pd-catalyzed carbonylation of aryl and vinyl halides
X
Pd(PPh3)4 CO, NuH, base
O Nu
+ HB+X-
B
O Nu H
PPh3 Pd PPh3 Br
Pd(PPh3)2
HB+Br-
Br
NuH
O PPh3 Pd PPh3 Br
PPh3 Pd PPh3
Regime 3: • Observed under a variety of conditions, particularly at high [H2O] or [MeOH] • Major species is [HIr(CO)2I2]- which catalyzes both methanol carbonylation and the water-gas shift reaction.
Regime 1: • Favored at low ratios of MeI to Ir and at low [H2O] and [I-]. • Reaction rate is inversely proportional to PCO. • Major form of Ir is Ir(CO)3I Regime 2: • Observed at high [I-] • Major Ir species is [Ir(CO)2I2]• Rate increases with increasing PCO and decreases with increasing [I-]
Iridium: The BP Cativa™ Process Iridium catalysts have very high rates, but can have low selectivity. The mechanism as determined by Forster (J. Chem. Soc., Dalton Trans. 1979, 1639; Adv. Catal.,1986, 34, 81; J. Mol. Cat. 1982, 17, 299) showed that the iridium system is more complex mechanistically than the rhodium system. There appear to be two catalytic cycles involving both anionic and neutral iridium complexes.
Disadvantages of this system: • Iodide is corrosive • The rhodium catalyst is only stable under certain conditions (high CO pressure), so catalyst recycling is difficult • A heterogeneous version is unlikely
I I
Rh
CO CO
CH3OH HI CH3I Rds A
I I
CH3 CO Rh CO I
I I OC I Rh
O CCH3 CO
CO C
I I Rh I
B O CCH3 CO
CH3COI
H2O
CH3COOH + HI
CO I Rh H3CC I O
I I I Rh CO
I
CO I + CH3COI
[M(CO)2I2]CH3OH + CO HI O OH
1960: Original system developed by BASF
M = Co, 250 C, 680 bar CO, 90 % acetic acid based on MeOH.
1966: Monsanto Acetic Acid process: M = Rh, 150 - 200 C, 20 - 60 bar CO, > 99 % acetic acid from MeOH 1996: BP Cativa™ process:
The key steps in the catalytic cycle are: 1) anion assisted oxidative addition of MeI; 2) migratory insertion of CO; 3) reductive elimination of acetyl iodide.
CH3
MeIr(CO)2I2
CO
CO
I I
Ir
CO CO
Catal. Today, 2000, 58, 293-307